| 1 |
27 |
khays |
// icf.cc -- Identical Code Folding.
|
| 2 |
|
|
//
|
| 3 |
159 |
khays |
// Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
|
| 4 |
27 |
khays |
// Written by Sriraman Tallam <tmsriram@google.com>.
|
| 5 |
|
|
|
| 6 |
|
|
// This file is part of gold.
|
| 7 |
|
|
|
| 8 |
|
|
// This program is free software; you can redistribute it and/or modify
|
| 9 |
|
|
// it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
// the Free Software Foundation; either version 3 of the License, or
|
| 11 |
|
|
// (at your option) any later version.
|
| 12 |
|
|
|
| 13 |
|
|
// This program is distributed in the hope that it will be useful,
|
| 14 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
// GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
// You should have received a copy of the GNU General Public License
|
| 19 |
|
|
// along with this program; if not, write to the Free Software
|
| 20 |
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
| 21 |
|
|
// MA 02110-1301, USA.
|
| 22 |
|
|
|
| 23 |
|
|
// Identical Code Folding Algorithm
|
| 24 |
|
|
// ----------------------------------
|
| 25 |
|
|
// Detecting identical functions is done here and the basic algorithm
|
| 26 |
|
|
// is as follows. A checksum is computed on each foldable section using
|
| 27 |
|
|
// its contents and relocations. If the symbol name corresponding to
|
| 28 |
|
|
// a relocation is known it is used to compute the checksum. If the
|
| 29 |
|
|
// symbol name is not known the stringified name of the object and the
|
| 30 |
|
|
// section number pointed to by the relocation is used. The checksums
|
| 31 |
|
|
// are stored as keys in a hash map and a section is identical to some
|
| 32 |
|
|
// other section if its checksum is already present in the hash map.
|
| 33 |
|
|
// Checksum collisions are handled by using a multimap and explicitly
|
| 34 |
|
|
// checking the contents when two sections have the same checksum.
|
| 35 |
|
|
//
|
| 36 |
|
|
// However, two functions A and B with identical text but with
|
| 37 |
|
|
// relocations pointing to different foldable sections can be identical if
|
| 38 |
|
|
// the corresponding foldable sections to which their relocations point to
|
| 39 |
|
|
// turn out to be identical. Hence, this checksumming process must be
|
| 40 |
|
|
// done repeatedly until convergence is obtained. Here is an example for
|
| 41 |
|
|
// the following case :
|
| 42 |
|
|
//
|
| 43 |
|
|
// int funcA () int funcB ()
|
| 44 |
|
|
// { {
|
| 45 |
|
|
// return foo(); return goo();
|
| 46 |
|
|
// } }
|
| 47 |
|
|
//
|
| 48 |
|
|
// The functions funcA and funcB are identical if functions foo() and
|
| 49 |
|
|
// goo() are identical.
|
| 50 |
|
|
//
|
| 51 |
|
|
// Hence, as described above, we repeatedly do the checksumming,
|
| 52 |
|
|
// assigning identical functions to the same group, until convergence is
|
| 53 |
|
|
// obtained. Now, we have two different ways to do this depending on how
|
| 54 |
|
|
// we initialize.
|
| 55 |
|
|
//
|
| 56 |
|
|
// Algorithm I :
|
| 57 |
|
|
// -----------
|
| 58 |
|
|
// We can start with marking all functions as different and repeatedly do
|
| 59 |
|
|
// the checksumming. This has the advantage that we do not need to wait
|
| 60 |
|
|
// for convergence. We can stop at any point and correctness will be
|
| 61 |
|
|
// guaranteed although not all cases would have been found. However, this
|
| 62 |
|
|
// has a problem that some cases can never be found even if it is run until
|
| 63 |
|
|
// convergence. Here is an example with mutually recursive functions :
|
| 64 |
|
|
//
|
| 65 |
|
|
// int funcA (int a) int funcB (int a)
|
| 66 |
|
|
// { {
|
| 67 |
|
|
// if (a == 1) if (a == 1)
|
| 68 |
|
|
// return 1; return 1;
|
| 69 |
|
|
// return 1 + funcB(a - 1); return 1 + funcA(a - 1);
|
| 70 |
|
|
// } }
|
| 71 |
|
|
//
|
| 72 |
|
|
// In this example funcA and funcB are identical and one of them could be
|
| 73 |
|
|
// folded into the other. However, if we start with assuming that funcA
|
| 74 |
|
|
// and funcB are not identical, the algorithm, even after it is run to
|
| 75 |
|
|
// convergence, cannot detect that they are identical. It should be noted
|
| 76 |
|
|
// that even if the functions were self-recursive, Algorithm I cannot catch
|
| 77 |
|
|
// that they are identical, at least as is.
|
| 78 |
|
|
//
|
| 79 |
|
|
// Algorithm II :
|
| 80 |
|
|
// ------------
|
| 81 |
|
|
// Here we start with marking all functions as identical and then repeat
|
| 82 |
|
|
// the checksumming until convergence. This can detect the above case
|
| 83 |
|
|
// mentioned above. It can detect all cases that Algorithm I can and more.
|
| 84 |
|
|
// However, the caveat is that it has to be run to convergence. It cannot
|
| 85 |
|
|
// be stopped arbitrarily like Algorithm I as correctness cannot be
|
| 86 |
|
|
// guaranteed. Algorithm II is not implemented.
|
| 87 |
|
|
//
|
| 88 |
|
|
// Algorithm I is used because experiments show that about three
|
| 89 |
|
|
// iterations are more than enough to achieve convergence. Algorithm I can
|
| 90 |
|
|
// handle recursive calls if it is changed to use a special common symbol
|
| 91 |
|
|
// for recursive relocs. This seems to be the most common case that
|
| 92 |
|
|
// Algorithm I could not catch as is. Mutually recursive calls are not
|
| 93 |
|
|
// frequent and Algorithm I wins because of its ability to be stopped
|
| 94 |
|
|
// arbitrarily.
|
| 95 |
|
|
//
|
| 96 |
|
|
// Caveat with using function pointers :
|
| 97 |
|
|
// ------------------------------------
|
| 98 |
|
|
//
|
| 99 |
|
|
// Programs using function pointer comparisons/checks should use function
|
| 100 |
|
|
// folding with caution as the result of such comparisons could be different
|
| 101 |
|
|
// when folding takes place. This could lead to unexpected run-time
|
| 102 |
|
|
// behaviour.
|
| 103 |
|
|
//
|
| 104 |
|
|
// Safe Folding :
|
| 105 |
|
|
// ------------
|
| 106 |
|
|
//
|
| 107 |
|
|
// ICF in safe mode folds only ctors and dtors if their function pointers can
|
| 108 |
|
|
// never be taken. Also, for X86-64, safe folding uses the relocation
|
| 109 |
|
|
// type to determine if a function's pointer is taken or not and only folds
|
| 110 |
|
|
// functions whose pointers are definitely not taken.
|
| 111 |
|
|
//
|
| 112 |
|
|
// Caveat with safe folding :
|
| 113 |
|
|
// ------------------------
|
| 114 |
|
|
//
|
| 115 |
|
|
// This applies only to x86_64.
|
| 116 |
|
|
//
|
| 117 |
|
|
// Position independent executables are created from PIC objects (compiled
|
| 118 |
|
|
// with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
|
| 119 |
|
|
// relocation types for function pointer taken and a call are the same.
|
| 120 |
|
|
// Now, it is not always possible to tell if an object used in the link of
|
| 121 |
|
|
// a pie executable is a PIC object or a PIE object. Hence, for pie
|
| 122 |
|
|
// executables, using relocation types to disambiguate function pointers is
|
| 123 |
|
|
// currently disabled.
|
| 124 |
|
|
//
|
| 125 |
|
|
// Further, it is not correct to use safe folding to build non-pie
|
| 126 |
|
|
// executables using PIC/PIE objects. PIC/PIE objects have different
|
| 127 |
|
|
// relocation types for function pointers than non-PIC objects, and the
|
| 128 |
|
|
// current implementation of safe folding does not handle those relocation
|
| 129 |
|
|
// types. Hence, if used, functions whose pointers are taken could still be
|
| 130 |
|
|
// folded causing unpredictable run-time behaviour if the pointers were used
|
| 131 |
|
|
// in comparisons.
|
| 132 |
|
|
//
|
| 133 |
|
|
//
|
| 134 |
|
|
//
|
| 135 |
|
|
// How to run : --icf=[safe|all|none]
|
| 136 |
|
|
// Optional parameters : --icf-iterations <num> --print-icf-sections
|
| 137 |
|
|
//
|
| 138 |
|
|
// Performance : Less than 20 % link-time overhead on industry strength
|
| 139 |
|
|
// applications. Up to 6 % text size reductions.
|
| 140 |
|
|
|
| 141 |
|
|
#include "gold.h"
|
| 142 |
|
|
#include "object.h"
|
| 143 |
|
|
#include "gc.h"
|
| 144 |
|
|
#include "icf.h"
|
| 145 |
|
|
#include "symtab.h"
|
| 146 |
|
|
#include "libiberty.h"
|
| 147 |
|
|
#include "demangle.h"
|
| 148 |
|
|
#include "elfcpp.h"
|
| 149 |
|
|
#include "int_encoding.h"
|
| 150 |
|
|
|
| 151 |
|
|
namespace gold
|
| 152 |
|
|
{
|
| 153 |
|
|
|
| 154 |
|
|
// This function determines if a section or a group of identical
|
| 155 |
|
|
// sections has unique contents. Such unique sections or groups can be
|
| 156 |
|
|
// declared final and need not be processed any further.
|
| 157 |
|
|
// Parameters :
|
| 158 |
|
|
// ID_SECTION : Vector mapping a section index to a Section_id pair.
|
| 159 |
|
|
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
|
| 160 |
|
|
// sections is already known to be unique.
|
| 161 |
|
|
// SECTION_CONTENTS : Contains the section's text and relocs to sections
|
| 162 |
|
|
// that cannot be folded. SECTION_CONTENTS are NULL
|
| 163 |
|
|
// implies that this function is being called for the
|
| 164 |
|
|
// first time before the first iteration of icf.
|
| 165 |
|
|
|
| 166 |
|
|
static void
|
| 167 |
|
|
preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
|
| 168 |
|
|
std::vector<bool>* is_secn_or_group_unique,
|
| 169 |
|
|
std::vector<std::string>* section_contents)
|
| 170 |
|
|
{
|
| 171 |
|
|
Unordered_map<uint32_t, unsigned int> uniq_map;
|
| 172 |
|
|
std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
|
| 173 |
|
|
uniq_map_insert;
|
| 174 |
|
|
|
| 175 |
|
|
for (unsigned int i = 0; i < id_section.size(); i++)
|
| 176 |
|
|
{
|
| 177 |
|
|
if ((*is_secn_or_group_unique)[i])
|
| 178 |
|
|
continue;
|
| 179 |
|
|
|
| 180 |
|
|
uint32_t cksum;
|
| 181 |
|
|
Section_id secn = id_section[i];
|
| 182 |
|
|
section_size_type plen;
|
| 183 |
|
|
if (section_contents == NULL)
|
| 184 |
|
|
{
|
| 185 |
|
|
// Lock the object so we can read from it. This is only called
|
| 186 |
|
|
// single-threaded from queue_middle_tasks, so it is OK to lock.
|
| 187 |
|
|
// Unfortunately we have no way to pass in a Task token.
|
| 188 |
|
|
const Task* dummy_task = reinterpret_cast<const Task*>(-1);
|
| 189 |
|
|
Task_lock_obj<Object> tl(dummy_task, secn.first);
|
| 190 |
|
|
const unsigned char* contents;
|
| 191 |
|
|
contents = secn.first->section_contents(secn.second,
|
| 192 |
|
|
&plen,
|
| 193 |
|
|
false);
|
| 194 |
|
|
cksum = xcrc32(contents, plen, 0xffffffff);
|
| 195 |
|
|
}
|
| 196 |
|
|
else
|
| 197 |
|
|
{
|
| 198 |
|
|
const unsigned char* contents_array = reinterpret_cast
|
| 199 |
|
|
<const unsigned char*>((*section_contents)[i].c_str());
|
| 200 |
|
|
cksum = xcrc32(contents_array, (*section_contents)[i].length(),
|
| 201 |
|
|
0xffffffff);
|
| 202 |
|
|
}
|
| 203 |
|
|
uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
|
| 204 |
|
|
if (uniq_map_insert.second)
|
| 205 |
|
|
{
|
| 206 |
|
|
(*is_secn_or_group_unique)[i] = true;
|
| 207 |
|
|
}
|
| 208 |
|
|
else
|
| 209 |
|
|
{
|
| 210 |
|
|
(*is_secn_or_group_unique)[i] = false;
|
| 211 |
|
|
(*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
|
| 212 |
|
|
}
|
| 213 |
|
|
}
|
| 214 |
|
|
}
|
| 215 |
|
|
|
| 216 |
|
|
// This returns the buffer containing the section's contents, both
|
| 217 |
|
|
// text and relocs. Relocs are differentiated as those pointing to
|
| 218 |
|
|
// sections that could be folded and those that cannot. Only relocs
|
| 219 |
|
|
// pointing to sections that could be folded are recomputed on
|
| 220 |
|
|
// subsequent invocations of this function.
|
| 221 |
|
|
// Parameters :
|
| 222 |
|
|
// FIRST_ITERATION : true if it is the first invocation.
|
| 223 |
|
|
// SECN : Section for which contents are desired.
|
| 224 |
|
|
// SECTION_NUM : Unique section number of this section.
|
| 225 |
|
|
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
|
| 226 |
|
|
// to ICF sections.
|
| 227 |
|
|
// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
|
| 228 |
|
|
// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
|
| 229 |
|
|
// sections.
|
| 230 |
|
|
|
| 231 |
|
|
static std::string
|
| 232 |
|
|
get_section_contents(bool first_iteration,
|
| 233 |
|
|
const Section_id& secn,
|
| 234 |
|
|
unsigned int section_num,
|
| 235 |
|
|
unsigned int* num_tracked_relocs,
|
| 236 |
|
|
Symbol_table* symtab,
|
| 237 |
|
|
const std::vector<unsigned int>& kept_section_id,
|
| 238 |
|
|
std::vector<std::string>* section_contents)
|
| 239 |
|
|
{
|
| 240 |
|
|
// Lock the object so we can read from it. This is only called
|
| 241 |
|
|
// single-threaded from queue_middle_tasks, so it is OK to lock.
|
| 242 |
|
|
// Unfortunately we have no way to pass in a Task token.
|
| 243 |
|
|
const Task* dummy_task = reinterpret_cast<const Task*>(-1);
|
| 244 |
|
|
Task_lock_obj<Object> tl(dummy_task, secn.first);
|
| 245 |
|
|
|
| 246 |
|
|
section_size_type plen;
|
| 247 |
|
|
const unsigned char* contents = NULL;
|
| 248 |
|
|
if (first_iteration)
|
| 249 |
|
|
contents = secn.first->section_contents(secn.second, &plen, false);
|
| 250 |
|
|
|
| 251 |
|
|
// The buffer to hold all the contents including relocs. A checksum
|
| 252 |
|
|
// is then computed on this buffer.
|
| 253 |
|
|
std::string buffer;
|
| 254 |
|
|
std::string icf_reloc_buffer;
|
| 255 |
|
|
|
| 256 |
|
|
if (num_tracked_relocs)
|
| 257 |
|
|
*num_tracked_relocs = 0;
|
| 258 |
|
|
|
| 259 |
|
|
Icf::Reloc_info_list& reloc_info_list =
|
| 260 |
|
|
symtab->icf()->reloc_info_list();
|
| 261 |
|
|
|
| 262 |
|
|
Icf::Reloc_info_list::iterator it_reloc_info_list =
|
| 263 |
|
|
reloc_info_list.find(secn);
|
| 264 |
|
|
|
| 265 |
|
|
buffer.clear();
|
| 266 |
|
|
icf_reloc_buffer.clear();
|
| 267 |
|
|
|
| 268 |
|
|
// Process relocs and put them into the buffer.
|
| 269 |
|
|
|
| 270 |
|
|
if (it_reloc_info_list != reloc_info_list.end())
|
| 271 |
|
|
{
|
| 272 |
|
|
Icf::Sections_reachable_info v =
|
| 273 |
|
|
(it_reloc_info_list->second).section_info;
|
| 274 |
|
|
// Stores the information of the symbol pointed to by the reloc.
|
| 275 |
|
|
Icf::Symbol_info s = (it_reloc_info_list->second).symbol_info;
|
| 276 |
|
|
// Stores the addend and the symbol value.
|
| 277 |
|
|
Icf::Addend_info a = (it_reloc_info_list->second).addend_info;
|
| 278 |
|
|
// Stores the offset of the reloc.
|
| 279 |
|
|
Icf::Offset_info o = (it_reloc_info_list->second).offset_info;
|
| 280 |
|
|
Icf::Reloc_addend_size_info reloc_addend_size_info =
|
| 281 |
|
|
(it_reloc_info_list->second).reloc_addend_size_info;
|
| 282 |
|
|
Icf::Sections_reachable_info::iterator it_v = v.begin();
|
| 283 |
|
|
Icf::Symbol_info::iterator it_s = s.begin();
|
| 284 |
|
|
Icf::Addend_info::iterator it_a = a.begin();
|
| 285 |
|
|
Icf::Offset_info::iterator it_o = o.begin();
|
| 286 |
|
|
Icf::Reloc_addend_size_info::iterator it_addend_size =
|
| 287 |
|
|
reloc_addend_size_info.begin();
|
| 288 |
|
|
|
| 289 |
|
|
for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
|
| 290 |
|
|
{
|
| 291 |
|
|
// ADDEND_STR stores the symbol value and addend and offset,
|
| 292 |
|
|
// each at most 16 hex digits long. it_a points to a pair
|
| 293 |
|
|
// where first is the symbol value and second is the
|
| 294 |
|
|
// addend.
|
| 295 |
|
|
char addend_str[50];
|
| 296 |
|
|
|
| 297 |
|
|
// It would be nice if we could use format macros in inttypes.h
|
| 298 |
|
|
// here but there are not in ISO/IEC C++ 1998.
|
| 299 |
|
|
snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
|
| 300 |
|
|
static_cast<long long>((*it_a).first),
|
| 301 |
|
|
static_cast<long long>((*it_a).second),
|
| 302 |
|
|
static_cast<unsigned long long>(*it_o));
|
| 303 |
|
|
|
| 304 |
|
|
// If the symbol pointed to by the reloc is not in an ordinary
|
| 305 |
|
|
// section or if the symbol type is not FROM_OBJECT, then the
|
| 306 |
|
|
// object is NULL.
|
| 307 |
|
|
if (it_v->first == NULL)
|
| 308 |
|
|
{
|
| 309 |
|
|
if (first_iteration)
|
| 310 |
|
|
{
|
| 311 |
|
|
// If the symbol name is available, use it.
|
| 312 |
|
|
if ((*it_s) != NULL)
|
| 313 |
|
|
buffer.append((*it_s)->name());
|
| 314 |
|
|
// Append the addend.
|
| 315 |
|
|
buffer.append(addend_str);
|
| 316 |
|
|
buffer.append("@");
|
| 317 |
|
|
}
|
| 318 |
|
|
continue;
|
| 319 |
|
|
}
|
| 320 |
|
|
|
| 321 |
|
|
Section_id reloc_secn(it_v->first, it_v->second);
|
| 322 |
|
|
|
| 323 |
|
|
// If this reloc turns back and points to the same section,
|
| 324 |
|
|
// like a recursive call, use a special symbol to mark this.
|
| 325 |
|
|
if (reloc_secn.first == secn.first
|
| 326 |
|
|
&& reloc_secn.second == secn.second)
|
| 327 |
|
|
{
|
| 328 |
|
|
if (first_iteration)
|
| 329 |
|
|
{
|
| 330 |
|
|
buffer.append("R");
|
| 331 |
|
|
buffer.append(addend_str);
|
| 332 |
|
|
buffer.append("@");
|
| 333 |
|
|
}
|
| 334 |
|
|
continue;
|
| 335 |
|
|
}
|
| 336 |
|
|
Icf::Uniq_secn_id_map& section_id_map =
|
| 337 |
|
|
symtab->icf()->section_to_int_map();
|
| 338 |
|
|
Icf::Uniq_secn_id_map::iterator section_id_map_it =
|
| 339 |
|
|
section_id_map.find(reloc_secn);
|
| 340 |
|
|
bool is_sym_preemptible = (*it_s != NULL
|
| 341 |
|
|
&& !(*it_s)->is_from_dynobj()
|
| 342 |
|
|
&& !(*it_s)->is_undefined()
|
| 343 |
|
|
&& (*it_s)->is_preemptible());
|
| 344 |
|
|
if (!is_sym_preemptible
|
| 345 |
|
|
&& section_id_map_it != section_id_map.end())
|
| 346 |
|
|
{
|
| 347 |
|
|
// This is a reloc to a section that might be folded.
|
| 348 |
|
|
if (num_tracked_relocs)
|
| 349 |
|
|
(*num_tracked_relocs)++;
|
| 350 |
|
|
|
| 351 |
|
|
char kept_section_str[10];
|
| 352 |
|
|
unsigned int secn_id = section_id_map_it->second;
|
| 353 |
|
|
snprintf(kept_section_str, sizeof(kept_section_str), "%u",
|
| 354 |
|
|
kept_section_id[secn_id]);
|
| 355 |
|
|
if (first_iteration)
|
| 356 |
|
|
{
|
| 357 |
|
|
buffer.append("ICF_R");
|
| 358 |
|
|
buffer.append(addend_str);
|
| 359 |
|
|
}
|
| 360 |
|
|
icf_reloc_buffer.append(kept_section_str);
|
| 361 |
|
|
// Append the addend.
|
| 362 |
|
|
icf_reloc_buffer.append(addend_str);
|
| 363 |
|
|
icf_reloc_buffer.append("@");
|
| 364 |
|
|
}
|
| 365 |
|
|
else
|
| 366 |
|
|
{
|
| 367 |
|
|
// This is a reloc to a section that cannot be folded.
|
| 368 |
|
|
// Process it only in the first iteration.
|
| 369 |
|
|
if (!first_iteration)
|
| 370 |
|
|
continue;
|
| 371 |
|
|
|
| 372 |
|
|
uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
|
| 373 |
|
|
// This reloc points to a merge section. Hash the
|
| 374 |
|
|
// contents of this section.
|
| 375 |
|
|
if ((secn_flags & elfcpp::SHF_MERGE) != 0
|
| 376 |
159 |
khays |
&& parameters->target().can_icf_inline_merge_sections())
|
| 377 |
27 |
khays |
{
|
| 378 |
|
|
uint64_t entsize =
|
| 379 |
|
|
(it_v->first)->section_entsize(it_v->second);
|
| 380 |
|
|
long long offset = it_a->first;
|
| 381 |
|
|
|
| 382 |
|
|
unsigned long long addend = it_a->second;
|
| 383 |
|
|
// Ignoring the addend when it is a negative value. See the
|
| 384 |
|
|
// comments in Merged_symbol_value::Value in object.h.
|
| 385 |
|
|
if (addend < 0xffffff00)
|
| 386 |
|
|
offset = offset + addend;
|
| 387 |
|
|
|
| 388 |
|
|
// For SHT_REL relocation sections, the addend is stored in the
|
| 389 |
|
|
// text section at the relocation offset.
|
| 390 |
|
|
uint64_t reloc_addend_value = 0;
|
| 391 |
|
|
const unsigned char* reloc_addend_ptr =
|
| 392 |
|
|
contents + static_cast<unsigned long long>(*it_o);
|
| 393 |
|
|
switch(*it_addend_size)
|
| 394 |
|
|
{
|
| 395 |
|
|
case 0:
|
| 396 |
|
|
{
|
| 397 |
|
|
break;
|
| 398 |
|
|
}
|
| 399 |
|
|
case 1:
|
| 400 |
|
|
{
|
| 401 |
|
|
reloc_addend_value =
|
| 402 |
|
|
read_from_pointer<8>(reloc_addend_ptr);
|
| 403 |
|
|
break;
|
| 404 |
|
|
}
|
| 405 |
|
|
case 2:
|
| 406 |
|
|
{
|
| 407 |
|
|
reloc_addend_value =
|
| 408 |
|
|
read_from_pointer<16>(reloc_addend_ptr);
|
| 409 |
|
|
break;
|
| 410 |
|
|
}
|
| 411 |
|
|
case 4:
|
| 412 |
|
|
{
|
| 413 |
|
|
reloc_addend_value =
|
| 414 |
|
|
read_from_pointer<32>(reloc_addend_ptr);
|
| 415 |
|
|
break;
|
| 416 |
|
|
}
|
| 417 |
|
|
case 8:
|
| 418 |
|
|
{
|
| 419 |
|
|
reloc_addend_value =
|
| 420 |
|
|
read_from_pointer<64>(reloc_addend_ptr);
|
| 421 |
|
|
break;
|
| 422 |
|
|
}
|
| 423 |
|
|
default:
|
| 424 |
|
|
gold_unreachable();
|
| 425 |
|
|
}
|
| 426 |
|
|
offset = offset + reloc_addend_value;
|
| 427 |
|
|
|
| 428 |
|
|
section_size_type secn_len;
|
| 429 |
|
|
const unsigned char* str_contents =
|
| 430 |
|
|
(it_v->first)->section_contents(it_v->second,
|
| 431 |
|
|
&secn_len,
|
| 432 |
|
|
false) + offset;
|
| 433 |
|
|
if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
|
| 434 |
|
|
{
|
| 435 |
|
|
// String merge section.
|
| 436 |
|
|
const char* str_char =
|
| 437 |
|
|
reinterpret_cast<const char*>(str_contents);
|
| 438 |
|
|
switch(entsize)
|
| 439 |
|
|
{
|
| 440 |
|
|
case 1:
|
| 441 |
|
|
{
|
| 442 |
|
|
buffer.append(str_char);
|
| 443 |
|
|
break;
|
| 444 |
|
|
}
|
| 445 |
|
|
case 2:
|
| 446 |
|
|
{
|
| 447 |
|
|
const uint16_t* ptr_16 =
|
| 448 |
|
|
reinterpret_cast<const uint16_t*>(str_char);
|
| 449 |
|
|
unsigned int strlen_16 = 0;
|
| 450 |
|
|
// Find the NULL character.
|
| 451 |
|
|
while(*(ptr_16 + strlen_16) != 0)
|
| 452 |
|
|
strlen_16++;
|
| 453 |
|
|
buffer.append(str_char, strlen_16 * 2);
|
| 454 |
|
|
}
|
| 455 |
|
|
break;
|
| 456 |
|
|
case 4:
|
| 457 |
|
|
{
|
| 458 |
|
|
const uint32_t* ptr_32 =
|
| 459 |
|
|
reinterpret_cast<const uint32_t*>(str_char);
|
| 460 |
|
|
unsigned int strlen_32 = 0;
|
| 461 |
|
|
// Find the NULL character.
|
| 462 |
|
|
while(*(ptr_32 + strlen_32) != 0)
|
| 463 |
|
|
strlen_32++;
|
| 464 |
|
|
buffer.append(str_char, strlen_32 * 4);
|
| 465 |
|
|
}
|
| 466 |
|
|
break;
|
| 467 |
|
|
default:
|
| 468 |
|
|
gold_unreachable();
|
| 469 |
|
|
}
|
| 470 |
|
|
}
|
| 471 |
|
|
else
|
| 472 |
|
|
{
|
| 473 |
|
|
// Use the entsize to determine the length.
|
| 474 |
|
|
buffer.append(reinterpret_cast<const
|
| 475 |
|
|
char*>(str_contents),
|
| 476 |
|
|
entsize);
|
| 477 |
|
|
}
|
| 478 |
|
|
buffer.append("@");
|
| 479 |
|
|
}
|
| 480 |
|
|
else if ((*it_s) != NULL)
|
| 481 |
|
|
{
|
| 482 |
|
|
// If symbol name is available use that.
|
| 483 |
|
|
buffer.append((*it_s)->name());
|
| 484 |
|
|
// Append the addend.
|
| 485 |
|
|
buffer.append(addend_str);
|
| 486 |
|
|
buffer.append("@");
|
| 487 |
|
|
}
|
| 488 |
|
|
else
|
| 489 |
|
|
{
|
| 490 |
|
|
// Symbol name is not available, like for a local symbol,
|
| 491 |
|
|
// use object and section id.
|
| 492 |
|
|
buffer.append(it_v->first->name());
|
| 493 |
|
|
char secn_id[10];
|
| 494 |
|
|
snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
|
| 495 |
|
|
buffer.append(secn_id);
|
| 496 |
|
|
// Append the addend.
|
| 497 |
|
|
buffer.append(addend_str);
|
| 498 |
|
|
buffer.append("@");
|
| 499 |
|
|
}
|
| 500 |
|
|
}
|
| 501 |
|
|
}
|
| 502 |
|
|
}
|
| 503 |
|
|
|
| 504 |
|
|
if (first_iteration)
|
| 505 |
|
|
{
|
| 506 |
|
|
buffer.append("Contents = ");
|
| 507 |
|
|
buffer.append(reinterpret_cast<const char*>(contents), plen);
|
| 508 |
|
|
// Store the section contents that dont change to avoid recomputing
|
| 509 |
|
|
// during the next call to this function.
|
| 510 |
|
|
(*section_contents)[section_num] = buffer;
|
| 511 |
|
|
}
|
| 512 |
|
|
else
|
| 513 |
|
|
{
|
| 514 |
|
|
gold_assert(buffer.empty());
|
| 515 |
|
|
// Reuse the contents computed in the previous iteration.
|
| 516 |
|
|
buffer.append((*section_contents)[section_num]);
|
| 517 |
|
|
}
|
| 518 |
|
|
|
| 519 |
|
|
buffer.append(icf_reloc_buffer);
|
| 520 |
|
|
return buffer;
|
| 521 |
|
|
}
|
| 522 |
|
|
|
| 523 |
|
|
// This function computes a checksum on each section to detect and form
|
| 524 |
|
|
// groups of identical sections. The first iteration does this for all
|
| 525 |
|
|
// sections.
|
| 526 |
|
|
// Further iterations do this only for the kept sections from each group to
|
| 527 |
|
|
// determine if larger groups of identical sections could be formed. The
|
| 528 |
|
|
// first section in each group is the kept section for that group.
|
| 529 |
|
|
//
|
| 530 |
|
|
// CRC32 is the checksumming algorithm and can have collisions. That is,
|
| 531 |
|
|
// two sections with different contents can have the same checksum. Hence,
|
| 532 |
|
|
// a multimap is used to maintain more than one group of checksum
|
| 533 |
|
|
// identical sections. A section is added to a group only after its
|
| 534 |
|
|
// contents are explicitly compared with the kept section of the group.
|
| 535 |
|
|
//
|
| 536 |
|
|
// Parameters :
|
| 537 |
|
|
// ITERATION_NUM : Invocation instance of this function.
|
| 538 |
|
|
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
|
| 539 |
|
|
// to ICF sections.
|
| 540 |
|
|
// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
|
| 541 |
|
|
// ID_SECTION : Vector mapping a section to an unique integer.
|
| 542 |
|
|
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
|
| 543 |
|
|
// sections is already known to be unique.
|
| 544 |
|
|
// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
|
| 545 |
|
|
// sections.
|
| 546 |
|
|
|
| 547 |
|
|
static bool
|
| 548 |
|
|
match_sections(unsigned int iteration_num,
|
| 549 |
|
|
Symbol_table* symtab,
|
| 550 |
|
|
std::vector<unsigned int>* num_tracked_relocs,
|
| 551 |
|
|
std::vector<unsigned int>* kept_section_id,
|
| 552 |
|
|
const std::vector<Section_id>& id_section,
|
| 553 |
|
|
std::vector<bool>* is_secn_or_group_unique,
|
| 554 |
|
|
std::vector<std::string>* section_contents)
|
| 555 |
|
|
{
|
| 556 |
|
|
Unordered_multimap<uint32_t, unsigned int> section_cksum;
|
| 557 |
|
|
std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
|
| 558 |
|
|
Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
|
| 559 |
|
|
bool converged = true;
|
| 560 |
|
|
|
| 561 |
|
|
if (iteration_num == 1)
|
| 562 |
|
|
preprocess_for_unique_sections(id_section,
|
| 563 |
|
|
is_secn_or_group_unique,
|
| 564 |
|
|
NULL);
|
| 565 |
|
|
else
|
| 566 |
|
|
preprocess_for_unique_sections(id_section,
|
| 567 |
|
|
is_secn_or_group_unique,
|
| 568 |
|
|
section_contents);
|
| 569 |
|
|
|
| 570 |
|
|
std::vector<std::string> full_section_contents;
|
| 571 |
|
|
|
| 572 |
|
|
for (unsigned int i = 0; i < id_section.size(); i++)
|
| 573 |
|
|
{
|
| 574 |
|
|
full_section_contents.push_back("");
|
| 575 |
|
|
if ((*is_secn_or_group_unique)[i])
|
| 576 |
|
|
continue;
|
| 577 |
|
|
|
| 578 |
|
|
Section_id secn = id_section[i];
|
| 579 |
|
|
std::string this_secn_contents;
|
| 580 |
|
|
uint32_t cksum;
|
| 581 |
|
|
if (iteration_num == 1)
|
| 582 |
|
|
{
|
| 583 |
|
|
unsigned int num_relocs = 0;
|
| 584 |
|
|
this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
|
| 585 |
|
|
symtab, (*kept_section_id),
|
| 586 |
|
|
section_contents);
|
| 587 |
|
|
(*num_tracked_relocs)[i] = num_relocs;
|
| 588 |
|
|
}
|
| 589 |
|
|
else
|
| 590 |
|
|
{
|
| 591 |
|
|
if ((*kept_section_id)[i] != i)
|
| 592 |
|
|
{
|
| 593 |
|
|
// This section is already folded into something. See
|
| 594 |
|
|
// if it should point to a different kept section.
|
| 595 |
|
|
unsigned int kept_section = (*kept_section_id)[i];
|
| 596 |
|
|
if (kept_section != (*kept_section_id)[kept_section])
|
| 597 |
|
|
{
|
| 598 |
|
|
(*kept_section_id)[i] = (*kept_section_id)[kept_section];
|
| 599 |
|
|
}
|
| 600 |
|
|
continue;
|
| 601 |
|
|
}
|
| 602 |
|
|
this_secn_contents = get_section_contents(false, secn, i, NULL,
|
| 603 |
|
|
symtab, (*kept_section_id),
|
| 604 |
|
|
section_contents);
|
| 605 |
|
|
}
|
| 606 |
|
|
|
| 607 |
|
|
const unsigned char* this_secn_contents_array =
|
| 608 |
|
|
reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
|
| 609 |
|
|
cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
|
| 610 |
|
|
0xffffffff);
|
| 611 |
|
|
size_t count = section_cksum.count(cksum);
|
| 612 |
|
|
|
| 613 |
|
|
if (count == 0)
|
| 614 |
|
|
{
|
| 615 |
|
|
// Start a group with this cksum.
|
| 616 |
|
|
section_cksum.insert(std::make_pair(cksum, i));
|
| 617 |
|
|
full_section_contents[i] = this_secn_contents;
|
| 618 |
|
|
}
|
| 619 |
|
|
else
|
| 620 |
|
|
{
|
| 621 |
|
|
key_range = section_cksum.equal_range(cksum);
|
| 622 |
|
|
Unordered_multimap<uint32_t, unsigned int>::iterator it;
|
| 623 |
|
|
// Search all the groups with this cksum for a match.
|
| 624 |
|
|
for (it = key_range.first; it != key_range.second; ++it)
|
| 625 |
|
|
{
|
| 626 |
|
|
unsigned int kept_section = it->second;
|
| 627 |
|
|
if (full_section_contents[kept_section].length()
|
| 628 |
|
|
!= this_secn_contents.length())
|
| 629 |
|
|
continue;
|
| 630 |
|
|
if (memcmp(full_section_contents[kept_section].c_str(),
|
| 631 |
|
|
this_secn_contents.c_str(),
|
| 632 |
|
|
this_secn_contents.length()) != 0)
|
| 633 |
|
|
continue;
|
| 634 |
|
|
(*kept_section_id)[i] = kept_section;
|
| 635 |
|
|
converged = false;
|
| 636 |
|
|
break;
|
| 637 |
|
|
}
|
| 638 |
|
|
if (it == key_range.second)
|
| 639 |
|
|
{
|
| 640 |
|
|
// Create a new group for this cksum.
|
| 641 |
|
|
section_cksum.insert(std::make_pair(cksum, i));
|
| 642 |
|
|
full_section_contents[i] = this_secn_contents;
|
| 643 |
|
|
}
|
| 644 |
|
|
}
|
| 645 |
|
|
// If there are no relocs to foldable sections do not process
|
| 646 |
|
|
// this section any further.
|
| 647 |
|
|
if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
|
| 648 |
|
|
(*is_secn_or_group_unique)[i] = true;
|
| 649 |
|
|
}
|
| 650 |
|
|
|
| 651 |
|
|
return converged;
|
| 652 |
|
|
}
|
| 653 |
|
|
|
| 654 |
|
|
// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
|
| 655 |
|
|
// This function returns true if the section name is that of a ctor or a dtor.
|
| 656 |
|
|
|
| 657 |
|
|
static bool
|
| 658 |
|
|
is_function_ctor_or_dtor(const std::string& section_name)
|
| 659 |
|
|
{
|
| 660 |
|
|
const char* mangled_func_name = strrchr(section_name.c_str(), '.');
|
| 661 |
|
|
gold_assert(mangled_func_name != NULL);
|
| 662 |
|
|
if ((is_prefix_of("._ZN", mangled_func_name)
|
| 663 |
|
|
|| is_prefix_of("._ZZ", mangled_func_name))
|
| 664 |
|
|
&& (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
|
| 665 |
|
|
|| is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
|
| 666 |
|
|
{
|
| 667 |
|
|
return true;
|
| 668 |
|
|
}
|
| 669 |
|
|
return false;
|
| 670 |
|
|
}
|
| 671 |
|
|
|
| 672 |
|
|
// This is the main ICF function called in gold.cc. This does the
|
| 673 |
|
|
// initialization and calls match_sections repeatedly (twice by default)
|
| 674 |
|
|
// which computes the crc checksums and detects identical functions.
|
| 675 |
|
|
|
| 676 |
|
|
void
|
| 677 |
|
|
Icf::find_identical_sections(const Input_objects* input_objects,
|
| 678 |
|
|
Symbol_table* symtab)
|
| 679 |
|
|
{
|
| 680 |
|
|
unsigned int section_num = 0;
|
| 681 |
|
|
std::vector<unsigned int> num_tracked_relocs;
|
| 682 |
|
|
std::vector<bool> is_secn_or_group_unique;
|
| 683 |
|
|
std::vector<std::string> section_contents;
|
| 684 |
|
|
const Target& target = parameters->target();
|
| 685 |
|
|
|
| 686 |
|
|
// Decide which sections are possible candidates first.
|
| 687 |
|
|
|
| 688 |
|
|
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
|
| 689 |
|
|
p != input_objects->relobj_end();
|
| 690 |
|
|
++p)
|
| 691 |
|
|
{
|
| 692 |
|
|
// Lock the object so we can read from it. This is only called
|
| 693 |
|
|
// single-threaded from queue_middle_tasks, so it is OK to lock.
|
| 694 |
|
|
// Unfortunately we have no way to pass in a Task token.
|
| 695 |
|
|
const Task* dummy_task = reinterpret_cast<const Task*>(-1);
|
| 696 |
|
|
Task_lock_obj<Object> tl(dummy_task, *p);
|
| 697 |
|
|
|
| 698 |
|
|
for (unsigned int i = 0;i < (*p)->shnum(); ++i)
|
| 699 |
|
|
{
|
| 700 |
|
|
const std::string section_name = (*p)->section_name(i);
|
| 701 |
|
|
if (!is_section_foldable_candidate(section_name))
|
| 702 |
|
|
continue;
|
| 703 |
|
|
if (!(*p)->is_section_included(i))
|
| 704 |
|
|
continue;
|
| 705 |
|
|
if (parameters->options().gc_sections()
|
| 706 |
|
|
&& symtab->gc()->is_section_garbage(*p, i))
|
| 707 |
|
|
continue;
|
| 708 |
|
|
// With --icf=safe, check if the mangled function name is a ctor
|
| 709 |
|
|
// or a dtor. The mangled function name can be obtained from the
|
| 710 |
|
|
// section name by stripping the section prefix.
|
| 711 |
|
|
if (parameters->options().icf_safe_folding()
|
| 712 |
|
|
&& !is_function_ctor_or_dtor(section_name)
|
| 713 |
|
|
&& (!target.can_check_for_function_pointers()
|
| 714 |
|
|
|| section_has_function_pointers(*p, i)))
|
| 715 |
|
|
{
|
| 716 |
|
|
continue;
|
| 717 |
|
|
}
|
| 718 |
|
|
this->id_section_.push_back(Section_id(*p, i));
|
| 719 |
|
|
this->section_id_[Section_id(*p, i)] = section_num;
|
| 720 |
|
|
this->kept_section_id_.push_back(section_num);
|
| 721 |
|
|
num_tracked_relocs.push_back(0);
|
| 722 |
|
|
is_secn_or_group_unique.push_back(false);
|
| 723 |
|
|
section_contents.push_back("");
|
| 724 |
|
|
section_num++;
|
| 725 |
|
|
}
|
| 726 |
|
|
}
|
| 727 |
|
|
|
| 728 |
|
|
unsigned int num_iterations = 0;
|
| 729 |
|
|
|
| 730 |
|
|
// Default number of iterations to run ICF is 2.
|
| 731 |
|
|
unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
|
| 732 |
|
|
? parameters->options().icf_iterations()
|
| 733 |
|
|
: 2;
|
| 734 |
|
|
|
| 735 |
|
|
bool converged = false;
|
| 736 |
|
|
|
| 737 |
|
|
while (!converged && (num_iterations < max_iterations))
|
| 738 |
|
|
{
|
| 739 |
|
|
num_iterations++;
|
| 740 |
|
|
converged = match_sections(num_iterations, symtab,
|
| 741 |
|
|
&num_tracked_relocs, &this->kept_section_id_,
|
| 742 |
|
|
this->id_section_, &is_secn_or_group_unique,
|
| 743 |
|
|
§ion_contents);
|
| 744 |
|
|
}
|
| 745 |
|
|
|
| 746 |
|
|
if (parameters->options().print_icf_sections())
|
| 747 |
|
|
{
|
| 748 |
|
|
if (converged)
|
| 749 |
|
|
gold_info(_("%s: ICF Converged after %u iteration(s)"),
|
| 750 |
|
|
program_name, num_iterations);
|
| 751 |
|
|
else
|
| 752 |
|
|
gold_info(_("%s: ICF stopped after %u iteration(s)"),
|
| 753 |
|
|
program_name, num_iterations);
|
| 754 |
|
|
}
|
| 755 |
|
|
|
| 756 |
|
|
// Unfold --keep-unique symbols.
|
| 757 |
|
|
for (options::String_set::const_iterator p =
|
| 758 |
|
|
parameters->options().keep_unique_begin();
|
| 759 |
|
|
p != parameters->options().keep_unique_end();
|
| 760 |
|
|
++p)
|
| 761 |
|
|
{
|
| 762 |
|
|
const char* name = p->c_str();
|
| 763 |
|
|
Symbol* sym = symtab->lookup(name);
|
| 764 |
|
|
if (sym == NULL)
|
| 765 |
|
|
{
|
| 766 |
|
|
gold_warning(_("Could not find symbol %s to unfold\n"), name);
|
| 767 |
|
|
}
|
| 768 |
|
|
else if (sym->source() == Symbol::FROM_OBJECT
|
| 769 |
|
|
&& !sym->object()->is_dynamic())
|
| 770 |
|
|
{
|
| 771 |
|
|
Object* obj = sym->object();
|
| 772 |
|
|
bool is_ordinary;
|
| 773 |
|
|
unsigned int shndx = sym->shndx(&is_ordinary);
|
| 774 |
|
|
if (is_ordinary)
|
| 775 |
|
|
{
|
| 776 |
|
|
this->unfold_section(obj, shndx);
|
| 777 |
|
|
}
|
| 778 |
|
|
}
|
| 779 |
|
|
|
| 780 |
|
|
}
|
| 781 |
|
|
|
| 782 |
|
|
this->icf_ready();
|
| 783 |
|
|
}
|
| 784 |
|
|
|
| 785 |
|
|
// Unfolds the section denoted by OBJ and SHNDX if folded.
|
| 786 |
|
|
|
| 787 |
|
|
void
|
| 788 |
|
|
Icf::unfold_section(Object* obj, unsigned int shndx)
|
| 789 |
|
|
{
|
| 790 |
|
|
Section_id secn(obj, shndx);
|
| 791 |
|
|
Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
|
| 792 |
|
|
if (it == this->section_id_.end())
|
| 793 |
|
|
return;
|
| 794 |
|
|
unsigned int section_num = it->second;
|
| 795 |
|
|
unsigned int kept_section_id = this->kept_section_id_[section_num];
|
| 796 |
|
|
if (kept_section_id != section_num)
|
| 797 |
|
|
this->kept_section_id_[section_num] = section_num;
|
| 798 |
|
|
}
|
| 799 |
|
|
|
| 800 |
|
|
// This function determines if the section corresponding to the
|
| 801 |
|
|
// given object and index is folded based on if the kept section
|
| 802 |
|
|
// is different from this section.
|
| 803 |
|
|
|
| 804 |
|
|
bool
|
| 805 |
|
|
Icf::is_section_folded(Object* obj, unsigned int shndx)
|
| 806 |
|
|
{
|
| 807 |
|
|
Section_id secn(obj, shndx);
|
| 808 |
|
|
Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
|
| 809 |
|
|
if (it == this->section_id_.end())
|
| 810 |
|
|
return false;
|
| 811 |
|
|
unsigned int section_num = it->second;
|
| 812 |
|
|
unsigned int kept_section_id = this->kept_section_id_[section_num];
|
| 813 |
|
|
return kept_section_id != section_num;
|
| 814 |
|
|
}
|
| 815 |
|
|
|
| 816 |
|
|
// This function returns the folded section for the given section.
|
| 817 |
|
|
|
| 818 |
|
|
Section_id
|
| 819 |
|
|
Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
|
| 820 |
|
|
{
|
| 821 |
|
|
Section_id dup_secn(dup_obj, dup_shndx);
|
| 822 |
|
|
Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
|
| 823 |
|
|
gold_assert(it != this->section_id_.end());
|
| 824 |
|
|
unsigned int section_num = it->second;
|
| 825 |
|
|
unsigned int kept_section_id = this->kept_section_id_[section_num];
|
| 826 |
|
|
Section_id folded_section = this->id_section_[kept_section_id];
|
| 827 |
|
|
return folded_section;
|
| 828 |
|
|
}
|
| 829 |
|
|
|
| 830 |
|
|
} // End of namespace gold.
|