OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [incremental.cc] - Blame information for rev 148

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// inremental.cc -- incremental linking support for gold
2
 
3
// Copyright 2009, 2010 Free Software Foundation, Inc.
4
// Written by Mikolaj Zalewski <mikolajz@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25 148 khays
#include <set>
26 27 khays
#include <cstdarg>
27
#include "libiberty.h"
28
 
29
#include "elfcpp.h"
30
#include "options.h"
31
#include "output.h"
32
#include "symtab.h"
33
#include "incremental.h"
34
#include "archive.h"
35
#include "object.h"
36
#include "output.h"
37
#include "target-select.h"
38
#include "target.h"
39
#include "fileread.h"
40
#include "script.h"
41
 
42
namespace gold {
43
 
44
// Version information. Will change frequently during the development, later
45
// we could think about backward (and forward?) compatibility.
46
const unsigned int INCREMENTAL_LINK_VERSION = 1;
47
 
48
// This class manages the .gnu_incremental_inputs section, which holds
49
// the header information, a directory of input files, and separate
50
// entries for each input file.
51
 
52
template<int size, bool big_endian>
53
class Output_section_incremental_inputs : public Output_section_data
54
{
55
 public:
56
  Output_section_incremental_inputs(const Incremental_inputs* inputs,
57
                                    const Symbol_table* symtab)
58
    : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59
  { }
60
 
61
 protected:
62
  // This is called to update the section size prior to assigning
63
  // the address and file offset.
64
  void
65
  update_data_size()
66
  { this->set_final_data_size(); }
67
 
68
  // Set the final data size.
69
  void
70
  set_final_data_size();
71
 
72
  // Write the data to the file.
73
  void
74
  do_write(Output_file*);
75
 
76
  // Write to a map file.
77
  void
78
  do_print_to_mapfile(Mapfile* mapfile) const
79
  { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
 
81
 private:
82
  // Write the section header.
83
  unsigned char*
84
  write_header(unsigned char* pov, unsigned int input_file_count,
85
               section_offset_type command_line_offset);
86
 
87
  // Write the input file entries.
88
  unsigned char*
89
  write_input_files(unsigned char* oview, unsigned char* pov,
90
                    Stringpool* strtab);
91
 
92
  // Write the supplemental information blocks.
93
  unsigned char*
94
  write_info_blocks(unsigned char* oview, unsigned char* pov,
95
                    Stringpool* strtab, unsigned int* global_syms,
96
                    unsigned int global_sym_count);
97
 
98
  // Write the contents of the .gnu_incremental_symtab section.
99
  void
100
  write_symtab(unsigned char* pov, unsigned int* global_syms,
101
               unsigned int global_sym_count);
102
 
103
  // Write the contents of the .gnu_incremental_got_plt section.
104
  void
105
  write_got_plt(unsigned char* pov, off_t view_size);
106
 
107
  // Typedefs for writing the data to the output sections.
108
  typedef elfcpp::Swap<size, big_endian> Swap;
109
  typedef elfcpp::Swap<16, big_endian> Swap16;
110
  typedef elfcpp::Swap<32, big_endian> Swap32;
111
  typedef elfcpp::Swap<64, big_endian> Swap64;
112
 
113
  // Sizes of various structures.
114
  static const int sizeof_addr = size / 8;
115
  static const int header_size = 16;
116
  static const int input_entry_size = 24;
117
 
118
  // The Incremental_inputs object.
119
  const Incremental_inputs* inputs_;
120
 
121
  // The symbol table.
122
  const Symbol_table* symtab_;
123
};
124
 
125
// Inform the user why we don't do an incremental link.  Not called in
126
// the obvious case of missing output file.  TODO: Is this helpful?
127
 
128
void
129
vexplain_no_incremental(const char* format, va_list args)
130
{
131
  char* buf = NULL;
132
  if (vasprintf(&buf, format, args) < 0)
133
    gold_nomem();
134
  gold_info(_("the link might take longer: "
135
              "cannot perform incremental link: %s"), buf);
136
  free(buf);
137
}
138
 
139
void
140
explain_no_incremental(const char* format, ...)
141
{
142
  va_list args;
143
  va_start(args, format);
144
  vexplain_no_incremental(format, args);
145
  va_end(args);
146
}
147
 
148
// Report an error.
149
 
150
void
151
Incremental_binary::error(const char* format, ...) const
152
{
153
  va_list args;
154
  va_start(args, format);
155
  // Current code only checks if the file can be used for incremental linking,
156
  // so errors shouldn't fail the build, but only result in a fallback to a
157
  // full build.
158
  // TODO: when we implement incremental editing of the file, we may need a
159
  // flag that will cause errors to be treated seriously.
160
  vexplain_no_incremental(format, args);
161
  va_end(args);
162
}
163
 
164
// Find the .gnu_incremental_inputs section and related sections.
165
 
166
template<int size, bool big_endian>
167
bool
168
Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
169
    unsigned int* p_inputs_shndx,
170
    unsigned int* p_symtab_shndx,
171
    unsigned int* p_relocs_shndx,
172
    unsigned int* p_got_plt_shndx,
173
    unsigned int* p_strtab_shndx)
174
{
175
  unsigned int inputs_shndx =
176
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
177
  if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
178
    return false;
179
 
180
  unsigned int symtab_shndx =
181
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
182
  if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
183
    return false;
184
  if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
185
    return false;
186
 
187
  unsigned int relocs_shndx =
188
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
189
  if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
190
    return false;
191
  if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
192
    return false;
193
 
194
  unsigned int got_plt_shndx =
195
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
196
  if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
197
    return false;
198
  if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
199
    return false;
200
 
201
  unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
202
  if (strtab_shndx == elfcpp::SHN_UNDEF
203
      || strtab_shndx > this->elf_file_.shnum()
204
      || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
205
    return false;
206
 
207
  if (p_inputs_shndx != NULL)
208
    *p_inputs_shndx = inputs_shndx;
209
  if (p_symtab_shndx != NULL)
210
    *p_symtab_shndx = symtab_shndx;
211
  if (p_relocs_shndx != NULL)
212
    *p_relocs_shndx = relocs_shndx;
213
  if (p_got_plt_shndx != NULL)
214
    *p_got_plt_shndx = got_plt_shndx;
215
  if (p_strtab_shndx != NULL)
216
    *p_strtab_shndx = strtab_shndx;
217
  return true;
218
}
219
 
220
// Set up the readers into the incremental info sections.
221
 
222
template<int size, bool big_endian>
223
void
224
Sized_incremental_binary<size, big_endian>::setup_readers()
225
{
226
  unsigned int inputs_shndx;
227
  unsigned int symtab_shndx;
228
  unsigned int relocs_shndx;
229
  unsigned int got_plt_shndx;
230
  unsigned int strtab_shndx;
231
 
232
  if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
233
                                              &relocs_shndx, &got_plt_shndx,
234
                                              &strtab_shndx))
235
    return;
236
 
237
  Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
238
  Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
239
  Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
240
  Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
241
  Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
242
 
243
  View inputs_view = this->view(inputs_location);
244
  View symtab_view = this->view(symtab_location);
245
  View relocs_view = this->view(relocs_location);
246
  View got_plt_view = this->view(got_plt_location);
247
  View strtab_view = this->view(strtab_location);
248
 
249
  elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
250
 
251
  this->inputs_reader_ =
252
      Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
253
  this->symtab_reader_ =
254
      Incremental_symtab_reader<big_endian>(symtab_view.data(),
255
                                            symtab_location.data_size);
256
  this->relocs_reader_ =
257
      Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
258
                                                  relocs_location.data_size);
259
  this->got_plt_reader_ =
260
      Incremental_got_plt_reader<big_endian>(got_plt_view.data());
261
 
262
  // Find the main symbol table.
263
  unsigned int main_symtab_shndx =
264
      this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
265
  gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
266
  this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
267
 
268
  // Find the main symbol string table.
269
  unsigned int main_strtab_shndx =
270
      this->elf_file_.section_link(main_symtab_shndx);
271
  gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
272
              && main_strtab_shndx < this->elf_file_.shnum());
273
  this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
274
 
275
  // Walk the list of input files (a) to setup an Input_reader for each
276
  // input file, and (b) to record maps of files added from archive
277
  // libraries and scripts.
278
  Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
279
  unsigned int count = inputs.input_file_count();
280
  this->input_objects_.resize(count);
281
  this->input_entry_readers_.reserve(count);
282
  this->library_map_.resize(count);
283
  this->script_map_.resize(count);
284
  for (unsigned int i = 0; i < count; i++)
285
    {
286
      Input_entry_reader input_file = inputs.input_file(i);
287
      this->input_entry_readers_.push_back(Sized_input_reader(input_file));
288
      switch (input_file.type())
289
        {
290
        case INCREMENTAL_INPUT_OBJECT:
291
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
292
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
293
          // No special treatment necessary.
294
          break;
295
        case INCREMENTAL_INPUT_ARCHIVE:
296
          {
297
            Incremental_library* lib =
298
                new Incremental_library(input_file.filename(), i,
299
                                        &this->input_entry_readers_[i]);
300
            this->library_map_[i] = lib;
301
            unsigned int member_count = input_file.get_member_count();
302
            for (unsigned int j = 0; j < member_count; j++)
303
              {
304
                int member_offset = input_file.get_member_offset(j);
305
                int member_index = inputs.input_file_index(member_offset);
306
                this->library_map_[member_index] = lib;
307
              }
308
          }
309
          break;
310
        case INCREMENTAL_INPUT_SCRIPT:
311
          {
312
            Script_info* script = new Script_info(input_file.filename());
313
            this->script_map_[i] = script;
314
            unsigned int object_count = input_file.get_object_count();
315
            for (unsigned int j = 0; j < object_count; j++)
316
              {
317
                int object_offset = input_file.get_object_offset(j);
318
                int object_index = inputs.input_file_index(object_offset);
319
                this->script_map_[object_index] = script;
320
              }
321
          }
322
          break;
323
        default:
324
          gold_unreachable();
325
        }
326
    }
327
 
328
  // Initialize the map of global symbols.
329
  unsigned int nglobals = this->symtab_reader_.symbol_count();
330
  this->symbol_map_.resize(nglobals);
331
 
332
  this->has_incremental_info_ = true;
333
}
334
 
335
// Walk the list of input files given on the command line, and build
336
// a direct map of file index to the corresponding input argument.
337
 
338
void
339
check_input_args(std::vector<const Input_argument*>& input_args_map,
340
                 Input_arguments::const_iterator begin,
341
                 Input_arguments::const_iterator end)
342
{
343
  for (Input_arguments::const_iterator p = begin;
344
       p != end;
345
       ++p)
346
    {
347
      if (p->is_group())
348
        {
349
          const Input_file_group* group = p->group();
350
          check_input_args(input_args_map, group->begin(), group->end());
351
        }
352
      else if (p->is_lib())
353
        {
354
          const Input_file_lib* lib = p->lib();
355
          check_input_args(input_args_map, lib->begin(), lib->end());
356
        }
357
      else
358
        {
359
          gold_assert(p->is_file());
360
          unsigned int arg_serial = p->file().arg_serial();
361
          if (arg_serial > 0)
362
            {
363
              gold_assert(arg_serial <= input_args_map.size());
364
              gold_assert(input_args_map[arg_serial - 1] == 0);
365
              input_args_map[arg_serial - 1] = &*p;
366
            }
367
        }
368
    }
369
}
370
 
371
// Determine whether an incremental link based on the existing output file
372
// can be done.
373
 
374
template<int size, bool big_endian>
375
bool
376
Sized_incremental_binary<size, big_endian>::do_check_inputs(
377
    const Command_line& cmdline,
378
    Incremental_inputs* incremental_inputs)
379
{
380
  Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
381
 
382
  if (!this->has_incremental_info_)
383
    {
384
      explain_no_incremental(_("no incremental data from previous build"));
385
      return false;
386
    }
387
 
388
  if (inputs.version() != INCREMENTAL_LINK_VERSION)
389
    {
390
      explain_no_incremental(_("different version of incremental build data"));
391
      return false;
392
    }
393
 
394
  if (incremental_inputs->command_line() != inputs.command_line())
395
    {
396
      explain_no_incremental(_("command line changed"));
397
      return false;
398
    }
399
 
400
  // Walk the list of input files given on the command line, and build
401
  // a direct map of argument serial numbers to the corresponding input
402
  // arguments.
403
  this->input_args_map_.resize(cmdline.number_of_input_files());
404
  check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
405
 
406
  // Walk the list of input files to check for conditions that prevent
407
  // an incremental update link.
408
  unsigned int count = inputs.input_file_count();
409
  for (unsigned int i = 0; i < count; i++)
410
    {
411
      Input_entry_reader input_file = inputs.input_file(i);
412
      switch (input_file.type())
413
        {
414
        case INCREMENTAL_INPUT_OBJECT:
415
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
416
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
417
        case INCREMENTAL_INPUT_ARCHIVE:
418
          // No special treatment necessary.
419
          break;
420
        case INCREMENTAL_INPUT_SCRIPT:
421
          if (this->do_file_has_changed(i))
422
            {
423
              explain_no_incremental(_("%s: script file changed"),
424
                                     input_file.filename());
425
              return false;
426
            }
427
          break;
428
        default:
429
          gold_unreachable();
430
        }
431
    }
432
 
433
  return true;
434
}
435
 
436
// Return TRUE if input file N has changed since the last incremental link.
437
 
438
template<int size, bool big_endian>
439
bool
440
Sized_incremental_binary<size, big_endian>::do_file_has_changed(
441
    unsigned int n) const
442
{
443
  Input_entry_reader input_file = this->inputs_reader_.input_file(n);
444
  Incremental_disposition disp = INCREMENTAL_CHECK;
445
  const Input_argument* input_argument = this->get_input_argument(n);
446
  if (input_argument != NULL)
447
    disp = input_argument->file().options().incremental_disposition();
448
 
449
  if (disp != INCREMENTAL_CHECK)
450
    return disp == INCREMENTAL_CHANGED;
451
 
452
  const char* filename = input_file.filename();
453
  Timespec old_mtime = input_file.get_mtime();
454
  Timespec new_mtime;
455
  if (!get_mtime(filename, &new_mtime))
456
    {
457
      // If we can't open get the current modification time, assume it has
458
      // changed.  If the file doesn't exist, we'll issue an error when we
459
      // try to open it later.
460
      return true;
461
    }
462
 
463
  if (new_mtime.seconds > old_mtime.seconds)
464
    return true;
465
  if (new_mtime.seconds == old_mtime.seconds
466
      && new_mtime.nanoseconds > old_mtime.nanoseconds)
467
    return true;
468
  return false;
469
}
470
 
471
// Initialize the layout of the output file based on the existing
472
// output file.
473
 
474
template<int size, bool big_endian>
475
void
476
Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
477
{
478
  typedef elfcpp::Shdr<size, big_endian> Shdr;
479
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
480
 
481
  // Get views of the section headers and the section string table.
482
  const off_t shoff = this->elf_file_.shoff();
483
  const unsigned int shnum = this->elf_file_.shnum();
484
  const unsigned int shstrndx = this->elf_file_.shstrndx();
485
  Location shdrs_location(shoff, shnum * shdr_size);
486
  Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
487
  View shdrs_view = this->view(shdrs_location);
488
  View shstrndx_view = this->view(shstrndx_location);
489
  elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
490
                              shstrndx_location.data_size);
491
 
492
  layout->set_incremental_base(this);
493
 
494
  // Initialize the layout.
495
  this->section_map_.resize(shnum);
496
  const unsigned char* pshdr = shdrs_view.data() + shdr_size;
497
  for (unsigned int i = 1; i < shnum; i++)
498
    {
499
      Shdr shdr(pshdr);
500
      const char* name;
501
      if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
502
        name = NULL;
503
      gold_debug(DEBUG_INCREMENTAL,
504
                 "Output section: %2d %08lx %08lx %08lx %3d %s",
505
                 i,
506
                 static_cast<long>(shdr.get_sh_addr()),
507
                 static_cast<long>(shdr.get_sh_offset()),
508
                 static_cast<long>(shdr.get_sh_size()),
509
                 shdr.get_sh_type(), name ? name : "<null>");
510
      this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
511
      pshdr += shdr_size;
512
    }
513
}
514
 
515
// Mark regions of the input file that must be kept unchanged.
516
 
517
template<int size, bool big_endian>
518
void
519
Sized_incremental_binary<size, big_endian>::do_reserve_layout(
520
    unsigned int input_file_index)
521
{
522 148 khays
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
523
 
524 27 khays
  Input_entry_reader input_file =
525
      this->inputs_reader_.input_file(input_file_index);
526
 
527
  if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
528 148 khays
    {
529
      // Reserve the BSS space used for COPY relocations.
530
      unsigned int nsyms = input_file.get_global_symbol_count();
531
      Incremental_binary::View symtab_view(NULL);
532
      unsigned int symtab_count;
533
      elfcpp::Elf_strtab strtab(NULL, 0);
534
      this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
535
      for (unsigned int i = 0; i < nsyms; ++i)
536
        {
537
          bool is_def;
538
          bool is_copy;
539
          unsigned int output_symndx =
540
              input_file.get_output_symbol_index(i, &is_def, &is_copy);
541
          if (is_copy)
542
            {
543
              const unsigned char* sym_p = (symtab_view.data()
544
                                            + output_symndx * sym_size);
545
              elfcpp::Sym<size, big_endian> gsym(sym_p);
546
              unsigned int shndx = gsym.get_st_shndx();
547
              if (shndx < 1 || shndx >= this->section_map_.size())
548
                continue;
549
              Output_section* os = this->section_map_[shndx];
550
              off_t offset = gsym.get_st_value() - os->address();
551
              os->reserve(offset, gsym.get_st_size());
552
              gold_debug(DEBUG_INCREMENTAL,
553
                         "Reserve for COPY reloc: %s, off %d, size %d",
554
                         os->name(),
555
                         static_cast<int>(offset),
556
                         static_cast<int>(gsym.get_st_size()));
557
            }
558
        }
559
      return;
560
    }
561 27 khays
 
562
  unsigned int shnum = input_file.get_input_section_count();
563
  for (unsigned int i = 0; i < shnum; i++)
564
    {
565
      typename Input_entry_reader::Input_section_info sect =
566
          input_file.get_input_section(i);
567
      if (sect.output_shndx == 0 || sect.sh_offset == -1)
568
        continue;
569
      Output_section* os = this->section_map_[sect.output_shndx];
570
      gold_assert(os != NULL);
571
      os->reserve(sect.sh_offset, sect.sh_size);
572
    }
573
}
574
 
575
// Process the GOT and PLT entries from the existing output file.
576
 
577
template<int size, bool big_endian>
578
void
579
Sized_incremental_binary<size, big_endian>::do_process_got_plt(
580
    Symbol_table* symtab,
581
    Layout* layout)
582
{
583
  Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
584
  Sized_target<size, big_endian>* target =
585
      parameters->sized_target<size, big_endian>();
586
 
587
  // Get the number of symbols in the main symbol table and in the
588
  // incremental symbol table.  The difference between the two counts
589
  // is the index of the first forced-local or global symbol in the
590
  // main symbol table.
591
  unsigned int symtab_count =
592
      this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
593
  unsigned int isym_count = this->symtab_reader_.symbol_count();
594
  unsigned int first_global = symtab_count - isym_count;
595
 
596
  // Tell the target how big the GOT and PLT sections are.
597
  unsigned int got_count = got_plt_reader.get_got_entry_count();
598
  unsigned int plt_count = got_plt_reader.get_plt_entry_count();
599
  Output_data_got<size, big_endian>* got =
600
      target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
601
 
602
  // Read the GOT entries from the base file and build the outgoing GOT.
603
  for (unsigned int i = 0; i < got_count; ++i)
604
    {
605
      unsigned int got_type = got_plt_reader.get_got_type(i);
606
      if ((got_type & 0x7f) == 0x7f)
607
        {
608
          // This is the second entry of a pair.
609
          got->reserve_slot(i);
610
          continue;
611
        }
612
      unsigned int symndx = got_plt_reader.get_got_symndx(i);
613
      if (got_type & 0x80)
614
        {
615
          // This is an entry for a local symbol.  Ignore this entry if
616
          // the object file was replaced.
617
          unsigned int input_index = got_plt_reader.get_got_input_index(i);
618
          gold_debug(DEBUG_INCREMENTAL,
619
                     "GOT entry %d, type %02x: (local symbol)",
620
                     i, got_type & 0x7f);
621
          Sized_relobj_incr<size, big_endian>* obj =
622
              this->input_object(input_index);
623
          if (obj != NULL)
624
            target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
625
        }
626
      else
627
        {
628
          // This is an entry for a global symbol.  GOT_DESC is the symbol
629
          // table index.
630
          // FIXME: This should really be a fatal error (corrupt input).
631
          gold_assert(symndx >= first_global && symndx < symtab_count);
632
          Symbol* sym = this->global_symbol(symndx - first_global);
633 148 khays
          // Add the GOT entry only if the symbol is still referenced.
634
          if (sym != NULL && sym->in_reg())
635
            {
636
              gold_debug(DEBUG_INCREMENTAL,
637
                         "GOT entry %d, type %02x: %s",
638
                         i, got_type, sym->name());
639
              target->reserve_global_got_entry(i, sym, got_type);
640
            }
641 27 khays
        }
642
    }
643
 
644
  // Read the PLT entries from the base file and pass each to the target.
645
  for (unsigned int i = 0; i < plt_count; ++i)
646
    {
647
      unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
648
      // FIXME: This should really be a fatal error (corrupt input).
649
      gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
650
      Symbol* sym = this->global_symbol(plt_desc - first_global);
651 148 khays
      // Add the PLT entry only if the symbol is still referenced.
652
      if (sym->in_reg())
653
        {
654
          gold_debug(DEBUG_INCREMENTAL,
655
                     "PLT entry %d: %s",
656
                     i, sym->name());
657
          target->register_global_plt_entry(i, sym);
658
        }
659 27 khays
    }
660
}
661
 
662 148 khays
// Emit COPY relocations from the existing output file.
663
 
664
template<int size, bool big_endian>
665
void
666
Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
667
    Symbol_table* symtab)
668
{
669
  Sized_target<size, big_endian>* target =
670
      parameters->sized_target<size, big_endian>();
671
 
672
  for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
673
       p != this->copy_relocs_.end();
674
       ++p)
675
    {
676
      if (!(*p).symbol->is_copied_from_dynobj())
677
        target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
678
                                (*p).offset);
679
    }
680
}
681
 
682 27 khays
// Apply incremental relocations for symbols whose values have changed.
683
 
684
template<int size, bool big_endian>
685
void
686
Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
687
    const Symbol_table* symtab,
688
    Layout* layout,
689
    Output_file* of)
690
{
691
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
692
  typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
693
  Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
694
  Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
695
  unsigned int nglobals = isymtab.symbol_count();
696
  const unsigned int incr_reloc_size = irelocs.reloc_size;
697
 
698
  Relocate_info<size, big_endian> relinfo;
699
  relinfo.symtab = symtab;
700
  relinfo.layout = layout;
701
  relinfo.object = NULL;
702
  relinfo.reloc_shndx = 0;
703
  relinfo.reloc_shdr = NULL;
704
  relinfo.data_shndx = 0;
705
  relinfo.data_shdr = NULL;
706
 
707
  Sized_target<size, big_endian>* target =
708
      parameters->sized_target<size, big_endian>();
709
 
710
  for (unsigned int i = 0; i < nglobals; i++)
711
    {
712
      const Symbol* gsym = this->global_symbol(i);
713
 
714
      // If the symbol is not referenced from any unchanged input files,
715
      // we do not need to reapply any of its relocations.
716
      if (gsym == NULL)
717
        continue;
718
 
719
      // If the symbol is defined in an unchanged file, we do not need to
720
      // reapply any of its relocations.
721
      if (gsym->source() == Symbol::FROM_OBJECT
722
          && gsym->object()->is_incremental())
723
        continue;
724
 
725
      gold_debug(DEBUG_INCREMENTAL,
726
                 "Applying incremental relocations for global symbol %s [%d]",
727
                 gsym->name(), i);
728
 
729
      // Follow the linked list of input symbol table entries for this symbol.
730
      // We don't bother to figure out whether the symbol table entry belongs
731
      // to a changed or unchanged file because it's easier just to apply all
732
      // the relocations -- although we might scribble over an area that has
733
      // been reallocated, we do this before copying any new data into the
734
      // output file.
735
      unsigned int offset = isymtab.get_list_head(i);
736
      while (offset > 0)
737
        {
738
          Incremental_global_symbol_reader<big_endian> sym_info =
739
              this->inputs_reader().global_symbol_reader_at_offset(offset);
740
          unsigned int r_base = sym_info.reloc_offset();
741
          unsigned int r_count = sym_info.reloc_count();
742
 
743
          // Apply each relocation for this symbol table entry.
744
          for (unsigned int j = 0; j < r_count;
745
               ++j, r_base += incr_reloc_size)
746
            {
747
              unsigned int r_type = irelocs.get_r_type(r_base);
748
              unsigned int r_shndx = irelocs.get_r_shndx(r_base);
749
              Address r_offset = irelocs.get_r_offset(r_base);
750
              Addend r_addend = irelocs.get_r_addend(r_base);
751
              Output_section* os = this->output_section(r_shndx);
752
              Address address = os->address();
753
              off_t section_offset = os->offset();
754
              size_t view_size = os->data_size();
755
              unsigned char* const view = of->get_output_view(section_offset,
756
                                                              view_size);
757
 
758
              gold_debug(DEBUG_INCREMENTAL,
759
                         "  %08lx: %s + %d: type %d addend %ld",
760
                         (long)(section_offset + r_offset),
761
                         os->name(),
762
                         (int)r_offset,
763
                         r_type,
764
                         (long)r_addend);
765
 
766
              target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
767
                                       gsym, view, address, view_size);
768
 
769
              // FIXME: Do something more efficient if write_output_view
770
              // ever becomes more than a no-op.
771
              of->write_output_view(section_offset, view_size, view);
772
            }
773
          offset = sym_info.next_offset();
774
        }
775
    }
776
}
777
 
778
// Get a view of the main symbol table and the symbol string table.
779
 
780
template<int size, bool big_endian>
781
void
782
Sized_incremental_binary<size, big_endian>::get_symtab_view(
783
    View* symtab_view,
784
    unsigned int* nsyms,
785
    elfcpp::Elf_strtab* strtab)
786
{
787
  *symtab_view = this->view(this->main_symtab_loc_);
788
  *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
789
 
790
  View strtab_view(this->view(this->main_strtab_loc_));
791
  *strtab = elfcpp::Elf_strtab(strtab_view.data(),
792
                               this->main_strtab_loc_.data_size);
793
}
794
 
795
namespace
796
{
797
 
798
// Create a Sized_incremental_binary object of the specified size and
799
// endianness. Fails if the target architecture is not supported.
800
 
801
template<int size, bool big_endian>
802
Incremental_binary*
803
make_sized_incremental_binary(Output_file* file,
804
                              const elfcpp::Ehdr<size, big_endian>& ehdr)
805
{
806
  Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
807
                                 ehdr.get_e_ident()[elfcpp::EI_OSABI],
808
                                 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
809
  if (target == NULL)
810
    {
811
      explain_no_incremental(_("unsupported ELF machine number %d"),
812
               ehdr.get_e_machine());
813
      return NULL;
814
    }
815
 
816
  if (!parameters->target_valid())
817
    set_parameters_target(target);
818
  else if (target != &parameters->target())
819
    gold_error(_("%s: incompatible target"), file->filename());
820
 
821
  return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
822
}
823
 
824
}  // End of anonymous namespace.
825
 
826
// Create an Incremental_binary object for FILE.  Returns NULL is this is not
827
// possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
828
// should be opened.
829
 
830
Incremental_binary*
831
open_incremental_binary(Output_file* file)
832
{
833
  off_t filesize = file->filesize();
834
  int want = elfcpp::Elf_recognizer::max_header_size;
835
  if (filesize < want)
836
    want = filesize;
837
 
838
  const unsigned char* p = file->get_input_view(0, want);
839
  if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
840
    {
841
      explain_no_incremental(_("output is not an ELF file."));
842
      return NULL;
843
    }
844
 
845
  int size = 0;
846
  bool big_endian = false;
847
  std::string error;
848
  if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
849
                                               &error))
850
    {
851
      explain_no_incremental(error.c_str());
852
      return NULL;
853
    }
854
 
855
  Incremental_binary* result = NULL;
856
  if (size == 32)
857
    {
858
      if (big_endian)
859
        {
860
#ifdef HAVE_TARGET_32_BIG
861
          result = make_sized_incremental_binary<32, true>(
862
              file, elfcpp::Ehdr<32, true>(p));
863
#else
864
          explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
865
#endif
866
        }
867
      else
868
        {
869
#ifdef HAVE_TARGET_32_LITTLE
870
          result = make_sized_incremental_binary<32, false>(
871
              file, elfcpp::Ehdr<32, false>(p));
872
#else
873
          explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
874
#endif
875
        }
876
    }
877
  else if (size == 64)
878
    {
879
      if (big_endian)
880
        {
881
#ifdef HAVE_TARGET_64_BIG
882
          result = make_sized_incremental_binary<64, true>(
883
              file, elfcpp::Ehdr<64, true>(p));
884
#else
885
          explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
886
#endif
887
        }
888
      else
889
        {
890
#ifdef HAVE_TARGET_64_LITTLE
891
          result = make_sized_incremental_binary<64, false>(
892
              file, elfcpp::Ehdr<64, false>(p));
893
#else
894
          explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
895
#endif
896
        }
897
    }
898
  else
899
    gold_unreachable();
900
 
901
  return result;
902
}
903
 
904
// Class Incremental_inputs.
905
 
906
// Add the command line to the string table, setting
907
// command_line_key_.  In incremental builds, the command line is
908
// stored in .gnu_incremental_inputs so that the next linker run can
909
// check if the command line options didn't change.
910
 
911
void
912
Incremental_inputs::report_command_line(int argc, const char* const* argv)
913
{
914
  // Always store 'gold' as argv[0] to avoid a full relink if the user used a
915
  // different path to the linker.
916
  std::string args("gold");
917
  // Copied from collect_argv in main.cc.
918
  for (int i = 1; i < argc; ++i)
919
    {
920
      // Adding/removing these options should not result in a full relink.
921
      if (strcmp(argv[i], "--incremental") == 0
922
          || strcmp(argv[i], "--incremental-full") == 0
923
          || strcmp(argv[i], "--incremental-update") == 0
924
          || strcmp(argv[i], "--incremental-changed") == 0
925
          || strcmp(argv[i], "--incremental-unchanged") == 0
926
          || strcmp(argv[i], "--incremental-unknown") == 0
927
          || is_prefix_of("--incremental-base=", argv[i])
928
          || is_prefix_of("--debug=", argv[i]))
929
        continue;
930
      if (strcmp(argv[i], "--incremental-base") == 0
931
          || strcmp(argv[i], "--debug") == 0)
932
        {
933
          // When these options are used without the '=', skip the
934
          // following parameter as well.
935
          ++i;
936
          continue;
937
        }
938
 
939
      args.append(" '");
940
      // Now append argv[i], but with all single-quotes escaped
941
      const char* argpos = argv[i];
942
      while (1)
943
        {
944
          const int len = strcspn(argpos, "'");
945
          args.append(argpos, len);
946
          if (argpos[len] == '\0')
947
            break;
948
          args.append("'\"'\"'");
949
          argpos += len + 1;
950
        }
951
      args.append("'");
952
    }
953
 
954
  this->command_line_ = args;
955
  this->strtab_->add(this->command_line_.c_str(), false,
956
                     &this->command_line_key_);
957
}
958
 
959
// Record the input archive file ARCHIVE.  This is called by the
960
// Add_archive_symbols task before determining which archive members
961
// to include.  We create the Incremental_archive_entry here and
962
// attach it to the Archive, but we do not add it to the list of
963
// input objects until report_archive_end is called.
964
 
965
void
966
Incremental_inputs::report_archive_begin(Library_base* arch,
967
                                         unsigned int arg_serial,
968
                                         Script_info* script_info)
969
{
970
  Stringpool::Key filename_key;
971
  Timespec mtime = arch->get_mtime();
972
 
973
  // For a file loaded from a script, don't record its argument serial number.
974
  if (script_info != NULL)
975
    arg_serial = 0;
976
 
977
  this->strtab_->add(arch->filename().c_str(), false, &filename_key);
978
  Incremental_archive_entry* entry =
979
      new Incremental_archive_entry(filename_key, arg_serial, mtime);
980
  arch->set_incremental_info(entry);
981
 
982
  if (script_info != NULL)
983
    {
984
      Incremental_script_entry* script_entry = script_info->incremental_info();
985
      gold_assert(script_entry != NULL);
986
      script_entry->add_object(entry);
987
    }
988
}
989
 
990
// Visitor class for processing the unused global symbols in a library.
991
// An instance of this class is passed to the library's
992
// for_all_unused_symbols() iterator, which will call the visit()
993
// function for each global symbol defined in each unused library
994
// member.  We add those symbol names to the incremental info for the
995
// library.
996
 
997
class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
998
{
999
 public:
1000
  Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1001
    : entry_(entry), strtab_(strtab)
1002
  { }
1003
 
1004
  void
1005
  visit(const char* sym)
1006
  {
1007
    Stringpool::Key symbol_key;
1008
    this->strtab_->add(sym, true, &symbol_key);
1009
    this->entry_->add_unused_global_symbol(symbol_key);
1010
  }
1011
 
1012
 private:
1013
  Incremental_archive_entry* entry_;
1014
  Stringpool* strtab_;
1015
};
1016
 
1017
// Finish recording the input archive file ARCHIVE.  This is called by the
1018
// Add_archive_symbols task after determining which archive members
1019
// to include.
1020
 
1021
void
1022
Incremental_inputs::report_archive_end(Library_base* arch)
1023
{
1024
  Incremental_archive_entry* entry = arch->incremental_info();
1025
 
1026
  gold_assert(entry != NULL);
1027
  this->inputs_.push_back(entry);
1028
 
1029
  // Collect unused global symbols.
1030
  Unused_symbol_visitor v(entry, this->strtab_);
1031
  arch->for_all_unused_symbols(&v);
1032
}
1033
 
1034
// Record the input object file OBJ.  If ARCH is not NULL, attach
1035
// the object file to the archive.  This is called by the
1036
// Add_symbols task after finding out the type of the file.
1037
 
1038
void
1039
Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1040
                                  Library_base* arch, Script_info* script_info)
1041
{
1042
  Stringpool::Key filename_key;
1043
  Timespec mtime = obj->get_mtime();
1044
 
1045
  // For a file loaded from a script, don't record its argument serial number.
1046
  if (script_info != NULL)
1047
    arg_serial = 0;
1048
 
1049
  this->strtab_->add(obj->name().c_str(), false, &filename_key);
1050
 
1051
  Incremental_input_entry* input_entry;
1052
 
1053
  this->current_object_ = obj;
1054
 
1055
  if (!obj->is_dynamic())
1056
    {
1057
      this->current_object_entry_ =
1058
          new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1059
      input_entry = this->current_object_entry_;
1060
      if (arch != NULL)
1061
        {
1062
          Incremental_archive_entry* arch_entry = arch->incremental_info();
1063
          gold_assert(arch_entry != NULL);
1064
          arch_entry->add_object(this->current_object_entry_);
1065
        }
1066
    }
1067
  else
1068
    {
1069
      this->current_object_entry_ = NULL;
1070
      Stringpool::Key soname_key;
1071
      Dynobj* dynobj = obj->dynobj();
1072
      gold_assert(dynobj != NULL);
1073
      this->strtab_->add(dynobj->soname(), false, &soname_key);
1074
      input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1075
                                                 arg_serial, mtime);
1076
    }
1077
 
1078
  if (obj->is_in_system_directory())
1079
    input_entry->set_is_in_system_directory();
1080
 
1081
  if (obj->as_needed())
1082
    input_entry->set_as_needed();
1083
 
1084
  this->inputs_.push_back(input_entry);
1085
 
1086
  if (script_info != NULL)
1087
    {
1088
      Incremental_script_entry* script_entry = script_info->incremental_info();
1089
      gold_assert(script_entry != NULL);
1090
      script_entry->add_object(input_entry);
1091
    }
1092
}
1093
 
1094
// Record an input section SHNDX from object file OBJ.
1095
 
1096
void
1097
Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1098
                                         const char* name, off_t sh_size)
1099
{
1100
  Stringpool::Key key = 0;
1101
 
1102
  if (name != NULL)
1103
    this->strtab_->add(name, true, &key);
1104
 
1105
  gold_assert(obj == this->current_object_);
1106
  gold_assert(this->current_object_entry_ != NULL);
1107
  this->current_object_entry_->add_input_section(shndx, key, sh_size);
1108
}
1109
 
1110
// Record a kept COMDAT group belonging to object file OBJ.
1111
 
1112
void
1113
Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1114
{
1115
  Stringpool::Key key = 0;
1116
 
1117
  if (name != NULL)
1118
    this->strtab_->add(name, true, &key);
1119
  gold_assert(obj == this->current_object_);
1120
  gold_assert(this->current_object_entry_ != NULL);
1121
  this->current_object_entry_->add_comdat_group(key);
1122
}
1123
 
1124
// Record that the input argument INPUT is a script SCRIPT.  This is
1125
// called by read_script after parsing the script and reading the list
1126
// of inputs added by this script.
1127
 
1128
void
1129
Incremental_inputs::report_script(Script_info* script,
1130
                                  unsigned int arg_serial,
1131
                                  Timespec mtime)
1132
{
1133
  Stringpool::Key filename_key;
1134
 
1135
  this->strtab_->add(script->filename().c_str(), false, &filename_key);
1136
  Incremental_script_entry* entry =
1137
      new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1138
  this->inputs_.push_back(entry);
1139
  script->set_incremental_info(entry);
1140
}
1141
 
1142
// Finalize the incremental link information.  Called from
1143
// Layout::finalize.
1144
 
1145
void
1146
Incremental_inputs::finalize()
1147
{
1148
  // Finalize the string table.
1149
  this->strtab_->set_string_offsets();
1150
}
1151
 
1152
// Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1153
 
1154
void
1155
Incremental_inputs::create_data_sections(Symbol_table* symtab)
1156
{
1157
  switch (parameters->size_and_endianness())
1158
    {
1159
#ifdef HAVE_TARGET_32_LITTLE
1160
    case Parameters::TARGET_32_LITTLE:
1161
      this->inputs_section_ =
1162
          new Output_section_incremental_inputs<32, false>(this, symtab);
1163
      break;
1164
#endif
1165
#ifdef HAVE_TARGET_32_BIG
1166
    case Parameters::TARGET_32_BIG:
1167
      this->inputs_section_ =
1168
          new Output_section_incremental_inputs<32, true>(this, symtab);
1169
      break;
1170
#endif
1171
#ifdef HAVE_TARGET_64_LITTLE
1172
    case Parameters::TARGET_64_LITTLE:
1173
      this->inputs_section_ =
1174
          new Output_section_incremental_inputs<64, false>(this, symtab);
1175
      break;
1176
#endif
1177
#ifdef HAVE_TARGET_64_BIG
1178
    case Parameters::TARGET_64_BIG:
1179
      this->inputs_section_ =
1180
          new Output_section_incremental_inputs<64, true>(this, symtab);
1181
      break;
1182
#endif
1183
    default:
1184
      gold_unreachable();
1185
    }
1186
  this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1187
  this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1188
  this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1189
}
1190
 
1191
// Return the sh_entsize value for the .gnu_incremental_relocs section.
1192
unsigned int
1193
Incremental_inputs::relocs_entsize() const
1194
{
1195
  return 8 + 2 * parameters->target().get_size() / 8;
1196
}
1197
 
1198
// Class Output_section_incremental_inputs.
1199
 
1200
// Finalize the offsets for each input section and supplemental info block,
1201
// and set the final data size of the incremental output sections.
1202
 
1203
template<int size, bool big_endian>
1204
void
1205
Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1206
{
1207
  const Incremental_inputs* inputs = this->inputs_;
1208
  const unsigned int sizeof_addr = size / 8;
1209
  const unsigned int rel_size = 8 + 2 * sizeof_addr;
1210
 
1211
  // Offset of each input entry.
1212
  unsigned int input_offset = this->header_size;
1213
 
1214
  // Offset of each supplemental info block.
1215
  unsigned int file_index = 0;
1216
  unsigned int info_offset = this->header_size;
1217
  info_offset += this->input_entry_size * inputs->input_file_count();
1218
 
1219
  // Count each input file and its supplemental information block.
1220
  for (Incremental_inputs::Input_list::const_iterator p =
1221
           inputs->input_files().begin();
1222
       p != inputs->input_files().end();
1223
       ++p)
1224
    {
1225
      // Set the index and offset of the input file entry.
1226
      (*p)->set_offset(file_index, input_offset);
1227
      ++file_index;
1228
      input_offset += this->input_entry_size;
1229
 
1230
      // Set the offset of the supplemental info block.
1231
      switch ((*p)->type())
1232
        {
1233
        case INCREMENTAL_INPUT_SCRIPT:
1234
          {
1235
            Incremental_script_entry *entry = (*p)->script_entry();
1236
            gold_assert(entry != NULL);
1237
            (*p)->set_info_offset(info_offset);
1238
            // Object count.
1239
            info_offset += 4;
1240
            // Each member.
1241
            info_offset += (entry->get_object_count() * 4);
1242
          }
1243
          break;
1244
        case INCREMENTAL_INPUT_OBJECT:
1245
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1246
          {
1247
            Incremental_object_entry* entry = (*p)->object_entry();
1248
            gold_assert(entry != NULL);
1249
            (*p)->set_info_offset(info_offset);
1250
            // Input section count, global symbol count, local symbol offset,
1251
            // local symbol count, first dynamic reloc, dynamic reloc count,
1252
            // comdat group count.
1253
            info_offset += 28;
1254
            // Each input section.
1255
            info_offset += (entry->get_input_section_count()
1256
                            * (8 + 2 * sizeof_addr));
1257
            // Each global symbol.
1258
            const Object::Symbols* syms = entry->object()->get_global_symbols();
1259
            info_offset += syms->size() * 20;
1260
            // Each comdat group.
1261
            info_offset += entry->get_comdat_group_count() * 4;
1262
          }
1263
          break;
1264
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
1265
          {
1266
            Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1267
            gold_assert(entry != NULL);
1268
            (*p)->set_info_offset(info_offset);
1269
            // Global symbol count, soname index.
1270
            info_offset += 8;
1271
            // Each global symbol.
1272
            const Object::Symbols* syms = entry->object()->get_global_symbols();
1273
            gold_assert(syms != NULL);
1274
            unsigned int nsyms = syms->size();
1275
            unsigned int nsyms_out = 0;
1276
            for (unsigned int i = 0; i < nsyms; ++i)
1277
              {
1278
                const Symbol* sym = (*syms)[i];
1279
                if (sym == NULL)
1280
                  continue;
1281
                if (sym->is_forwarder())
1282
                  sym = this->symtab_->resolve_forwards(sym);
1283
                if (sym->symtab_index() != -1U)
1284
                  ++nsyms_out;
1285
              }
1286
            info_offset += nsyms_out * 4;
1287
          }
1288
          break;
1289
        case INCREMENTAL_INPUT_ARCHIVE:
1290
          {
1291
            Incremental_archive_entry* entry = (*p)->archive_entry();
1292
            gold_assert(entry != NULL);
1293
            (*p)->set_info_offset(info_offset);
1294
            // Member count + unused global symbol count.
1295
            info_offset += 8;
1296
            // Each member.
1297
            info_offset += (entry->get_member_count() * 4);
1298
            // Each global symbol.
1299
            info_offset += (entry->get_unused_global_symbol_count() * 4);
1300
          }
1301
          break;
1302
        default:
1303
          gold_unreachable();
1304
        }
1305
    }
1306
 
1307
  this->set_data_size(info_offset);
1308
 
1309
  // Set the size of the .gnu_incremental_symtab section.
1310
  inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1311
                                                  * sizeof(unsigned int));
1312
 
1313
  // Set the size of the .gnu_incremental_relocs section.
1314
  inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1315
                                                  * rel_size);
1316
 
1317
  // Set the size of the .gnu_incremental_got_plt section.
1318
  Sized_target<size, big_endian>* target =
1319
    parameters->sized_target<size, big_endian>();
1320
  unsigned int got_count = target->got_entry_count();
1321
  unsigned int plt_count = target->plt_entry_count();
1322
  unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
1323
  got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
1324
  got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
1325
  inputs->got_plt_section()->set_current_data_size(got_plt_size);
1326
}
1327
 
1328
// Write the contents of the .gnu_incremental_inputs and
1329
// .gnu_incremental_symtab sections.
1330
 
1331
template<int size, bool big_endian>
1332
void
1333
Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1334
{
1335
  const Incremental_inputs* inputs = this->inputs_;
1336
  Stringpool* strtab = inputs->get_stringpool();
1337
 
1338
  // Get a view into the .gnu_incremental_inputs section.
1339
  const off_t off = this->offset();
1340
  const off_t oview_size = this->data_size();
1341
  unsigned char* const oview = of->get_output_view(off, oview_size);
1342
  unsigned char* pov = oview;
1343
 
1344
  // Get a view into the .gnu_incremental_symtab section.
1345
  const off_t symtab_off = inputs->symtab_section()->offset();
1346
  const off_t symtab_size = inputs->symtab_section()->data_size();
1347
  unsigned char* const symtab_view = of->get_output_view(symtab_off,
1348
                                                         symtab_size);
1349
 
1350
  // Allocate an array of linked list heads for the .gnu_incremental_symtab
1351
  // section.  Each element corresponds to a global symbol in the output
1352
  // symbol table, and points to the head of the linked list that threads
1353
  // through the object file input entries.  The value of each element
1354
  // is the section-relative offset to a global symbol entry in a
1355
  // supplemental information block.
1356
  unsigned int global_sym_count = this->symtab_->output_count();
1357
  unsigned int* global_syms = new unsigned int[global_sym_count];
1358
  memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1359
 
1360
  // Write the section header.
1361
  Stringpool::Key command_line_key = inputs->command_line_key();
1362
  pov = this->write_header(pov, inputs->input_file_count(),
1363
                           strtab->get_offset_from_key(command_line_key));
1364
 
1365
  // Write the list of input files.
1366
  pov = this->write_input_files(oview, pov, strtab);
1367
 
1368
  // Write the supplemental information blocks for each input file.
1369
  pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1370
                                global_sym_count);
1371
 
1372
  gold_assert(pov - oview == oview_size);
1373
 
1374
  // Write the .gnu_incremental_symtab section.
1375
  gold_assert(global_sym_count * 4 == symtab_size);
1376
  this->write_symtab(symtab_view, global_syms, global_sym_count);
1377
 
1378
  delete[] global_syms;
1379
 
1380
  // Write the .gnu_incremental_got_plt section.
1381
  const off_t got_plt_off = inputs->got_plt_section()->offset();
1382
  const off_t got_plt_size = inputs->got_plt_section()->data_size();
1383
  unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1384
                                                          got_plt_size);
1385
  this->write_got_plt(got_plt_view, got_plt_size);
1386
 
1387
  of->write_output_view(off, oview_size, oview);
1388
  of->write_output_view(symtab_off, symtab_size, symtab_view);
1389
  of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1390
}
1391
 
1392
// Write the section header: version, input file count, offset of command line
1393
// in the string table, and 4 bytes of padding.
1394
 
1395
template<int size, bool big_endian>
1396
unsigned char*
1397
Output_section_incremental_inputs<size, big_endian>::write_header(
1398
    unsigned char* pov,
1399
    unsigned int input_file_count,
1400
    section_offset_type command_line_offset)
1401
{
1402
  Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1403
  Swap32::writeval(pov + 4, input_file_count);
1404
  Swap32::writeval(pov + 8, command_line_offset);
1405
  Swap32::writeval(pov + 12, 0);
1406
  return pov + this->header_size;
1407
}
1408
 
1409
// Write the input file entries.
1410
 
1411
template<int size, bool big_endian>
1412
unsigned char*
1413
Output_section_incremental_inputs<size, big_endian>::write_input_files(
1414
    unsigned char* oview,
1415
    unsigned char* pov,
1416
    Stringpool* strtab)
1417
{
1418
  const Incremental_inputs* inputs = this->inputs_;
1419
 
1420
  for (Incremental_inputs::Input_list::const_iterator p =
1421
           inputs->input_files().begin();
1422
       p != inputs->input_files().end();
1423
       ++p)
1424
    {
1425
      gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1426
      section_offset_type filename_offset =
1427
          strtab->get_offset_from_key((*p)->get_filename_key());
1428
      const Timespec& mtime = (*p)->get_mtime();
1429
      unsigned int flags = (*p)->type();
1430
      if ((*p)->is_in_system_directory())
1431
        flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1432
      if ((*p)->as_needed())
1433
        flags |= INCREMENTAL_INPUT_AS_NEEDED;
1434
      Swap32::writeval(pov, filename_offset);
1435
      Swap32::writeval(pov + 4, (*p)->get_info_offset());
1436
      Swap64::writeval(pov + 8, mtime.seconds);
1437
      Swap32::writeval(pov + 16, mtime.nanoseconds);
1438
      Swap16::writeval(pov + 20, flags);
1439
      Swap16::writeval(pov + 22, (*p)->arg_serial());
1440
      pov += this->input_entry_size;
1441
    }
1442
  return pov;
1443
}
1444
 
1445
// Write the supplemental information blocks.
1446
 
1447
template<int size, bool big_endian>
1448
unsigned char*
1449
Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1450
    unsigned char* oview,
1451
    unsigned char* pov,
1452
    Stringpool* strtab,
1453
    unsigned int* global_syms,
1454
    unsigned int global_sym_count)
1455
{
1456
  const Incremental_inputs* inputs = this->inputs_;
1457
  unsigned int first_global_index = this->symtab_->first_global_index();
1458
 
1459
  for (Incremental_inputs::Input_list::const_iterator p =
1460
           inputs->input_files().begin();
1461
       p != inputs->input_files().end();
1462
       ++p)
1463
    {
1464
      switch ((*p)->type())
1465
        {
1466
        case INCREMENTAL_INPUT_SCRIPT:
1467
          {
1468
            gold_assert(static_cast<unsigned int>(pov - oview)
1469
                        == (*p)->get_info_offset());
1470
            Incremental_script_entry* entry = (*p)->script_entry();
1471
            gold_assert(entry != NULL);
1472
 
1473
            // Write the object count.
1474
            unsigned int nobjects = entry->get_object_count();
1475
            Swap32::writeval(pov, nobjects);
1476
            pov += 4;
1477
 
1478
            // For each object, write the offset to its input file entry.
1479
            for (unsigned int i = 0; i < nobjects; ++i)
1480
              {
1481
                Incremental_input_entry* obj = entry->get_object(i);
1482
                Swap32::writeval(pov, obj->get_offset());
1483
                pov += 4;
1484
              }
1485
          }
1486
          break;
1487
 
1488
        case INCREMENTAL_INPUT_OBJECT:
1489
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1490
          {
1491
            gold_assert(static_cast<unsigned int>(pov - oview)
1492
                        == (*p)->get_info_offset());
1493
            Incremental_object_entry* entry = (*p)->object_entry();
1494
            gold_assert(entry != NULL);
1495
            const Object* obj = entry->object();
1496
            const Relobj* relobj = static_cast<const Relobj*>(obj);
1497
            const Object::Symbols* syms = obj->get_global_symbols();
1498
            // Write the input section count and global symbol count.
1499
            unsigned int nsections = entry->get_input_section_count();
1500
            unsigned int nsyms = syms->size();
1501
            off_t locals_offset = relobj->local_symbol_offset();
1502
            unsigned int nlocals = relobj->output_local_symbol_count();
1503
            unsigned int first_dynrel = relobj->first_dyn_reloc();
1504
            unsigned int ndynrel = relobj->dyn_reloc_count();
1505
            unsigned int ncomdat = entry->get_comdat_group_count();
1506
            Swap32::writeval(pov, nsections);
1507
            Swap32::writeval(pov + 4, nsyms);
1508
            Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1509
            Swap32::writeval(pov + 12, nlocals);
1510
            Swap32::writeval(pov + 16, first_dynrel);
1511
            Swap32::writeval(pov + 20, ndynrel);
1512
            Swap32::writeval(pov + 24, ncomdat);
1513
            pov += 28;
1514
 
1515
            // Build a temporary array to map input section indexes
1516
            // from the original object file index to the index in the
1517
            // incremental info table.
1518
            unsigned int* index_map = new unsigned int[obj->shnum()];
1519
            memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1520
 
1521
            // For each input section, write the name, output section index,
1522
            // offset within output section, and input section size.
1523
            for (unsigned int i = 0; i < nsections; i++)
1524
              {
1525
                unsigned int shndx = entry->get_input_section_index(i);
1526
                index_map[shndx] = i + 1;
1527
                Stringpool::Key key = entry->get_input_section_name_key(i);
1528
                off_t name_offset = 0;
1529
                if (key != 0)
1530
                  name_offset = strtab->get_offset_from_key(key);
1531
                int out_shndx = 0;
1532
                off_t out_offset = 0;
1533
                off_t sh_size = 0;
1534
                Output_section* os = obj->output_section(shndx);
1535
                if (os != NULL)
1536
                  {
1537
                    out_shndx = os->out_shndx();
1538
                    out_offset = obj->output_section_offset(shndx);
1539
                    sh_size = entry->get_input_section_size(i);
1540
                  }
1541
                Swap32::writeval(pov, name_offset);
1542
                Swap32::writeval(pov + 4, out_shndx);
1543
                Swap::writeval(pov + 8, out_offset);
1544
                Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1545
                pov += 8 + 2 * sizeof_addr;
1546
              }
1547
 
1548
            // For each global symbol, write its associated relocations,
1549
            // add it to the linked list of globals, then write the
1550
            // supplemental information:  global symbol table index,
1551
            // input section index, linked list chain pointer, relocation
1552
            // count, and offset to the relocations.
1553
            for (unsigned int i = 0; i < nsyms; i++)
1554
              {
1555
                const Symbol* sym = (*syms)[i];
1556
                if (sym->is_forwarder())
1557
                  sym = this->symtab_->resolve_forwards(sym);
1558
                unsigned int shndx = 0;
1559 148 khays
                if (sym->source() != Symbol::FROM_OBJECT)
1560 27 khays
                  {
1561 148 khays
                    // The symbol was defined by the linker (e.g., common).
1562
                    // We mark these symbols with a special SHNDX of -1,
1563
                    // but exclude linker-predefined symbols and symbols
1564
                    // copied from shared objects.
1565
                    if (!sym->is_predefined()
1566
                        && !sym->is_copied_from_dynobj())
1567
                      shndx = -1U;
1568
                  }
1569
                else if (sym->object() == obj && sym->is_defined())
1570
                  {
1571 27 khays
                    bool is_ordinary;
1572
                    unsigned int orig_shndx = sym->shndx(&is_ordinary);
1573
                    if (is_ordinary)
1574
                      shndx = index_map[orig_shndx];
1575 148 khays
                    else
1576
                      shndx = 1;
1577 27 khays
                  }
1578
                unsigned int symtab_index = sym->symtab_index();
1579
                unsigned int chain = 0;
1580
                unsigned int first_reloc = 0;
1581
                unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1582
                if (nrelocs > 0)
1583
                  {
1584
                    gold_assert(symtab_index != -1U
1585
                                && (symtab_index - first_global_index
1586
                                    < global_sym_count));
1587
                    first_reloc = obj->get_incremental_reloc_base(i);
1588
                    chain = global_syms[symtab_index - first_global_index];
1589
                    global_syms[symtab_index - first_global_index] =
1590
                        pov - oview;
1591
                  }
1592
                Swap32::writeval(pov, symtab_index);
1593
                Swap32::writeval(pov + 4, shndx);
1594
                Swap32::writeval(pov + 8, chain);
1595
                Swap32::writeval(pov + 12, nrelocs);
1596
                Swap32::writeval(pov + 16, first_reloc * 3 * sizeof_addr);
1597
                pov += 20;
1598
              }
1599
 
1600
            // For each kept COMDAT group, write the group signature.
1601
            for (unsigned int i = 0; i < ncomdat; i++)
1602
              {
1603
                Stringpool::Key key = entry->get_comdat_signature_key(i);
1604
                off_t name_offset = 0;
1605
                if (key != 0)
1606
                  name_offset = strtab->get_offset_from_key(key);
1607
                Swap32::writeval(pov, name_offset);
1608
                pov += 4;
1609
              }
1610
 
1611
            delete[] index_map;
1612
          }
1613
          break;
1614
 
1615
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
1616
          {
1617
            gold_assert(static_cast<unsigned int>(pov - oview)
1618
                        == (*p)->get_info_offset());
1619
            Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1620
            gold_assert(entry != NULL);
1621 148 khays
            Object* obj = entry->object();
1622
            Dynobj* dynobj = obj->dynobj();
1623
            gold_assert(dynobj != NULL);
1624 27 khays
            const Object::Symbols* syms = obj->get_global_symbols();
1625
 
1626
            // Write the soname string table index.
1627
            section_offset_type soname_offset =
1628
                strtab->get_offset_from_key(entry->get_soname_key());
1629
            Swap32::writeval(pov, soname_offset);
1630
            pov += 4;
1631
 
1632
            // Skip the global symbol count for now.
1633
            unsigned char* orig_pov = pov;
1634
            pov += 4;
1635
 
1636
            // For each global symbol, write the global symbol table index.
1637
            unsigned int nsyms = syms->size();
1638
            unsigned int nsyms_out = 0;
1639
            for (unsigned int i = 0; i < nsyms; i++)
1640
              {
1641
                const Symbol* sym = (*syms)[i];
1642
                if (sym == NULL)
1643
                  continue;
1644
                if (sym->is_forwarder())
1645
                  sym = this->symtab_->resolve_forwards(sym);
1646
                if (sym->symtab_index() == -1U)
1647
                  continue;
1648 148 khays
                unsigned int flags = 0;
1649 27 khays
                if (sym->source() == Symbol::FROM_OBJECT
1650
                    && sym->object() == obj
1651
                    && sym->is_defined())
1652 148 khays
                  flags = INCREMENTAL_SHLIB_SYM_DEF;
1653
                else if (sym->is_copied_from_dynobj()
1654
                         && this->symtab_->get_copy_source(sym) == dynobj)
1655
                  flags = INCREMENTAL_SHLIB_SYM_COPY;
1656
                flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1657
                Swap32::writeval(pov, sym->symtab_index() | flags);
1658 27 khays
                pov += 4;
1659
                ++nsyms_out;
1660
              }
1661
 
1662
            // Now write the global symbol count.
1663
            Swap32::writeval(orig_pov, nsyms_out);
1664
          }
1665
          break;
1666
 
1667
        case INCREMENTAL_INPUT_ARCHIVE:
1668
          {
1669
            gold_assert(static_cast<unsigned int>(pov - oview)
1670
                        == (*p)->get_info_offset());
1671
            Incremental_archive_entry* entry = (*p)->archive_entry();
1672
            gold_assert(entry != NULL);
1673
 
1674
            // Write the member count and unused global symbol count.
1675
            unsigned int nmembers = entry->get_member_count();
1676
            unsigned int nsyms = entry->get_unused_global_symbol_count();
1677
            Swap32::writeval(pov, nmembers);
1678
            Swap32::writeval(pov + 4, nsyms);
1679
            pov += 8;
1680
 
1681
            // For each member, write the offset to its input file entry.
1682
            for (unsigned int i = 0; i < nmembers; ++i)
1683
              {
1684
                Incremental_object_entry* member = entry->get_member(i);
1685
                Swap32::writeval(pov, member->get_offset());
1686
                pov += 4;
1687
              }
1688
 
1689
            // For each global symbol, write the name offset.
1690
            for (unsigned int i = 0; i < nsyms; ++i)
1691
              {
1692
                Stringpool::Key key = entry->get_unused_global_symbol(i);
1693
                Swap32::writeval(pov, strtab->get_offset_from_key(key));
1694
                pov += 4;
1695
              }
1696
          }
1697
          break;
1698
 
1699
        default:
1700
          gold_unreachable();
1701
        }
1702
    }
1703
  return pov;
1704
}
1705
 
1706
// Write the contents of the .gnu_incremental_symtab section.
1707
 
1708
template<int size, bool big_endian>
1709
void
1710
Output_section_incremental_inputs<size, big_endian>::write_symtab(
1711
    unsigned char* pov,
1712
    unsigned int* global_syms,
1713
    unsigned int global_sym_count)
1714
{
1715
  for (unsigned int i = 0; i < global_sym_count; ++i)
1716
    {
1717
      Swap32::writeval(pov, global_syms[i]);
1718
      pov += 4;
1719
    }
1720
}
1721
 
1722
// This struct holds the view information needed to write the
1723
// .gnu_incremental_got_plt section.
1724
 
1725
struct Got_plt_view_info
1726
{
1727
  // Start of the GOT type array in the output view.
1728
  unsigned char* got_type_p;
1729
  // Start of the GOT descriptor array in the output view.
1730
  unsigned char* got_desc_p;
1731
  // Start of the PLT descriptor array in the output view.
1732
  unsigned char* plt_desc_p;
1733
  // Number of GOT entries.
1734
  unsigned int got_count;
1735
  // Number of PLT entries.
1736
  unsigned int plt_count;
1737
  // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1738
  unsigned int first_plt_entry_offset;
1739
  // Size of a PLT entry (this is a target-dependent value).
1740
  unsigned int plt_entry_size;
1741
  // Symbol index to write in the GOT descriptor array.  For global symbols,
1742
  // this is the global symbol table index; for local symbols, it is the
1743
  // local symbol table index.
1744
  unsigned int sym_index;
1745
  // Input file index to write in the GOT descriptor array.  For global
1746
  // symbols, this is 0; for local symbols, it is the index of the input
1747
  // file entry in the .gnu_incremental_inputs section.
1748
  unsigned int input_index;
1749
};
1750
 
1751
// Functor class for processing a GOT offset list for local symbols.
1752
// Writes the GOT type and symbol index into the GOT type and descriptor
1753
// arrays in the output section.
1754
 
1755
template<int size, bool big_endian>
1756
class Local_got_offset_visitor : public Got_offset_list::Visitor
1757
{
1758
 public:
1759
  Local_got_offset_visitor(struct Got_plt_view_info& info)
1760
    : info_(info)
1761
  { }
1762
 
1763
  void
1764
  visit(unsigned int got_type, unsigned int got_offset)
1765
  {
1766
    unsigned int got_index = got_offset / this->got_entry_size_;
1767
    gold_assert(got_index < this->info_.got_count);
1768
    // We can only handle GOT entry types in the range 0..0x7e
1769
    // because we use a byte array to store them, and we use the
1770
    // high bit to flag a local symbol.
1771
    gold_assert(got_type < 0x7f);
1772
    this->info_.got_type_p[got_index] = got_type | 0x80;
1773
    unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1774
    elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1775
    elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1776
  }
1777
 
1778
 private:
1779
  static const unsigned int got_entry_size_ = size / 8;
1780
  struct Got_plt_view_info& info_;
1781
};
1782
 
1783
// Functor class for processing a GOT offset list.  Writes the GOT type
1784
// and symbol index into the GOT type and descriptor arrays in the output
1785
// section.
1786
 
1787
template<int size, bool big_endian>
1788
class Global_got_offset_visitor : public Got_offset_list::Visitor
1789
{
1790
 public:
1791
  Global_got_offset_visitor(struct Got_plt_view_info& info)
1792
    : info_(info)
1793
  { }
1794
 
1795
  void
1796
  visit(unsigned int got_type, unsigned int got_offset)
1797
  {
1798
    unsigned int got_index = got_offset / this->got_entry_size_;
1799
    gold_assert(got_index < this->info_.got_count);
1800
    // We can only handle GOT entry types in the range 0..0x7e
1801
    // because we use a byte array to store them, and we use the
1802
    // high bit to flag a local symbol.
1803
    gold_assert(got_type < 0x7f);
1804
    this->info_.got_type_p[got_index] = got_type;
1805
    unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1806
    elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1807
    elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1808
  }
1809
 
1810
 private:
1811
  static const unsigned int got_entry_size_ = size / 8;
1812
  struct Got_plt_view_info& info_;
1813
};
1814
 
1815
// Functor class for processing the global symbol table.  Processes the
1816
// GOT offset list for the symbol, and writes the symbol table index
1817
// into the PLT descriptor array in the output section.
1818
 
1819
template<int size, bool big_endian>
1820
class Global_symbol_visitor_got_plt
1821
{
1822
 public:
1823
  Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1824
    : info_(info)
1825
  { }
1826
 
1827
  void
1828
  operator()(const Sized_symbol<size>* sym)
1829
  {
1830
    typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1831
    const Got_offset_list* got_offsets = sym->got_offset_list();
1832
    if (got_offsets != NULL)
1833
      {
1834
        this->info_.sym_index = sym->symtab_index();
1835
        this->info_.input_index = 0;
1836
        Got_visitor v(this->info_);
1837
        got_offsets->for_all_got_offsets(&v);
1838
      }
1839
    if (sym->has_plt_offset())
1840
      {
1841
        unsigned int plt_index =
1842
            ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1843
             / this->info_.plt_entry_size);
1844
        gold_assert(plt_index < this->info_.plt_count);
1845
        unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1846
        elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1847
      }
1848
  }
1849
 
1850
 private:
1851
  struct Got_plt_view_info& info_;
1852
};
1853
 
1854
// Write the contents of the .gnu_incremental_got_plt section.
1855
 
1856
template<int size, bool big_endian>
1857
void
1858
Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1859
    unsigned char* pov,
1860
    off_t view_size)
1861
{
1862
  Sized_target<size, big_endian>* target =
1863
    parameters->sized_target<size, big_endian>();
1864
 
1865
  // Set up the view information for the functors.
1866
  struct Got_plt_view_info view_info;
1867
  view_info.got_count = target->got_entry_count();
1868
  view_info.plt_count = target->plt_entry_count();
1869
  view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1870
  view_info.plt_entry_size = target->plt_entry_size();
1871
  view_info.got_type_p = pov + 8;
1872
  view_info.got_desc_p = (view_info.got_type_p
1873
                          + ((view_info.got_count + 3) & ~3));
1874
  view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1875
 
1876
  gold_assert(pov + view_size ==
1877
              view_info.plt_desc_p + view_info.plt_count * 4);
1878
 
1879
  // Write the section header.
1880
  Swap32::writeval(pov, view_info.got_count);
1881
  Swap32::writeval(pov + 4, view_info.plt_count);
1882
 
1883
  // Initialize the GOT type array to 0xff (reserved).
1884
  memset(view_info.got_type_p, 0xff, view_info.got_count);
1885
 
1886
  // Write the incremental GOT descriptors for local symbols.
1887
  typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1888
  for (Incremental_inputs::Input_list::const_iterator p =
1889
           this->inputs_->input_files().begin();
1890
       p != this->inputs_->input_files().end();
1891
       ++p)
1892
    {
1893
      if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1894
          && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1895
        continue;
1896
      Incremental_object_entry* entry = (*p)->object_entry();
1897
      gold_assert(entry != NULL);
1898
      const Object* obj = entry->object();
1899
      gold_assert(obj != NULL);
1900
      view_info.input_index = (*p)->get_file_index();
1901
      Got_visitor v(view_info);
1902
      obj->for_all_local_got_entries(&v);
1903
    }
1904
 
1905
  // Write the incremental GOT and PLT descriptors for global symbols.
1906
  typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1907
  symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1908
}
1909
 
1910
// Class Sized_relobj_incr.  Most of these methods are not used for
1911
// Incremental objects, but are required to be implemented by the
1912
// base class Object.
1913
 
1914
template<int size, bool big_endian>
1915
Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1916
    const std::string& name,
1917
    Sized_incremental_binary<size, big_endian>* ibase,
1918
    unsigned int input_file_index)
1919
  : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1920
    input_file_index_(input_file_index),
1921
    input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1922
    local_symbol_count_(0), output_local_dynsym_count_(0),
1923
    local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1924
    symbols_(), incr_reloc_offset_(-1U), incr_reloc_count_(0),
1925
    incr_reloc_output_index_(0), incr_relocs_(NULL), local_symbols_()
1926
{
1927
  if (this->input_reader_.is_in_system_directory())
1928
    this->set_is_in_system_directory();
1929
  const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1930
  this->set_shnum(shnum);
1931
  ibase->set_input_object(input_file_index, this);
1932
}
1933
 
1934
// Read the symbols.
1935
 
1936
template<int size, bool big_endian>
1937
void
1938
Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1939
{
1940
  gold_unreachable();
1941
}
1942
 
1943
// Lay out the input sections.
1944
 
1945
template<int size, bool big_endian>
1946
void
1947
Sized_relobj_incr<size, big_endian>::do_layout(
1948
    Symbol_table*,
1949
    Layout* layout,
1950
    Read_symbols_data*)
1951
{
1952
  const unsigned int shnum = this->shnum();
1953
  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1954
  gold_assert(incremental_inputs != NULL);
1955
  Output_sections& out_sections(this->output_sections());
1956
  out_sections.resize(shnum);
1957
  this->section_offsets().resize(shnum);
1958
  for (unsigned int i = 1; i < shnum; i++)
1959
    {
1960
      typename Input_entry_reader::Input_section_info sect =
1961
          this->input_reader_.get_input_section(i - 1);
1962
      // Add the section to the incremental inputs layout.
1963
      incremental_inputs->report_input_section(this, i, sect.name,
1964
                                               sect.sh_size);
1965
      if (sect.output_shndx == 0 || sect.sh_offset == -1)
1966
        continue;
1967
      Output_section* os = this->ibase_->output_section(sect.output_shndx);
1968
      gold_assert(os != NULL);
1969
      out_sections[i] = os;
1970
      this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
1971
    }
1972
 
1973
  // Process the COMDAT groups.
1974
  unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
1975
  for (unsigned int i = 0; i < ncomdat; i++)
1976
    {
1977
      const char* signature = this->input_reader_.get_comdat_group_signature(i);
1978
      if (signature == NULL || signature[0] == '\0')
1979
        this->error(_("COMDAT group has no signature"));
1980
      bool keep = layout->find_or_add_kept_section(signature, this, i, true,
1981
                                                   true, NULL);
1982
      if (!keep)
1983
        this->error(_("COMDAT group %s included twice in incremental link"),
1984
                    signature);
1985
    }
1986
}
1987
 
1988
// Layout sections whose layout was deferred while waiting for
1989
// input files from a plugin.
1990
template<int size, bool big_endian>
1991
void
1992
Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
1993
{
1994
}
1995
 
1996
// Add the symbols to the symbol table.
1997
 
1998
template<int size, bool big_endian>
1999
void
2000
Sized_relobj_incr<size, big_endian>::do_add_symbols(
2001
    Symbol_table* symtab,
2002
    Read_symbols_data*,
2003
    Layout*)
2004
{
2005
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2006
  unsigned char symbuf[sym_size];
2007
  elfcpp::Sym<size, big_endian> sym(symbuf);
2008
  elfcpp::Sym_write<size, big_endian> osym(symbuf);
2009
 
2010
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2011
 
2012
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2013
  this->symbols_.resize(nsyms);
2014
 
2015
  Incremental_binary::View symtab_view(NULL);
2016
  unsigned int symtab_count;
2017
  elfcpp::Elf_strtab strtab(NULL, 0);
2018
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2019
 
2020
  Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2021
  unsigned int isym_count = isymtab.symbol_count();
2022
  unsigned int first_global = symtab_count - isym_count;
2023
 
2024
  const unsigned char* sym_p;
2025
  for (unsigned int i = 0; i < nsyms; ++i)
2026
    {
2027
      Incremental_global_symbol_reader<big_endian> info =
2028
          this->input_reader_.get_global_symbol_reader(i);
2029
      unsigned int output_symndx = info.output_symndx();
2030
      sym_p = symtab_view.data() + output_symndx * sym_size;
2031
      elfcpp::Sym<size, big_endian> gsym(sym_p);
2032
      const char* name;
2033
      if (!strtab.get_c_string(gsym.get_st_name(), &name))
2034
        name = "";
2035
 
2036
      typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2037
      unsigned int shndx = gsym.get_st_shndx();
2038
      elfcpp::STB st_bind = gsym.get_st_bind();
2039
      elfcpp::STT st_type = gsym.get_st_type();
2040
 
2041
      // Local hidden symbols start out as globals, but get converted to
2042
      // to local during output.
2043
      if (st_bind == elfcpp::STB_LOCAL)
2044
        st_bind = elfcpp::STB_GLOBAL;
2045
 
2046
      unsigned int input_shndx = info.shndx();
2047 148 khays
      if (input_shndx == 0 || input_shndx == -1U)
2048 27 khays
        {
2049
          shndx = elfcpp::SHN_UNDEF;
2050
          v = 0;
2051
        }
2052
      else if (shndx != elfcpp::SHN_ABS)
2053
        {
2054
          // Find the input section and calculate the section-relative value.
2055
          gold_assert(shndx != elfcpp::SHN_UNDEF);
2056
          Output_section* os = this->ibase_->output_section(shndx);
2057
          gold_assert(os != NULL && os->has_fixed_layout());
2058
          typename Input_entry_reader::Input_section_info sect =
2059
              this->input_reader_.get_input_section(input_shndx - 1);
2060
          gold_assert(sect.output_shndx == shndx);
2061
          if (st_type != elfcpp::STT_TLS)
2062
            v -= os->address();
2063
          v -= sect.sh_offset;
2064
          shndx = input_shndx;
2065
        }
2066
 
2067
      osym.put_st_name(0);
2068
      osym.put_st_value(v);
2069
      osym.put_st_size(gsym.get_st_size());
2070
      osym.put_st_info(st_bind, st_type);
2071
      osym.put_st_other(gsym.get_st_other());
2072
      osym.put_st_shndx(shndx);
2073
 
2074 148 khays
      Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2075
 
2076
      // If this is a linker-defined symbol that hasn't yet been defined,
2077
      // define it now.
2078
      if (input_shndx == -1U && !res->is_defined())
2079
        {
2080
          shndx = gsym.get_st_shndx();
2081
          v = gsym.get_st_value();
2082
          Elf_size_type symsize = gsym.get_st_size();
2083
          if (shndx == elfcpp::SHN_ABS)
2084
            {
2085
              symtab->define_as_constant(name, NULL,
2086
                                         Symbol_table::INCREMENTAL_BASE,
2087
                                         v, symsize, st_type, st_bind,
2088
                                         gsym.get_st_visibility(), 0,
2089
                                         false, false);
2090
            }
2091
          else
2092
            {
2093
              Output_section* os = this->ibase_->output_section(shndx);
2094
              gold_assert(os != NULL && os->has_fixed_layout());
2095
              v -= os->address();
2096
              if (symsize > 0)
2097
                os->reserve(v, symsize);
2098
              symtab->define_in_output_data(name, NULL,
2099
                                            Symbol_table::INCREMENTAL_BASE,
2100
                                            os, v, symsize, st_type, st_bind,
2101
                                            gsym.get_st_visibility(), 0,
2102
                                            false, false);
2103
            }
2104
        }
2105
 
2106
      this->symbols_[i] = res;
2107
      this->ibase_->add_global_symbol(output_symndx - first_global, res);
2108 27 khays
    }
2109
}
2110
 
2111
// Return TRUE if we should include this object from an archive library.
2112
 
2113
template<int size, bool big_endian>
2114
Archive::Should_include
2115
Sized_relobj_incr<size, big_endian>::do_should_include_member(
2116
    Symbol_table*,
2117
    Layout*,
2118
    Read_symbols_data*,
2119
    std::string*)
2120
{
2121
  gold_unreachable();
2122
}
2123
 
2124
// Iterate over global symbols, calling a visitor class V for each.
2125
 
2126
template<int size, bool big_endian>
2127
void
2128
Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2129
    Read_symbols_data*,
2130
    Library_base::Symbol_visitor_base*)
2131
{
2132
  // This routine is not used for incremental objects.
2133
}
2134
 
2135
// Get the size of a section.
2136
 
2137
template<int size, bool big_endian>
2138
uint64_t
2139
Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2140
{
2141
  gold_unreachable();
2142
}
2143
 
2144
// Get the name of a section.
2145
 
2146
template<int size, bool big_endian>
2147
std::string
2148
Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int)
2149
{
2150
  gold_unreachable();
2151
}
2152
 
2153
// Return a view of the contents of a section.
2154
 
2155
template<int size, bool big_endian>
2156
Object::Location
2157
Sized_relobj_incr<size, big_endian>::do_section_contents(unsigned int)
2158
{
2159
  gold_unreachable();
2160
}
2161
 
2162
// Return section flags.
2163
 
2164
template<int size, bool big_endian>
2165
uint64_t
2166
Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2167
{
2168
  gold_unreachable();
2169
}
2170
 
2171
// Return section entsize.
2172
 
2173
template<int size, bool big_endian>
2174
uint64_t
2175
Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2176
{
2177
  gold_unreachable();
2178
}
2179
 
2180
// Return section address.
2181
 
2182
template<int size, bool big_endian>
2183
uint64_t
2184
Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2185
{
2186
  gold_unreachable();
2187
}
2188
 
2189
// Return section type.
2190
 
2191
template<int size, bool big_endian>
2192
unsigned int
2193
Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2194
{
2195
  gold_unreachable();
2196
}
2197
 
2198
// Return the section link field.
2199
 
2200
template<int size, bool big_endian>
2201
unsigned int
2202
Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2203
{
2204
  gold_unreachable();
2205
}
2206
 
2207
// Return the section link field.
2208
 
2209
template<int size, bool big_endian>
2210
unsigned int
2211
Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2212
{
2213
  gold_unreachable();
2214
}
2215
 
2216
// Return the section alignment.
2217
 
2218
template<int size, bool big_endian>
2219
uint64_t
2220
Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2221
{
2222
  gold_unreachable();
2223
}
2224
 
2225
// Return the Xindex structure to use.
2226
 
2227
template<int size, bool big_endian>
2228
Xindex*
2229
Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2230
{
2231
  gold_unreachable();
2232
}
2233
 
2234
// Get symbol counts.
2235
 
2236
template<int size, bool big_endian>
2237
void
2238
Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2239
    const Symbol_table*, size_t*, size_t*) const
2240
{
2241
  gold_unreachable();
2242
}
2243
 
2244
// Read the relocs.
2245
 
2246
template<int size, bool big_endian>
2247
void
2248
Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2249
{
2250
}
2251
 
2252
// Process the relocs to find list of referenced sections. Used only
2253
// during garbage collection.
2254
 
2255
template<int size, bool big_endian>
2256
void
2257
Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2258
                                                          Layout*,
2259
                                                          Read_relocs_data*)
2260
{
2261
  gold_unreachable();
2262
}
2263
 
2264
// Scan the relocs and adjust the symbol table.
2265
 
2266
template<int size, bool big_endian>
2267
void
2268
Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2269
                                                    Layout* layout,
2270
                                                    Read_relocs_data*)
2271
{
2272
  // Count the incremental relocations for this object.
2273
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2274
  this->allocate_incremental_reloc_counts();
2275
  for (unsigned int i = 0; i < nsyms; i++)
2276
    {
2277
      Incremental_global_symbol_reader<big_endian> sym =
2278
          this->input_reader_.get_global_symbol_reader(i);
2279
      unsigned int reloc_count = sym.reloc_count();
2280
      if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2281
        this->incr_reloc_offset_ = sym.reloc_offset();
2282
      this->incr_reloc_count_ += reloc_count;
2283
      for (unsigned int j = 0; j < reloc_count; j++)
2284
        this->count_incremental_reloc(i);
2285
    }
2286
  this->incr_reloc_output_index_ =
2287
      layout->incremental_inputs()->get_reloc_count();
2288
  this->finalize_incremental_relocs(layout, false);
2289
 
2290
  // The incoming incremental relocations may not end up in the same
2291
  // location after the incremental update, because the incremental info
2292
  // is regenerated in each link.  Because the new location may overlap
2293
  // with other data in the updated output file, we need to copy the
2294
  // relocations into a buffer so that we can still read them safely
2295
  // after we start writing updates to the output file.
2296
  if (this->incr_reloc_count_ > 0)
2297
    {
2298
      const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2299
          this->ibase_->relocs_reader();
2300
      const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2301
      unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2302
      this->incr_relocs_ = new unsigned char[len];
2303
      memcpy(this->incr_relocs_,
2304
             relocs_reader.data(this->incr_reloc_offset_),
2305
             len);
2306
    }
2307
}
2308
 
2309
// Count the local symbols.
2310
 
2311
template<int size, bool big_endian>
2312
void
2313
Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2314
    Stringpool_template<char>* pool,
2315
    Stringpool_template<char>*)
2316
{
2317
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2318
 
2319
  // Set the count of local symbols based on the incremental info.
2320
  unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2321
  this->local_symbol_count_ = nlocals;
2322
  this->local_symbols_.reserve(nlocals);
2323
 
2324
  // Get views of the base file's symbol table and string table.
2325
  Incremental_binary::View symtab_view(NULL);
2326
  unsigned int symtab_count;
2327
  elfcpp::Elf_strtab strtab(NULL, 0);
2328
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2329
 
2330
  // Read the local symbols from the base file's symbol table.
2331
  off_t off = this->input_reader_.get_local_symbol_offset();
2332
  const unsigned char* symp = symtab_view.data() + off;
2333
  for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2334
    {
2335
      elfcpp::Sym<size, big_endian> sym(symp);
2336
      const char* name;
2337
      if (!strtab.get_c_string(sym.get_st_name(), &name))
2338
        name = "";
2339
      gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2340
      name = pool->add(name, true, NULL);
2341
      this->local_symbols_.push_back(Local_symbol(name,
2342
                                                  sym.get_st_value(),
2343
                                                  sym.get_st_size(),
2344
                                                  sym.get_st_shndx(),
2345
                                                  sym.get_st_type(),
2346
                                                  false));
2347
    }
2348
}
2349
 
2350
// Finalize the local symbols.
2351
 
2352
template<int size, bool big_endian>
2353
unsigned int
2354
Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2355
    unsigned int index,
2356
    off_t off,
2357
    Symbol_table*)
2358
{
2359
  this->local_symbol_index_ = index;
2360
  this->local_symbol_offset_ = off;
2361
  return index + this->local_symbol_count_;
2362
}
2363
 
2364
// Set the offset where local dynamic symbol information will be stored.
2365
 
2366
template<int size, bool big_endian>
2367
unsigned int
2368
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2369
    unsigned int index)
2370
{
2371
  // FIXME: set local dynsym indexes.
2372
  return index;
2373
}
2374
 
2375
// Set the offset where local dynamic symbol information will be stored.
2376
 
2377
template<int size, bool big_endian>
2378
unsigned int
2379
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2380
{
2381
  return 0;
2382
}
2383
 
2384
// Relocate the input sections and write out the local symbols.
2385
// We don't actually do any relocation here.  For unchanged input files,
2386
// we reapply relocations only for symbols that have changed; that happens
2387
// in queue_final_tasks.  We do need to rewrite the incremental relocations
2388
// for this object.
2389
 
2390
template<int size, bool big_endian>
2391
void
2392
Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2393
                                                 const Layout* layout,
2394
                                                 Output_file* of)
2395
{
2396
  if (this->incr_reloc_count_ == 0)
2397
    return;
2398
 
2399
  const unsigned int incr_reloc_size =
2400
      Incremental_relocs_reader<size, big_endian>::reloc_size;
2401
 
2402
  // Get a view for the .gnu_incremental_relocs section.
2403
  Incremental_inputs* inputs = layout->incremental_inputs();
2404
  gold_assert(inputs != NULL);
2405
  const off_t relocs_off = inputs->relocs_section()->offset();
2406
  const off_t relocs_size = inputs->relocs_section()->data_size();
2407
  unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2408
 
2409
  // Copy the relocations from the buffer.
2410
  off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2411
  unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2412
  memcpy(view + off, this->incr_relocs_, len);
2413
 
2414
  // The output section table may have changed, so we need to map
2415
  // the old section index to the new section index for each relocation.
2416
  for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2417
    {
2418
      unsigned char* pov = view + off + i * incr_reloc_size;
2419
      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2420
      Output_section* os = this->ibase_->output_section(shndx);
2421
      gold_assert(os != NULL);
2422
      shndx = os->out_shndx();
2423
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2424
    }
2425
 
2426
  of->write_output_view(off, len, view);
2427
 
2428
  // Get views into the output file for the portions of the symbol table
2429
  // and the dynamic symbol table that we will be writing.
2430
  off_t symtab_off = layout->symtab_section()->offset();
2431
  off_t output_size = this->local_symbol_count_ * This::sym_size;
2432
  unsigned char* oview = NULL;
2433
  if (output_size > 0)
2434
    oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2435
                                output_size);
2436
 
2437
  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2438
  unsigned char* dyn_oview = NULL;
2439
  if (dyn_output_size > 0)
2440
    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2441
                                    dyn_output_size);
2442
 
2443
  // Write the local symbols.
2444
  unsigned char* ov = oview;
2445
  unsigned char* dyn_ov = dyn_oview;
2446
  const Stringpool* sympool = layout->sympool();
2447
  const Stringpool* dynpool = layout->dynpool();
2448
  Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2449
  Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2450
  for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2451
    {
2452
      Local_symbol& lsym(this->local_symbols_[i]);
2453
 
2454
      bool is_ordinary;
2455
      unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2456
                                                     &is_ordinary);
2457
      if (is_ordinary)
2458
        {
2459
          Output_section* os = this->ibase_->output_section(st_shndx);
2460
          st_shndx = os->out_shndx();
2461
          if (st_shndx >= elfcpp::SHN_LORESERVE)
2462
            {
2463
              symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2464
              if (lsym.needs_dynsym_entry)
2465
                dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2466
              st_shndx = elfcpp::SHN_XINDEX;
2467
            }
2468
        }
2469
 
2470
      // Write the symbol to the output symbol table.
2471
      {
2472
        elfcpp::Sym_write<size, big_endian> osym(ov);
2473
        osym.put_st_name(sympool->get_offset(lsym.name));
2474
        osym.put_st_value(lsym.st_value);
2475
        osym.put_st_size(lsym.st_size);
2476
        osym.put_st_info(elfcpp::STB_LOCAL,
2477
                         static_cast<elfcpp::STT>(lsym.st_type));
2478
        osym.put_st_other(0);
2479
        osym.put_st_shndx(st_shndx);
2480
        ov += sym_size;
2481
      }
2482
 
2483
      // Write the symbol to the output dynamic symbol table.
2484
      if (lsym.needs_dynsym_entry)
2485
        {
2486
          gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2487
          elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2488
          osym.put_st_name(dynpool->get_offset(lsym.name));
2489
          osym.put_st_value(lsym.st_value);
2490
          osym.put_st_size(lsym.st_size);
2491
          osym.put_st_info(elfcpp::STB_LOCAL,
2492
                           static_cast<elfcpp::STT>(lsym.st_type));
2493
          osym.put_st_other(0);
2494
          osym.put_st_shndx(st_shndx);
2495
          dyn_ov += sym_size;
2496
        }
2497
    }
2498
 
2499
  if (output_size > 0)
2500
    {
2501
      gold_assert(ov - oview == output_size);
2502
      of->write_output_view(symtab_off + this->local_symbol_offset_,
2503
                            output_size, oview);
2504
    }
2505
 
2506
  if (dyn_output_size > 0)
2507
    {
2508
      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2509
      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2510
                            dyn_oview);
2511
    }
2512
}
2513
 
2514
// Set the offset of a section.
2515
 
2516
template<int size, bool big_endian>
2517
void
2518
Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2519
                                                           uint64_t)
2520
{
2521
}
2522
 
2523
// Class Sized_incr_dynobj.  Most of these methods are not used for
2524
// Incremental objects, but are required to be implemented by the
2525
// base class Object.
2526
 
2527
template<int size, bool big_endian>
2528
Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2529
    const std::string& name,
2530
    Sized_incremental_binary<size, big_endian>* ibase,
2531
    unsigned int input_file_index)
2532
  : Dynobj(name, NULL), ibase_(ibase),
2533
    input_file_index_(input_file_index),
2534
    input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2535
    symbols_()
2536
{
2537
  if (this->input_reader_.is_in_system_directory())
2538
    this->set_is_in_system_directory();
2539
  if (this->input_reader_.as_needed())
2540
    this->set_as_needed();
2541
  this->set_soname_string(this->input_reader_.get_soname());
2542
  this->set_shnum(0);
2543
}
2544
 
2545
// Read the symbols.
2546
 
2547
template<int size, bool big_endian>
2548
void
2549
Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2550
{
2551
  gold_unreachable();
2552
}
2553
 
2554
// Lay out the input sections.
2555
 
2556
template<int size, bool big_endian>
2557
void
2558
Sized_incr_dynobj<size, big_endian>::do_layout(
2559
    Symbol_table*,
2560
    Layout*,
2561
    Read_symbols_data*)
2562
{
2563
}
2564
 
2565
// Add the symbols to the symbol table.
2566
 
2567
template<int size, bool big_endian>
2568
void
2569
Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2570
    Symbol_table* symtab,
2571
    Read_symbols_data*,
2572
    Layout*)
2573
{
2574
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2575
  unsigned char symbuf[sym_size];
2576
  elfcpp::Sym<size, big_endian> sym(symbuf);
2577
  elfcpp::Sym_write<size, big_endian> osym(symbuf);
2578
 
2579
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2580
 
2581
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2582
  this->symbols_.resize(nsyms);
2583
 
2584
  Incremental_binary::View symtab_view(NULL);
2585
  unsigned int symtab_count;
2586
  elfcpp::Elf_strtab strtab(NULL, 0);
2587
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2588
 
2589
  Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2590
  unsigned int isym_count = isymtab.symbol_count();
2591
  unsigned int first_global = symtab_count - isym_count;
2592
 
2593 148 khays
  // We keep a set of symbols that we have generated COPY relocations
2594
  // for, indexed by the symbol value. We do not need more than one
2595
  // COPY relocation per address.
2596
  typedef typename std::set<Address> Copied_symbols;
2597
  Copied_symbols copied_symbols;
2598
 
2599 27 khays
  const unsigned char* sym_p;
2600
  for (unsigned int i = 0; i < nsyms; ++i)
2601
    {
2602
      bool is_def;
2603 148 khays
      bool is_copy;
2604 27 khays
      unsigned int output_symndx =
2605 148 khays
          this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2606 27 khays
      sym_p = symtab_view.data() + output_symndx * sym_size;
2607
      elfcpp::Sym<size, big_endian> gsym(sym_p);
2608
      const char* name;
2609
      if (!strtab.get_c_string(gsym.get_st_name(), &name))
2610
        name = "";
2611
 
2612 148 khays
      Address v;
2613 27 khays
      unsigned int shndx;
2614
      elfcpp::STB st_bind = gsym.get_st_bind();
2615
      elfcpp::STT st_type = gsym.get_st_type();
2616
 
2617
      // Local hidden symbols start out as globals, but get converted to
2618
      // to local during output.
2619
      if (st_bind == elfcpp::STB_LOCAL)
2620
        st_bind = elfcpp::STB_GLOBAL;
2621
 
2622
      if (!is_def)
2623
        {
2624
          shndx = elfcpp::SHN_UNDEF;
2625
          v = 0;
2626
        }
2627
      else
2628
        {
2629
          // For a symbol defined in a shared object, the section index
2630
          // is meaningless, as long as it's not SHN_UNDEF.
2631
          shndx = 1;
2632
          v = gsym.get_st_value();
2633
        }
2634
 
2635
      osym.put_st_name(0);
2636
      osym.put_st_value(v);
2637
      osym.put_st_size(gsym.get_st_size());
2638
      osym.put_st_info(st_bind, st_type);
2639
      osym.put_st_other(gsym.get_st_other());
2640
      osym.put_st_shndx(shndx);
2641
 
2642 148 khays
      Sized_symbol<size>* res =
2643
          symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2644
      this->symbols_[i] = res;
2645 27 khays
      this->ibase_->add_global_symbol(output_symndx - first_global,
2646
                                      this->symbols_[i]);
2647 148 khays
 
2648
      if (is_copy)
2649
        {
2650
          std::pair<typename Copied_symbols::iterator, bool> ins =
2651
              copied_symbols.insert(v);
2652
          if (ins.second)
2653
            {
2654
              unsigned int shndx = gsym.get_st_shndx();
2655
              Output_section* os = this->ibase_->output_section(shndx);
2656
              off_t offset = v - os->address();
2657
              this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2658
            }
2659
        }
2660 27 khays
    }
2661
}
2662
 
2663
// Return TRUE if we should include this object from an archive library.
2664
 
2665
template<int size, bool big_endian>
2666
Archive::Should_include
2667
Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2668
    Symbol_table*,
2669
    Layout*,
2670
    Read_symbols_data*,
2671
    std::string*)
2672
{
2673
  gold_unreachable();
2674
}
2675
 
2676
// Iterate over global symbols, calling a visitor class V for each.
2677
 
2678
template<int size, bool big_endian>
2679
void
2680
Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2681
    Read_symbols_data*,
2682
    Library_base::Symbol_visitor_base*)
2683
{
2684
  // This routine is not used for dynamic libraries.
2685
}
2686
 
2687
// Iterate over local symbols, calling a visitor class V for each GOT offset
2688
// associated with a local symbol.
2689
 
2690
template<int size, bool big_endian>
2691
void
2692
Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2693
    Got_offset_list::Visitor*) const
2694
{
2695
}
2696
 
2697
// Get the size of a section.
2698
 
2699
template<int size, bool big_endian>
2700
uint64_t
2701
Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2702
{
2703
  gold_unreachable();
2704
}
2705
 
2706
// Get the name of a section.
2707
 
2708
template<int size, bool big_endian>
2709
std::string
2710
Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2711
{
2712
  gold_unreachable();
2713
}
2714
 
2715
// Return a view of the contents of a section.
2716
 
2717
template<int size, bool big_endian>
2718
Object::Location
2719
Sized_incr_dynobj<size, big_endian>::do_section_contents(unsigned int)
2720
{
2721
  gold_unreachable();
2722
}
2723
 
2724
// Return section flags.
2725
 
2726
template<int size, bool big_endian>
2727
uint64_t
2728
Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2729
{
2730
  gold_unreachable();
2731
}
2732
 
2733
// Return section entsize.
2734
 
2735
template<int size, bool big_endian>
2736
uint64_t
2737
Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2738
{
2739
  gold_unreachable();
2740
}
2741
 
2742
// Return section address.
2743
 
2744
template<int size, bool big_endian>
2745
uint64_t
2746
Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2747
{
2748
  gold_unreachable();
2749
}
2750
 
2751
// Return section type.
2752
 
2753
template<int size, bool big_endian>
2754
unsigned int
2755
Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2756
{
2757
  gold_unreachable();
2758
}
2759
 
2760
// Return the section link field.
2761
 
2762
template<int size, bool big_endian>
2763
unsigned int
2764
Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2765
{
2766
  gold_unreachable();
2767
}
2768
 
2769
// Return the section link field.
2770
 
2771
template<int size, bool big_endian>
2772
unsigned int
2773
Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2774
{
2775
  gold_unreachable();
2776
}
2777
 
2778
// Return the section alignment.
2779
 
2780
template<int size, bool big_endian>
2781
uint64_t
2782
Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2783
{
2784
  gold_unreachable();
2785
}
2786
 
2787
// Return the Xindex structure to use.
2788
 
2789
template<int size, bool big_endian>
2790
Xindex*
2791
Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2792
{
2793
  gold_unreachable();
2794
}
2795
 
2796
// Get symbol counts.
2797
 
2798
template<int size, bool big_endian>
2799
void
2800
Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2801
    const Symbol_table*, size_t*, size_t*) const
2802
{
2803
  gold_unreachable();
2804
}
2805
 
2806
// Allocate an incremental object of the appropriate size and endianness.
2807
 
2808
Object*
2809
make_sized_incremental_object(
2810
    Incremental_binary* ibase,
2811
    unsigned int input_file_index,
2812
    Incremental_input_type input_type,
2813
    const Incremental_binary::Input_reader* input_reader)
2814
{
2815
  Object* obj = NULL;
2816
  std::string name(input_reader->filename());
2817
 
2818
  switch (parameters->size_and_endianness())
2819
    {
2820
#ifdef HAVE_TARGET_32_LITTLE
2821
    case Parameters::TARGET_32_LITTLE:
2822
      {
2823
        Sized_incremental_binary<32, false>* sized_ibase =
2824
            static_cast<Sized_incremental_binary<32, false>*>(ibase);
2825
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2826
          obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2827
                                                 input_file_index);
2828
        else
2829
          obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2830
                                                 input_file_index);
2831
      }
2832
      break;
2833
#endif
2834
#ifdef HAVE_TARGET_32_BIG
2835
    case Parameters::TARGET_32_BIG:
2836
      {
2837
        Sized_incremental_binary<32, true>* sized_ibase =
2838
            static_cast<Sized_incremental_binary<32, true>*>(ibase);
2839
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2840
          obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2841
                                                input_file_index);
2842
        else
2843
          obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2844
                                                input_file_index);
2845
      }
2846
      break;
2847
#endif
2848
#ifdef HAVE_TARGET_64_LITTLE
2849
    case Parameters::TARGET_64_LITTLE:
2850
      {
2851
        Sized_incremental_binary<64, false>* sized_ibase =
2852
            static_cast<Sized_incremental_binary<64, false>*>(ibase);
2853
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2854
          obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2855
                                                 input_file_index);
2856
        else
2857
          obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2858
                                                 input_file_index);
2859
     }
2860
      break;
2861
#endif
2862
#ifdef HAVE_TARGET_64_BIG
2863
    case Parameters::TARGET_64_BIG:
2864
      {
2865
        Sized_incremental_binary<64, true>* sized_ibase =
2866
            static_cast<Sized_incremental_binary<64, true>*>(ibase);
2867
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2868
          obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
2869
                                                input_file_index);
2870
        else
2871
          obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
2872
                                                input_file_index);
2873
      }
2874
      break;
2875
#endif
2876
    default:
2877
      gold_unreachable();
2878
    }
2879
 
2880
  gold_assert(obj != NULL);
2881
  return obj;
2882
}
2883
 
2884
// Copy the unused symbols from the incremental input info.
2885
// We need to do this because we may be overwriting the incremental
2886
// input info in the base file before we write the new incremental
2887
// info.
2888
void
2889
Incremental_library::copy_unused_symbols()
2890
{
2891
  unsigned int symcount = this->input_reader_->get_unused_symbol_count();
2892
  this->unused_symbols_.reserve(symcount);
2893
  for (unsigned int i = 0; i < symcount; ++i)
2894
    {
2895
      std::string name(this->input_reader_->get_unused_symbol(i));
2896
      this->unused_symbols_.push_back(name);
2897
    }
2898
}
2899
 
2900
// Iterator for unused global symbols in the library.
2901
void
2902
Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
2903
{
2904
  for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
2905
       p != this->unused_symbols_.end();
2906
       ++p)
2907
  v->visit(p->c_str());
2908
}
2909
 
2910
// Instantiate the templates we need.
2911
 
2912
#ifdef HAVE_TARGET_32_LITTLE
2913
template
2914
class Sized_incremental_binary<32, false>;
2915
 
2916
template
2917
class Sized_relobj_incr<32, false>;
2918
 
2919
template
2920
class Sized_incr_dynobj<32, false>;
2921
#endif
2922
 
2923
#ifdef HAVE_TARGET_32_BIG
2924
template
2925
class Sized_incremental_binary<32, true>;
2926
 
2927
template
2928
class Sized_relobj_incr<32, true>;
2929
 
2930
template
2931
class Sized_incr_dynobj<32, true>;
2932
#endif
2933
 
2934
#ifdef HAVE_TARGET_64_LITTLE
2935
template
2936
class Sized_incremental_binary<64, false>;
2937
 
2938
template
2939
class Sized_relobj_incr<64, false>;
2940
 
2941
template
2942
class Sized_incr_dynobj<64, false>;
2943
#endif
2944
 
2945
#ifdef HAVE_TARGET_64_BIG
2946
template
2947
class Sized_incremental_binary<64, true>;
2948
 
2949
template
2950
class Sized_relobj_incr<64, true>;
2951
 
2952
template
2953
class Sized_incr_dynobj<64, true>;
2954
#endif
2955
 
2956
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.