OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [icf.cc] - Blame information for rev 53

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// icf.cc -- Identical Code Folding.
2
//
3
// Copyright 2009, 2010 Free Software Foundation, Inc.
4
// Written by Sriraman Tallam <tmsriram@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
// Identical Code Folding Algorithm
24
// ----------------------------------
25
// Detecting identical functions is done here and the basic algorithm
26
// is as follows.  A checksum is computed on each foldable section using
27
// its contents and relocations.  If the symbol name corresponding to
28
// a relocation is known it is used to compute the checksum.  If the
29
// symbol name is not known the stringified name of the object and the
30
// section number pointed to by the relocation is used.  The checksums
31
// are stored as keys in a hash map and a section is identical to some
32
// other section if its checksum is already present in the hash map.
33
// Checksum collisions are handled by using a multimap and explicitly
34
// checking the contents when two sections have the same checksum.
35
//
36
// However, two functions A and B with identical text but with
37
// relocations pointing to different foldable sections can be identical if
38
// the corresponding foldable sections to which their relocations point to
39
// turn out to be identical.  Hence, this checksumming process must be
40
// done repeatedly until convergence is obtained.  Here is an example for
41
// the following case :
42
//
43
// int funcA ()               int funcB ()
44
// {                          {
45
//   return foo();              return goo();
46
// }                          }
47
//
48
// The functions funcA and funcB are identical if functions foo() and
49
// goo() are identical.
50
//
51
// Hence, as described above, we repeatedly do the checksumming,
52
// assigning identical functions to the same group, until convergence is
53
// obtained.  Now, we have two different ways to do this depending on how
54
// we initialize.
55
//
56
// Algorithm I :
57
// -----------
58
// We can start with marking all functions as different and repeatedly do
59
// the checksumming.  This has the advantage that we do not need to wait
60
// for convergence. We can stop at any point and correctness will be
61
// guaranteed although not all cases would have been found.  However, this
62
// has a problem that some cases can never be found even if it is run until
63
// convergence.  Here is an example with mutually recursive functions :
64
//
65
// int funcA (int a)            int funcB (int a)
66
// {                            {
67
//   if (a == 1)                  if (a == 1)
68
//     return 1;                    return 1;
69
//   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
70
// }                            }
71
//
72
// In this example funcA and funcB are identical and one of them could be
73
// folded into the other.  However, if we start with assuming that funcA
74
// and funcB are not identical, the algorithm, even after it is run to
75
// convergence, cannot detect that they are identical.  It should be noted
76
// that even if the functions were self-recursive, Algorithm I cannot catch
77
// that they are identical, at least as is.
78
//
79
// Algorithm II :
80
// ------------
81
// Here we start with marking all functions as identical and then repeat
82
// the checksumming until convergence.  This can detect the above case
83
// mentioned above.  It can detect all cases that Algorithm I can and more.
84
// However, the caveat is that it has to be run to convergence.  It cannot
85
// be stopped arbitrarily like Algorithm I as correctness cannot be
86
// guaranteed.  Algorithm II is not implemented.
87
//
88
// Algorithm I is used because experiments show that about three
89
// iterations are more than enough to achieve convergence. Algorithm I can
90
// handle recursive calls if it is changed to use a special common symbol
91
// for recursive relocs.  This seems to be the most common case that
92
// Algorithm I could not catch as is.  Mutually recursive calls are not
93
// frequent and Algorithm I wins because of its ability to be stopped
94
// arbitrarily.
95
//
96
// Caveat with using function pointers :
97
// ------------------------------------
98
//
99
// Programs using function pointer comparisons/checks should use function
100
// folding with caution as the result of such comparisons could be different
101
// when folding takes place.  This could lead to unexpected run-time
102
// behaviour.
103
//
104
// Safe Folding :
105
// ------------
106
//
107
// ICF in safe mode folds only ctors and dtors if their function pointers can
108
// never be taken.  Also, for X86-64, safe folding uses the relocation
109
// type to determine if a function's pointer is taken or not and only folds
110
// functions whose pointers are definitely not taken.
111
//
112
// Caveat with safe folding :
113
// ------------------------
114
//
115
// This applies only to x86_64.
116
//
117
// Position independent executables are created from PIC objects (compiled
118
// with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
119
// relocation types for function pointer taken and a call are the same.
120
// Now, it is not always possible to tell if an object used in the link of
121
// a pie executable is a PIC object or a PIE object.  Hence, for pie
122
// executables, using relocation types to disambiguate function pointers is
123
// currently disabled.
124
//
125
// Further, it is not correct to use safe folding to build non-pie
126
// executables using PIC/PIE objects.  PIC/PIE objects have different
127
// relocation types for function pointers than non-PIC objects, and the
128
// current implementation of safe folding does not handle those relocation
129
// types.  Hence, if used, functions whose pointers are taken could still be
130
// folded causing unpredictable run-time behaviour if the pointers were used
131
// in comparisons.
132
//
133
//
134
//
135
// How to run  : --icf=[safe|all|none]
136
// Optional parameters : --icf-iterations <num> --print-icf-sections
137
//
138
// Performance : Less than 20 % link-time overhead on industry strength
139
// applications.  Up to 6 %  text size reductions.
140
 
141
#include "gold.h"
142
#include "object.h"
143
#include "gc.h"
144
#include "icf.h"
145
#include "symtab.h"
146
#include "libiberty.h"
147
#include "demangle.h"
148
#include "elfcpp.h"
149
#include "int_encoding.h"
150
 
151
namespace gold
152
{
153
 
154
// This function determines if a section or a group of identical
155
// sections has unique contents.  Such unique sections or groups can be
156
// declared final and need not be processed any further.
157
// Parameters :
158
// ID_SECTION : Vector mapping a section index to a Section_id pair.
159
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160
//                            sections is already known to be unique.
161
// SECTION_CONTENTS : Contains the section's text and relocs to sections
162
//                    that cannot be folded.   SECTION_CONTENTS are NULL
163
//                    implies that this function is being called for the
164
//                    first time before the first iteration of icf.
165
 
166
static void
167
preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168
                               std::vector<bool>* is_secn_or_group_unique,
169
                               std::vector<std::string>* section_contents)
170
{
171
  Unordered_map<uint32_t, unsigned int> uniq_map;
172
  std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173
    uniq_map_insert;
174
 
175
  for (unsigned int i = 0; i < id_section.size(); i++)
176
    {
177
      if ((*is_secn_or_group_unique)[i])
178
        continue;
179
 
180
      uint32_t cksum;
181
      Section_id secn = id_section[i];
182
      section_size_type plen;
183
      if (section_contents == NULL)
184
        {
185
          // Lock the object so we can read from it.  This is only called
186
          // single-threaded from queue_middle_tasks, so it is OK to lock.
187
          // Unfortunately we have no way to pass in a Task token.
188
          const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189
          Task_lock_obj<Object> tl(dummy_task, secn.first);
190
          const unsigned char* contents;
191
          contents = secn.first->section_contents(secn.second,
192
                                                  &plen,
193
                                                  false);
194
          cksum = xcrc32(contents, plen, 0xffffffff);
195
        }
196
      else
197
        {
198
          const unsigned char* contents_array = reinterpret_cast
199
            <const unsigned char*>((*section_contents)[i].c_str());
200
          cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201
                         0xffffffff);
202
        }
203
      uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204
      if (uniq_map_insert.second)
205
        {
206
          (*is_secn_or_group_unique)[i] = true;
207
        }
208
      else
209
        {
210
          (*is_secn_or_group_unique)[i] = false;
211
          (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212
        }
213
    }
214
}
215
 
216
// This returns the buffer containing the section's contents, both
217
// text and relocs.  Relocs are differentiated as those pointing to
218
// sections that could be folded and those that cannot.  Only relocs
219
// pointing to sections that could be folded are recomputed on
220
// subsequent invocations of this function.
221
// Parameters  :
222
// FIRST_ITERATION    : true if it is the first invocation.
223
// SECN               : Section for which contents are desired.
224
// SECTION_NUM        : Unique section number of this section.
225
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
226
//                      to ICF sections.
227
// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
228
// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
229
//                      sections.
230
 
231
static std::string
232
get_section_contents(bool first_iteration,
233
                     const Section_id& secn,
234
                     unsigned int section_num,
235
                     unsigned int* num_tracked_relocs,
236
                     Symbol_table* symtab,
237
                     const std::vector<unsigned int>& kept_section_id,
238
                     std::vector<std::string>* section_contents)
239
{
240
  // Lock the object so we can read from it.  This is only called
241
  // single-threaded from queue_middle_tasks, so it is OK to lock.
242
  // Unfortunately we have no way to pass in a Task token.
243
  const Task* dummy_task = reinterpret_cast<const Task*>(-1);
244
  Task_lock_obj<Object> tl(dummy_task, secn.first);
245
 
246
  section_size_type plen;
247
  const unsigned char* contents = NULL;
248
  if (first_iteration)
249
    contents = secn.first->section_contents(secn.second, &plen, false);
250
 
251
  // The buffer to hold all the contents including relocs.  A checksum
252
  // is then computed on this buffer.
253
  std::string buffer;
254
  std::string icf_reloc_buffer;
255
 
256
  if (num_tracked_relocs)
257
    *num_tracked_relocs = 0;
258
 
259
  Icf::Reloc_info_list& reloc_info_list =
260
    symtab->icf()->reloc_info_list();
261
 
262
  Icf::Reloc_info_list::iterator it_reloc_info_list =
263
    reloc_info_list.find(secn);
264
 
265
  buffer.clear();
266
  icf_reloc_buffer.clear();
267
 
268
  // Process relocs and put them into the buffer.
269
 
270
  if (it_reloc_info_list != reloc_info_list.end())
271
    {
272
      Icf::Sections_reachable_info v =
273
        (it_reloc_info_list->second).section_info;
274
      // Stores the information of the symbol pointed to by the reloc.
275
      Icf::Symbol_info s = (it_reloc_info_list->second).symbol_info;
276
      // Stores the addend and the symbol value.
277
      Icf::Addend_info a = (it_reloc_info_list->second).addend_info;
278
      // Stores the offset of the reloc.
279
      Icf::Offset_info o = (it_reloc_info_list->second).offset_info;
280
      Icf::Reloc_addend_size_info reloc_addend_size_info =
281
        (it_reloc_info_list->second).reloc_addend_size_info;
282
      Icf::Sections_reachable_info::iterator it_v = v.begin();
283
      Icf::Symbol_info::iterator it_s = s.begin();
284
      Icf::Addend_info::iterator it_a = a.begin();
285
      Icf::Offset_info::iterator it_o = o.begin();
286
      Icf::Reloc_addend_size_info::iterator it_addend_size =
287
        reloc_addend_size_info.begin();
288
 
289
      for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
290
        {
291
          // ADDEND_STR stores the symbol value and addend and offset,
292
          // each at most 16 hex digits long.  it_a points to a pair
293
          // where first is the symbol value and second is the
294
          // addend.
295
          char addend_str[50];
296
 
297
          // It would be nice if we could use format macros in inttypes.h
298
          // here but there are not in ISO/IEC C++ 1998.
299
          snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
300
                   static_cast<long long>((*it_a).first),
301
                   static_cast<long long>((*it_a).second),
302
                   static_cast<unsigned long long>(*it_o));
303
 
304
          // If the symbol pointed to by the reloc is not in an ordinary
305
          // section or if the symbol type is not FROM_OBJECT, then the
306
          // object is NULL.
307
          if (it_v->first == NULL)
308
            {
309
              if (first_iteration)
310
                {
311
                  // If the symbol name is available, use it.
312
                  if ((*it_s) != NULL)
313
                      buffer.append((*it_s)->name());
314
                  // Append the addend.
315
                  buffer.append(addend_str);
316
                  buffer.append("@");
317
                }
318
              continue;
319
            }
320
 
321
          Section_id reloc_secn(it_v->first, it_v->second);
322
 
323
          // If this reloc turns back and points to the same section,
324
          // like a recursive call, use a special symbol to mark this.
325
          if (reloc_secn.first == secn.first
326
              && reloc_secn.second == secn.second)
327
            {
328
              if (first_iteration)
329
                {
330
                  buffer.append("R");
331
                  buffer.append(addend_str);
332
                  buffer.append("@");
333
                }
334
              continue;
335
            }
336
          Icf::Uniq_secn_id_map& section_id_map =
337
            symtab->icf()->section_to_int_map();
338
          Icf::Uniq_secn_id_map::iterator section_id_map_it =
339
            section_id_map.find(reloc_secn);
340
          bool is_sym_preemptible = (*it_s != NULL
341
                                     && !(*it_s)->is_from_dynobj()
342
                                     && !(*it_s)->is_undefined()
343
                                     && (*it_s)->is_preemptible());
344
          if (!is_sym_preemptible
345
              && section_id_map_it != section_id_map.end())
346
            {
347
              // This is a reloc to a section that might be folded.
348
              if (num_tracked_relocs)
349
                (*num_tracked_relocs)++;
350
 
351
              char kept_section_str[10];
352
              unsigned int secn_id = section_id_map_it->second;
353
              snprintf(kept_section_str, sizeof(kept_section_str), "%u",
354
                       kept_section_id[secn_id]);
355
              if (first_iteration)
356
                {
357
                  buffer.append("ICF_R");
358
                  buffer.append(addend_str);
359
                }
360
              icf_reloc_buffer.append(kept_section_str);
361
              // Append the addend.
362
              icf_reloc_buffer.append(addend_str);
363
              icf_reloc_buffer.append("@");
364
            }
365
          else
366
            {
367
              // This is a reloc to a section that cannot be folded.
368
              // Process it only in the first iteration.
369
              if (!first_iteration)
370
                continue;
371
 
372
              uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
373
              // This reloc points to a merge section.  Hash the
374
              // contents of this section.
375
              if ((secn_flags & elfcpp::SHF_MERGE) != 0
376
                  && parameters->target().can_icf_inline_merge_sections ())
377
                {
378
                  uint64_t entsize =
379
                    (it_v->first)->section_entsize(it_v->second);
380
                  long long offset = it_a->first;
381
 
382
                  unsigned long long addend = it_a->second;
383
                  // Ignoring the addend when it is a negative value.  See the 
384
                  // comments in Merged_symbol_value::Value in object.h.
385
                  if (addend < 0xffffff00)
386
                    offset = offset + addend;
387
 
388
                  // For SHT_REL relocation sections, the addend is stored in the
389
                  // text section at the relocation offset.
390
                  uint64_t reloc_addend_value = 0;
391
                  const unsigned char* reloc_addend_ptr =
392
                    contents + static_cast<unsigned long long>(*it_o);
393
                  switch(*it_addend_size)
394
                    {
395
                      case 0:
396
                        {
397
                          break;
398
                        }
399
                      case 1:
400
                        {
401
                          reloc_addend_value =
402
                            read_from_pointer<8>(reloc_addend_ptr);
403
                          break;
404
                        }
405
                      case 2:
406
                        {
407
                          reloc_addend_value =
408
                            read_from_pointer<16>(reloc_addend_ptr);
409
                          break;
410
                        }
411
                      case 4:
412
                        {
413
                          reloc_addend_value =
414
                            read_from_pointer<32>(reloc_addend_ptr);
415
                          break;
416
                        }
417
                      case 8:
418
                        {
419
                          reloc_addend_value =
420
                            read_from_pointer<64>(reloc_addend_ptr);
421
                          break;
422
                        }
423
                      default:
424
                        gold_unreachable();
425
                    }
426
                  offset = offset + reloc_addend_value;
427
 
428
                  section_size_type secn_len;
429
                  const unsigned char* str_contents =
430
                  (it_v->first)->section_contents(it_v->second,
431
                                                  &secn_len,
432
                                                  false) + offset;
433
                  if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
434
                    {
435
                      // String merge section.
436
                      const char* str_char =
437
                        reinterpret_cast<const char*>(str_contents);
438
                      switch(entsize)
439
                        {
440
                        case 1:
441
                          {
442
                            buffer.append(str_char);
443
                            break;
444
                          }
445
                        case 2:
446
                          {
447
                            const uint16_t* ptr_16 =
448
                              reinterpret_cast<const uint16_t*>(str_char);
449
                            unsigned int strlen_16 = 0;
450
                            // Find the NULL character.
451
                            while(*(ptr_16 + strlen_16) != 0)
452
                                strlen_16++;
453
                            buffer.append(str_char, strlen_16 * 2);
454
                          }
455
                          break;
456
                        case 4:
457
                          {
458
                            const uint32_t* ptr_32 =
459
                              reinterpret_cast<const uint32_t*>(str_char);
460
                            unsigned int strlen_32 = 0;
461
                            // Find the NULL character.
462
                            while(*(ptr_32 + strlen_32) != 0)
463
                                strlen_32++;
464
                            buffer.append(str_char, strlen_32 * 4);
465
                          }
466
                          break;
467
                        default:
468
                          gold_unreachable();
469
                        }
470
                    }
471
                  else
472
                    {
473
                      // Use the entsize to determine the length.
474
                      buffer.append(reinterpret_cast<const
475
                                                     char*>(str_contents),
476
                                    entsize);
477
                    }
478
                  buffer.append("@");
479
                }
480
              else if ((*it_s) != NULL)
481
                {
482
                  // If symbol name is available use that.
483
                  buffer.append((*it_s)->name());
484
                  // Append the addend.
485
                  buffer.append(addend_str);
486
                  buffer.append("@");
487
                }
488
              else
489
                {
490
                  // Symbol name is not available, like for a local symbol,
491
                  // use object and section id.
492
                  buffer.append(it_v->first->name());
493
                  char secn_id[10];
494
                  snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
495
                  buffer.append(secn_id);
496
                  // Append the addend.
497
                  buffer.append(addend_str);
498
                  buffer.append("@");
499
                }
500
            }
501
        }
502
    }
503
 
504
  if (first_iteration)
505
    {
506
      buffer.append("Contents = ");
507
      buffer.append(reinterpret_cast<const char*>(contents), plen);
508
      // Store the section contents that dont change to avoid recomputing
509
      // during the next call to this function.
510
      (*section_contents)[section_num] = buffer;
511
    }
512
  else
513
    {
514
      gold_assert(buffer.empty());
515
      // Reuse the contents computed in the previous iteration.
516
      buffer.append((*section_contents)[section_num]);
517
    }
518
 
519
  buffer.append(icf_reloc_buffer);
520
  return buffer;
521
}
522
 
523
// This function computes a checksum on each section to detect and form
524
// groups of identical sections.  The first iteration does this for all 
525
// sections.
526
// Further iterations do this only for the kept sections from each group to
527
// determine if larger groups of identical sections could be formed.  The
528
// first section in each group is the kept section for that group.
529
//
530
// CRC32 is the checksumming algorithm and can have collisions.  That is,
531
// two sections with different contents can have the same checksum. Hence,
532
// a multimap is used to maintain more than one group of checksum
533
// identical sections.  A section is added to a group only after its
534
// contents are explicitly compared with the kept section of the group.
535
//
536
// Parameters  :
537
// ITERATION_NUM           : Invocation instance of this function.
538
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
539
//                      to ICF sections.
540
// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
541
// ID_SECTION         : Vector mapping a section to an unique integer.
542
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
543
//                            sections is already known to be unique.
544
// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
545
//                      sections.
546
 
547
static bool
548
match_sections(unsigned int iteration_num,
549
               Symbol_table* symtab,
550
               std::vector<unsigned int>* num_tracked_relocs,
551
               std::vector<unsigned int>* kept_section_id,
552
               const std::vector<Section_id>& id_section,
553
               std::vector<bool>* is_secn_or_group_unique,
554
               std::vector<std::string>* section_contents)
555
{
556
  Unordered_multimap<uint32_t, unsigned int> section_cksum;
557
  std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
558
            Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
559
  bool converged = true;
560
 
561
  if (iteration_num == 1)
562
    preprocess_for_unique_sections(id_section,
563
                                   is_secn_or_group_unique,
564
                                   NULL);
565
  else
566
    preprocess_for_unique_sections(id_section,
567
                                   is_secn_or_group_unique,
568
                                   section_contents);
569
 
570
  std::vector<std::string> full_section_contents;
571
 
572
  for (unsigned int i = 0; i < id_section.size(); i++)
573
    {
574
      full_section_contents.push_back("");
575
      if ((*is_secn_or_group_unique)[i])
576
        continue;
577
 
578
      Section_id secn = id_section[i];
579
      std::string this_secn_contents;
580
      uint32_t cksum;
581
      if (iteration_num == 1)
582
        {
583
          unsigned int num_relocs = 0;
584
          this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
585
                                                    symtab, (*kept_section_id),
586
                                                    section_contents);
587
          (*num_tracked_relocs)[i] = num_relocs;
588
        }
589
      else
590
        {
591
          if ((*kept_section_id)[i] != i)
592
            {
593
              // This section is already folded into something.  See
594
              // if it should point to a different kept section.
595
              unsigned int kept_section = (*kept_section_id)[i];
596
              if (kept_section != (*kept_section_id)[kept_section])
597
                {
598
                  (*kept_section_id)[i] = (*kept_section_id)[kept_section];
599
                }
600
              continue;
601
            }
602
          this_secn_contents = get_section_contents(false, secn, i, NULL,
603
                                                    symtab, (*kept_section_id),
604
                                                    section_contents);
605
        }
606
 
607
      const unsigned char* this_secn_contents_array =
608
            reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
609
      cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
610
                     0xffffffff);
611
      size_t count = section_cksum.count(cksum);
612
 
613
      if (count == 0)
614
        {
615
          // Start a group with this cksum.
616
          section_cksum.insert(std::make_pair(cksum, i));
617
          full_section_contents[i] = this_secn_contents;
618
        }
619
      else
620
        {
621
          key_range = section_cksum.equal_range(cksum);
622
          Unordered_multimap<uint32_t, unsigned int>::iterator it;
623
          // Search all the groups with this cksum for a match.
624
          for (it = key_range.first; it != key_range.second; ++it)
625
            {
626
              unsigned int kept_section = it->second;
627
              if (full_section_contents[kept_section].length()
628
                  != this_secn_contents.length())
629
                  continue;
630
              if (memcmp(full_section_contents[kept_section].c_str(),
631
                         this_secn_contents.c_str(),
632
                         this_secn_contents.length()) != 0)
633
                  continue;
634
              (*kept_section_id)[i] = kept_section;
635
              converged = false;
636
              break;
637
            }
638
          if (it == key_range.second)
639
            {
640
              // Create a new group for this cksum.
641
              section_cksum.insert(std::make_pair(cksum, i));
642
              full_section_contents[i] = this_secn_contents;
643
            }
644
        }
645
      // If there are no relocs to foldable sections do not process
646
      // this section any further.
647
      if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
648
        (*is_secn_or_group_unique)[i] = true;
649
    }
650
 
651
  return converged;
652
}
653
 
654
// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
655
// This function returns true if the section name is that of a ctor or a dtor.
656
 
657
static bool
658
is_function_ctor_or_dtor(const std::string& section_name)
659
{
660
  const char* mangled_func_name = strrchr(section_name.c_str(), '.');
661
  gold_assert(mangled_func_name != NULL);
662
  if ((is_prefix_of("._ZN", mangled_func_name)
663
       || is_prefix_of("._ZZ", mangled_func_name))
664
      && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
665
          || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
666
    {
667
      return true;
668
    }
669
  return false;
670
}
671
 
672
// This is the main ICF function called in gold.cc.  This does the
673
// initialization and calls match_sections repeatedly (twice by default)
674
// which computes the crc checksums and detects identical functions.
675
 
676
void
677
Icf::find_identical_sections(const Input_objects* input_objects,
678
                             Symbol_table* symtab)
679
{
680
  unsigned int section_num = 0;
681
  std::vector<unsigned int> num_tracked_relocs;
682
  std::vector<bool> is_secn_or_group_unique;
683
  std::vector<std::string> section_contents;
684
  const Target& target = parameters->target();
685
 
686
  // Decide which sections are possible candidates first.
687
 
688
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
689
       p != input_objects->relobj_end();
690
       ++p)
691
    {
692
      // Lock the object so we can read from it.  This is only called
693
      // single-threaded from queue_middle_tasks, so it is OK to lock.
694
      // Unfortunately we have no way to pass in a Task token.
695
      const Task* dummy_task = reinterpret_cast<const Task*>(-1);
696
      Task_lock_obj<Object> tl(dummy_task, *p);
697
 
698
      for (unsigned int i = 0;i < (*p)->shnum(); ++i)
699
        {
700
          const std::string section_name = (*p)->section_name(i);
701
          if (!is_section_foldable_candidate(section_name))
702
            continue;
703
          if (!(*p)->is_section_included(i))
704
            continue;
705
          if (parameters->options().gc_sections()
706
              && symtab->gc()->is_section_garbage(*p, i))
707
              continue;
708
          // With --icf=safe, check if the mangled function name is a ctor
709
          // or a dtor.  The mangled function name can be obtained from the
710
          // section name by stripping the section prefix.
711
          if (parameters->options().icf_safe_folding()
712
              && !is_function_ctor_or_dtor(section_name)
713
              && (!target.can_check_for_function_pointers()
714
                  || section_has_function_pointers(*p, i)))
715
            {
716
              continue;
717
            }
718
          this->id_section_.push_back(Section_id(*p, i));
719
          this->section_id_[Section_id(*p, i)] = section_num;
720
          this->kept_section_id_.push_back(section_num);
721
          num_tracked_relocs.push_back(0);
722
          is_secn_or_group_unique.push_back(false);
723
          section_contents.push_back("");
724
          section_num++;
725
        }
726
    }
727
 
728
  unsigned int num_iterations = 0;
729
 
730
  // Default number of iterations to run ICF is 2.
731
  unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
732
                            ? parameters->options().icf_iterations()
733
                            : 2;
734
 
735
  bool converged = false;
736
 
737
  while (!converged && (num_iterations < max_iterations))
738
    {
739
      num_iterations++;
740
      converged = match_sections(num_iterations, symtab,
741
                                 &num_tracked_relocs, &this->kept_section_id_,
742
                                 this->id_section_, &is_secn_or_group_unique,
743
                                 &section_contents);
744
    }
745
 
746
  if (parameters->options().print_icf_sections())
747
    {
748
      if (converged)
749
        gold_info(_("%s: ICF Converged after %u iteration(s)"),
750
                  program_name, num_iterations);
751
      else
752
        gold_info(_("%s: ICF stopped after %u iteration(s)"),
753
                  program_name, num_iterations);
754
    }
755
 
756
  // Unfold --keep-unique symbols.
757
  for (options::String_set::const_iterator p =
758
         parameters->options().keep_unique_begin();
759
       p != parameters->options().keep_unique_end();
760
       ++p)
761
    {
762
      const char* name = p->c_str();
763
      Symbol* sym = symtab->lookup(name);
764
      if (sym == NULL)
765
        {
766
          gold_warning(_("Could not find symbol %s to unfold\n"), name);
767
        }
768
      else if (sym->source() == Symbol::FROM_OBJECT
769
               && !sym->object()->is_dynamic())
770
        {
771
          Object* obj = sym->object();
772
          bool is_ordinary;
773
          unsigned int shndx = sym->shndx(&is_ordinary);
774
          if (is_ordinary)
775
            {
776
              this->unfold_section(obj, shndx);
777
            }
778
        }
779
 
780
    }
781
 
782
  this->icf_ready();
783
}
784
 
785
// Unfolds the section denoted by OBJ and SHNDX if folded.
786
 
787
void
788
Icf::unfold_section(Object* obj, unsigned int shndx)
789
{
790
  Section_id secn(obj, shndx);
791
  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
792
  if (it == this->section_id_.end())
793
    return;
794
  unsigned int section_num = it->second;
795
  unsigned int kept_section_id = this->kept_section_id_[section_num];
796
  if (kept_section_id != section_num)
797
    this->kept_section_id_[section_num] = section_num;
798
}
799
 
800
// This function determines if the section corresponding to the
801
// given object and index is folded based on if the kept section
802
// is different from this section.
803
 
804
bool
805
Icf::is_section_folded(Object* obj, unsigned int shndx)
806
{
807
  Section_id secn(obj, shndx);
808
  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
809
  if (it == this->section_id_.end())
810
    return false;
811
  unsigned int section_num = it->second;
812
  unsigned int kept_section_id = this->kept_section_id_[section_num];
813
  return kept_section_id != section_num;
814
}
815
 
816
// This function returns the folded section for the given section.
817
 
818
Section_id
819
Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
820
{
821
  Section_id dup_secn(dup_obj, dup_shndx);
822
  Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
823
  gold_assert(it != this->section_id_.end());
824
  unsigned int section_num = it->second;
825
  unsigned int kept_section_id = this->kept_section_id_[section_num];
826
  Section_id folded_section = this->id_section_[kept_section_id];
827
  return folded_section;
828
}
829
 
830
} // End of namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.