| 1 |
27 |
khays |
// int_encoding.h -- variable length and unaligned integers -*- C++ -*-
|
| 2 |
|
|
|
| 3 |
|
|
// Copyright 2009 Free Software Foundation, Inc.
|
| 4 |
|
|
// Written by Doug Kwan <dougkwan@google.com> by refactoring scattered
|
| 5 |
|
|
// contents from other files in gold. Original code written by Ian
|
| 6 |
|
|
// Lance Taylor <iant@google.com> and Caleb Howe <cshowe@google.com>.
|
| 7 |
|
|
|
| 8 |
|
|
// This file is part of gold.
|
| 9 |
|
|
|
| 10 |
|
|
// This program is free software; you can redistribute it and/or modify
|
| 11 |
|
|
// it under the terms of the GNU General Public License as published by
|
| 12 |
|
|
// the Free Software Foundation; either version 3 of the License, or
|
| 13 |
|
|
// (at your option) any later version.
|
| 14 |
|
|
|
| 15 |
|
|
// This program is distributed in the hope that it will be useful,
|
| 16 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 17 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 18 |
|
|
// GNU General Public License for more details.
|
| 19 |
|
|
|
| 20 |
|
|
// You should have received a copy of the GNU General Public License
|
| 21 |
|
|
// along with this program; if not, write to the Free Software
|
| 22 |
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
| 23 |
|
|
// MA 02110-1301, USA.
|
| 24 |
|
|
|
| 25 |
|
|
#ifndef GOLD_INT_ENCODING_H
|
| 26 |
|
|
#define GOLD_INT_ENCODING_H
|
| 27 |
|
|
|
| 28 |
|
|
#include <vector>
|
| 29 |
|
|
#include "elfcpp.h"
|
| 30 |
|
|
#include "target.h"
|
| 31 |
|
|
#include "parameters.h"
|
| 32 |
|
|
|
| 33 |
|
|
namespace gold
|
| 34 |
|
|
{
|
| 35 |
|
|
|
| 36 |
|
|
//
|
| 37 |
|
|
// LEB 128 encoding support.
|
| 38 |
|
|
//
|
| 39 |
|
|
|
| 40 |
|
|
// Read a ULEB 128 encoded integer from BUFFER. Return the length of the
|
| 41 |
166 |
khays |
// encoded integer at the location PLEN. The common case of a single-byte
|
| 42 |
|
|
// value is handled inline, and multi-byte values are processed by the _x
|
| 43 |
|
|
// routine, where BYTE is the first byte of the value.
|
| 44 |
27 |
khays |
|
| 45 |
|
|
uint64_t
|
| 46 |
166 |
khays |
read_unsigned_LEB_128_x(const unsigned char* buffer, size_t* plen,
|
| 47 |
|
|
unsigned char byte);
|
| 48 |
27 |
khays |
|
| 49 |
166 |
khays |
inline uint64_t
|
| 50 |
|
|
read_unsigned_LEB_128(const unsigned char* buffer, size_t* plen)
|
| 51 |
|
|
{
|
| 52 |
|
|
unsigned char byte = *buffer++;
|
| 53 |
|
|
|
| 54 |
|
|
if ((byte & 0x80) != 0)
|
| 55 |
|
|
return read_unsigned_LEB_128_x(buffer, plen, byte);
|
| 56 |
|
|
|
| 57 |
|
|
*plen = 1;
|
| 58 |
|
|
return static_cast<uint64_t>(byte);
|
| 59 |
|
|
}
|
| 60 |
|
|
|
| 61 |
27 |
khays |
// Read an SLEB 128 encoded integer from BUFFER. Return the length of the
|
| 62 |
166 |
khays |
// encoded integer at the location PLEN. The common case of a single-byte
|
| 63 |
|
|
// value is handled inline, and multi-byte values are processed by the _x
|
| 64 |
|
|
// routine, where BYTE is the first byte of the value.
|
| 65 |
27 |
khays |
|
| 66 |
|
|
int64_t
|
| 67 |
166 |
khays |
read_signed_LEB_128_x(const unsigned char* buffer, size_t* plen,
|
| 68 |
|
|
unsigned char byte);
|
| 69 |
27 |
khays |
|
| 70 |
166 |
khays |
inline int64_t
|
| 71 |
|
|
read_signed_LEB_128(const unsigned char* buffer, size_t* plen)
|
| 72 |
|
|
{
|
| 73 |
|
|
unsigned char byte = *buffer++;
|
| 74 |
|
|
|
| 75 |
|
|
if ((byte & 0x80) != 0)
|
| 76 |
|
|
return read_signed_LEB_128_x(buffer, plen, byte);
|
| 77 |
|
|
|
| 78 |
|
|
*plen = 1;
|
| 79 |
|
|
if (byte & 0x40)
|
| 80 |
|
|
return -(static_cast<int64_t>(1) << 7) | static_cast<int64_t>(byte);
|
| 81 |
|
|
return static_cast<int64_t>(byte);
|
| 82 |
|
|
}
|
| 83 |
|
|
|
| 84 |
27 |
khays |
// Write a ULEB 128 encoded VALUE to BUFFER.
|
| 85 |
|
|
|
| 86 |
|
|
void
|
| 87 |
|
|
write_unsigned_LEB_128(std::vector<unsigned char>* buffer, uint64_t value);
|
| 88 |
|
|
|
| 89 |
|
|
// Return the ULEB 128 encoded size of VALUE.
|
| 90 |
|
|
|
| 91 |
|
|
size_t
|
| 92 |
|
|
get_length_as_unsigned_LEB_128(uint64_t value);
|
| 93 |
|
|
|
| 94 |
|
|
//
|
| 95 |
|
|
// Unaligned integer encoding support.
|
| 96 |
|
|
//
|
| 97 |
|
|
|
| 98 |
|
|
// Insert VALSIZE-bit integer VALUE into DESTINATION.
|
| 99 |
|
|
|
| 100 |
|
|
template <int valsize>
|
| 101 |
|
|
void insert_into_vector(std::vector<unsigned char>* destination,
|
| 102 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype value)
|
| 103 |
|
|
{
|
| 104 |
|
|
unsigned char buffer[valsize / 8];
|
| 105 |
|
|
if (parameters->target().is_big_endian())
|
| 106 |
|
|
elfcpp::Swap_unaligned<valsize, true>::writeval(buffer, value);
|
| 107 |
|
|
else
|
| 108 |
|
|
elfcpp::Swap_unaligned<valsize, false>::writeval(buffer, value);
|
| 109 |
|
|
destination->insert(destination->end(), buffer, buffer + valsize / 8);
|
| 110 |
|
|
}
|
| 111 |
|
|
|
| 112 |
|
|
// Read a possibly unaligned integer of SIZE from SOURCE.
|
| 113 |
|
|
|
| 114 |
|
|
template <int valsize>
|
| 115 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype
|
| 116 |
|
|
read_from_pointer(const unsigned char* source)
|
| 117 |
|
|
{
|
| 118 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype return_value;
|
| 119 |
|
|
if (parameters->target().is_big_endian())
|
| 120 |
|
|
return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
|
| 121 |
|
|
else
|
| 122 |
|
|
return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
|
| 123 |
|
|
return return_value;
|
| 124 |
|
|
}
|
| 125 |
|
|
|
| 126 |
|
|
// Read a possibly unaligned integer of SIZE. Update SOURCE after read.
|
| 127 |
|
|
|
| 128 |
|
|
template <int valsize>
|
| 129 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype
|
| 130 |
|
|
read_from_pointer(unsigned char** source)
|
| 131 |
|
|
{
|
| 132 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype return_value;
|
| 133 |
|
|
if (parameters->target().is_big_endian())
|
| 134 |
|
|
return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
|
| 135 |
|
|
else
|
| 136 |
|
|
return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
|
| 137 |
|
|
*source += valsize / 8;
|
| 138 |
|
|
return return_value;
|
| 139 |
|
|
}
|
| 140 |
|
|
|
| 141 |
|
|
// Same as the above except for use with const unsigned char data.
|
| 142 |
|
|
|
| 143 |
|
|
template <int valsize>
|
| 144 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype
|
| 145 |
|
|
read_from_pointer(const unsigned char** source)
|
| 146 |
|
|
{
|
| 147 |
|
|
typename elfcpp::Valtype_base<valsize>::Valtype return_value;
|
| 148 |
|
|
if (parameters->target().is_big_endian())
|
| 149 |
|
|
return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
|
| 150 |
|
|
else
|
| 151 |
|
|
return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
|
| 152 |
|
|
*source += valsize / 8;
|
| 153 |
|
|
return return_value;
|
| 154 |
|
|
}
|
| 155 |
|
|
|
| 156 |
|
|
} // End namespace gold.
|
| 157 |
|
|
|
| 158 |
|
|
#endif // !defined(GOLD_INT_ENCODING_H)
|