OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [i386.cc] - Blame information for rev 299

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// i386.cc -- i386 target support for gold.
2
 
3 166 khays
// Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4
// Free Software Foundation, Inc.
5 27 khays
// Written by Ian Lance Taylor <iant@google.com>.
6
 
7
// This file is part of gold.
8
 
9
// This program is free software; you can redistribute it and/or modify
10
// it under the terms of the GNU General Public License as published by
11
// the Free Software Foundation; either version 3 of the License, or
12
// (at your option) any later version.
13
 
14
// This program is distributed in the hope that it will be useful,
15
// but WITHOUT ANY WARRANTY; without even the implied warranty of
16
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
// GNU General Public License for more details.
18
 
19
// You should have received a copy of the GNU General Public License
20
// along with this program; if not, write to the Free Software
21
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
// MA 02110-1301, USA.
23
 
24
#include "gold.h"
25
 
26
#include <cstring>
27
 
28
#include "elfcpp.h"
29 159 khays
#include "dwarf.h"
30 27 khays
#include "parameters.h"
31
#include "reloc.h"
32
#include "i386.h"
33
#include "object.h"
34
#include "symtab.h"
35
#include "layout.h"
36
#include "output.h"
37
#include "copy-relocs.h"
38
#include "target.h"
39
#include "target-reloc.h"
40
#include "target-select.h"
41
#include "tls.h"
42
#include "freebsd.h"
43
#include "gc.h"
44
 
45
namespace
46
{
47
 
48
using namespace gold;
49
 
50
// A class to handle the PLT data.
51
 
52
class Output_data_plt_i386 : public Output_section_data
53
{
54
 public:
55
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
 
57 159 khays
  Output_data_plt_i386(Layout*, Output_data_space*, Output_data_space*);
58 27 khays
 
59
  // Add an entry to the PLT.
60
  void
61 159 khays
  add_entry(Symbol_table*, Layout*, Symbol* gsym);
62 27 khays
 
63
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
64
  unsigned int
65 159 khays
  add_local_ifunc_entry(Symbol_table*, Layout*,
66
                        Sized_relobj_file<32, false>* relobj,
67 27 khays
                        unsigned int local_sym_index);
68
 
69
  // Return the .rel.plt section data.
70
  Reloc_section*
71
  rel_plt() const
72
  { return this->rel_; }
73
 
74
  // Return where the TLS_DESC relocations should go.
75
  Reloc_section*
76
  rel_tls_desc(Layout*);
77
 
78 159 khays
  // Return where the IRELATIVE relocations should go.
79
  Reloc_section*
80
  rel_irelative(Symbol_table*, Layout*);
81
 
82
  // Return whether we created a section for IRELATIVE relocations.
83
  bool
84
  has_irelative_section() const
85
  { return this->irelative_rel_ != NULL; }
86
 
87 27 khays
  // Return the number of PLT entries.
88
  unsigned int
89
  entry_count() const
90 159 khays
  { return this->count_ + this->irelative_count_; }
91 27 khays
 
92
  // Return the offset of the first non-reserved PLT entry.
93
  static unsigned int
94
  first_plt_entry_offset()
95
  { return plt_entry_size; }
96
 
97
  // Return the size of a PLT entry.
98
  static unsigned int
99
  get_plt_entry_size()
100
  { return plt_entry_size; }
101
 
102 159 khays
  // Return the PLT address to use for a global symbol.
103
  uint64_t
104
  address_for_global(const Symbol*);
105
 
106
  // Return the PLT address to use for a local symbol.
107
  uint64_t
108
  address_for_local(const Relobj*, unsigned int symndx);
109
 
110 27 khays
 protected:
111
  void
112
  do_adjust_output_section(Output_section* os);
113
 
114
  // Write to a map file.
115
  void
116
  do_print_to_mapfile(Mapfile* mapfile) const
117
  { mapfile->print_output_data(this, _("** PLT")); }
118
 
119
 private:
120
  // The size of an entry in the PLT.
121
  static const int plt_entry_size = 16;
122
 
123
  // The first entry in the PLT for an executable.
124 159 khays
  static const unsigned char exec_first_plt_entry[plt_entry_size];
125 27 khays
 
126
  // The first entry in the PLT for a shared object.
127 159 khays
  static const unsigned char dyn_first_plt_entry[plt_entry_size];
128 27 khays
 
129
  // Other entries in the PLT for an executable.
130 159 khays
  static const unsigned char exec_plt_entry[plt_entry_size];
131 27 khays
 
132
  // Other entries in the PLT for a shared object.
133 159 khays
  static const unsigned char dyn_plt_entry[plt_entry_size];
134 27 khays
 
135 159 khays
  // The .eh_frame unwind information for the PLT.
136
  static const int plt_eh_frame_cie_size = 16;
137
  static const int plt_eh_frame_fde_size = 32;
138
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
139
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
140
 
141 27 khays
  // Set the final size.
142
  void
143
  set_final_data_size()
144 159 khays
  {
145
    this->set_data_size((this->count_ + this->irelative_count_ + 1)
146
                        * plt_entry_size);
147
  }
148 27 khays
 
149
  // Write out the PLT data.
150
  void
151
  do_write(Output_file*);
152
 
153
  // We keep a list of global STT_GNU_IFUNC symbols, each with its
154
  // offset in the GOT.
155
  struct Global_ifunc
156
  {
157
    Symbol* sym;
158
    unsigned int got_offset;
159
  };
160
 
161
  // We keep a list of local STT_GNU_IFUNC symbols, each with its
162
  // offset in the GOT.
163
  struct Local_ifunc
164
  {
165
    Sized_relobj_file<32, false>* object;
166
    unsigned int local_sym_index;
167
    unsigned int got_offset;
168
  };
169
 
170 159 khays
  // A pointer to the Layout class, so that we can find the .dynamic
171
  // section when we write out the GOT PLT section.
172
  Layout* layout_;
173 27 khays
  // The reloc section.
174
  Reloc_section* rel_;
175
  // The TLS_DESC relocations, if necessary.  These must follow the
176
  // regular PLT relocs.
177
  Reloc_section* tls_desc_rel_;
178 159 khays
  // The IRELATIVE relocations, if necessary.  These must follow the
179
  // regular relocatoins and the TLS_DESC relocations.
180
  Reloc_section* irelative_rel_;
181 27 khays
  // The .got.plt section.
182
  Output_data_space* got_plt_;
183 159 khays
  // The part of the .got.plt section used for IRELATIVE relocs.
184
  Output_data_space* got_irelative_;
185 27 khays
  // The number of PLT entries.
186
  unsigned int count_;
187 159 khays
  // Number of PLT entries with R_386_IRELATIVE relocs.  These follow
188
  // the regular PLT entries.
189
  unsigned int irelative_count_;
190 27 khays
  // Global STT_GNU_IFUNC symbols.
191
  std::vector<Global_ifunc> global_ifuncs_;
192
  // Local STT_GNU_IFUNC symbols.
193
  std::vector<Local_ifunc> local_ifuncs_;
194
};
195
 
196
// The i386 target class.
197
// TLS info comes from
198
//   http://people.redhat.com/drepper/tls.pdf
199
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
200
 
201 159 khays
class Target_i386 : public Sized_target<32, false>
202 27 khays
{
203
 public:
204
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
205
 
206
  Target_i386()
207 159 khays
    : Sized_target<32, false>(&i386_info),
208
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
209
      got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
210
      rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
211 27 khays
      got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
212
  { }
213
 
214
  // Process the relocations to determine unreferenced sections for 
215
  // garbage collection.
216
  void
217
  gc_process_relocs(Symbol_table* symtab,
218
                    Layout* layout,
219
                    Sized_relobj_file<32, false>* object,
220
                    unsigned int data_shndx,
221
                    unsigned int sh_type,
222
                    const unsigned char* prelocs,
223
                    size_t reloc_count,
224
                    Output_section* output_section,
225
                    bool needs_special_offset_handling,
226
                    size_t local_symbol_count,
227
                    const unsigned char* plocal_symbols);
228
 
229
  // Scan the relocations to look for symbol adjustments.
230
  void
231
  scan_relocs(Symbol_table* symtab,
232
              Layout* layout,
233
              Sized_relobj_file<32, false>* object,
234
              unsigned int data_shndx,
235
              unsigned int sh_type,
236
              const unsigned char* prelocs,
237
              size_t reloc_count,
238
              Output_section* output_section,
239
              bool needs_special_offset_handling,
240
              size_t local_symbol_count,
241
              const unsigned char* plocal_symbols);
242
 
243
  // Finalize the sections.
244
  void
245
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
246
 
247
  // Return the value to use for a dynamic which requires special
248
  // treatment.
249
  uint64_t
250
  do_dynsym_value(const Symbol*) const;
251
 
252
  // Relocate a section.
253
  void
254
  relocate_section(const Relocate_info<32, false>*,
255
                   unsigned int sh_type,
256
                   const unsigned char* prelocs,
257
                   size_t reloc_count,
258
                   Output_section* output_section,
259
                   bool needs_special_offset_handling,
260
                   unsigned char* view,
261
                   elfcpp::Elf_types<32>::Elf_Addr view_address,
262
                   section_size_type view_size,
263
                   const Reloc_symbol_changes*);
264
 
265
  // Scan the relocs during a relocatable link.
266
  void
267
  scan_relocatable_relocs(Symbol_table* symtab,
268
                          Layout* layout,
269
                          Sized_relobj_file<32, false>* object,
270
                          unsigned int data_shndx,
271
                          unsigned int sh_type,
272
                          const unsigned char* prelocs,
273
                          size_t reloc_count,
274
                          Output_section* output_section,
275
                          bool needs_special_offset_handling,
276
                          size_t local_symbol_count,
277
                          const unsigned char* plocal_symbols,
278
                          Relocatable_relocs*);
279
 
280
  // Relocate a section during a relocatable link.
281
  void
282
  relocate_for_relocatable(const Relocate_info<32, false>*,
283
                           unsigned int sh_type,
284
                           const unsigned char* prelocs,
285
                           size_t reloc_count,
286
                           Output_section* output_section,
287
                           off_t offset_in_output_section,
288
                           const Relocatable_relocs*,
289
                           unsigned char* view,
290
                           elfcpp::Elf_types<32>::Elf_Addr view_address,
291
                           section_size_type view_size,
292
                           unsigned char* reloc_view,
293
                           section_size_type reloc_view_size);
294
 
295
  // Return a string used to fill a code section with nops.
296
  std::string
297
  do_code_fill(section_size_type length) const;
298
 
299
  // Return whether SYM is defined by the ABI.
300
  bool
301
  do_is_defined_by_abi(const Symbol* sym) const
302
  { return strcmp(sym->name(), "___tls_get_addr") == 0; }
303
 
304
  // Return whether a symbol name implies a local label.  The UnixWare
305
  // 2.1 cc generates temporary symbols that start with .X, so we
306
  // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
307
  // If so, we should move the .X recognition into
308
  // Target::do_is_local_label_name.
309
  bool
310
  do_is_local_label_name(const char* name) const
311
  {
312
    if (name[0] == '.' && name[1] == 'X')
313
      return true;
314
    return Target::do_is_local_label_name(name);
315
  }
316
 
317 159 khays
  // Return the PLT address to use for a global symbol.
318
  uint64_t
319
  do_plt_address_for_global(const Symbol* gsym) const
320
  { return this->plt_section()->address_for_global(gsym); }
321 27 khays
 
322 159 khays
  uint64_t
323
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
324
  { return this->plt_section()->address_for_local(relobj, symndx); }
325 27 khays
 
326 159 khays
  // We can tell whether we take the address of a function.
327
  inline bool
328
  do_can_check_for_function_pointers() const
329
  { return true; }
330
 
331
  // Return the base for a DW_EH_PE_datarel encoding.
332
  uint64_t
333
  do_ehframe_datarel_base() const;
334
 
335 27 khays
  // Return whether SYM is call to a non-split function.
336
  bool
337
  do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
338
 
339
  // Adjust -fsplit-stack code which calls non-split-stack code.
340
  void
341
  do_calls_non_split(Relobj* object, unsigned int shndx,
342
                     section_offset_type fnoffset, section_size_type fnsize,
343
                     unsigned char* view, section_size_type view_size,
344
                     std::string* from, std::string* to) const;
345
 
346
  // Return the size of the GOT section.
347
  section_size_type
348
  got_size() const
349
  {
350
    gold_assert(this->got_ != NULL);
351
    return this->got_->data_size();
352
  }
353
 
354
  // Return the number of entries in the GOT.
355
  unsigned int
356
  got_entry_count() const
357
  {
358
    if (this->got_ == NULL)
359
      return 0;
360
    return this->got_size() / 4;
361
  }
362
 
363
  // Return the number of entries in the PLT.
364
  unsigned int
365
  plt_entry_count() const;
366
 
367
  // Return the offset of the first non-reserved PLT entry.
368
  unsigned int
369
  first_plt_entry_offset() const;
370
 
371
  // Return the size of each PLT entry.
372
  unsigned int
373
  plt_entry_size() const;
374
 
375
 private:
376
  // The class which scans relocations.
377
  struct Scan
378
  {
379
    static inline int
380
 
381
    get_reference_flags(unsigned int r_type);
382
 
383
    inline void
384
    local(Symbol_table* symtab, Layout* layout, Target_i386* target,
385
          Sized_relobj_file<32, false>* object,
386
          unsigned int data_shndx,
387
          Output_section* output_section,
388
          const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
389
          const elfcpp::Sym<32, false>& lsym);
390
 
391
    inline void
392
    global(Symbol_table* symtab, Layout* layout, Target_i386* target,
393
           Sized_relobj_file<32, false>* object,
394
           unsigned int data_shndx,
395
           Output_section* output_section,
396
           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
397
           Symbol* gsym);
398
 
399
    inline bool
400
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
401
                                        Target_i386* target,
402
                                        Sized_relobj_file<32, false>* object,
403
                                        unsigned int data_shndx,
404
                                        Output_section* output_section,
405
                                        const elfcpp::Rel<32, false>& reloc,
406
                                        unsigned int r_type,
407
                                        const elfcpp::Sym<32, false>& lsym);
408
 
409
    inline bool
410
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
411
                                         Target_i386* target,
412
                                         Sized_relobj_file<32, false>* object,
413
                                         unsigned int data_shndx,
414
                                         Output_section* output_section,
415
                                         const elfcpp::Rel<32, false>& reloc,
416
                                         unsigned int r_type,
417
                                         Symbol* gsym);
418
 
419
    inline bool
420
    possible_function_pointer_reloc(unsigned int r_type);
421
 
422
    bool
423
    reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
424
                              unsigned int r_type);
425
 
426
    static void
427
    unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
428
 
429
    static void
430
    unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
431
                             Symbol*);
432
  };
433
 
434
  // The class which implements relocation.
435
  class Relocate
436
  {
437
   public:
438
    Relocate()
439
      : skip_call_tls_get_addr_(false),
440
        local_dynamic_type_(LOCAL_DYNAMIC_NONE)
441
    { }
442
 
443
    ~Relocate()
444
    {
445
      if (this->skip_call_tls_get_addr_)
446
        {
447
          // FIXME: This needs to specify the location somehow.
448
          gold_error(_("missing expected TLS relocation"));
449
        }
450
    }
451
 
452
    // Return whether the static relocation needs to be applied.
453
    inline bool
454
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
455
                              unsigned int r_type,
456
                              bool is_32bit,
457
                              Output_section* output_section);
458
 
459
    // Do a relocation.  Return false if the caller should not issue
460
    // any warnings about this relocation.
461
    inline bool
462
    relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
463
             size_t relnum, const elfcpp::Rel<32, false>&,
464
             unsigned int r_type, const Sized_symbol<32>*,
465
             const Symbol_value<32>*,
466
             unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
467
             section_size_type);
468
 
469
   private:
470
    // Do a TLS relocation.
471
    inline void
472
    relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
473
                 size_t relnum, const elfcpp::Rel<32, false>&,
474
                 unsigned int r_type, const Sized_symbol<32>*,
475
                 const Symbol_value<32>*,
476
                 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
477
                 section_size_type);
478
 
479
    // Do a TLS General-Dynamic to Initial-Exec transition.
480
    inline void
481
    tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
482
                 Output_segment* tls_segment,
483
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
484
                 elfcpp::Elf_types<32>::Elf_Addr value,
485
                 unsigned char* view,
486
                 section_size_type view_size);
487
 
488
    // Do a TLS General-Dynamic to Local-Exec transition.
489
    inline void
490
    tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
491
                 Output_segment* tls_segment,
492
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
493
                 elfcpp::Elf_types<32>::Elf_Addr value,
494
                 unsigned char* view,
495
                 section_size_type view_size);
496
 
497
    // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
498
    // transition.
499
    inline void
500
    tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
501
                      Output_segment* tls_segment,
502
                      const elfcpp::Rel<32, false>&, unsigned int r_type,
503
                      elfcpp::Elf_types<32>::Elf_Addr value,
504
                      unsigned char* view,
505
                      section_size_type view_size);
506
 
507
    // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
508
    // transition.
509
    inline void
510
    tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
511
                      Output_segment* tls_segment,
512
                      const elfcpp::Rel<32, false>&, unsigned int r_type,
513
                      elfcpp::Elf_types<32>::Elf_Addr value,
514
                      unsigned char* view,
515
                      section_size_type view_size);
516
 
517
    // Do a TLS Local-Dynamic to Local-Exec transition.
518
    inline void
519
    tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
520
                 Output_segment* tls_segment,
521
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
522
                 elfcpp::Elf_types<32>::Elf_Addr value,
523
                 unsigned char* view,
524
                 section_size_type view_size);
525
 
526
    // Do a TLS Initial-Exec to Local-Exec transition.
527
    static inline void
528
    tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
529
                 Output_segment* tls_segment,
530
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
531
                 elfcpp::Elf_types<32>::Elf_Addr value,
532
                 unsigned char* view,
533
                 section_size_type view_size);
534
 
535
    // We need to keep track of which type of local dynamic relocation
536
    // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
537
    enum Local_dynamic_type
538
    {
539
      LOCAL_DYNAMIC_NONE,
540
      LOCAL_DYNAMIC_SUN,
541
      LOCAL_DYNAMIC_GNU
542
    };
543
 
544
    // This is set if we should skip the next reloc, which should be a
545
    // PLT32 reloc against ___tls_get_addr.
546
    bool skip_call_tls_get_addr_;
547
    // The type of local dynamic relocation we have seen in the section
548
    // being relocated, if any.
549
    Local_dynamic_type local_dynamic_type_;
550
  };
551
 
552
  // A class which returns the size required for a relocation type,
553
  // used while scanning relocs during a relocatable link.
554
  class Relocatable_size_for_reloc
555
  {
556
   public:
557
    unsigned int
558
    get_size_for_reloc(unsigned int, Relobj*);
559
  };
560
 
561
  // Adjust TLS relocation type based on the options and whether this
562
  // is a local symbol.
563
  static tls::Tls_optimization
564
  optimize_tls_reloc(bool is_final, int r_type);
565
 
566
  // Get the GOT section, creating it if necessary.
567
  Output_data_got<32, false>*
568
  got_section(Symbol_table*, Layout*);
569
 
570
  // Get the GOT PLT section.
571
  Output_data_space*
572
  got_plt_section() const
573
  {
574
    gold_assert(this->got_plt_ != NULL);
575
    return this->got_plt_;
576
  }
577
 
578
  // Get the GOT section for TLSDESC entries.
579
  Output_data_got<32, false>*
580
  got_tlsdesc_section() const
581
  {
582
    gold_assert(this->got_tlsdesc_ != NULL);
583
    return this->got_tlsdesc_;
584
  }
585
 
586
  // Create the PLT section.
587
  void
588
  make_plt_section(Symbol_table* symtab, Layout* layout);
589
 
590
  // Create a PLT entry for a global symbol.
591
  void
592
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
593
 
594
  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
595
  void
596
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
597
                             Sized_relobj_file<32, false>* relobj,
598
                             unsigned int local_sym_index);
599
 
600
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
601
  void
602
  define_tls_base_symbol(Symbol_table*, Layout*);
603
 
604
  // Create a GOT entry for the TLS module index.
605
  unsigned int
606
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
607
                      Sized_relobj_file<32, false>* object);
608
 
609
  // Get the PLT section.
610
  Output_data_plt_i386*
611
  plt_section() const
612
  {
613
    gold_assert(this->plt_ != NULL);
614
    return this->plt_;
615
  }
616
 
617
  // Get the dynamic reloc section, creating it if necessary.
618
  Reloc_section*
619
  rel_dyn_section(Layout*);
620
 
621
  // Get the section to use for TLS_DESC relocations.
622
  Reloc_section*
623
  rel_tls_desc_section(Layout*) const;
624
 
625 159 khays
  // Get the section to use for IRELATIVE relocations.
626
  Reloc_section*
627
  rel_irelative_section(Layout*);
628
 
629 27 khays
  // Add a potential copy relocation.
630
  void
631
  copy_reloc(Symbol_table* symtab, Layout* layout,
632
             Sized_relobj_file<32, false>* object,
633
             unsigned int shndx, Output_section* output_section,
634
             Symbol* sym, const elfcpp::Rel<32, false>& reloc)
635
  {
636
    this->copy_relocs_.copy_reloc(symtab, layout,
637
                                  symtab->get_sized_symbol<32>(sym),
638
                                  object, shndx, output_section, reloc,
639
                                  this->rel_dyn_section(layout));
640
  }
641
 
642
  // Information about this specific target which we pass to the
643
  // general Target structure.
644
  static const Target::Target_info i386_info;
645
 
646
  // The types of GOT entries needed for this platform.
647
  // These values are exposed to the ABI in an incremental link.
648
  // Do not renumber existing values without changing the version
649
  // number of the .gnu_incremental_inputs section.
650
  enum Got_type
651
  {
652
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
653
    GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
654
    GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
655
    GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
656
    GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
657
  };
658
 
659
  // The GOT section.
660
  Output_data_got<32, false>* got_;
661
  // The PLT section.
662
  Output_data_plt_i386* plt_;
663
  // The GOT PLT section.
664
  Output_data_space* got_plt_;
665 159 khays
  // The GOT section for IRELATIVE relocations.
666
  Output_data_space* got_irelative_;
667 27 khays
  // The GOT section for TLSDESC relocations.
668
  Output_data_got<32, false>* got_tlsdesc_;
669
  // The _GLOBAL_OFFSET_TABLE_ symbol.
670
  Symbol* global_offset_table_;
671
  // The dynamic reloc section.
672
  Reloc_section* rel_dyn_;
673 159 khays
  // The section to use for IRELATIVE relocs.
674
  Reloc_section* rel_irelative_;
675 27 khays
  // Relocs saved to avoid a COPY reloc.
676
  Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
677
  // Space for variables copied with a COPY reloc.
678
  Output_data_space* dynbss_;
679
  // Offset of the GOT entry for the TLS module index.
680
  unsigned int got_mod_index_offset_;
681
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
682
  bool tls_base_symbol_defined_;
683
};
684
 
685
const Target::Target_info Target_i386::i386_info =
686
{
687
  32,                   // size
688
  false,                // is_big_endian
689
  elfcpp::EM_386,       // machine_code
690
  false,                // has_make_symbol
691
  false,                // has_resolve
692
  true,                 // has_code_fill
693
  true,                 // is_default_stack_executable
694 159 khays
  true,                 // can_icf_inline_merge_sections
695 27 khays
  '\0',                 // wrap_char
696
  "/usr/lib/libc.so.1", // dynamic_linker
697
  0x08048000,           // default_text_segment_address
698
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
699
  0x1000,               // common_pagesize (overridable by -z common-page-size)
700
  elfcpp::SHN_UNDEF,    // small_common_shndx
701
  elfcpp::SHN_UNDEF,    // large_common_shndx
702
  0,                     // small_common_section_flags
703
  0,                     // large_common_section_flags
704
  NULL,                 // attributes_section
705
  NULL                  // attributes_vendor
706
};
707
 
708
// Get the GOT section, creating it if necessary.
709
 
710
Output_data_got<32, false>*
711
Target_i386::got_section(Symbol_table* symtab, Layout* layout)
712
{
713
  if (this->got_ == NULL)
714
    {
715
      gold_assert(symtab != NULL && layout != NULL);
716
 
717
      this->got_ = new Output_data_got<32, false>();
718
 
719 159 khays
      // When using -z now, we can treat .got.plt as a relro section.
720
      // Without -z now, it is modified after program startup by lazy
721
      // PLT relocations.
722
      bool is_got_plt_relro = parameters->options().now();
723
      Output_section_order got_order = (is_got_plt_relro
724
                                        ? ORDER_RELRO
725
                                        : ORDER_RELRO_LAST);
726
      Output_section_order got_plt_order = (is_got_plt_relro
727
                                            ? ORDER_RELRO
728
                                            : ORDER_NON_RELRO_FIRST);
729
 
730 27 khays
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
731
                                      (elfcpp::SHF_ALLOC
732
                                       | elfcpp::SHF_WRITE),
733 159 khays
                                      this->got_, got_order, true);
734 27 khays
 
735
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
736
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
737
                                      (elfcpp::SHF_ALLOC
738
                                       | elfcpp::SHF_WRITE),
739 159 khays
                                      this->got_plt_, got_plt_order,
740
                                      is_got_plt_relro);
741 27 khays
 
742
      // The first three entries are reserved.
743
      this->got_plt_->set_current_data_size(3 * 4);
744
 
745 159 khays
      if (!is_got_plt_relro)
746
        {
747
          // Those bytes can go into the relro segment.
748
          layout->increase_relro(3 * 4);
749
        }
750 27 khays
 
751
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
752
      this->global_offset_table_ =
753
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
754
                                      Symbol_table::PREDEFINED,
755
                                      this->got_plt_,
756
                                      0, 0, elfcpp::STT_OBJECT,
757
                                      elfcpp::STB_LOCAL,
758
                                      elfcpp::STV_HIDDEN, 0,
759
                                      false, false);
760
 
761 159 khays
      // If there are any IRELATIVE relocations, they get GOT entries
762
      // in .got.plt after the jump slot relocations.
763
      this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
764
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
765
                                      (elfcpp::SHF_ALLOC
766
                                       | elfcpp::SHF_WRITE),
767
                                      this->got_irelative_,
768
                                      got_plt_order, is_got_plt_relro);
769
 
770 27 khays
      // If there are any TLSDESC relocations, they get GOT entries in
771
      // .got.plt after the jump slot entries.
772
      this->got_tlsdesc_ = new Output_data_got<32, false>();
773
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
774
                                      (elfcpp::SHF_ALLOC
775
                                       | elfcpp::SHF_WRITE),
776
                                      this->got_tlsdesc_,
777 159 khays
                                      got_plt_order, is_got_plt_relro);
778 27 khays
    }
779
 
780
  return this->got_;
781
}
782
 
783
// Get the dynamic reloc section, creating it if necessary.
784
 
785
Target_i386::Reloc_section*
786
Target_i386::rel_dyn_section(Layout* layout)
787
{
788
  if (this->rel_dyn_ == NULL)
789
    {
790
      gold_assert(layout != NULL);
791
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
792
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
793
                                      elfcpp::SHF_ALLOC, this->rel_dyn_,
794
                                      ORDER_DYNAMIC_RELOCS, false);
795
    }
796
  return this->rel_dyn_;
797
}
798
 
799 159 khays
// Get the section to use for IRELATIVE relocs, creating it if
800
// necessary.  These go in .rel.dyn, but only after all other dynamic
801
// relocations.  They need to follow the other dynamic relocations so
802
// that they can refer to global variables initialized by those
803
// relocs.
804
 
805
Target_i386::Reloc_section*
806
Target_i386::rel_irelative_section(Layout* layout)
807
{
808
  if (this->rel_irelative_ == NULL)
809
    {
810
      // Make sure we have already create the dynamic reloc section.
811
      this->rel_dyn_section(layout);
812
      this->rel_irelative_ = new Reloc_section(false);
813
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
814
                                      elfcpp::SHF_ALLOC, this->rel_irelative_,
815
                                      ORDER_DYNAMIC_RELOCS, false);
816
      gold_assert(this->rel_dyn_->output_section()
817
                  == this->rel_irelative_->output_section());
818
    }
819
  return this->rel_irelative_;
820
}
821
 
822 27 khays
// Create the PLT section.  The ordinary .got section is an argument,
823
// since we need to refer to the start.  We also create our own .got
824
// section just for PLT entries.
825
 
826 159 khays
Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
827
                                           Output_data_space* got_plt,
828
                                           Output_data_space* got_irelative)
829
  : Output_section_data(16), layout_(layout), tls_desc_rel_(NULL),
830
    irelative_rel_(NULL), got_plt_(got_plt), got_irelative_(got_irelative),
831
    count_(0), irelative_count_(0), global_ifuncs_(), local_ifuncs_()
832 27 khays
{
833
  this->rel_ = new Reloc_section(false);
834
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
835
                                  elfcpp::SHF_ALLOC, this->rel_,
836
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
837
 
838 159 khays
  // Add unwind information if requested.
839
  if (parameters->options().ld_generated_unwind_info())
840
    layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
841
                                 plt_eh_frame_fde, plt_eh_frame_fde_size);
842 27 khays
}
843
 
844
void
845
Output_data_plt_i386::do_adjust_output_section(Output_section* os)
846
{
847
  // UnixWare sets the entsize of .plt to 4, and so does the old GNU
848
  // linker, and so do we.
849
  os->set_entsize(4);
850
}
851
 
852
// Add an entry to the PLT.
853
 
854
void
855 159 khays
Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
856
                                Symbol* gsym)
857 27 khays
{
858
  gold_assert(!gsym->has_plt_offset());
859
 
860
  // Every PLT entry needs a reloc.
861
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
862
      && gsym->can_use_relative_reloc(false))
863
    {
864 159 khays
      gsym->set_plt_offset(this->irelative_count_ * plt_entry_size);
865
      ++this->irelative_count_;
866
      section_offset_type got_offset =
867
        this->got_irelative_->current_data_size();
868
      this->got_irelative_->set_current_data_size(got_offset + 4);
869
      Reloc_section* rel = this->rel_irelative(symtab, layout);
870
      rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
871
                                        this->got_irelative_, got_offset);
872 27 khays
      struct Global_ifunc gi;
873
      gi.sym = gsym;
874
      gi.got_offset = got_offset;
875
      this->global_ifuncs_.push_back(gi);
876
    }
877
  else
878
    {
879 159 khays
      // When setting the PLT offset we skip the initial reserved PLT
880
      // entry.
881
      gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
882
 
883
      ++this->count_;
884
 
885
      section_offset_type got_offset = this->got_plt_->current_data_size();
886
 
887
      // Every PLT entry needs a GOT entry which points back to the
888
      // PLT entry (this will be changed by the dynamic linker,
889
      // normally lazily when the function is called).
890
      this->got_plt_->set_current_data_size(got_offset + 4);
891
 
892 27 khays
      gsym->set_needs_dynsym_entry();
893
      this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
894
                             got_offset);
895
    }
896
 
897
  // Note that we don't need to save the symbol.  The contents of the
898
  // PLT are independent of which symbols are used.  The symbols only
899
  // appear in the relocations.
900
}
901
 
902
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
903
// the PLT offset.
904
 
905
unsigned int
906
Output_data_plt_i386::add_local_ifunc_entry(
907 159 khays
    Symbol_table* symtab,
908
    Layout* layout,
909 27 khays
    Sized_relobj_file<32, false>* relobj,
910
    unsigned int local_sym_index)
911
{
912 159 khays
  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
913
  ++this->irelative_count_;
914 27 khays
 
915 159 khays
  section_offset_type got_offset = this->got_irelative_->current_data_size();
916 27 khays
 
917
  // Every PLT entry needs a GOT entry which points back to the PLT
918
  // entry.
919 159 khays
  this->got_irelative_->set_current_data_size(got_offset + 4);
920 27 khays
 
921
  // Every PLT entry needs a reloc.
922 159 khays
  Reloc_section* rel = this->rel_irelative(symtab, layout);
923
  rel->add_symbolless_local_addend(relobj, local_sym_index,
924
                                   elfcpp::R_386_IRELATIVE,
925
                                   this->got_irelative_, got_offset);
926 27 khays
 
927
  struct Local_ifunc li;
928
  li.object = relobj;
929
  li.local_sym_index = local_sym_index;
930
  li.got_offset = got_offset;
931
  this->local_ifuncs_.push_back(li);
932
 
933
  return plt_offset;
934
}
935
 
936
// Return where the TLS_DESC relocations should go, creating it if
937
// necessary. These follow the JUMP_SLOT relocations.
938
 
939
Output_data_plt_i386::Reloc_section*
940
Output_data_plt_i386::rel_tls_desc(Layout* layout)
941
{
942
  if (this->tls_desc_rel_ == NULL)
943
    {
944
      this->tls_desc_rel_ = new Reloc_section(false);
945
      layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
946
                                      elfcpp::SHF_ALLOC, this->tls_desc_rel_,
947
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
948 159 khays
      gold_assert(this->tls_desc_rel_->output_section()
949
                  == this->rel_->output_section());
950 27 khays
    }
951
  return this->tls_desc_rel_;
952
}
953
 
954 159 khays
// Return where the IRELATIVE relocations should go in the PLT.  These
955
// follow the JUMP_SLOT and TLS_DESC relocations.
956
 
957
Output_data_plt_i386::Reloc_section*
958
Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
959
{
960
  if (this->irelative_rel_ == NULL)
961
    {
962
      // Make sure we have a place for the TLS_DESC relocations, in
963
      // case we see any later on.
964
      this->rel_tls_desc(layout);
965
      this->irelative_rel_ = new Reloc_section(false);
966
      layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
967
                                      elfcpp::SHF_ALLOC, this->irelative_rel_,
968
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
969
      gold_assert(this->irelative_rel_->output_section()
970
                  == this->rel_->output_section());
971
 
972
      if (parameters->doing_static_link())
973
        {
974
          // A statically linked executable will only have a .rel.plt
975
          // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
976
          // symbols.  The library will use these symbols to locate
977
          // the IRELATIVE relocs at program startup time.
978
          symtab->define_in_output_data("__rel_iplt_start", NULL,
979
                                        Symbol_table::PREDEFINED,
980
                                        this->irelative_rel_, 0, 0,
981
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
982
                                        elfcpp::STV_HIDDEN, 0, false, true);
983
          symtab->define_in_output_data("__rel_iplt_end", NULL,
984
                                        Symbol_table::PREDEFINED,
985
                                        this->irelative_rel_, 0, 0,
986
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
987
                                        elfcpp::STV_HIDDEN, 0, true, true);
988
        }
989
    }
990
  return this->irelative_rel_;
991
}
992
 
993
// Return the PLT address to use for a global symbol.
994
 
995
uint64_t
996
Output_data_plt_i386::address_for_global(const Symbol* gsym)
997
{
998
  uint64_t offset = 0;
999
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1000
      && gsym->can_use_relative_reloc(false))
1001
    offset = (this->count_ + 1) * plt_entry_size;
1002
  return this->address() + offset;
1003
}
1004
 
1005
// Return the PLT address to use for a local symbol.  These are always
1006
// IRELATIVE relocs.
1007
 
1008
uint64_t
1009
Output_data_plt_i386::address_for_local(const Relobj*, unsigned int)
1010
{
1011
  return this->address() + (this->count_ + 1) * plt_entry_size;
1012
}
1013
 
1014 27 khays
// The first entry in the PLT for an executable.
1015
 
1016 159 khays
const unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
1017 27 khays
{
1018
  0xff, 0x35,   // pushl contents of memory address
1019
  0, 0, 0, 0,       // replaced with address of .got + 4
1020
  0xff, 0x25,   // jmp indirect
1021
  0, 0, 0, 0,       // replaced with address of .got + 8
1022
  0, 0, 0, 0        // unused
1023
};
1024
 
1025
// The first entry in the PLT for a shared object.
1026
 
1027 159 khays
const unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
1028 27 khays
{
1029
  0xff, 0xb3, 4, 0, 0, 0,  // pushl 4(%ebx)
1030
  0xff, 0xa3, 8, 0, 0, 0,  // jmp *8(%ebx)
1031
  0, 0, 0, 0                        // unused
1032
};
1033
 
1034
// Subsequent entries in the PLT for an executable.
1035
 
1036 159 khays
const unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
1037 27 khays
{
1038
  0xff, 0x25,   // jmp indirect
1039
  0, 0, 0, 0,       // replaced with address of symbol in .got
1040
  0x68,         // pushl immediate
1041
  0, 0, 0, 0,       // replaced with offset into relocation table
1042
  0xe9,         // jmp relative
1043
  0, 0, 0, 0        // replaced with offset to start of .plt
1044
};
1045
 
1046
// Subsequent entries in the PLT for a shared object.
1047
 
1048 159 khays
const unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
1049 27 khays
{
1050
  0xff, 0xa3,   // jmp *offset(%ebx)
1051
  0, 0, 0, 0,       // replaced with offset of symbol in .got
1052
  0x68,         // pushl immediate
1053
  0, 0, 0, 0,       // replaced with offset into relocation table
1054
  0xe9,         // jmp relative
1055
  0, 0, 0, 0        // replaced with offset to start of .plt
1056
};
1057
 
1058 159 khays
// The .eh_frame unwind information for the PLT.
1059
 
1060
const unsigned char
1061
Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1062
{
1063
  1,                            // CIE version.
1064
  'z',                          // Augmentation: augmentation size included.
1065
  'R',                          // Augmentation: FDE encoding included.
1066
  '\0',                         // End of augmentation string.
1067
  1,                            // Code alignment factor.
1068
  0x7c,                         // Data alignment factor.
1069
  8,                            // Return address column.
1070
  1,                            // Augmentation size.
1071
  (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1072
   | elfcpp::DW_EH_PE_sdata4),
1073
  elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1074
  elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1075
  elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1076
  elfcpp::DW_CFA_nop
1077
};
1078
 
1079
const unsigned char
1080
Output_data_plt_i386::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1081
{
1082
  0, 0, 0, 0,                               // Replaced with offset to .plt.
1083
  0, 0, 0, 0,                               // Replaced with size of .plt.
1084
  0,                                     // Augmentation size.
1085
  elfcpp::DW_CFA_def_cfa_offset, 8,     // DW_CFA_def_cfa_offset: 8.
1086
  elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1087
  elfcpp::DW_CFA_def_cfa_offset, 12,    // DW_CFA_def_cfa_offset: 12.
1088
  elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1089
  elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1090
  11,                                   // Block length.
1091
  elfcpp::DW_OP_breg4, 4,               // Push %esp + 4.
1092
  elfcpp::DW_OP_breg8, 0,                // Push %eip.
1093
  elfcpp::DW_OP_lit15,                  // Push 0xf.
1094
  elfcpp::DW_OP_and,                    // & (%eip & 0xf).
1095
  elfcpp::DW_OP_lit11,                  // Push 0xb.
1096
  elfcpp::DW_OP_ge,                     // >= ((%eip & 0xf) >= 0xb)
1097
  elfcpp::DW_OP_lit2,                   // Push 2.
1098
  elfcpp::DW_OP_shl,                    // << (((%eip & 0xf) >= 0xb) << 2)
1099
  elfcpp::DW_OP_plus,                   // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1100
  elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1101
  elfcpp::DW_CFA_nop,
1102
  elfcpp::DW_CFA_nop,
1103
  elfcpp::DW_CFA_nop
1104
};
1105
 
1106 27 khays
// Write out the PLT.  This uses the hand-coded instructions above,
1107
// and adjusts them as needed.  This is all specified by the i386 ELF
1108
// Processor Supplement.
1109
 
1110
void
1111
Output_data_plt_i386::do_write(Output_file* of)
1112
{
1113
  const off_t offset = this->offset();
1114
  const section_size_type oview_size =
1115
    convert_to_section_size_type(this->data_size());
1116
  unsigned char* const oview = of->get_output_view(offset, oview_size);
1117
 
1118
  const off_t got_file_offset = this->got_plt_->offset();
1119 159 khays
  gold_assert(parameters->incremental_update()
1120
              || (got_file_offset + this->got_plt_->data_size()
1121
                  == this->got_irelative_->offset()));
1122 27 khays
  const section_size_type got_size =
1123 159 khays
    convert_to_section_size_type(this->got_plt_->data_size()
1124
                                 + this->got_irelative_->data_size());
1125 27 khays
  unsigned char* const got_view = of->get_output_view(got_file_offset,
1126
                                                      got_size);
1127
 
1128
  unsigned char* pov = oview;
1129
 
1130
  elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1131
  elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1132
 
1133
  if (parameters->options().output_is_position_independent())
1134
    memcpy(pov, dyn_first_plt_entry, plt_entry_size);
1135
  else
1136
    {
1137
      memcpy(pov, exec_first_plt_entry, plt_entry_size);
1138
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1139
      elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1140
    }
1141
  pov += plt_entry_size;
1142
 
1143
  unsigned char* got_pov = got_view;
1144
 
1145 159 khays
  // The first entry in the GOT is the address of the .dynamic section
1146
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1147
  // We saved space for them when we created the section in
1148
  // Target_i386::got_section.
1149
  Output_section* dynamic = this->layout_->dynamic_section();
1150
  uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1151
  elfcpp::Swap<32, false>::writeval(got_pov, dynamic_addr);
1152
  got_pov += 4;
1153
  memset(got_pov, 0, 8);
1154
  got_pov += 8;
1155 27 khays
 
1156
  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1157
 
1158
  unsigned int plt_offset = plt_entry_size;
1159
  unsigned int plt_rel_offset = 0;
1160
  unsigned int got_offset = 12;
1161 159 khays
  const unsigned int count = this->count_ + this->irelative_count_;
1162 27 khays
  for (unsigned int i = 0;
1163
       i < count;
1164
       ++i,
1165
         pov += plt_entry_size,
1166
         got_pov += 4,
1167
         plt_offset += plt_entry_size,
1168
         plt_rel_offset += rel_size,
1169
         got_offset += 4)
1170
    {
1171
      // Set and adjust the PLT entry itself.
1172
 
1173
      if (parameters->options().output_is_position_independent())
1174
        {
1175
          memcpy(pov, dyn_plt_entry, plt_entry_size);
1176
          elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1177
        }
1178
      else
1179
        {
1180
          memcpy(pov, exec_plt_entry, plt_entry_size);
1181
          elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1182
                                                      (got_address
1183
                                                       + got_offset));
1184
        }
1185
 
1186
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1187
      elfcpp::Swap<32, false>::writeval(pov + 12,
1188
                                        - (plt_offset + plt_entry_size));
1189
 
1190
      // Set the entry in the GOT.
1191
      elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
1192
    }
1193
 
1194
  // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1195
  // the GOT to point to the actual symbol value, rather than point to
1196
  // the PLT entry.  That will let the dynamic linker call the right
1197
  // function when resolving IRELATIVE relocations.
1198 159 khays
  unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1199 27 khays
  for (std::vector<Global_ifunc>::const_iterator p =
1200
         this->global_ifuncs_.begin();
1201
       p != this->global_ifuncs_.end();
1202
       ++p)
1203
    {
1204
      const Sized_symbol<32>* ssym =
1205
        static_cast<const Sized_symbol<32>*>(p->sym);
1206 159 khays
      elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1207 27 khays
                                        ssym->value());
1208
    }
1209
 
1210
  for (std::vector<Local_ifunc>::const_iterator p =
1211
         this->local_ifuncs_.begin();
1212
       p != this->local_ifuncs_.end();
1213
       ++p)
1214
    {
1215
      const Symbol_value<32>* psymval =
1216
        p->object->local_symbol(p->local_sym_index);
1217 159 khays
      elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1218 27 khays
                                        psymval->value(p->object, 0));
1219
    }
1220
 
1221
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1222
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1223
 
1224
  of->write_output_view(offset, oview_size, oview);
1225
  of->write_output_view(got_file_offset, got_size, got_view);
1226
}
1227
 
1228
// Create the PLT section.
1229
 
1230
void
1231
Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1232
{
1233
  if (this->plt_ == NULL)
1234
    {
1235
      // Create the GOT sections first.
1236
      this->got_section(symtab, layout);
1237
 
1238 159 khays
      this->plt_ = new Output_data_plt_i386(layout, this->got_plt_,
1239
                                            this->got_irelative_);
1240 27 khays
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1241
                                      (elfcpp::SHF_ALLOC
1242
                                       | elfcpp::SHF_EXECINSTR),
1243
                                      this->plt_, ORDER_PLT, false);
1244
 
1245
      // Make the sh_info field of .rel.plt point to .plt.
1246
      Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1247
      rel_plt_os->set_info_section(this->plt_->output_section());
1248
    }
1249
}
1250
 
1251
// Create a PLT entry for a global symbol.
1252
 
1253
void
1254
Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1255
{
1256
  if (gsym->has_plt_offset())
1257
    return;
1258
  if (this->plt_ == NULL)
1259
    this->make_plt_section(symtab, layout);
1260 159 khays
  this->plt_->add_entry(symtab, layout, gsym);
1261 27 khays
}
1262
 
1263
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1264
 
1265
void
1266
Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1267
                                        Sized_relobj_file<32, false>* relobj,
1268
                                        unsigned int local_sym_index)
1269
{
1270
  if (relobj->local_has_plt_offset(local_sym_index))
1271
    return;
1272
  if (this->plt_ == NULL)
1273
    this->make_plt_section(symtab, layout);
1274 159 khays
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1275
                                                              relobj,
1276 27 khays
                                                              local_sym_index);
1277
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
1278
}
1279
 
1280
// Return the number of entries in the PLT.
1281
 
1282
unsigned int
1283
Target_i386::plt_entry_count() const
1284
{
1285
  if (this->plt_ == NULL)
1286
    return 0;
1287
  return this->plt_->entry_count();
1288
}
1289
 
1290
// Return the offset of the first non-reserved PLT entry.
1291
 
1292
unsigned int
1293
Target_i386::first_plt_entry_offset() const
1294
{
1295
  return Output_data_plt_i386::first_plt_entry_offset();
1296
}
1297
 
1298
// Return the size of each PLT entry.
1299
 
1300
unsigned int
1301
Target_i386::plt_entry_size() const
1302
{
1303
  return Output_data_plt_i386::get_plt_entry_size();
1304
}
1305
 
1306
// Get the section to use for TLS_DESC relocations.
1307
 
1308
Target_i386::Reloc_section*
1309
Target_i386::rel_tls_desc_section(Layout* layout) const
1310
{
1311
  return this->plt_section()->rel_tls_desc(layout);
1312
}
1313
 
1314
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1315
 
1316
void
1317
Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1318
{
1319
  if (this->tls_base_symbol_defined_)
1320
    return;
1321
 
1322
  Output_segment* tls_segment = layout->tls_segment();
1323
  if (tls_segment != NULL)
1324
    {
1325
      bool is_exec = parameters->options().output_is_executable();
1326
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1327
                                       Symbol_table::PREDEFINED,
1328
                                       tls_segment, 0, 0,
1329
                                       elfcpp::STT_TLS,
1330
                                       elfcpp::STB_LOCAL,
1331
                                       elfcpp::STV_HIDDEN, 0,
1332
                                       (is_exec
1333
                                        ? Symbol::SEGMENT_END
1334
                                        : Symbol::SEGMENT_START),
1335
                                       true);
1336
    }
1337
  this->tls_base_symbol_defined_ = true;
1338
}
1339
 
1340
// Create a GOT entry for the TLS module index.
1341
 
1342
unsigned int
1343
Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1344
                                 Sized_relobj_file<32, false>* object)
1345
{
1346
  if (this->got_mod_index_offset_ == -1U)
1347
    {
1348
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
1349
      Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1350
      Output_data_got<32, false>* got = this->got_section(symtab, layout);
1351
      unsigned int got_offset = got->add_constant(0);
1352
      rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1353
                         got_offset);
1354
      got->add_constant(0);
1355
      this->got_mod_index_offset_ = got_offset;
1356
    }
1357
  return this->got_mod_index_offset_;
1358
}
1359
 
1360
// Optimize the TLS relocation type based on what we know about the
1361
// symbol.  IS_FINAL is true if the final address of this symbol is
1362
// known at link time.
1363
 
1364
tls::Tls_optimization
1365
Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1366
{
1367
  // If we are generating a shared library, then we can't do anything
1368
  // in the linker.
1369
  if (parameters->options().shared())
1370
    return tls::TLSOPT_NONE;
1371
 
1372
  switch (r_type)
1373
    {
1374
    case elfcpp::R_386_TLS_GD:
1375
    case elfcpp::R_386_TLS_GOTDESC:
1376
    case elfcpp::R_386_TLS_DESC_CALL:
1377
      // These are General-Dynamic which permits fully general TLS
1378
      // access.  Since we know that we are generating an executable,
1379
      // we can convert this to Initial-Exec.  If we also know that
1380
      // this is a local symbol, we can further switch to Local-Exec.
1381
      if (is_final)
1382
        return tls::TLSOPT_TO_LE;
1383
      return tls::TLSOPT_TO_IE;
1384
 
1385
    case elfcpp::R_386_TLS_LDM:
1386
      // This is Local-Dynamic, which refers to a local symbol in the
1387
      // dynamic TLS block.  Since we know that we generating an
1388
      // executable, we can switch to Local-Exec.
1389
      return tls::TLSOPT_TO_LE;
1390
 
1391
    case elfcpp::R_386_TLS_LDO_32:
1392
      // Another type of Local-Dynamic relocation.
1393
      return tls::TLSOPT_TO_LE;
1394
 
1395
    case elfcpp::R_386_TLS_IE:
1396
    case elfcpp::R_386_TLS_GOTIE:
1397
    case elfcpp::R_386_TLS_IE_32:
1398
      // These are Initial-Exec relocs which get the thread offset
1399
      // from the GOT.  If we know that we are linking against the
1400
      // local symbol, we can switch to Local-Exec, which links the
1401
      // thread offset into the instruction.
1402
      if (is_final)
1403
        return tls::TLSOPT_TO_LE;
1404
      return tls::TLSOPT_NONE;
1405
 
1406
    case elfcpp::R_386_TLS_LE:
1407
    case elfcpp::R_386_TLS_LE_32:
1408
      // When we already have Local-Exec, there is nothing further we
1409
      // can do.
1410
      return tls::TLSOPT_NONE;
1411
 
1412
    default:
1413
      gold_unreachable();
1414
    }
1415
}
1416
 
1417
// Get the Reference_flags for a particular relocation.
1418
 
1419
int
1420
Target_i386::Scan::get_reference_flags(unsigned int r_type)
1421
{
1422
  switch (r_type)
1423
    {
1424
    case elfcpp::R_386_NONE:
1425
    case elfcpp::R_386_GNU_VTINHERIT:
1426
    case elfcpp::R_386_GNU_VTENTRY:
1427
    case elfcpp::R_386_GOTPC:
1428
      // No symbol reference.
1429
      return 0;
1430
 
1431
    case elfcpp::R_386_32:
1432
    case elfcpp::R_386_16:
1433
    case elfcpp::R_386_8:
1434
      return Symbol::ABSOLUTE_REF;
1435
 
1436
    case elfcpp::R_386_PC32:
1437
    case elfcpp::R_386_PC16:
1438
    case elfcpp::R_386_PC8:
1439
    case elfcpp::R_386_GOTOFF:
1440
      return Symbol::RELATIVE_REF;
1441
 
1442
    case elfcpp::R_386_PLT32:
1443
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1444
 
1445
    case elfcpp::R_386_GOT32:
1446
      // Absolute in GOT.
1447
      return Symbol::ABSOLUTE_REF;
1448
 
1449
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
1450
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1451
    case elfcpp::R_386_TLS_DESC_CALL:
1452
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1453
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1454
    case elfcpp::R_386_TLS_IE:            // Initial-exec
1455
    case elfcpp::R_386_TLS_IE_32:
1456
    case elfcpp::R_386_TLS_GOTIE:
1457
    case elfcpp::R_386_TLS_LE:            // Local-exec
1458
    case elfcpp::R_386_TLS_LE_32:
1459
      return Symbol::TLS_REF;
1460
 
1461
    case elfcpp::R_386_COPY:
1462
    case elfcpp::R_386_GLOB_DAT:
1463
    case elfcpp::R_386_JUMP_SLOT:
1464
    case elfcpp::R_386_RELATIVE:
1465
    case elfcpp::R_386_IRELATIVE:
1466
    case elfcpp::R_386_TLS_TPOFF:
1467
    case elfcpp::R_386_TLS_DTPMOD32:
1468
    case elfcpp::R_386_TLS_DTPOFF32:
1469
    case elfcpp::R_386_TLS_TPOFF32:
1470
    case elfcpp::R_386_TLS_DESC:
1471
    case elfcpp::R_386_32PLT:
1472
    case elfcpp::R_386_TLS_GD_32:
1473
    case elfcpp::R_386_TLS_GD_PUSH:
1474
    case elfcpp::R_386_TLS_GD_CALL:
1475
    case elfcpp::R_386_TLS_GD_POP:
1476
    case elfcpp::R_386_TLS_LDM_32:
1477
    case elfcpp::R_386_TLS_LDM_PUSH:
1478
    case elfcpp::R_386_TLS_LDM_CALL:
1479
    case elfcpp::R_386_TLS_LDM_POP:
1480
    case elfcpp::R_386_USED_BY_INTEL_200:
1481
    default:
1482
      // Not expected.  We will give an error later.
1483
      return 0;
1484
    }
1485
}
1486
 
1487
// Report an unsupported relocation against a local symbol.
1488
 
1489
void
1490
Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1491
                                           unsigned int r_type)
1492
{
1493
  gold_error(_("%s: unsupported reloc %u against local symbol"),
1494
             object->name().c_str(), r_type);
1495
}
1496
 
1497
// Return whether we need to make a PLT entry for a relocation of a
1498
// given type against a STT_GNU_IFUNC symbol.
1499
 
1500
bool
1501
Target_i386::Scan::reloc_needs_plt_for_ifunc(
1502
    Sized_relobj_file<32, false>* object,
1503
    unsigned int r_type)
1504
{
1505
  int flags = Scan::get_reference_flags(r_type);
1506
  if (flags & Symbol::TLS_REF)
1507
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1508
               object->name().c_str(), r_type);
1509
  return flags != 0;
1510
}
1511
 
1512
// Scan a relocation for a local symbol.
1513
 
1514
inline void
1515
Target_i386::Scan::local(Symbol_table* symtab,
1516
                         Layout* layout,
1517
                         Target_i386* target,
1518
                         Sized_relobj_file<32, false>* object,
1519
                         unsigned int data_shndx,
1520
                         Output_section* output_section,
1521
                         const elfcpp::Rel<32, false>& reloc,
1522
                         unsigned int r_type,
1523
                         const elfcpp::Sym<32, false>& lsym)
1524
{
1525
  // A local STT_GNU_IFUNC symbol may require a PLT entry.
1526
  if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1527
      && this->reloc_needs_plt_for_ifunc(object, r_type))
1528
    {
1529
      unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1530
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1531
    }
1532
 
1533
  switch (r_type)
1534
    {
1535
    case elfcpp::R_386_NONE:
1536
    case elfcpp::R_386_GNU_VTINHERIT:
1537
    case elfcpp::R_386_GNU_VTENTRY:
1538
      break;
1539
 
1540
    case elfcpp::R_386_32:
1541
      // If building a shared library (or a position-independent
1542
      // executable), we need to create a dynamic relocation for
1543
      // this location. The relocation applied at link time will
1544
      // apply the link-time value, so we flag the location with
1545
      // an R_386_RELATIVE relocation so the dynamic loader can
1546
      // relocate it easily.
1547
      if (parameters->options().output_is_position_independent())
1548
        {
1549
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1550
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1551
          rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1552
                                      output_section, data_shndx,
1553
                                      reloc.get_r_offset());
1554
        }
1555
      break;
1556
 
1557
    case elfcpp::R_386_16:
1558
    case elfcpp::R_386_8:
1559
      // If building a shared library (or a position-independent
1560
      // executable), we need to create a dynamic relocation for
1561
      // this location. Because the addend needs to remain in the
1562
      // data section, we need to be careful not to apply this
1563
      // relocation statically.
1564
      if (parameters->options().output_is_position_independent())
1565
        {
1566
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1567
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1568
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
1569
            rel_dyn->add_local(object, r_sym, r_type, output_section,
1570
                               data_shndx, reloc.get_r_offset());
1571
          else
1572
            {
1573
              gold_assert(lsym.get_st_value() == 0);
1574
              unsigned int shndx = lsym.get_st_shndx();
1575
              bool is_ordinary;
1576
              shndx = object->adjust_sym_shndx(r_sym, shndx,
1577
                                               &is_ordinary);
1578
              if (!is_ordinary)
1579
                object->error(_("section symbol %u has bad shndx %u"),
1580
                              r_sym, shndx);
1581
              else
1582
                rel_dyn->add_local_section(object, shndx,
1583
                                           r_type, output_section,
1584
                                           data_shndx, reloc.get_r_offset());
1585
            }
1586
        }
1587
      break;
1588
 
1589
    case elfcpp::R_386_PC32:
1590
    case elfcpp::R_386_PC16:
1591
    case elfcpp::R_386_PC8:
1592
      break;
1593
 
1594
    case elfcpp::R_386_PLT32:
1595
      // Since we know this is a local symbol, we can handle this as a
1596
      // PC32 reloc.
1597
      break;
1598
 
1599
    case elfcpp::R_386_GOTOFF:
1600
    case elfcpp::R_386_GOTPC:
1601
      // We need a GOT section.
1602
      target->got_section(symtab, layout);
1603
      break;
1604
 
1605
    case elfcpp::R_386_GOT32:
1606
      {
1607
        // The symbol requires a GOT entry.
1608
        Output_data_got<32, false>* got = target->got_section(symtab, layout);
1609
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1610
 
1611
        // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1612
        // lets function pointers compare correctly with shared
1613
        // libraries.  Otherwise we would need an IRELATIVE reloc.
1614
        bool is_new;
1615
        if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1616
          is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1617
        else
1618
          is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1619
        if (is_new)
1620
          {
1621
            // If we are generating a shared object, we need to add a
1622
            // dynamic RELATIVE relocation for this symbol's GOT entry.
1623
            if (parameters->options().output_is_position_independent())
1624
              {
1625
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1626
                unsigned int got_offset =
1627
                  object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1628
                rel_dyn->add_local_relative(object, r_sym,
1629
                                            elfcpp::R_386_RELATIVE,
1630
                                            got, got_offset);
1631
              }
1632
          }
1633
      }
1634
      break;
1635
 
1636
      // These are relocations which should only be seen by the
1637
      // dynamic linker, and should never be seen here.
1638
    case elfcpp::R_386_COPY:
1639
    case elfcpp::R_386_GLOB_DAT:
1640
    case elfcpp::R_386_JUMP_SLOT:
1641
    case elfcpp::R_386_RELATIVE:
1642
    case elfcpp::R_386_IRELATIVE:
1643
    case elfcpp::R_386_TLS_TPOFF:
1644
    case elfcpp::R_386_TLS_DTPMOD32:
1645
    case elfcpp::R_386_TLS_DTPOFF32:
1646
    case elfcpp::R_386_TLS_TPOFF32:
1647
    case elfcpp::R_386_TLS_DESC:
1648
      gold_error(_("%s: unexpected reloc %u in object file"),
1649
                 object->name().c_str(), r_type);
1650
      break;
1651
 
1652
      // These are initial TLS relocs, which are expected when
1653
      // linking.
1654
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
1655
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1656
    case elfcpp::R_386_TLS_DESC_CALL:
1657
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1658
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1659
    case elfcpp::R_386_TLS_IE:            // Initial-exec
1660
    case elfcpp::R_386_TLS_IE_32:
1661
    case elfcpp::R_386_TLS_GOTIE:
1662
    case elfcpp::R_386_TLS_LE:            // Local-exec
1663
    case elfcpp::R_386_TLS_LE_32:
1664
      {
1665
        bool output_is_shared = parameters->options().shared();
1666
        const tls::Tls_optimization optimized_type
1667
            = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1668
        switch (r_type)
1669
          {
1670
          case elfcpp::R_386_TLS_GD:          // Global-dynamic
1671
            if (optimized_type == tls::TLSOPT_NONE)
1672
              {
1673
                // Create a pair of GOT entries for the module index and
1674
                // dtv-relative offset.
1675
                Output_data_got<32, false>* got
1676
                    = target->got_section(symtab, layout);
1677
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1678
                unsigned int shndx = lsym.get_st_shndx();
1679
                bool is_ordinary;
1680
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1681
                if (!is_ordinary)
1682
                  object->error(_("local symbol %u has bad shndx %u"),
1683
                              r_sym, shndx);
1684
                else
1685
                  got->add_local_pair_with_rel(object, r_sym, shndx,
1686
                                               GOT_TYPE_TLS_PAIR,
1687
                                               target->rel_dyn_section(layout),
1688
                                               elfcpp::R_386_TLS_DTPMOD32, 0);
1689
              }
1690
            else if (optimized_type != tls::TLSOPT_TO_LE)
1691
              unsupported_reloc_local(object, r_type);
1692
            break;
1693
 
1694
          case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
1695
            target->define_tls_base_symbol(symtab, layout);
1696
            if (optimized_type == tls::TLSOPT_NONE)
1697
              {
1698
                // Create a double GOT entry with an R_386_TLS_DESC
1699
                // reloc.  The R_386_TLS_DESC reloc is resolved
1700
                // lazily, so the GOT entry needs to be in an area in
1701
                // .got.plt, not .got.  Call got_section to make sure
1702
                // the section has been created.
1703
                target->got_section(symtab, layout);
1704
                Output_data_got<32, false>* got = target->got_tlsdesc_section();
1705
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1706
                if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1707
                  {
1708
                    unsigned int got_offset = got->add_constant(0);
1709
                    // The local symbol value is stored in the second
1710
                    // GOT entry.
1711
                    got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
1712
                    // That set the GOT offset of the local symbol to
1713
                    // point to the second entry, but we want it to
1714
                    // point to the first.
1715
                    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1716
                                                 got_offset);
1717
                    Reloc_section* rt = target->rel_tls_desc_section(layout);
1718
                    rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
1719
                  }
1720
              }
1721
            else if (optimized_type != tls::TLSOPT_TO_LE)
1722
              unsupported_reloc_local(object, r_type);
1723
            break;
1724
 
1725
          case elfcpp::R_386_TLS_DESC_CALL:
1726
            break;
1727
 
1728
          case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1729
            if (optimized_type == tls::TLSOPT_NONE)
1730
              {
1731
                // Create a GOT entry for the module index.
1732
                target->got_mod_index_entry(symtab, layout, object);
1733
              }
1734
            else if (optimized_type != tls::TLSOPT_TO_LE)
1735
              unsupported_reloc_local(object, r_type);
1736
            break;
1737
 
1738
          case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1739
            break;
1740
 
1741
          case elfcpp::R_386_TLS_IE:          // Initial-exec
1742
          case elfcpp::R_386_TLS_IE_32:
1743
          case elfcpp::R_386_TLS_GOTIE:
1744
            layout->set_has_static_tls();
1745
            if (optimized_type == tls::TLSOPT_NONE)
1746
              {
1747
                // For the R_386_TLS_IE relocation, we need to create a
1748
                // dynamic relocation when building a shared library.
1749
                if (r_type == elfcpp::R_386_TLS_IE
1750
                    && parameters->options().shared())
1751
                  {
1752
                    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1753
                    unsigned int r_sym
1754
                        = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1755
                    rel_dyn->add_local_relative(object, r_sym,
1756
                                                elfcpp::R_386_RELATIVE,
1757
                                                output_section, data_shndx,
1758
                                                reloc.get_r_offset());
1759
                  }
1760
                // Create a GOT entry for the tp-relative offset.
1761
                Output_data_got<32, false>* got
1762
                    = target->got_section(symtab, layout);
1763
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1764
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1765
                                           ? elfcpp::R_386_TLS_TPOFF32
1766
                                           : elfcpp::R_386_TLS_TPOFF);
1767
                unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1768
                                         ? GOT_TYPE_TLS_OFFSET
1769
                                         : GOT_TYPE_TLS_NOFFSET);
1770
                got->add_local_with_rel(object, r_sym, got_type,
1771
                                        target->rel_dyn_section(layout),
1772
                                        dyn_r_type);
1773
              }
1774
            else if (optimized_type != tls::TLSOPT_TO_LE)
1775
              unsupported_reloc_local(object, r_type);
1776
            break;
1777
 
1778
          case elfcpp::R_386_TLS_LE:          // Local-exec
1779
          case elfcpp::R_386_TLS_LE_32:
1780
            layout->set_has_static_tls();
1781
            if (output_is_shared)
1782
              {
1783
                // We need to create a dynamic relocation.
1784
                gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1785
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1786
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1787
                                           ? elfcpp::R_386_TLS_TPOFF32
1788
                                           : elfcpp::R_386_TLS_TPOFF);
1789
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1790
                rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1791
                                   data_shndx, reloc.get_r_offset());
1792
              }
1793
            break;
1794
 
1795
          default:
1796
            gold_unreachable();
1797
          }
1798
      }
1799
      break;
1800
 
1801
    case elfcpp::R_386_32PLT:
1802
    case elfcpp::R_386_TLS_GD_32:
1803
    case elfcpp::R_386_TLS_GD_PUSH:
1804
    case elfcpp::R_386_TLS_GD_CALL:
1805
    case elfcpp::R_386_TLS_GD_POP:
1806
    case elfcpp::R_386_TLS_LDM_32:
1807
    case elfcpp::R_386_TLS_LDM_PUSH:
1808
    case elfcpp::R_386_TLS_LDM_CALL:
1809
    case elfcpp::R_386_TLS_LDM_POP:
1810
    case elfcpp::R_386_USED_BY_INTEL_200:
1811
    default:
1812
      unsupported_reloc_local(object, r_type);
1813
      break;
1814
    }
1815
}
1816
 
1817
// Report an unsupported relocation against a global symbol.
1818
 
1819
void
1820
Target_i386::Scan::unsupported_reloc_global(
1821
    Sized_relobj_file<32, false>* object,
1822
    unsigned int r_type,
1823
    Symbol* gsym)
1824
{
1825
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1826
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
1827
}
1828
 
1829
inline bool
1830
Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
1831
{
1832
  switch (r_type)
1833
    {
1834
    case elfcpp::R_386_32:
1835
    case elfcpp::R_386_16:
1836
    case elfcpp::R_386_8:
1837
    case elfcpp::R_386_GOTOFF:
1838
    case elfcpp::R_386_GOT32:
1839
      {
1840
        return true;
1841
      }
1842
    default:
1843
      return false;
1844
    }
1845
  return false;
1846
}
1847
 
1848
inline bool
1849
Target_i386::Scan::local_reloc_may_be_function_pointer(
1850
  Symbol_table* ,
1851
  Layout* ,
1852
  Target_i386* ,
1853
  Sized_relobj_file<32, false>* ,
1854
  unsigned int ,
1855
  Output_section* ,
1856
  const elfcpp::Rel<32, false>& ,
1857
  unsigned int r_type,
1858
  const elfcpp::Sym<32, false>&)
1859
{
1860
  return possible_function_pointer_reloc(r_type);
1861
}
1862
 
1863
inline bool
1864
Target_i386::Scan::global_reloc_may_be_function_pointer(
1865
  Symbol_table* ,
1866
  Layout* ,
1867
  Target_i386* ,
1868
  Sized_relobj_file<32, false>* ,
1869
  unsigned int ,
1870
  Output_section* ,
1871
  const elfcpp::Rel<32, false>& ,
1872
  unsigned int r_type,
1873
  Symbol*)
1874
{
1875
  return possible_function_pointer_reloc(r_type);
1876
}
1877
 
1878
// Scan a relocation for a global symbol.
1879
 
1880
inline void
1881
Target_i386::Scan::global(Symbol_table* symtab,
1882
                          Layout* layout,
1883
                          Target_i386* target,
1884
                          Sized_relobj_file<32, false>* object,
1885
                          unsigned int data_shndx,
1886
                          Output_section* output_section,
1887
                          const elfcpp::Rel<32, false>& reloc,
1888
                          unsigned int r_type,
1889
                          Symbol* gsym)
1890
{
1891
  // A STT_GNU_IFUNC symbol may require a PLT entry.
1892
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
1893
      && this->reloc_needs_plt_for_ifunc(object, r_type))
1894
    target->make_plt_entry(symtab, layout, gsym);
1895
 
1896
  switch (r_type)
1897
    {
1898
    case elfcpp::R_386_NONE:
1899
    case elfcpp::R_386_GNU_VTINHERIT:
1900
    case elfcpp::R_386_GNU_VTENTRY:
1901
      break;
1902
 
1903
    case elfcpp::R_386_32:
1904
    case elfcpp::R_386_16:
1905
    case elfcpp::R_386_8:
1906
      {
1907
        // Make a PLT entry if necessary.
1908
        if (gsym->needs_plt_entry())
1909
          {
1910
            target->make_plt_entry(symtab, layout, gsym);
1911
            // Since this is not a PC-relative relocation, we may be
1912
            // taking the address of a function. In that case we need to
1913
            // set the entry in the dynamic symbol table to the address of
1914
            // the PLT entry.
1915
            if (gsym->is_from_dynobj() && !parameters->options().shared())
1916
              gsym->set_needs_dynsym_value();
1917
          }
1918
        // Make a dynamic relocation if necessary.
1919
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1920
          {
1921
            if (gsym->may_need_copy_reloc())
1922
              {
1923
                target->copy_reloc(symtab, layout, object,
1924
                                   data_shndx, output_section, gsym, reloc);
1925
              }
1926
            else if (r_type == elfcpp::R_386_32
1927
                     && gsym->type() == elfcpp::STT_GNU_IFUNC
1928
                     && gsym->can_use_relative_reloc(false)
1929
                     && !gsym->is_from_dynobj()
1930
                     && !gsym->is_undefined()
1931
                     && !gsym->is_preemptible())
1932
              {
1933
                // Use an IRELATIVE reloc for a locally defined
1934
                // STT_GNU_IFUNC symbol.  This makes a function
1935
                // address in a PIE executable match the address in a
1936
                // shared library that it links against.
1937 159 khays
                Reloc_section* rel_dyn = target->rel_irelative_section(layout);
1938 27 khays
                rel_dyn->add_symbolless_global_addend(gsym,
1939
                                                      elfcpp::R_386_IRELATIVE,
1940
                                                      output_section,
1941
                                                      object, data_shndx,
1942
                                                      reloc.get_r_offset());
1943
              }
1944
            else if (r_type == elfcpp::R_386_32
1945
                     && gsym->can_use_relative_reloc(false))
1946
              {
1947
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1948
                rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1949
                                             output_section, object,
1950
                                             data_shndx, reloc.get_r_offset());
1951
              }
1952
            else
1953
              {
1954
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1955
                rel_dyn->add_global(gsym, r_type, output_section, object,
1956
                                    data_shndx, reloc.get_r_offset());
1957
              }
1958
          }
1959
      }
1960
      break;
1961
 
1962
    case elfcpp::R_386_PC32:
1963
    case elfcpp::R_386_PC16:
1964
    case elfcpp::R_386_PC8:
1965
      {
1966
        // Make a PLT entry if necessary.
1967
        if (gsym->needs_plt_entry())
1968
          {
1969
            // These relocations are used for function calls only in
1970
            // non-PIC code.  For a 32-bit relocation in a shared library,
1971
            // we'll need a text relocation anyway, so we can skip the
1972
            // PLT entry and let the dynamic linker bind the call directly
1973
            // to the target.  For smaller relocations, we should use a
1974
            // PLT entry to ensure that the call can reach.
1975
            if (!parameters->options().shared()
1976
                || r_type != elfcpp::R_386_PC32)
1977
              target->make_plt_entry(symtab, layout, gsym);
1978
          }
1979
        // Make a dynamic relocation if necessary.
1980
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1981
          {
1982
            if (gsym->may_need_copy_reloc())
1983
              {
1984
                target->copy_reloc(symtab, layout, object,
1985
                                   data_shndx, output_section, gsym, reloc);
1986
              }
1987
            else
1988
              {
1989
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1990
                rel_dyn->add_global(gsym, r_type, output_section, object,
1991
                                    data_shndx, reloc.get_r_offset());
1992
              }
1993
          }
1994
      }
1995
      break;
1996
 
1997
    case elfcpp::R_386_GOT32:
1998
      {
1999
        // The symbol requires a GOT entry.
2000
        Output_data_got<32, false>* got = target->got_section(symtab, layout);
2001
        if (gsym->final_value_is_known())
2002
          {
2003
            // For a STT_GNU_IFUNC symbol we want the PLT address.
2004
            if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2005
              got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2006
            else
2007
              got->add_global(gsym, GOT_TYPE_STANDARD);
2008
          }
2009
        else
2010
          {
2011
            // If this symbol is not fully resolved, we need to add a
2012
            // GOT entry with a dynamic relocation.
2013
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2014 159 khays
 
2015
            // Use a GLOB_DAT rather than a RELATIVE reloc if:
2016
            //
2017
            // 1) The symbol may be defined in some other module.
2018
            //
2019
            // 2) We are building a shared library and this is a
2020
            // protected symbol; using GLOB_DAT means that the dynamic
2021
            // linker can use the address of the PLT in the main
2022
            // executable when appropriate so that function address
2023
            // comparisons work.
2024
            //
2025
            // 3) This is a STT_GNU_IFUNC symbol in position dependent
2026
            // code, again so that function address comparisons work.
2027 27 khays
            if (gsym->is_from_dynobj()
2028
                || gsym->is_undefined()
2029
                || gsym->is_preemptible()
2030 159 khays
                || (gsym->visibility() == elfcpp::STV_PROTECTED
2031
                    && parameters->options().shared())
2032 27 khays
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
2033
                    && parameters->options().output_is_position_independent()))
2034
              got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
2035
                                       rel_dyn, elfcpp::R_386_GLOB_DAT);
2036
            else
2037
              {
2038
                // For a STT_GNU_IFUNC symbol we want to write the PLT
2039
                // offset into the GOT, so that function pointer
2040
                // comparisons work correctly.
2041
                bool is_new;
2042
                if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2043
                  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2044
                else
2045
                  {
2046
                    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2047
                    // Tell the dynamic linker to use the PLT address
2048
                    // when resolving relocations.
2049
                    if (gsym->is_from_dynobj()
2050
                        && !parameters->options().shared())
2051
                      gsym->set_needs_dynsym_value();
2052
                  }
2053
                if (is_new)
2054
                  {
2055
                    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2056
                    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2057
                                                 got, got_off);
2058
                  }
2059
              }
2060
          }
2061
      }
2062
      break;
2063
 
2064
    case elfcpp::R_386_PLT32:
2065
      // If the symbol is fully resolved, this is just a PC32 reloc.
2066
      // Otherwise we need a PLT entry.
2067
      if (gsym->final_value_is_known())
2068
        break;
2069
      // If building a shared library, we can also skip the PLT entry
2070
      // if the symbol is defined in the output file and is protected
2071
      // or hidden.
2072
      if (gsym->is_defined()
2073
          && !gsym->is_from_dynobj()
2074
          && !gsym->is_preemptible())
2075
        break;
2076
      target->make_plt_entry(symtab, layout, gsym);
2077
      break;
2078
 
2079
    case elfcpp::R_386_GOTOFF:
2080
    case elfcpp::R_386_GOTPC:
2081
      // We need a GOT section.
2082
      target->got_section(symtab, layout);
2083
      break;
2084
 
2085
      // These are relocations which should only be seen by the
2086
      // dynamic linker, and should never be seen here.
2087
    case elfcpp::R_386_COPY:
2088
    case elfcpp::R_386_GLOB_DAT:
2089
    case elfcpp::R_386_JUMP_SLOT:
2090
    case elfcpp::R_386_RELATIVE:
2091
    case elfcpp::R_386_IRELATIVE:
2092
    case elfcpp::R_386_TLS_TPOFF:
2093
    case elfcpp::R_386_TLS_DTPMOD32:
2094
    case elfcpp::R_386_TLS_DTPOFF32:
2095
    case elfcpp::R_386_TLS_TPOFF32:
2096
    case elfcpp::R_386_TLS_DESC:
2097
      gold_error(_("%s: unexpected reloc %u in object file"),
2098
                 object->name().c_str(), r_type);
2099
      break;
2100
 
2101
      // These are initial tls relocs, which are expected when
2102
      // linking.
2103
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
2104
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
2105
    case elfcpp::R_386_TLS_DESC_CALL:
2106
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
2107
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
2108
    case elfcpp::R_386_TLS_IE:            // Initial-exec
2109
    case elfcpp::R_386_TLS_IE_32:
2110
    case elfcpp::R_386_TLS_GOTIE:
2111
    case elfcpp::R_386_TLS_LE:            // Local-exec
2112
    case elfcpp::R_386_TLS_LE_32:
2113
      {
2114
        const bool is_final = gsym->final_value_is_known();
2115
        const tls::Tls_optimization optimized_type
2116
            = Target_i386::optimize_tls_reloc(is_final, r_type);
2117
        switch (r_type)
2118
          {
2119
          case elfcpp::R_386_TLS_GD:          // Global-dynamic
2120
            if (optimized_type == tls::TLSOPT_NONE)
2121
              {
2122
                // Create a pair of GOT entries for the module index and
2123
                // dtv-relative offset.
2124
                Output_data_got<32, false>* got
2125
                    = target->got_section(symtab, layout);
2126
                got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2127
                                             target->rel_dyn_section(layout),
2128
                                             elfcpp::R_386_TLS_DTPMOD32,
2129
                                             elfcpp::R_386_TLS_DTPOFF32);
2130
              }
2131
            else if (optimized_type == tls::TLSOPT_TO_IE)
2132
              {
2133
                // Create a GOT entry for the tp-relative offset.
2134
                Output_data_got<32, false>* got
2135
                    = target->got_section(symtab, layout);
2136
                got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2137
                                         target->rel_dyn_section(layout),
2138
                                         elfcpp::R_386_TLS_TPOFF);
2139
              }
2140
            else if (optimized_type != tls::TLSOPT_TO_LE)
2141
              unsupported_reloc_global(object, r_type, gsym);
2142
            break;
2143
 
2144
          case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
2145
            target->define_tls_base_symbol(symtab, layout);
2146
            if (optimized_type == tls::TLSOPT_NONE)
2147
              {
2148
                // Create a double GOT entry with an R_386_TLS_DESC
2149
                // reloc.  The R_386_TLS_DESC reloc is resolved
2150
                // lazily, so the GOT entry needs to be in an area in
2151
                // .got.plt, not .got.  Call got_section to make sure
2152
                // the section has been created.
2153
                target->got_section(symtab, layout);
2154
                Output_data_got<32, false>* got = target->got_tlsdesc_section();
2155
                Reloc_section* rt = target->rel_tls_desc_section(layout);
2156
                got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2157
                                             elfcpp::R_386_TLS_DESC, 0);
2158
              }
2159
            else if (optimized_type == tls::TLSOPT_TO_IE)
2160
              {
2161
                // Create a GOT entry for the tp-relative offset.
2162
                Output_data_got<32, false>* got
2163
                    = target->got_section(symtab, layout);
2164
                got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2165
                                         target->rel_dyn_section(layout),
2166
                                         elfcpp::R_386_TLS_TPOFF);
2167
              }
2168
            else if (optimized_type != tls::TLSOPT_TO_LE)
2169
              unsupported_reloc_global(object, r_type, gsym);
2170
            break;
2171
 
2172
          case elfcpp::R_386_TLS_DESC_CALL:
2173
            break;
2174
 
2175
          case elfcpp::R_386_TLS_LDM:         // Local-dynamic
2176
            if (optimized_type == tls::TLSOPT_NONE)
2177
              {
2178
                // Create a GOT entry for the module index.
2179
                target->got_mod_index_entry(symtab, layout, object);
2180
              }
2181
            else if (optimized_type != tls::TLSOPT_TO_LE)
2182
              unsupported_reloc_global(object, r_type, gsym);
2183
            break;
2184
 
2185
          case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
2186
            break;
2187
 
2188
          case elfcpp::R_386_TLS_IE:          // Initial-exec
2189
          case elfcpp::R_386_TLS_IE_32:
2190
          case elfcpp::R_386_TLS_GOTIE:
2191
            layout->set_has_static_tls();
2192
            if (optimized_type == tls::TLSOPT_NONE)
2193
              {
2194
                // For the R_386_TLS_IE relocation, we need to create a
2195
                // dynamic relocation when building a shared library.
2196
                if (r_type == elfcpp::R_386_TLS_IE
2197
                    && parameters->options().shared())
2198
                  {
2199
                    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2200
                    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2201
                                                 output_section, object,
2202
                                                 data_shndx,
2203
                                                 reloc.get_r_offset());
2204
                  }
2205
                // Create a GOT entry for the tp-relative offset.
2206
                Output_data_got<32, false>* got
2207
                    = target->got_section(symtab, layout);
2208
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2209
                                           ? elfcpp::R_386_TLS_TPOFF32
2210
                                           : elfcpp::R_386_TLS_TPOFF);
2211
                unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2212
                                         ? GOT_TYPE_TLS_OFFSET
2213
                                         : GOT_TYPE_TLS_NOFFSET);
2214
                got->add_global_with_rel(gsym, got_type,
2215
                                         target->rel_dyn_section(layout),
2216
                                         dyn_r_type);
2217
              }
2218
            else if (optimized_type != tls::TLSOPT_TO_LE)
2219
              unsupported_reloc_global(object, r_type, gsym);
2220
            break;
2221
 
2222
          case elfcpp::R_386_TLS_LE:          // Local-exec
2223
          case elfcpp::R_386_TLS_LE_32:
2224
            layout->set_has_static_tls();
2225
            if (parameters->options().shared())
2226
              {
2227
                // We need to create a dynamic relocation.
2228
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2229
                                           ? elfcpp::R_386_TLS_TPOFF32
2230
                                           : elfcpp::R_386_TLS_TPOFF);
2231
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2232
                rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2233
                                    data_shndx, reloc.get_r_offset());
2234
              }
2235
            break;
2236
 
2237
          default:
2238
            gold_unreachable();
2239
          }
2240
      }
2241
      break;
2242
 
2243
    case elfcpp::R_386_32PLT:
2244
    case elfcpp::R_386_TLS_GD_32:
2245
    case elfcpp::R_386_TLS_GD_PUSH:
2246
    case elfcpp::R_386_TLS_GD_CALL:
2247
    case elfcpp::R_386_TLS_GD_POP:
2248
    case elfcpp::R_386_TLS_LDM_32:
2249
    case elfcpp::R_386_TLS_LDM_PUSH:
2250
    case elfcpp::R_386_TLS_LDM_CALL:
2251
    case elfcpp::R_386_TLS_LDM_POP:
2252
    case elfcpp::R_386_USED_BY_INTEL_200:
2253
    default:
2254
      unsupported_reloc_global(object, r_type, gsym);
2255
      break;
2256
    }
2257
}
2258
 
2259
// Process relocations for gc.
2260
 
2261
void
2262
Target_i386::gc_process_relocs(Symbol_table* symtab,
2263
                               Layout* layout,
2264
                               Sized_relobj_file<32, false>* object,
2265
                               unsigned int data_shndx,
2266
                               unsigned int,
2267
                               const unsigned char* prelocs,
2268
                               size_t reloc_count,
2269
                               Output_section* output_section,
2270
                               bool needs_special_offset_handling,
2271
                               size_t local_symbol_count,
2272
                               const unsigned char* plocal_symbols)
2273
{
2274
  gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2275
                          Target_i386::Scan,
2276
                          Target_i386::Relocatable_size_for_reloc>(
2277
    symtab,
2278
    layout,
2279
    this,
2280
    object,
2281
    data_shndx,
2282
    prelocs,
2283
    reloc_count,
2284
    output_section,
2285
    needs_special_offset_handling,
2286
    local_symbol_count,
2287
    plocal_symbols);
2288
}
2289
 
2290
// Scan relocations for a section.
2291
 
2292
void
2293
Target_i386::scan_relocs(Symbol_table* symtab,
2294
                         Layout* layout,
2295
                         Sized_relobj_file<32, false>* object,
2296
                         unsigned int data_shndx,
2297
                         unsigned int sh_type,
2298
                         const unsigned char* prelocs,
2299
                         size_t reloc_count,
2300
                         Output_section* output_section,
2301
                         bool needs_special_offset_handling,
2302
                         size_t local_symbol_count,
2303
                         const unsigned char* plocal_symbols)
2304
{
2305
  if (sh_type == elfcpp::SHT_RELA)
2306
    {
2307
      gold_error(_("%s: unsupported RELA reloc section"),
2308
                 object->name().c_str());
2309
      return;
2310
    }
2311
 
2312
  gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2313
                    Target_i386::Scan>(
2314
    symtab,
2315
    layout,
2316
    this,
2317
    object,
2318
    data_shndx,
2319
    prelocs,
2320
    reloc_count,
2321
    output_section,
2322
    needs_special_offset_handling,
2323
    local_symbol_count,
2324
    plocal_symbols);
2325
}
2326
 
2327
// Finalize the sections.
2328
 
2329
void
2330
Target_i386::do_finalize_sections(
2331
    Layout* layout,
2332
    const Input_objects*,
2333
    Symbol_table* symtab)
2334
{
2335
  const Reloc_section* rel_plt = (this->plt_ == NULL
2336
                                  ? NULL
2337
                                  : this->plt_->rel_plt());
2338
  layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2339
                                  this->rel_dyn_, true, false);
2340
 
2341
  // Emit any relocs we saved in an attempt to avoid generating COPY
2342
  // relocs.
2343
  if (this->copy_relocs_.any_saved_relocs())
2344
    this->copy_relocs_.emit(this->rel_dyn_section(layout));
2345
 
2346
  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2347
  // the .got.plt section.
2348
  Symbol* sym = this->global_offset_table_;
2349
  if (sym != NULL)
2350
    {
2351
      uint32_t data_size = this->got_plt_->current_data_size();
2352
      symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2353
    }
2354 159 khays
 
2355
  if (parameters->doing_static_link()
2356
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2357
    {
2358
      // If linking statically, make sure that the __rel_iplt symbols
2359
      // were defined if necessary, even if we didn't create a PLT.
2360
      static const Define_symbol_in_segment syms[] =
2361
        {
2362
          {
2363
            "__rel_iplt_start",         // name
2364
            elfcpp::PT_LOAD,            // segment_type
2365
            elfcpp::PF_W,               // segment_flags_set
2366
            elfcpp::PF(0),               // segment_flags_clear
2367
            0,                           // value
2368
            0,                           // size
2369
            elfcpp::STT_NOTYPE,         // type
2370
            elfcpp::STB_GLOBAL,         // binding
2371
            elfcpp::STV_HIDDEN,         // visibility
2372
            0,                           // nonvis
2373
            Symbol::SEGMENT_START,      // offset_from_base
2374
            true                        // only_if_ref
2375
          },
2376
          {
2377
            "__rel_iplt_end",           // name
2378
            elfcpp::PT_LOAD,            // segment_type
2379
            elfcpp::PF_W,               // segment_flags_set
2380
            elfcpp::PF(0),               // segment_flags_clear
2381
            0,                           // value
2382
            0,                           // size
2383
            elfcpp::STT_NOTYPE,         // type
2384
            elfcpp::STB_GLOBAL,         // binding
2385
            elfcpp::STV_HIDDEN,         // visibility
2386
            0,                           // nonvis
2387
            Symbol::SEGMENT_START,      // offset_from_base
2388
            true                        // only_if_ref
2389
          }
2390
        };
2391
 
2392
      symtab->define_symbols(layout, 2, syms,
2393
                             layout->script_options()->saw_sections_clause());
2394
    }
2395 27 khays
}
2396
 
2397
// Return whether a direct absolute static relocation needs to be applied.
2398
// In cases where Scan::local() or Scan::global() has created
2399
// a dynamic relocation other than R_386_RELATIVE, the addend
2400
// of the relocation is carried in the data, and we must not
2401
// apply the static relocation.
2402
 
2403
inline bool
2404
Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2405
                                                 unsigned int r_type,
2406
                                                 bool is_32bit,
2407
                                                 Output_section* output_section)
2408
{
2409
  // If the output section is not allocated, then we didn't call
2410
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
2411
  // the reloc here.
2412
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2413
    return true;
2414
 
2415
  int ref_flags = Scan::get_reference_flags(r_type);
2416
 
2417
  // For local symbols, we will have created a non-RELATIVE dynamic
2418
  // relocation only if (a) the output is position independent,
2419
  // (b) the relocation is absolute (not pc- or segment-relative), and
2420
  // (c) the relocation is not 32 bits wide.
2421
  if (gsym == NULL)
2422
    return !(parameters->options().output_is_position_independent()
2423
             && (ref_flags & Symbol::ABSOLUTE_REF)
2424
             && !is_32bit);
2425
 
2426
  // For global symbols, we use the same helper routines used in the
2427
  // scan pass.  If we did not create a dynamic relocation, or if we
2428
  // created a RELATIVE dynamic relocation, we should apply the static
2429
  // relocation.
2430
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2431
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2432
                && gsym->can_use_relative_reloc(ref_flags
2433
                                                & Symbol::FUNCTION_CALL);
2434
  return !has_dyn || is_rel;
2435
}
2436
 
2437
// Perform a relocation.
2438
 
2439
inline bool
2440
Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2441
                                Target_i386* target,
2442
                                Output_section* output_section,
2443
                                size_t relnum,
2444
                                const elfcpp::Rel<32, false>& rel,
2445
                                unsigned int r_type,
2446
                                const Sized_symbol<32>* gsym,
2447
                                const Symbol_value<32>* psymval,
2448
                                unsigned char* view,
2449
                                elfcpp::Elf_types<32>::Elf_Addr address,
2450
                                section_size_type view_size)
2451
{
2452
  if (this->skip_call_tls_get_addr_)
2453
    {
2454
      if ((r_type != elfcpp::R_386_PLT32
2455
           && r_type != elfcpp::R_386_PC32)
2456
          || gsym == NULL
2457
          || strcmp(gsym->name(), "___tls_get_addr") != 0)
2458
        gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2459
                               _("missing expected TLS relocation"));
2460
      else
2461
        {
2462
          this->skip_call_tls_get_addr_ = false;
2463
          return false;
2464
        }
2465
    }
2466
 
2467
  const Sized_relobj_file<32, false>* object = relinfo->object;
2468
 
2469
  // Pick the value to use for symbols defined in shared objects.
2470
  Symbol_value<32> symval;
2471
  if (gsym != NULL
2472
      && gsym->type() == elfcpp::STT_GNU_IFUNC
2473
      && r_type == elfcpp::R_386_32
2474
      && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2475
      && gsym->can_use_relative_reloc(false)
2476
      && !gsym->is_from_dynobj()
2477
      && !gsym->is_undefined()
2478
      && !gsym->is_preemptible())
2479
    {
2480
      // In this case we are generating a R_386_IRELATIVE reloc.  We
2481
      // want to use the real value of the symbol, not the PLT offset.
2482
    }
2483
  else if (gsym != NULL
2484
           && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2485
    {
2486 159 khays
      symval.set_output_value(target->plt_address_for_global(gsym)
2487 27 khays
                              + gsym->plt_offset());
2488
      psymval = &symval;
2489
    }
2490
  else if (gsym == NULL && psymval->is_ifunc_symbol())
2491
    {
2492
      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2493
      if (object->local_has_plt_offset(r_sym))
2494
        {
2495 159 khays
          symval.set_output_value(target->plt_address_for_local(object, r_sym)
2496 27 khays
                                  + object->local_plt_offset(r_sym));
2497
          psymval = &symval;
2498
        }
2499
    }
2500
 
2501
  // Get the GOT offset if needed.
2502
  // The GOT pointer points to the end of the GOT section.
2503
  // We need to subtract the size of the GOT section to get
2504
  // the actual offset to use in the relocation.
2505
  bool have_got_offset = false;
2506
  unsigned int got_offset = 0;
2507
  switch (r_type)
2508
    {
2509
    case elfcpp::R_386_GOT32:
2510
      if (gsym != NULL)
2511
        {
2512
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2513
          got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2514
                        - target->got_size());
2515
        }
2516
      else
2517
        {
2518
          unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2519
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2520
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2521
                        - target->got_size());
2522
        }
2523
      have_got_offset = true;
2524
      break;
2525
 
2526
    default:
2527
      break;
2528
    }
2529
 
2530
  switch (r_type)
2531
    {
2532
    case elfcpp::R_386_NONE:
2533
    case elfcpp::R_386_GNU_VTINHERIT:
2534
    case elfcpp::R_386_GNU_VTENTRY:
2535
      break;
2536
 
2537
    case elfcpp::R_386_32:
2538
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
2539
        Relocate_functions<32, false>::rel32(view, object, psymval);
2540
      break;
2541
 
2542
    case elfcpp::R_386_PC32:
2543
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
2544
        Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2545
      break;
2546
 
2547
    case elfcpp::R_386_16:
2548
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
2549
        Relocate_functions<32, false>::rel16(view, object, psymval);
2550
      break;
2551
 
2552
    case elfcpp::R_386_PC16:
2553
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
2554
        Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2555
      break;
2556
 
2557
    case elfcpp::R_386_8:
2558
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
2559
        Relocate_functions<32, false>::rel8(view, object, psymval);
2560
      break;
2561
 
2562
    case elfcpp::R_386_PC8:
2563
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
2564
        Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2565
      break;
2566
 
2567
    case elfcpp::R_386_PLT32:
2568
      gold_assert(gsym == NULL
2569
                  || gsym->has_plt_offset()
2570
                  || gsym->final_value_is_known()
2571
                  || (gsym->is_defined()
2572
                      && !gsym->is_from_dynobj()
2573
                      && !gsym->is_preemptible()));
2574
      Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2575
      break;
2576
 
2577
    case elfcpp::R_386_GOT32:
2578
      gold_assert(have_got_offset);
2579
      Relocate_functions<32, false>::rel32(view, got_offset);
2580
      break;
2581
 
2582
    case elfcpp::R_386_GOTOFF:
2583
      {
2584
        elfcpp::Elf_types<32>::Elf_Addr value;
2585
        value = (psymval->value(object, 0)
2586
                 - target->got_plt_section()->address());
2587
        Relocate_functions<32, false>::rel32(view, value);
2588
      }
2589
      break;
2590
 
2591
    case elfcpp::R_386_GOTPC:
2592
      {
2593
        elfcpp::Elf_types<32>::Elf_Addr value;
2594
        value = target->got_plt_section()->address();
2595
        Relocate_functions<32, false>::pcrel32(view, value, address);
2596
      }
2597
      break;
2598
 
2599
    case elfcpp::R_386_COPY:
2600
    case elfcpp::R_386_GLOB_DAT:
2601
    case elfcpp::R_386_JUMP_SLOT:
2602
    case elfcpp::R_386_RELATIVE:
2603
    case elfcpp::R_386_IRELATIVE:
2604
      // These are outstanding tls relocs, which are unexpected when
2605
      // linking.
2606
    case elfcpp::R_386_TLS_TPOFF:
2607
    case elfcpp::R_386_TLS_DTPMOD32:
2608
    case elfcpp::R_386_TLS_DTPOFF32:
2609
    case elfcpp::R_386_TLS_TPOFF32:
2610
    case elfcpp::R_386_TLS_DESC:
2611
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2612
                             _("unexpected reloc %u in object file"),
2613
                             r_type);
2614
      break;
2615
 
2616
      // These are initial tls relocs, which are expected when
2617
      // linking.
2618
    case elfcpp::R_386_TLS_GD:             // Global-dynamic
2619
    case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
2620
    case elfcpp::R_386_TLS_DESC_CALL:
2621
    case elfcpp::R_386_TLS_LDM:            // Local-dynamic
2622
    case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
2623
    case elfcpp::R_386_TLS_IE:             // Initial-exec
2624
    case elfcpp::R_386_TLS_IE_32:
2625
    case elfcpp::R_386_TLS_GOTIE:
2626
    case elfcpp::R_386_TLS_LE:             // Local-exec
2627
    case elfcpp::R_386_TLS_LE_32:
2628
      this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
2629
                         view, address, view_size);
2630
      break;
2631
 
2632
    case elfcpp::R_386_32PLT:
2633
    case elfcpp::R_386_TLS_GD_32:
2634
    case elfcpp::R_386_TLS_GD_PUSH:
2635
    case elfcpp::R_386_TLS_GD_CALL:
2636
    case elfcpp::R_386_TLS_GD_POP:
2637
    case elfcpp::R_386_TLS_LDM_32:
2638
    case elfcpp::R_386_TLS_LDM_PUSH:
2639
    case elfcpp::R_386_TLS_LDM_CALL:
2640
    case elfcpp::R_386_TLS_LDM_POP:
2641
    case elfcpp::R_386_USED_BY_INTEL_200:
2642
    default:
2643
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2644
                             _("unsupported reloc %u"),
2645
                             r_type);
2646
      break;
2647
    }
2648
 
2649
  return true;
2650
}
2651
 
2652
// Perform a TLS relocation.
2653
 
2654
inline void
2655
Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
2656
                                    Target_i386* target,
2657
                                    size_t relnum,
2658
                                    const elfcpp::Rel<32, false>& rel,
2659
                                    unsigned int r_type,
2660
                                    const Sized_symbol<32>* gsym,
2661
                                    const Symbol_value<32>* psymval,
2662
                                    unsigned char* view,
2663
                                    elfcpp::Elf_types<32>::Elf_Addr,
2664
                                    section_size_type view_size)
2665
{
2666
  Output_segment* tls_segment = relinfo->layout->tls_segment();
2667
 
2668
  const Sized_relobj_file<32, false>* object = relinfo->object;
2669
 
2670
  elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
2671
 
2672
  const bool is_final = (gsym == NULL
2673
                         ? !parameters->options().shared()
2674
                         : gsym->final_value_is_known());
2675
  const tls::Tls_optimization optimized_type
2676
      = Target_i386::optimize_tls_reloc(is_final, r_type);
2677
  switch (r_type)
2678
    {
2679
    case elfcpp::R_386_TLS_GD:           // Global-dynamic
2680
      if (optimized_type == tls::TLSOPT_TO_LE)
2681
        {
2682 159 khays
          if (tls_segment == NULL)
2683
            {
2684
              gold_assert(parameters->errors()->error_count() > 0
2685
                          || issue_undefined_symbol_error(gsym));
2686
              return;
2687
            }
2688 27 khays
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
2689
                             rel, r_type, value, view,
2690
                             view_size);
2691
          break;
2692
        }
2693
      else
2694
        {
2695
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2696
                                   ? GOT_TYPE_TLS_NOFFSET
2697
                                   : GOT_TYPE_TLS_PAIR);
2698
          unsigned int got_offset;
2699
          if (gsym != NULL)
2700
            {
2701
              gold_assert(gsym->has_got_offset(got_type));
2702
              got_offset = gsym->got_offset(got_type) - target->got_size();
2703
            }
2704
          else
2705
            {
2706
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2707
              gold_assert(object->local_has_got_offset(r_sym, got_type));
2708
              got_offset = (object->local_got_offset(r_sym, got_type)
2709
                            - target->got_size());
2710
            }
2711
          if (optimized_type == tls::TLSOPT_TO_IE)
2712
            {
2713
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2714
                                 got_offset, view, view_size);
2715
              break;
2716
            }
2717
          else if (optimized_type == tls::TLSOPT_NONE)
2718
            {
2719
              // Relocate the field with the offset of the pair of GOT
2720
              // entries.
2721
              Relocate_functions<32, false>::rel32(view, got_offset);
2722
              break;
2723
            }
2724
        }
2725
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2726
                             _("unsupported reloc %u"),
2727
                             r_type);
2728
      break;
2729
 
2730
    case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
2731
    case elfcpp::R_386_TLS_DESC_CALL:
2732
      this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2733
      if (optimized_type == tls::TLSOPT_TO_LE)
2734
        {
2735 159 khays
          if (tls_segment == NULL)
2736
            {
2737
              gold_assert(parameters->errors()->error_count() > 0
2738
                          || issue_undefined_symbol_error(gsym));
2739
              return;
2740
            }
2741 27 khays
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2742
                                  rel, r_type, value, view,
2743
                                  view_size);
2744
          break;
2745
        }
2746
      else
2747
        {
2748
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2749
                                   ? GOT_TYPE_TLS_NOFFSET
2750
                                   : GOT_TYPE_TLS_DESC);
2751
          unsigned int got_offset = 0;
2752
          if (r_type == elfcpp::R_386_TLS_GOTDESC
2753
              && optimized_type == tls::TLSOPT_NONE)
2754
            {
2755
              // We created GOT entries in the .got.tlsdesc portion of
2756
              // the .got.plt section, but the offset stored in the
2757
              // symbol is the offset within .got.tlsdesc.
2758
              got_offset = (target->got_size()
2759
                            + target->got_plt_section()->data_size());
2760
            }
2761
          if (gsym != NULL)
2762
            {
2763
              gold_assert(gsym->has_got_offset(got_type));
2764
              got_offset += gsym->got_offset(got_type) - target->got_size();
2765
            }
2766
          else
2767
            {
2768
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2769
              gold_assert(object->local_has_got_offset(r_sym, got_type));
2770
              got_offset += (object->local_got_offset(r_sym, got_type)
2771
                             - target->got_size());
2772
            }
2773
          if (optimized_type == tls::TLSOPT_TO_IE)
2774
            {
2775 159 khays
              if (tls_segment == NULL)
2776
                {
2777
                  gold_assert(parameters->errors()->error_count() > 0
2778
                              || issue_undefined_symbol_error(gsym));
2779
                  return;
2780
                }
2781 27 khays
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
2782
                                      got_offset, view, view_size);
2783
              break;
2784
            }
2785
          else if (optimized_type == tls::TLSOPT_NONE)
2786
            {
2787
              if (r_type == elfcpp::R_386_TLS_GOTDESC)
2788
                {
2789
                  // Relocate the field with the offset of the pair of GOT
2790
                  // entries.
2791
                  Relocate_functions<32, false>::rel32(view, got_offset);
2792
                }
2793
              break;
2794
            }
2795
        }
2796
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2797
                             _("unsupported reloc %u"),
2798
                             r_type);
2799
      break;
2800
 
2801
    case elfcpp::R_386_TLS_LDM:          // Local-dynamic
2802
      if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
2803
        {
2804
          gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2805
                                 _("both SUN and GNU model "
2806
                                   "TLS relocations"));
2807
          break;
2808
        }
2809
      this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
2810
      if (optimized_type == tls::TLSOPT_TO_LE)
2811
        {
2812 159 khays
          if (tls_segment == NULL)
2813
            {
2814
              gold_assert(parameters->errors()->error_count() > 0
2815
                          || issue_undefined_symbol_error(gsym));
2816
              return;
2817
            }
2818 27 khays
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
2819
                             value, view, view_size);
2820
          break;
2821
        }
2822
      else if (optimized_type == tls::TLSOPT_NONE)
2823
        {
2824
          // Relocate the field with the offset of the GOT entry for
2825
          // the module index.
2826
          unsigned int got_offset;
2827
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2828
                        - target->got_size());
2829
          Relocate_functions<32, false>::rel32(view, got_offset);
2830
          break;
2831
        }
2832
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2833
                             _("unsupported reloc %u"),
2834
                             r_type);
2835
      break;
2836
 
2837
    case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
2838
      if (optimized_type == tls::TLSOPT_TO_LE)
2839
        {
2840
          // This reloc can appear in debugging sections, in which
2841
          // case we must not convert to local-exec.  We decide what
2842
          // to do based on whether the section is marked as
2843
          // containing executable code.  That is what the GNU linker
2844
          // does as well.
2845
          elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
2846
          if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
2847
            {
2848 159 khays
              if (tls_segment == NULL)
2849
                {
2850
                  gold_assert(parameters->errors()->error_count() > 0
2851
                              || issue_undefined_symbol_error(gsym));
2852
                  return;
2853
                }
2854 27 khays
              value -= tls_segment->memsz();
2855
            }
2856
        }
2857
      Relocate_functions<32, false>::rel32(view, value);
2858
      break;
2859
 
2860
    case elfcpp::R_386_TLS_IE:           // Initial-exec
2861
    case elfcpp::R_386_TLS_GOTIE:
2862
    case elfcpp::R_386_TLS_IE_32:
2863
      if (optimized_type == tls::TLSOPT_TO_LE)
2864
        {
2865 159 khays
          if (tls_segment == NULL)
2866
            {
2867
              gold_assert(parameters->errors()->error_count() > 0
2868
                          || issue_undefined_symbol_error(gsym));
2869
              return;
2870
            }
2871 27 khays
          Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2872
                                              rel, r_type, value, view,
2873
                                              view_size);
2874
          break;
2875
        }
2876
      else if (optimized_type == tls::TLSOPT_NONE)
2877
        {
2878
          // Relocate the field with the offset of the GOT entry for
2879
          // the tp-relative offset of the symbol.
2880
          unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2881
                                   ? GOT_TYPE_TLS_OFFSET
2882
                                   : GOT_TYPE_TLS_NOFFSET);
2883
          unsigned int got_offset;
2884
          if (gsym != NULL)
2885
            {
2886
              gold_assert(gsym->has_got_offset(got_type));
2887
              got_offset = gsym->got_offset(got_type);
2888
            }
2889
          else
2890
            {
2891
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2892
              gold_assert(object->local_has_got_offset(r_sym, got_type));
2893
              got_offset = object->local_got_offset(r_sym, got_type);
2894
            }
2895
          // For the R_386_TLS_IE relocation, we need to apply the
2896
          // absolute address of the GOT entry.
2897
          if (r_type == elfcpp::R_386_TLS_IE)
2898
            got_offset += target->got_plt_section()->address();
2899
          // All GOT offsets are relative to the end of the GOT.
2900
          got_offset -= target->got_size();
2901
          Relocate_functions<32, false>::rel32(view, got_offset);
2902
          break;
2903
        }
2904
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2905
                             _("unsupported reloc %u"),
2906
                             r_type);
2907
      break;
2908
 
2909
    case elfcpp::R_386_TLS_LE:           // Local-exec
2910
      // If we're creating a shared library, a dynamic relocation will
2911
      // have been created for this location, so do not apply it now.
2912
      if (!parameters->options().shared())
2913
        {
2914 159 khays
          if (tls_segment == NULL)
2915
            {
2916
              gold_assert(parameters->errors()->error_count() > 0
2917
                          || issue_undefined_symbol_error(gsym));
2918
              return;
2919
            }
2920 27 khays
          value -= tls_segment->memsz();
2921
          Relocate_functions<32, false>::rel32(view, value);
2922
        }
2923
      break;
2924
 
2925
    case elfcpp::R_386_TLS_LE_32:
2926
      // If we're creating a shared library, a dynamic relocation will
2927
      // have been created for this location, so do not apply it now.
2928
      if (!parameters->options().shared())
2929
        {
2930 159 khays
          if (tls_segment == NULL)
2931
            {
2932
              gold_assert(parameters->errors()->error_count() > 0
2933
                          || issue_undefined_symbol_error(gsym));
2934
              return;
2935
            }
2936 27 khays
          value = tls_segment->memsz() - value;
2937
          Relocate_functions<32, false>::rel32(view, value);
2938
        }
2939
      break;
2940
    }
2941
}
2942
 
2943
// Do a relocation in which we convert a TLS General-Dynamic to a
2944
// Local-Exec.
2945
 
2946
inline void
2947
Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
2948
                                    size_t relnum,
2949
                                    Output_segment* tls_segment,
2950
                                    const elfcpp::Rel<32, false>& rel,
2951
                                    unsigned int,
2952
                                    elfcpp::Elf_types<32>::Elf_Addr value,
2953
                                    unsigned char* view,
2954
                                    section_size_type view_size)
2955
{
2956
  // leal foo(,%reg,1),%eax; call ___tls_get_addr
2957
  //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2958
  // leal foo(%reg),%eax; call ___tls_get_addr
2959
  //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2960
 
2961
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2962
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2963
 
2964
  unsigned char op1 = view[-1];
2965
  unsigned char op2 = view[-2];
2966
 
2967
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2968
                 op2 == 0x8d || op2 == 0x04);
2969
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2970
 
2971
  int roff = 5;
2972
 
2973
  if (op2 == 0x04)
2974
    {
2975
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2976
      tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2977
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2978
                     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2979
      memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2980
    }
2981
  else
2982
    {
2983
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2984
                     (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2985
      if (rel.get_r_offset() + 9 < view_size
2986
          && view[9] == 0x90)
2987
        {
2988
          // There is a trailing nop.  Use the size byte subl.
2989
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2990
          roff = 6;
2991
        }
2992
      else
2993
        {
2994
          // Use the five byte subl.
2995
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2996
        }
2997
    }
2998
 
2999
  value = tls_segment->memsz() - value;
3000
  Relocate_functions<32, false>::rel32(view + roff, value);
3001
 
3002
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
3003
  // We can skip it.
3004
  this->skip_call_tls_get_addr_ = true;
3005
}
3006
 
3007
// Do a relocation in which we convert a TLS General-Dynamic to an
3008
// Initial-Exec.
3009
 
3010
inline void
3011
Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
3012
                                    size_t relnum,
3013
                                    Output_segment*,
3014
                                    const elfcpp::Rel<32, false>& rel,
3015
                                    unsigned int,
3016
                                    elfcpp::Elf_types<32>::Elf_Addr value,
3017
                                    unsigned char* view,
3018
                                    section_size_type view_size)
3019
{
3020
  // leal foo(,%ebx,1),%eax; call ___tls_get_addr
3021
  //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3022
 
3023
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3024
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3025
 
3026
  unsigned char op1 = view[-1];
3027
  unsigned char op2 = view[-2];
3028
 
3029
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3030
                 op2 == 0x8d || op2 == 0x04);
3031
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3032
 
3033
  int roff = 5;
3034
 
3035
  // FIXME: For now, support only the first (SIB) form.
3036
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
3037
 
3038
  if (op2 == 0x04)
3039
    {
3040
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3041
      tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3042
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3043
                     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3044
      memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
3045
    }
3046
  else
3047
    {
3048
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3049
                     (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
3050
      if (rel.get_r_offset() + 9 < view_size
3051
          && view[9] == 0x90)
3052
        {
3053
          // FIXME: This is not the right instruction sequence.
3054
          // There is a trailing nop.  Use the size byte subl.
3055
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3056
          roff = 6;
3057
        }
3058
      else
3059
        {
3060
          // FIXME: This is not the right instruction sequence.
3061
          // Use the five byte subl.
3062
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3063
        }
3064
    }
3065
 
3066
  Relocate_functions<32, false>::rel32(view + roff, value);
3067
 
3068
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
3069
  // We can skip it.
3070
  this->skip_call_tls_get_addr_ = true;
3071
}
3072
 
3073
// Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3074
// General-Dynamic to a Local-Exec.
3075
 
3076
inline void
3077
Target_i386::Relocate::tls_desc_gd_to_le(
3078
    const Relocate_info<32, false>* relinfo,
3079
    size_t relnum,
3080
    Output_segment* tls_segment,
3081
    const elfcpp::Rel<32, false>& rel,
3082
    unsigned int r_type,
3083
    elfcpp::Elf_types<32>::Elf_Addr value,
3084
    unsigned char* view,
3085
    section_size_type view_size)
3086
{
3087
  if (r_type == elfcpp::R_386_TLS_GOTDESC)
3088
    {
3089
      // leal foo@TLSDESC(%ebx), %eax
3090
      // ==> leal foo@NTPOFF, %eax
3091
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3092
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3093
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3094
                     view[-2] == 0x8d && view[-1] == 0x83);
3095
      view[-1] = 0x05;
3096
      value -= tls_segment->memsz();
3097
      Relocate_functions<32, false>::rel32(view, value);
3098
    }
3099
  else
3100
    {
3101
      // call *foo@TLSCALL(%eax)
3102
      // ==> nop; nop
3103
      gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3104
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3105
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3106
                     view[0] == 0xff && view[1] == 0x10);
3107
      view[0] = 0x66;
3108
      view[1] = 0x90;
3109
    }
3110
}
3111
 
3112
// Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3113
// General-Dynamic to an Initial-Exec.
3114
 
3115
inline void
3116
Target_i386::Relocate::tls_desc_gd_to_ie(
3117
    const Relocate_info<32, false>* relinfo,
3118
    size_t relnum,
3119
    Output_segment*,
3120
    const elfcpp::Rel<32, false>& rel,
3121
    unsigned int r_type,
3122
    elfcpp::Elf_types<32>::Elf_Addr value,
3123
    unsigned char* view,
3124
    section_size_type view_size)
3125
{
3126
  if (r_type == elfcpp::R_386_TLS_GOTDESC)
3127
    {
3128
      // leal foo@TLSDESC(%ebx), %eax
3129
      // ==> movl foo@GOTNTPOFF(%ebx), %eax
3130
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3131
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3132
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3133
                     view[-2] == 0x8d && view[-1] == 0x83);
3134
      view[-2] = 0x8b;
3135
      Relocate_functions<32, false>::rel32(view, value);
3136
    }
3137
  else
3138
    {
3139
      // call *foo@TLSCALL(%eax)
3140
      // ==> nop; nop
3141
      gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3142
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3143
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3144
                     view[0] == 0xff && view[1] == 0x10);
3145
      view[0] = 0x66;
3146
      view[1] = 0x90;
3147
    }
3148
}
3149
 
3150
// Do a relocation in which we convert a TLS Local-Dynamic to a
3151
// Local-Exec.
3152
 
3153
inline void
3154
Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3155
                                    size_t relnum,
3156
                                    Output_segment*,
3157
                                    const elfcpp::Rel<32, false>& rel,
3158
                                    unsigned int,
3159
                                    elfcpp::Elf_types<32>::Elf_Addr,
3160
                                    unsigned char* view,
3161
                                    section_size_type view_size)
3162
{
3163
  // leal foo(%reg), %eax; call ___tls_get_addr
3164
  // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3165
 
3166
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3167
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3168
 
3169
  // FIXME: Does this test really always pass?
3170
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3171
                 view[-2] == 0x8d && view[-1] == 0x83);
3172
 
3173
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
3174
 
3175
  memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3176
 
3177
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
3178
  // We can skip it.
3179
  this->skip_call_tls_get_addr_ = true;
3180
}
3181
 
3182
// Do a relocation in which we convert a TLS Initial-Exec to a
3183
// Local-Exec.
3184
 
3185
inline void
3186
Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3187
                                    size_t relnum,
3188
                                    Output_segment* tls_segment,
3189
                                    const elfcpp::Rel<32, false>& rel,
3190
                                    unsigned int r_type,
3191
                                    elfcpp::Elf_types<32>::Elf_Addr value,
3192
                                    unsigned char* view,
3193
                                    section_size_type view_size)
3194
{
3195
  // We have to actually change the instructions, which means that we
3196
  // need to examine the opcodes to figure out which instruction we
3197
  // are looking at.
3198
  if (r_type == elfcpp::R_386_TLS_IE)
3199
    {
3200
      // movl %gs:XX,%eax  ==>  movl $YY,%eax
3201
      // movl %gs:XX,%reg  ==>  movl $YY,%reg
3202
      // addl %gs:XX,%reg  ==>  addl $YY,%reg
3203
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3204
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3205
 
3206
      unsigned char op1 = view[-1];
3207
      if (op1 == 0xa1)
3208
        {
3209
          // movl XX,%eax  ==>  movl $YY,%eax
3210
          view[-1] = 0xb8;
3211
        }
3212
      else
3213
        {
3214
          tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3215
 
3216
          unsigned char op2 = view[-2];
3217
          if (op2 == 0x8b)
3218
            {
3219
              // movl XX,%reg  ==>  movl $YY,%reg
3220
              tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3221
                             (op1 & 0xc7) == 0x05);
3222
              view[-2] = 0xc7;
3223
              view[-1] = 0xc0 | ((op1 >> 3) & 7);
3224
            }
3225
          else if (op2 == 0x03)
3226
            {
3227
              // addl XX,%reg  ==>  addl $YY,%reg
3228
              tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3229
                             (op1 & 0xc7) == 0x05);
3230
              view[-2] = 0x81;
3231
              view[-1] = 0xc0 | ((op1 >> 3) & 7);
3232
            }
3233
          else
3234
            tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3235
        }
3236
    }
3237
  else
3238
    {
3239
      // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
3240
      // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
3241
      // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
3242
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3243
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3244
 
3245
      unsigned char op1 = view[-1];
3246
      unsigned char op2 = view[-2];
3247
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3248
                     (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3249
      if (op2 == 0x8b)
3250
        {
3251
          // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
3252
          view[-2] = 0xc7;
3253
          view[-1] = 0xc0 | ((op1 >> 3) & 7);
3254
        }
3255
      else if (op2 == 0x2b)
3256
        {
3257
          // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
3258
          view[-2] = 0x81;
3259
          view[-1] = 0xe8 | ((op1 >> 3) & 7);
3260
        }
3261
      else if (op2 == 0x03)
3262
        {
3263
          // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
3264
          view[-2] = 0x81;
3265
          view[-1] = 0xc0 | ((op1 >> 3) & 7);
3266
        }
3267
      else
3268
        tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3269
    }
3270
 
3271
  value = tls_segment->memsz() - value;
3272
  if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3273
    value = - value;
3274
 
3275
  Relocate_functions<32, false>::rel32(view, value);
3276
}
3277
 
3278
// Relocate section data.
3279
 
3280
void
3281
Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3282
                              unsigned int sh_type,
3283
                              const unsigned char* prelocs,
3284
                              size_t reloc_count,
3285
                              Output_section* output_section,
3286
                              bool needs_special_offset_handling,
3287
                              unsigned char* view,
3288
                              elfcpp::Elf_types<32>::Elf_Addr address,
3289
                              section_size_type view_size,
3290
                              const Reloc_symbol_changes* reloc_symbol_changes)
3291
{
3292
  gold_assert(sh_type == elfcpp::SHT_REL);
3293
 
3294
  gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
3295
                         Target_i386::Relocate>(
3296
    relinfo,
3297
    this,
3298
    prelocs,
3299
    reloc_count,
3300
    output_section,
3301
    needs_special_offset_handling,
3302
    view,
3303
    address,
3304
    view_size,
3305
    reloc_symbol_changes);
3306
}
3307
 
3308
// Return the size of a relocation while scanning during a relocatable
3309
// link.
3310
 
3311
unsigned int
3312
Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
3313
    unsigned int r_type,
3314
    Relobj* object)
3315
{
3316
  switch (r_type)
3317
    {
3318
    case elfcpp::R_386_NONE:
3319
    case elfcpp::R_386_GNU_VTINHERIT:
3320
    case elfcpp::R_386_GNU_VTENTRY:
3321
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
3322
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
3323
    case elfcpp::R_386_TLS_DESC_CALL:
3324
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
3325
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
3326
    case elfcpp::R_386_TLS_IE:            // Initial-exec
3327
    case elfcpp::R_386_TLS_IE_32:
3328
    case elfcpp::R_386_TLS_GOTIE:
3329
    case elfcpp::R_386_TLS_LE:            // Local-exec
3330
    case elfcpp::R_386_TLS_LE_32:
3331
      return 0;
3332
 
3333
    case elfcpp::R_386_32:
3334
    case elfcpp::R_386_PC32:
3335
    case elfcpp::R_386_GOT32:
3336
    case elfcpp::R_386_PLT32:
3337
    case elfcpp::R_386_GOTOFF:
3338
    case elfcpp::R_386_GOTPC:
3339
     return 4;
3340
 
3341
    case elfcpp::R_386_16:
3342
    case elfcpp::R_386_PC16:
3343
      return 2;
3344
 
3345
    case elfcpp::R_386_8:
3346
    case elfcpp::R_386_PC8:
3347
      return 1;
3348
 
3349
      // These are relocations which should only be seen by the
3350
      // dynamic linker, and should never be seen here.
3351
    case elfcpp::R_386_COPY:
3352
    case elfcpp::R_386_GLOB_DAT:
3353
    case elfcpp::R_386_JUMP_SLOT:
3354
    case elfcpp::R_386_RELATIVE:
3355
    case elfcpp::R_386_IRELATIVE:
3356
    case elfcpp::R_386_TLS_TPOFF:
3357
    case elfcpp::R_386_TLS_DTPMOD32:
3358
    case elfcpp::R_386_TLS_DTPOFF32:
3359
    case elfcpp::R_386_TLS_TPOFF32:
3360
    case elfcpp::R_386_TLS_DESC:
3361
      object->error(_("unexpected reloc %u in object file"), r_type);
3362
      return 0;
3363
 
3364
    case elfcpp::R_386_32PLT:
3365
    case elfcpp::R_386_TLS_GD_32:
3366
    case elfcpp::R_386_TLS_GD_PUSH:
3367
    case elfcpp::R_386_TLS_GD_CALL:
3368
    case elfcpp::R_386_TLS_GD_POP:
3369
    case elfcpp::R_386_TLS_LDM_32:
3370
    case elfcpp::R_386_TLS_LDM_PUSH:
3371
    case elfcpp::R_386_TLS_LDM_CALL:
3372
    case elfcpp::R_386_TLS_LDM_POP:
3373
    case elfcpp::R_386_USED_BY_INTEL_200:
3374
    default:
3375
      object->error(_("unsupported reloc %u in object file"), r_type);
3376
      return 0;
3377
    }
3378
}
3379
 
3380
// Scan the relocs during a relocatable link.
3381
 
3382
void
3383
Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3384
                                     Layout* layout,
3385
                                     Sized_relobj_file<32, false>* object,
3386
                                     unsigned int data_shndx,
3387
                                     unsigned int sh_type,
3388
                                     const unsigned char* prelocs,
3389
                                     size_t reloc_count,
3390
                                     Output_section* output_section,
3391
                                     bool needs_special_offset_handling,
3392
                                     size_t local_symbol_count,
3393
                                     const unsigned char* plocal_symbols,
3394
                                     Relocatable_relocs* rr)
3395
{
3396
  gold_assert(sh_type == elfcpp::SHT_REL);
3397
 
3398
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
3399
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
3400
 
3401
  gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
3402
      Scan_relocatable_relocs>(
3403
    symtab,
3404
    layout,
3405
    object,
3406
    data_shndx,
3407
    prelocs,
3408
    reloc_count,
3409
    output_section,
3410
    needs_special_offset_handling,
3411
    local_symbol_count,
3412
    plocal_symbols,
3413
    rr);
3414
}
3415
 
3416
// Relocate a section during a relocatable link.
3417
 
3418
void
3419
Target_i386::relocate_for_relocatable(
3420
    const Relocate_info<32, false>* relinfo,
3421
    unsigned int sh_type,
3422
    const unsigned char* prelocs,
3423
    size_t reloc_count,
3424
    Output_section* output_section,
3425
    off_t offset_in_output_section,
3426
    const Relocatable_relocs* rr,
3427
    unsigned char* view,
3428
    elfcpp::Elf_types<32>::Elf_Addr view_address,
3429
    section_size_type view_size,
3430
    unsigned char* reloc_view,
3431
    section_size_type reloc_view_size)
3432
{
3433
  gold_assert(sh_type == elfcpp::SHT_REL);
3434
 
3435
  gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
3436
    relinfo,
3437
    prelocs,
3438
    reloc_count,
3439
    output_section,
3440
    offset_in_output_section,
3441
    rr,
3442
    view,
3443
    view_address,
3444
    view_size,
3445
    reloc_view,
3446
    reloc_view_size);
3447
}
3448
 
3449
// Return the value to use for a dynamic which requires special
3450
// treatment.  This is how we support equality comparisons of function
3451
// pointers across shared library boundaries, as described in the
3452
// processor specific ABI supplement.
3453
 
3454
uint64_t
3455
Target_i386::do_dynsym_value(const Symbol* gsym) const
3456
{
3457
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3458 159 khays
  return this->plt_address_for_global(gsym) + gsym->plt_offset();
3459 27 khays
}
3460
 
3461
// Return a string used to fill a code section with nops to take up
3462
// the specified length.
3463
 
3464
std::string
3465
Target_i386::do_code_fill(section_size_type length) const
3466
{
3467
  if (length >= 16)
3468
    {
3469
      // Build a jmp instruction to skip over the bytes.
3470
      unsigned char jmp[5];
3471
      jmp[0] = 0xe9;
3472
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3473
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3474 166 khays
              + std::string(length - 5, static_cast<char>(0x90)));
3475 27 khays
    }
3476
 
3477
  // Nop sequences of various lengths.
3478 166 khays
  const char nop1[1] = { '\x90' };                   // nop
3479
  const char nop2[2] = { '\x66', '\x90' };           // xchg %ax %ax
3480
  const char nop3[3] = { '\x8d', '\x76', '\x00' };   // leal 0(%esi),%esi
3481
  const char nop4[4] = { '\x8d', '\x74', '\x26',     // leal 0(%esi,1),%esi
3482
                         '\x00'};
3483
  const char nop5[5] = { '\x90', '\x8d', '\x74',     // nop
3484
                         '\x26', '\x00' };           // leal 0(%esi,1),%esi
3485
  const char nop6[6] = { '\x8d', '\xb6', '\x00',     // leal 0L(%esi),%esi
3486
                         '\x00', '\x00', '\x00' };
3487
  const char nop7[7] = { '\x8d', '\xb4', '\x26',     // leal 0L(%esi,1),%esi
3488
                         '\x00', '\x00', '\x00',
3489
                         '\x00' };
3490
  const char nop8[8] = { '\x90', '\x8d', '\xb4',     // nop
3491
                         '\x26', '\x00', '\x00',     // leal 0L(%esi,1),%esi
3492
                         '\x00', '\x00' };
3493
  const char nop9[9] = { '\x89', '\xf6', '\x8d',     // movl %esi,%esi
3494
                         '\xbc', '\x27', '\x00',     // leal 0L(%edi,1),%edi
3495
                         '\x00', '\x00', '\x00' };
3496
  const char nop10[10] = { '\x8d', '\x76', '\x00',   // leal 0(%esi),%esi
3497
                           '\x8d', '\xbc', '\x27',   // leal 0L(%edi,1),%edi
3498
                           '\x00', '\x00', '\x00',
3499
                           '\x00' };
3500
  const char nop11[11] = { '\x8d', '\x74', '\x26',   // leal 0(%esi,1),%esi
3501
                           '\x00', '\x8d', '\xbc',   // leal 0L(%edi,1),%edi
3502
                           '\x27', '\x00', '\x00',
3503
                           '\x00', '\x00' };
3504
  const char nop12[12] = { '\x8d', '\xb6', '\x00',   // leal 0L(%esi),%esi
3505
                           '\x00', '\x00', '\x00',   // leal 0L(%edi),%edi
3506
                           '\x8d', '\xbf', '\x00',
3507
                           '\x00', '\x00', '\x00' };
3508
  const char nop13[13] = { '\x8d', '\xb6', '\x00',   // leal 0L(%esi),%esi
3509
                           '\x00', '\x00', '\x00',   // leal 0L(%edi,1),%edi
3510
                           '\x8d', '\xbc', '\x27',
3511
                           '\x00', '\x00', '\x00',
3512
                           '\x00' };
3513
  const char nop14[14] = { '\x8d', '\xb4', '\x26',   // leal 0L(%esi,1),%esi
3514
                           '\x00', '\x00', '\x00',   // leal 0L(%edi,1),%edi
3515
                           '\x00', '\x8d', '\xbc',
3516
                           '\x27', '\x00', '\x00',
3517
                           '\x00', '\x00' };
3518
  const char nop15[15] = { '\xeb', '\x0d', '\x90',   // jmp .+15
3519
                           '\x90', '\x90', '\x90',   // nop,nop,nop,...
3520
                           '\x90', '\x90', '\x90',
3521
                           '\x90', '\x90', '\x90',
3522
                           '\x90', '\x90', '\x90' };
3523 27 khays
 
3524
  const char* nops[16] = {
3525
    NULL,
3526
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3527
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3528
  };
3529
 
3530
  return std::string(nops[length], length);
3531
}
3532
 
3533 159 khays
// Return the value to use for the base of a DW_EH_PE_datarel offset
3534
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
3535
// assembler can not write out the difference between two labels in
3536
// different sections, so instead of using a pc-relative value they
3537
// use an offset from the GOT.
3538
 
3539
uint64_t
3540
Target_i386::do_ehframe_datarel_base() const
3541
{
3542
  gold_assert(this->global_offset_table_ != NULL);
3543
  Symbol* sym = this->global_offset_table_;
3544
  Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3545
  return ssym->value();
3546
}
3547
 
3548 27 khays
// Return whether SYM should be treated as a call to a non-split
3549
// function.  We don't want that to be true of a call to a
3550
// get_pc_thunk function.
3551
 
3552
bool
3553
Target_i386::do_is_call_to_non_split(const Symbol* sym, unsigned int) const
3554
{
3555
  return (sym->type() == elfcpp::STT_FUNC
3556
          && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3557
}
3558
 
3559
// FNOFFSET in section SHNDX in OBJECT is the start of a function
3560
// compiled with -fsplit-stack.  The function calls non-split-stack
3561
// code.  We have to change the function so that it always ensures
3562
// that it has enough stack space to run some random function.
3563
 
3564
void
3565
Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3566
                                section_offset_type fnoffset,
3567
                                section_size_type fnsize,
3568
                                unsigned char* view,
3569
                                section_size_type view_size,
3570
                                std::string* from,
3571
                                std::string* to) const
3572
{
3573
  // The function starts with a comparison of the stack pointer and a
3574
  // field in the TCB.  This is followed by a jump.
3575
 
3576
  // cmp %gs:NN,%esp
3577
  if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
3578
      && fnsize > 7)
3579
    {
3580
      // We will call __morestack if the carry flag is set after this
3581
      // comparison.  We turn the comparison into an stc instruction
3582
      // and some nops.
3583
      view[fnoffset] = '\xf9';
3584
      this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
3585
    }
3586
  // lea NN(%esp),%ecx
3587
  // lea NN(%esp),%edx
3588
  else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
3589
            || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
3590
           && fnsize > 7)
3591
    {
3592
      // This is loading an offset from the stack pointer for a
3593
      // comparison.  The offset is negative, so we decrease the
3594
      // offset by the amount of space we need for the stack.  This
3595
      // means we will avoid calling __morestack if there happens to
3596
      // be plenty of space on the stack already.
3597
      unsigned char* pval = view + fnoffset + 3;
3598
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3599
      val -= parameters->options().split_stack_adjust_size();
3600
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3601
    }
3602
  else
3603
    {
3604
      if (!object->has_no_split_stack())
3605
        object->error(_("failed to match split-stack sequence at "
3606
                        "section %u offset %0zx"),
3607
                      shndx, static_cast<size_t>(fnoffset));
3608
      return;
3609
    }
3610
 
3611
  // We have to change the function so that it calls
3612
  // __morestack_non_split instead of __morestack.  The former will
3613
  // allocate additional stack space.
3614
  *from = "__morestack";
3615
  *to = "__morestack_non_split";
3616
}
3617
 
3618
// The selector for i386 object files.
3619
 
3620
class Target_selector_i386 : public Target_selector_freebsd
3621
{
3622
public:
3623
  Target_selector_i386()
3624
    : Target_selector_freebsd(elfcpp::EM_386, 32, false,
3625 159 khays
                              "elf32-i386", "elf32-i386-freebsd",
3626
                              "elf_i386")
3627 27 khays
  { }
3628
 
3629
  Target*
3630
  do_instantiate_target()
3631
  { return new Target_i386(); }
3632
};
3633
 
3634
Target_selector_i386 target_selector_i386;
3635
 
3636
} // End anonymous namespace.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.