OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [ehframe.cc] - Blame information for rev 297

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// ehframe.cc -- handle exception frame sections for gold
2
 
3 159 khays
// Copyright 2006, 2007, 2008, 2010, 2011 Free Software Foundation, Inc.
4 27 khays
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstring>
26
#include <algorithm>
27
 
28
#include "elfcpp.h"
29
#include "dwarf.h"
30
#include "symtab.h"
31
#include "reloc.h"
32
#include "ehframe.h"
33
 
34
namespace gold
35
{
36
 
37
// This file handles generation of the exception frame header that
38
// gcc's runtime support libraries use to find unwind information at
39
// runtime.  This file also handles discarding duplicate exception
40
// frame information.
41
 
42
// The exception frame header starts with four bytes:
43
 
44
// 0: The version number, currently 1.
45
 
46
// 1: The encoding of the pointer to the exception frames.  This can
47
//    be any DWARF unwind encoding (DW_EH_PE_*).  It is normally a 4
48
//    byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
 
50
// 2: The encoding of the count of the number of FDE pointers in the
51
//    lookup table.  This can be any DWARF unwind encoding, and in
52
//    particular can be DW_EH_PE_omit if the count is omitted.  It is
53
//    normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
 
55
// 3: The encoding of the lookup table entries.  Currently gcc's
56
//    libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57
//    which means that the values are 4 byte offsets from the start of
58
//    the table.
59
 
60
// The exception frame header is followed by a pointer to the contents
61
// of the exception frame section (.eh_frame).  This pointer is
62
// encoded as specified in the byte at offset 1 of the header (i.e.,
63
// it is normally a 4 byte PC relative offset).
64
 
65
// If there is a lookup table, this is followed by the count of the
66
// number of FDE pointers, encoded as specified in the byte at offset
67
// 2 of the header (i.e., normally a 4 byte unsigned integer).
68
 
69
// This is followed by the table, which should start at an 4-byte
70
// aligned address in memory.  Each entry in the table is 8 bytes.
71
// Each entry represents an FDE.  The first four bytes of each entry
72
// are an offset to the starting PC for the FDE.  The last four bytes
73
// of each entry are an offset to the FDE data.  The offsets are from
74
// the start of the exception frame header information.  The entries
75
// are in sorted order by starting PC.
76
 
77
const int eh_frame_hdr_size = 4;
78
 
79
// Construct the exception frame header.
80
 
81
Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82
                           const Eh_frame* eh_frame_data)
83
  : Output_section_data(4),
84
    eh_frame_section_(eh_frame_section),
85
    eh_frame_data_(eh_frame_data),
86
    fde_offsets_(),
87
    any_unrecognized_eh_frame_sections_(false)
88
{
89
}
90
 
91
// Set the size of the exception frame header.
92
 
93
void
94
Eh_frame_hdr::set_final_data_size()
95
{
96
  unsigned int data_size = eh_frame_hdr_size + 4;
97
  if (!this->any_unrecognized_eh_frame_sections_)
98
    {
99
      unsigned int fde_count = this->eh_frame_data_->fde_count();
100
      if (fde_count != 0)
101
        data_size += 4 + 8 * fde_count;
102
      this->fde_offsets_.reserve(fde_count);
103
    }
104
  this->set_data_size(data_size);
105
}
106
 
107
// Write the data to the file.
108
 
109
void
110
Eh_frame_hdr::do_write(Output_file* of)
111
{
112
  switch (parameters->size_and_endianness())
113
    {
114
#ifdef HAVE_TARGET_32_LITTLE
115
    case Parameters::TARGET_32_LITTLE:
116
      this->do_sized_write<32, false>(of);
117
      break;
118
#endif
119
#ifdef HAVE_TARGET_32_BIG
120
    case Parameters::TARGET_32_BIG:
121
      this->do_sized_write<32, true>(of);
122
      break;
123
#endif
124
#ifdef HAVE_TARGET_64_LITTLE
125
    case Parameters::TARGET_64_LITTLE:
126
      this->do_sized_write<64, false>(of);
127
      break;
128
#endif
129
#ifdef HAVE_TARGET_64_BIG
130
    case Parameters::TARGET_64_BIG:
131
      this->do_sized_write<64, true>(of);
132
      break;
133
#endif
134
    default:
135
      gold_unreachable();
136
    }
137
}
138
 
139
// Write the data to the file with the right endianness.
140
 
141
template<int size, bool big_endian>
142
void
143
Eh_frame_hdr::do_sized_write(Output_file* of)
144
{
145
  const off_t off = this->offset();
146
  const off_t oview_size = this->data_size();
147
  unsigned char* const oview = of->get_output_view(off, oview_size);
148
 
149
  // Version number.
150
  oview[0] = 1;
151
 
152
  // Write out a 4 byte PC relative offset to the address of the
153
  // .eh_frame section.
154
  oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155
  uint64_t eh_frame_address = this->eh_frame_section_->address();
156
  uint64_t eh_frame_hdr_address = this->address();
157
  uint64_t eh_frame_offset = (eh_frame_address -
158
                              (eh_frame_hdr_address + 4));
159
  elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
 
161
  if (this->any_unrecognized_eh_frame_sections_
162
      || this->fde_offsets_.empty())
163
    {
164
      // There are no FDEs, or we didn't recognize the format of the
165
      // some of the .eh_frame sections, so we can't write out the
166
      // sorted table.
167
      oview[2] = elfcpp::DW_EH_PE_omit;
168
      oview[3] = elfcpp::DW_EH_PE_omit;
169
 
170
      gold_assert(oview_size == 8);
171
    }
172
  else
173
    {
174
      oview[2] = elfcpp::DW_EH_PE_udata4;
175
      oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
 
177
      elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178
                                             this->fde_offsets_.size());
179
 
180
      // We have the offsets of the FDEs in the .eh_frame section.  We
181
      // couldn't easily get the PC values before, as they depend on
182
      // relocations which are, of course, target specific.  This code
183
      // is run after all those relocations have been applied to the
184
      // output file.  Here we read the output file again to find the
185
      // PC values.  Then we sort the list and write it out.
186
 
187
      Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188
      this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189
                                                &fde_addresses);
190
 
191
      std::sort(fde_addresses.begin(), fde_addresses.end(),
192
                Fde_address_compare<size>());
193
 
194
      typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195
      output_address = this->address();
196
 
197
      unsigned char* pfde = oview + 12;
198
      for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199
           p != fde_addresses.end();
200
           ++p)
201
        {
202
          elfcpp::Swap<32, big_endian>::writeval(pfde,
203
                                                 p->first - output_address);
204
          elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205
                                                 p->second - output_address);
206
          pfde += 8;
207
        }
208
 
209
      gold_assert(pfde - oview == oview_size);
210
    }
211
 
212
  of->write_output_view(off, oview_size, oview);
213
}
214
 
215
// Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216
// the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217
// FDE's encoding is FDE_ENCODING, return the output address of the
218
// FDE's PC.
219
 
220
template<int size, bool big_endian>
221
typename elfcpp::Elf_types<size>::Elf_Addr
222
Eh_frame_hdr::get_fde_pc(
223
    typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224
    const unsigned char* eh_frame_contents,
225
    section_offset_type fde_offset,
226
    unsigned char fde_encoding)
227
{
228
  // The FDE starts with a 4 byte length and a 4 byte offset to the
229
  // CIE.  The PC follows.
230
  const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
 
232
  typename elfcpp::Elf_types<size>::Elf_Addr pc;
233
  bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234
  int pc_size = fde_encoding & 7;
235
  if (pc_size == elfcpp::DW_EH_PE_absptr)
236
    {
237
      if (size == 32)
238
        pc_size = elfcpp::DW_EH_PE_udata4;
239
      else if (size == 64)
240
        pc_size = elfcpp::DW_EH_PE_udata8;
241
      else
242
        gold_unreachable();
243
    }
244
 
245
  switch (pc_size)
246
    {
247
    case elfcpp::DW_EH_PE_udata2:
248
      pc = elfcpp::Swap<16, big_endian>::readval(p);
249
      if (is_signed)
250
        pc = (pc ^ 0x8000) - 0x8000;
251
      break;
252
 
253
    case elfcpp::DW_EH_PE_udata4:
254
      pc = elfcpp::Swap<32, big_endian>::readval(p);
255
      if (size > 32 && is_signed)
256
        pc = (pc ^ 0x80000000) - 0x80000000;
257
      break;
258
 
259
    case elfcpp::DW_EH_PE_udata8:
260
      gold_assert(size == 64);
261
      pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262
      break;
263
 
264
    default:
265
      // All other cases were rejected in Eh_frame::read_cie.
266
      gold_unreachable();
267
    }
268
 
269 159 khays
  switch (fde_encoding & 0x70)
270 27 khays
    {
271
    case 0:
272
      break;
273
 
274
    case elfcpp::DW_EH_PE_pcrel:
275
      pc += eh_frame_address + fde_offset + 8;
276
      break;
277
 
278 159 khays
    case elfcpp::DW_EH_PE_datarel:
279
      pc += parameters->target().ehframe_datarel_base();
280
      break;
281
 
282 27 khays
    default:
283
      // If other cases arise, then we have to handle them, or we have
284
      // to reject them by returning false in Eh_frame::read_cie.
285
      gold_unreachable();
286
    }
287
 
288 159 khays
  gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0);
289
 
290 27 khays
  return pc;
291
}
292
 
293
// Given an array of FDE offsets in the .eh_frame section, return an
294
// array of offsets from the exception frame header to the FDE's
295
// output PC and to the output address of the FDE itself.  We get the
296
// FDE's PC by actually looking in the .eh_frame section we just wrote
297
// to the output file.
298
 
299
template<int size, bool big_endian>
300
void
301
Eh_frame_hdr::get_fde_addresses(Output_file* of,
302
                                const Fde_offsets* fde_offsets,
303
                                Fde_addresses<size>* fde_addresses)
304
{
305
  typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
306
  eh_frame_address = this->eh_frame_section_->address();
307
  off_t eh_frame_offset = this->eh_frame_section_->offset();
308
  off_t eh_frame_size = this->eh_frame_section_->data_size();
309
  const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
310
                                                              eh_frame_size);
311
 
312
  for (Fde_offsets::const_iterator p = fde_offsets->begin();
313
       p != fde_offsets->end();
314
       ++p)
315
    {
316
      typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
317
      fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
318
                                                  eh_frame_contents,
319
                                                  p->first, p->second);
320
      fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
321
    }
322
 
323
  of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
324
}
325
 
326
// Class Fde.
327
 
328
// Write the FDE to OVIEW starting at OFFSET.  CIE_OFFSET is the
329
// offset of the CIE in OVIEW.  FDE_ENCODING is the encoding, from the
330 159 khays
// CIE.  ADDRALIGN is the required alignment.  ADDRESS is the virtual
331
// address of OVIEW.  Record the FDE pc for EH_FRAME_HDR.  Return the
332
// new offset.
333 27 khays
 
334
template<int size, bool big_endian>
335
section_offset_type
336
Fde::write(unsigned char* oview, section_offset_type offset,
337 159 khays
           uint64_t address, unsigned int addralign,
338
           section_offset_type cie_offset, unsigned char fde_encoding,
339
           Eh_frame_hdr* eh_frame_hdr)
340 27 khays
{
341
  gold_assert((offset & (addralign - 1)) == 0);
342
 
343
  size_t length = this->contents_.length();
344
 
345
  // We add 8 when getting the aligned length to account for the
346
  // length word and the CIE offset.
347
  size_t aligned_full_length = align_address(length + 8, addralign);
348
 
349
  // Write the length of the FDE as a 32-bit word.  The length word
350
  // does not include the four bytes of the length word itself, but it
351
  // does include the offset to the CIE.
352
  elfcpp::Swap<32, big_endian>::writeval(oview + offset,
353
                                         aligned_full_length - 4);
354
 
355
  // Write the offset to the CIE as a 32-bit word.  This is the
356
  // difference between the address of the offset word itself and the
357
  // CIE address.
358
  elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
359
                                         offset + 4 - cie_offset);
360
 
361
  // Copy the rest of the FDE.  Note that this is run before
362
  // relocation processing is done on this section, so the relocations
363
  // will later be applied to the FDE data.
364
  memcpy(oview + offset + 8, this->contents_.data(), length);
365
 
366 159 khays
  // If this FDE is associated with a PLT, fill in the PLT's address
367
  // and size.
368
  if (this->object_ == NULL)
369
    {
370
      gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0);
371
      Output_data* plt = this->u_.from_linker.plt;
372
      uint64_t poffset = plt->address() - (address + offset + 8);
373
      int32_t spoffset = static_cast<int32_t>(poffset);
374
      off_t psize = plt->data_size();
375
      uint32_t upsize = static_cast<uint32_t>(psize);
376
      if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset
377
          || static_cast<off_t>(upsize) != psize)
378
        gold_warning(_("overflow in PLT unwind data; "
379
                       "unwinding through PLT may fail"));
380
      elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset);
381
      elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize);
382
    }
383
 
384 27 khays
  if (aligned_full_length > length + 8)
385
    memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
386
 
387
  // Tell the exception frame header about this FDE.
388
  if (eh_frame_hdr != NULL)
389
    eh_frame_hdr->record_fde(offset, fde_encoding);
390
 
391
  return offset + aligned_full_length;
392
}
393
 
394
// Class Cie.
395
 
396
// Destructor.
397
 
398
Cie::~Cie()
399
{
400
  for (std::vector<Fde*>::iterator p = this->fdes_.begin();
401
       p != this->fdes_.end();
402
       ++p)
403
    delete *p;
404
}
405
 
406
// Set the output offset of a CIE.  Return the new output offset.
407
 
408
section_offset_type
409
Cie::set_output_offset(section_offset_type output_offset,
410
                       unsigned int addralign,
411
                       Merge_map* merge_map)
412
{
413
  size_t length = this->contents_.length();
414
 
415
  // Add 4 for length and 4 for zero CIE identifier tag.
416
  length += 8;
417
 
418 159 khays
  if (this->object_ != NULL)
419
    {
420
      // Add a mapping so that relocations are applied correctly.
421
      merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
422
                             length, output_offset);
423
    }
424 27 khays
 
425
  length = align_address(length, addralign);
426
 
427
  for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
428
       p != this->fdes_.end();
429
       ++p)
430
    {
431
      (*p)->add_mapping(output_offset + length, merge_map);
432
 
433
      size_t fde_length = (*p)->length();
434
      fde_length = align_address(fde_length, addralign);
435
      length += fde_length;
436
    }
437
 
438
  return output_offset + length;
439
}
440
 
441
// Write the CIE to OVIEW starting at OFFSET.  EH_FRAME_HDR is for FDE
442
// recording.  Round up the bytes to ADDRALIGN.  Return the new
443
// offset.
444
 
445
template<int size, bool big_endian>
446
section_offset_type
447
Cie::write(unsigned char* oview, section_offset_type offset,
448 159 khays
           uint64_t address, unsigned int addralign,
449
           Eh_frame_hdr* eh_frame_hdr)
450 27 khays
{
451
  gold_assert((offset & (addralign - 1)) == 0);
452
 
453
  section_offset_type cie_offset = offset;
454
 
455
  size_t length = this->contents_.length();
456
 
457
  // We add 8 when getting the aligned length to account for the
458
  // length word and the CIE tag.
459
  size_t aligned_full_length = align_address(length + 8, addralign);
460
 
461
  // Write the length of the CIE as a 32-bit word.  The length word
462
  // does not include the four bytes of the length word itself.
463
  elfcpp::Swap<32, big_endian>::writeval(oview + offset,
464
                                         aligned_full_length - 4);
465
 
466
  // Write the tag which marks this as a CIE: a 32-bit zero.
467
  elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
468
 
469
  // Write out the CIE data.
470
  memcpy(oview + offset + 8, this->contents_.data(), length);
471
 
472
  if (aligned_full_length > length + 8)
473
    memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
474
 
475
  offset += aligned_full_length;
476
 
477
  // Write out the associated FDEs.
478
  unsigned char fde_encoding = this->fde_encoding_;
479
  for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
480
       p != this->fdes_.end();
481
       ++p)
482 159 khays
    offset = (*p)->write<size, big_endian>(oview, offset, address, addralign,
483 27 khays
                                           cie_offset, fde_encoding,
484
                                           eh_frame_hdr);
485
 
486
  return offset;
487
}
488
 
489
// We track all the CIEs we see, and merge them when possible.  This
490
// works because each FDE holds an offset to the relevant CIE: we
491
// rewrite the FDEs to point to the merged CIE.  This is worthwhile
492
// because in a typical C++ program many FDEs in many different object
493
// files will use the same CIE.
494
 
495
// An equality operator for Cie.
496
 
497
bool
498
operator==(const Cie& cie1, const Cie& cie2)
499
{
500
  return (cie1.personality_name_ == cie2.personality_name_
501
          && cie1.contents_ == cie2.contents_);
502
}
503
 
504
// A less-than operator for Cie.
505
 
506
bool
507
operator<(const Cie& cie1, const Cie& cie2)
508
{
509
  if (cie1.personality_name_ != cie2.personality_name_)
510
    return cie1.personality_name_ < cie2.personality_name_;
511
  return cie1.contents_ < cie2.contents_;
512
}
513
 
514
// Class Eh_frame.
515
 
516
Eh_frame::Eh_frame()
517
  : Output_section_data(Output_data::default_alignment()),
518
    eh_frame_hdr_(NULL),
519
    cie_offsets_(),
520
    unmergeable_cie_offsets_(),
521
    merge_map_(),
522
    mappings_are_done_(false),
523
    final_data_size_(0)
524
{
525
}
526
 
527
// Skip an LEB128, updating *PP to point to the next character.
528
// Return false if we ran off the end of the string.
529
 
530
bool
531
Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
532
{
533
  const unsigned char* p;
534
  for (p = *pp; p < pend; ++p)
535
    {
536
      if ((*p & 0x80) == 0)
537
        {
538
          *pp = p + 1;
539
          return true;
540
        }
541
    }
542
  return false;
543
}
544
 
545
// Add input section SHNDX in OBJECT to an exception frame section.
546
// SYMBOLS is the contents of the symbol table section (size
547
// SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
548
// SYMBOL_NAMES_SIZE).  RELOC_SHNDX is the index of a relocation
549
// section applying to SHNDX, or 0 if none, or -1U if more than one.
550
// RELOC_TYPE is the type of the reloc section if there is one, either
551
// SHT_REL or SHT_RELA.  We try to parse the input exception frame
552
// data into our data structures.  If we can't do it, we return false
553
// to mean that the section should be handled as a normal input
554
// section.
555
 
556
template<int size, bool big_endian>
557
bool
558
Eh_frame::add_ehframe_input_section(
559
    Sized_relobj_file<size, big_endian>* object,
560
    const unsigned char* symbols,
561
    section_size_type symbols_size,
562
    const unsigned char* symbol_names,
563
    section_size_type symbol_names_size,
564
    unsigned int shndx,
565
    unsigned int reloc_shndx,
566
    unsigned int reloc_type)
567
{
568
  // Get the section contents.
569
  section_size_type contents_len;
570
  const unsigned char* pcontents = object->section_contents(shndx,
571
                                                            &contents_len,
572
                                                            false);
573
  if (contents_len == 0)
574
    return false;
575
 
576
  // If this is the marker section for the end of the data, then
577
  // return false to force it to be handled as an ordinary input
578
  // section.  If we don't do this, we won't correctly handle the case
579
  // of unrecognized .eh_frame sections.
580
  if (contents_len == 4
581
      && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
582
    return false;
583
 
584
  New_cies new_cies;
585
  if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
586
                                          symbol_names, symbol_names_size,
587
                                          shndx, reloc_shndx,
588
                                          reloc_type, pcontents,
589
                                          contents_len, &new_cies))
590
    {
591
      if (this->eh_frame_hdr_ != NULL)
592
        this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
593
 
594
      for (New_cies::iterator p = new_cies.begin();
595
           p != new_cies.end();
596
           ++p)
597
        delete p->first;
598
 
599
      return false;
600
    }
601
 
602
  // Now that we know we are using this section, record any new CIEs
603
  // that we found.
604
  for (New_cies::const_iterator p = new_cies.begin();
605
       p != new_cies.end();
606
       ++p)
607
    {
608
      if (p->second)
609
        this->cie_offsets_.insert(p->first);
610
      else
611
        this->unmergeable_cie_offsets_.push_back(p->first);
612
    }
613
 
614
  return true;
615
}
616
 
617
// The bulk of the implementation of add_ehframe_input_section.
618
 
619
template<int size, bool big_endian>
620
bool
621
Eh_frame::do_add_ehframe_input_section(
622
    Sized_relobj_file<size, big_endian>* object,
623
    const unsigned char* symbols,
624
    section_size_type symbols_size,
625
    const unsigned char* symbol_names,
626
    section_size_type symbol_names_size,
627
    unsigned int shndx,
628
    unsigned int reloc_shndx,
629
    unsigned int reloc_type,
630
    const unsigned char* pcontents,
631
    section_size_type contents_len,
632
    New_cies* new_cies)
633
{
634
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
635
  Track_relocs<size, big_endian> relocs;
636
 
637
  const unsigned char* p = pcontents;
638
  const unsigned char* pend = p + contents_len;
639
 
640
  // Get the contents of the reloc section if any.
641
  if (!relocs.initialize(object, reloc_shndx, reloc_type))
642
    return false;
643
 
644
  // Keep track of which CIEs are at which offsets.
645
  Offsets_to_cie cies;
646
 
647
  while (p < pend)
648
    {
649
      if (pend - p < 4)
650
        return false;
651
 
652
      // There shouldn't be any relocations here.
653
      if (relocs.advance(p + 4 - pcontents) > 0)
654
        return false;
655
 
656
      unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
657
      p += 4;
658
      if (len == 0)
659
        {
660
          // We should only find a zero-length entry at the end of the
661
          // section.
662
          if (p < pend)
663
            return false;
664
          break;
665
        }
666
      // We don't support a 64-bit .eh_frame.
667
      if (len == 0xffffffff)
668
        return false;
669
      if (static_cast<unsigned int>(pend - p) < len)
670
        return false;
671
 
672
      const unsigned char* const pentend = p + len;
673
 
674
      if (pend - p < 4)
675
        return false;
676
      if (relocs.advance(p + 4 - pcontents) > 0)
677
        return false;
678
 
679
      unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
680
      p += 4;
681
 
682
      if (id == 0)
683
        {
684
          // CIE.
685
          if (!this->read_cie(object, shndx, symbols, symbols_size,
686
                              symbol_names, symbol_names_size,
687
                              pcontents, p, pentend, &relocs, &cies,
688
                              new_cies))
689
            return false;
690
        }
691
      else
692
        {
693
          // FDE.
694
          if (!this->read_fde(object, shndx, symbols, symbols_size,
695
                              pcontents, id, p, pentend, &relocs, &cies))
696
            return false;
697
        }
698
 
699
      p = pentend;
700
    }
701
 
702
  return true;
703
}
704
 
705
// Read a CIE.  Return false if we can't parse the information.
706
 
707
template<int size, bool big_endian>
708
bool
709
Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object,
710
                   unsigned int shndx,
711
                   const unsigned char* symbols,
712
                   section_size_type symbols_size,
713
                   const unsigned char* symbol_names,
714
                   section_size_type symbol_names_size,
715
                   const unsigned char* pcontents,
716
                   const unsigned char* pcie,
717
                   const unsigned char* pcieend,
718
                   Track_relocs<size, big_endian>* relocs,
719
                   Offsets_to_cie* cies,
720
                   New_cies* new_cies)
721
{
722
  bool mergeable = true;
723
 
724
  // We need to find the personality routine if there is one, since we
725
  // can only merge CIEs which use the same routine.  We also need to
726
  // find the FDE encoding if there is one, so that we can read the PC
727
  // from the FDE.
728
 
729
  const unsigned char* p = pcie;
730
 
731
  if (pcieend - p < 1)
732
    return false;
733
  unsigned char version = *p++;
734
  if (version != 1 && version != 3)
735
    return false;
736
 
737
  const unsigned char* paug = p;
738
  const void* paugendv = memchr(p, '\0', pcieend - p);
739
  const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
740
  if (paugend == NULL)
741
    return false;
742
  p = paugend + 1;
743
 
744
  if (paug[0] == 'e' && paug[1] == 'h')
745
    {
746
      // This is a CIE from gcc before version 3.0.  We can't merge
747
      // these.  We can still read the FDEs.
748
      mergeable = false;
749
      paug += 2;
750
      if (*paug != '\0')
751
        return false;
752
      if (pcieend - p < size / 8)
753
        return false;
754
      p += size / 8;
755
    }
756
 
757
  // Skip the code alignment.
758
  if (!skip_leb128(&p, pcieend))
759
    return false;
760
 
761
  // Skip the data alignment.
762
  if (!skip_leb128(&p, pcieend))
763
    return false;
764
 
765
  // Skip the return column.
766
  if (version == 1)
767
    {
768
      if (pcieend - p < 1)
769
        return false;
770
      ++p;
771
    }
772
  else
773
    {
774
      if (!skip_leb128(&p, pcieend))
775
        return false;
776
    }
777
 
778
  if (*paug == 'z')
779
    {
780
      ++paug;
781
      // Skip the augmentation size.
782
      if (!skip_leb128(&p, pcieend))
783
        return false;
784
    }
785
 
786
  unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
787
  int per_offset = -1;
788
  while (*paug != '\0')
789
    {
790
      switch (*paug)
791
        {
792
        case 'L': // LSDA encoding.
793
          if (pcieend - p < 1)
794
            return false;
795
          ++p;
796
          break;
797
 
798
        case 'R': // FDE encoding.
799
          if (pcieend - p < 1)
800
            return false;
801
          fde_encoding = *p;
802
          switch (fde_encoding & 7)
803
            {
804
            case elfcpp::DW_EH_PE_absptr:
805
            case elfcpp::DW_EH_PE_udata2:
806
            case elfcpp::DW_EH_PE_udata4:
807
            case elfcpp::DW_EH_PE_udata8:
808
              break;
809
            default:
810
              // We don't expect to see any other cases here, and
811
              // we're not prepared to handle them.
812
              return false;
813
            }
814
          ++p;
815
          break;
816
 
817
        case 'S':
818
          break;
819
 
820
        case 'P':
821
          // Personality encoding.
822
          {
823
            if (pcieend - p < 1)
824
              return false;
825
            unsigned char per_encoding = *p;
826
            ++p;
827
 
828
            if ((per_encoding & 0x60) == 0x60)
829
              return false;
830
            unsigned int per_width;
831
            switch (per_encoding & 7)
832
              {
833
              case elfcpp::DW_EH_PE_udata2:
834
                per_width = 2;
835
                break;
836
              case elfcpp::DW_EH_PE_udata4:
837
                per_width = 4;
838
                break;
839
              case elfcpp::DW_EH_PE_udata8:
840
                per_width = 8;
841
                break;
842
              case elfcpp::DW_EH_PE_absptr:
843
                per_width = size / 8;
844
                break;
845
              default:
846
                return false;
847
              }
848
 
849
            if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
850
              {
851
                unsigned int len = p - pcie;
852
                len += per_width - 1;
853
                len &= ~ (per_width - 1);
854
                if (static_cast<unsigned int>(pcieend - p) < len)
855
                  return false;
856
                p += len;
857
              }
858
 
859
            per_offset = p - pcontents;
860
 
861
            if (static_cast<unsigned int>(pcieend - p) < per_width)
862
              return false;
863
            p += per_width;
864
          }
865
          break;
866
 
867
        default:
868
          return false;
869
        }
870
 
871
      ++paug;
872
    }
873
 
874
  const char* personality_name = "";
875
  if (per_offset != -1)
876
    {
877
      if (relocs->advance(per_offset) > 0)
878
        return false;
879
      if (relocs->next_offset() != per_offset)
880
        return false;
881
 
882
      unsigned int personality_symndx = relocs->next_symndx();
883
      if (personality_symndx == -1U)
884
        return false;
885
 
886
      if (personality_symndx < object->local_symbol_count())
887
        {
888
          // We can only merge this CIE if the personality routine is
889
          // a global symbol.  We can still read the FDEs.
890
          mergeable = false;
891
        }
892
      else
893
        {
894
          const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
895
          if (personality_symndx >= symbols_size / sym_size)
896
            return false;
897
          elfcpp::Sym<size, big_endian> sym(symbols
898
                                            + (personality_symndx * sym_size));
899
          unsigned int name_offset = sym.get_st_name();
900
          if (name_offset >= symbol_names_size)
901
            return false;
902
          personality_name = (reinterpret_cast<const char*>(symbol_names)
903
                              + name_offset);
904
        }
905
 
906
      int r = relocs->advance(per_offset + 1);
907
      gold_assert(r == 1);
908
    }
909
 
910
  if (relocs->advance(pcieend - pcontents) > 0)
911
    return false;
912
 
913
  Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
914
          personality_name, pcie, pcieend - pcie);
915
  Cie* cie_pointer = NULL;
916
  if (mergeable)
917
    {
918
      Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
919
      if (find_cie != this->cie_offsets_.end())
920
        cie_pointer = *find_cie;
921
      else
922
        {
923
          // See if we already saw this CIE in this object file.
924
          for (New_cies::const_iterator pc = new_cies->begin();
925
               pc != new_cies->end();
926
               ++pc)
927
            {
928
              if (*(pc->first) == cie)
929
                {
930
                  cie_pointer = pc->first;
931
                  break;
932
                }
933
            }
934
        }
935
    }
936
 
937
  if (cie_pointer == NULL)
938
    {
939
      cie_pointer = new Cie(cie);
940
      new_cies->push_back(std::make_pair(cie_pointer, mergeable));
941
    }
942
  else
943
    {
944
      // We are deleting this CIE.  Record that in our mapping from
945
      // input sections to the output section.  At this point we don't
946
      // know for sure that we are doing a special mapping for this
947
      // input section, but that's OK--if we don't do a special
948
      // mapping, nobody will ever ask for the mapping we add here.
949
      this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
950
                                   pcieend - (pcie - 8), -1);
951
    }
952
 
953
  // Record this CIE plus the offset in the input section.
954
  cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
955
 
956
  return true;
957
}
958
 
959
// Read an FDE.  Return false if we can't parse the information.
960
 
961
template<int size, bool big_endian>
962
bool
963
Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object,
964
                   unsigned int shndx,
965
                   const unsigned char* symbols,
966
                   section_size_type symbols_size,
967
                   const unsigned char* pcontents,
968
                   unsigned int offset,
969
                   const unsigned char* pfde,
970
                   const unsigned char* pfdeend,
971
                   Track_relocs<size, big_endian>* relocs,
972
                   Offsets_to_cie* cies)
973
{
974
  // OFFSET is the distance between the 4 bytes before PFDE to the
975
  // start of the CIE.  The offset we recorded for the CIE is 8 bytes
976
  // after the start of the CIE--after the length and the zero tag.
977
  unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
978
  Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
979
  if (pcie == cies->end())
980
    return false;
981
  Cie* cie = pcie->second;
982
 
983
  // The FDE should start with a reloc to the start of the code which
984
  // it describes.
985
  if (relocs->advance(pfde - pcontents) > 0)
986
    return false;
987
 
988
  if (relocs->next_offset() != pfde - pcontents)
989
    return false;
990
 
991
  unsigned int symndx = relocs->next_symndx();
992
  if (symndx == -1U)
993
    return false;
994
 
995
  // There can be another reloc in the FDE, if the CIE specifies an
996
  // LSDA (language specific data area).  We currently don't care.  We
997
  // will care later if we want to optimize the LSDA from an absolute
998
  // pointer to a PC relative offset when generating a shared library.
999
  relocs->advance(pfdeend - pcontents);
1000
 
1001
  unsigned int fde_shndx;
1002
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1003
  if (symndx >= symbols_size / sym_size)
1004
    return false;
1005
  elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
1006
  bool is_ordinary;
1007
  fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
1008
                                       &is_ordinary);
1009
 
1010
  if (is_ordinary
1011
      && fde_shndx != elfcpp::SHN_UNDEF
1012
      && fde_shndx < object->shnum()
1013
      && !object->is_section_included(fde_shndx))
1014
    {
1015
      // This FDE applies to a section which we are discarding.  We
1016
      // can discard this FDE.
1017
      this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
1018
                                   pfdeend - (pfde - 8), -1);
1019
      return true;
1020
    }
1021
 
1022
  cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
1023
                       pfde, pfdeend - pfde));
1024
 
1025
  return true;
1026
}
1027
 
1028 159 khays
// Add unwind information for a PLT.
1029
 
1030
void
1031
Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data,
1032
                              size_t cie_length, const unsigned char* fde_data,
1033
                              size_t fde_length)
1034
{
1035
  Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "",
1036
          cie_data, cie_length);
1037
  Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
1038
  Cie* pcie;
1039
  if (find_cie != this->cie_offsets_.end())
1040
    pcie = *find_cie;
1041
  else
1042
    {
1043
      pcie = new Cie(cie);
1044
      this->cie_offsets_.insert(pcie);
1045
    }
1046
 
1047
  Fde* fde = new Fde(plt, fde_data, fde_length);
1048
  pcie->add_fde(fde);
1049
}
1050
 
1051 27 khays
// Return the number of FDEs.
1052
 
1053
unsigned int
1054
Eh_frame::fde_count() const
1055
{
1056
  unsigned int ret = 0;
1057
  for (Unmergeable_cie_offsets::const_iterator p =
1058
         this->unmergeable_cie_offsets_.begin();
1059
       p != this->unmergeable_cie_offsets_.end();
1060
       ++p)
1061
    ret += (*p)->fde_count();
1062
  for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1063
       p != this->cie_offsets_.end();
1064
       ++p)
1065
    ret += (*p)->fde_count();
1066
  return ret;
1067
}
1068
 
1069
// Set the final data size.
1070
 
1071
void
1072
Eh_frame::set_final_data_size()
1073
{
1074
  // We can be called more than once if Layout::set_segment_offsets
1075
  // finds a better mapping.  We don't want to add all the mappings
1076
  // again.
1077
  if (this->mappings_are_done_)
1078
    {
1079
      this->set_data_size(this->final_data_size_);
1080
      return;
1081
    }
1082
 
1083
  section_offset_type output_offset = 0;
1084
 
1085
  for (Unmergeable_cie_offsets::iterator p =
1086
         this->unmergeable_cie_offsets_.begin();
1087
       p != this->unmergeable_cie_offsets_.end();
1088
       ++p)
1089
    output_offset = (*p)->set_output_offset(output_offset,
1090
                                            this->addralign(),
1091
                                            &this->merge_map_);
1092
 
1093
  for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1094
       p != this->cie_offsets_.end();
1095
       ++p)
1096
    output_offset = (*p)->set_output_offset(output_offset,
1097
                                            this->addralign(),
1098
                                            &this->merge_map_);
1099
 
1100
  this->mappings_are_done_ = true;
1101
  this->final_data_size_ = output_offset;
1102
 
1103
  gold_assert((output_offset & (this->addralign() - 1)) == 0);
1104
  this->set_data_size(output_offset);
1105
}
1106
 
1107
// Return an output offset for an input offset.
1108
 
1109
bool
1110
Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1111
                           section_offset_type offset,
1112
                           section_offset_type* poutput) const
1113
{
1114
  return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1115
}
1116
 
1117
// Return whether this is the merge section for an input section.
1118
 
1119
bool
1120
Eh_frame::do_is_merge_section_for(const Relobj* object,
1121
                                  unsigned int shndx) const
1122
{
1123
  return this->merge_map_.is_merge_section_for(object, shndx);
1124
}
1125
 
1126
// Write the data to the output file.
1127
 
1128
void
1129
Eh_frame::do_write(Output_file* of)
1130
{
1131
  const off_t offset = this->offset();
1132
  const off_t oview_size = this->data_size();
1133
  unsigned char* const oview = of->get_output_view(offset, oview_size);
1134
 
1135
  switch (parameters->size_and_endianness())
1136
    {
1137
#ifdef HAVE_TARGET_32_LITTLE
1138
    case Parameters::TARGET_32_LITTLE:
1139
      this->do_sized_write<32, false>(oview);
1140
      break;
1141
#endif
1142
#ifdef HAVE_TARGET_32_BIG
1143
    case Parameters::TARGET_32_BIG:
1144
      this->do_sized_write<32, true>(oview);
1145
      break;
1146
#endif
1147
#ifdef HAVE_TARGET_64_LITTLE
1148
    case Parameters::TARGET_64_LITTLE:
1149
      this->do_sized_write<64, false>(oview);
1150
      break;
1151
#endif
1152
#ifdef HAVE_TARGET_64_BIG
1153
    case Parameters::TARGET_64_BIG:
1154
      this->do_sized_write<64, true>(oview);
1155
      break;
1156
#endif
1157
    default:
1158
      gold_unreachable();
1159
    }
1160
 
1161
  of->write_output_view(offset, oview_size, oview);
1162
}
1163
 
1164
// Write the data to the output file--template version.
1165
 
1166
template<int size, bool big_endian>
1167
void
1168
Eh_frame::do_sized_write(unsigned char* oview)
1169
{
1170 159 khays
  uint64_t address = this->address();
1171 27 khays
  unsigned int addralign = this->addralign();
1172
  section_offset_type o = 0;
1173
  for (Unmergeable_cie_offsets::iterator p =
1174
         this->unmergeable_cie_offsets_.begin();
1175
       p != this->unmergeable_cie_offsets_.end();
1176
       ++p)
1177 159 khays
    o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1178 27 khays
                                      this->eh_frame_hdr_);
1179
  for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1180
       p != this->cie_offsets_.end();
1181
       ++p)
1182 159 khays
    o = (*p)->write<size, big_endian>(oview, o, address, addralign,
1183 27 khays
                                      this->eh_frame_hdr_);
1184
}
1185
 
1186
#ifdef HAVE_TARGET_32_LITTLE
1187
template
1188
bool
1189
Eh_frame::add_ehframe_input_section<32, false>(
1190
    Sized_relobj_file<32, false>* object,
1191
    const unsigned char* symbols,
1192
    section_size_type symbols_size,
1193
    const unsigned char* symbol_names,
1194
    section_size_type symbol_names_size,
1195
    unsigned int shndx,
1196
    unsigned int reloc_shndx,
1197
    unsigned int reloc_type);
1198
#endif
1199
 
1200
#ifdef HAVE_TARGET_32_BIG
1201
template
1202
bool
1203
Eh_frame::add_ehframe_input_section<32, true>(
1204
    Sized_relobj_file<32, true>* object,
1205
    const unsigned char* symbols,
1206
    section_size_type symbols_size,
1207
    const unsigned char* symbol_names,
1208
    section_size_type symbol_names_size,
1209
    unsigned int shndx,
1210
    unsigned int reloc_shndx,
1211
    unsigned int reloc_type);
1212
#endif
1213
 
1214
#ifdef HAVE_TARGET_64_LITTLE
1215
template
1216
bool
1217
Eh_frame::add_ehframe_input_section<64, false>(
1218
    Sized_relobj_file<64, false>* object,
1219
    const unsigned char* symbols,
1220
    section_size_type symbols_size,
1221
    const unsigned char* symbol_names,
1222
    section_size_type symbol_names_size,
1223
    unsigned int shndx,
1224
    unsigned int reloc_shndx,
1225
    unsigned int reloc_type);
1226
#endif
1227
 
1228
#ifdef HAVE_TARGET_64_BIG
1229
template
1230
bool
1231
Eh_frame::add_ehframe_input_section<64, true>(
1232
    Sized_relobj_file<64, true>* object,
1233
    const unsigned char* symbols,
1234
    section_size_type symbols_size,
1235
    const unsigned char* symbol_names,
1236
    section_size_type symbol_names_size,
1237
    unsigned int shndx,
1238
    unsigned int reloc_shndx,
1239
    unsigned int reloc_type);
1240
#endif
1241
 
1242
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.