OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [layout.cc] - Blame information for rev 159

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// layout.cc -- lay out output file sections for gold
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cerrno>
26
#include <cstring>
27
#include <algorithm>
28
#include <iostream>
29
#include <fstream>
30
#include <utility>
31
#include <fcntl.h>
32
#include <fnmatch.h>
33
#include <unistd.h>
34
#include "libiberty.h"
35
#include "md5.h"
36
#include "sha1.h"
37
 
38
#include "parameters.h"
39
#include "options.h"
40
#include "mapfile.h"
41
#include "script.h"
42
#include "script-sections.h"
43
#include "output.h"
44
#include "symtab.h"
45
#include "dynobj.h"
46
#include "ehframe.h"
47
#include "compressed_output.h"
48
#include "reduced_debug_output.h"
49 159 khays
#include "object.h"
50 27 khays
#include "reloc.h"
51
#include "descriptors.h"
52
#include "plugin.h"
53
#include "incremental.h"
54
#include "layout.h"
55
 
56
namespace gold
57
{
58
 
59
// Class Free_list.
60
 
61
// The total number of free lists used.
62
unsigned int Free_list::num_lists = 0;
63
// The total number of free list nodes used.
64
unsigned int Free_list::num_nodes = 0;
65
// The total number of calls to Free_list::remove.
66
unsigned int Free_list::num_removes = 0;
67
// The total number of nodes visited during calls to Free_list::remove.
68
unsigned int Free_list::num_remove_visits = 0;
69
// The total number of calls to Free_list::allocate.
70
unsigned int Free_list::num_allocates = 0;
71
// The total number of nodes visited during calls to Free_list::allocate.
72
unsigned int Free_list::num_allocate_visits = 0;
73
 
74
// Initialize the free list.  Creates a single free list node that
75
// describes the entire region of length LEN.  If EXTEND is true,
76
// allocate() is allowed to extend the region beyond its initial
77
// length.
78
 
79
void
80
Free_list::init(off_t len, bool extend)
81
{
82
  this->list_.push_front(Free_list_node(0, len));
83
  this->last_remove_ = this->list_.begin();
84
  this->extend_ = extend;
85
  this->length_ = len;
86
  ++Free_list::num_lists;
87
  ++Free_list::num_nodes;
88
}
89
 
90
// Remove a chunk from the free list.  Because we start with a single
91
// node that covers the entire section, and remove chunks from it one
92
// at a time, we do not need to coalesce chunks or handle cases that
93
// span more than one free node.  We expect to remove chunks from the
94
// free list in order, and we expect to have only a few chunks of free
95
// space left (corresponding to files that have changed since the last
96
// incremental link), so a simple linear list should provide sufficient
97
// performance.
98
 
99
void
100
Free_list::remove(off_t start, off_t end)
101
{
102
  if (start == end)
103
    return;
104
  gold_assert(start < end);
105
 
106
  ++Free_list::num_removes;
107
 
108
  Iterator p = this->last_remove_;
109
  if (p->start_ > start)
110
    p = this->list_.begin();
111
 
112
  for (; p != this->list_.end(); ++p)
113
    {
114
      ++Free_list::num_remove_visits;
115
      // Find a node that wholly contains the indicated region.
116
      if (p->start_ <= start && p->end_ >= end)
117
        {
118
          // Case 1: the indicated region spans the whole node.
119
          // Add some fuzz to avoid creating tiny free chunks.
120
          if (p->start_ + 3 >= start && p->end_ <= end + 3)
121
            p = this->list_.erase(p);
122
          // Case 2: remove a chunk from the start of the node.
123
          else if (p->start_ + 3 >= start)
124
            p->start_ = end;
125
          // Case 3: remove a chunk from the end of the node.
126
          else if (p->end_ <= end + 3)
127
            p->end_ = start;
128
          // Case 4: remove a chunk from the middle, and split
129
          // the node into two.
130
          else
131
            {
132
              Free_list_node newnode(p->start_, start);
133
              p->start_ = end;
134
              this->list_.insert(p, newnode);
135
              ++Free_list::num_nodes;
136
            }
137
          this->last_remove_ = p;
138
          return;
139
        }
140
    }
141
 
142
  // Did not find a node containing the given chunk.  This could happen
143
  // because a small chunk was already removed due to the fuzz.
144
  gold_debug(DEBUG_INCREMENTAL,
145
             "Free_list::remove(%d,%d) not found",
146
             static_cast<int>(start), static_cast<int>(end));
147
}
148
 
149
// Allocate a chunk of size LEN from the free list.  Returns -1ULL
150
// if a sufficiently large chunk of free space is not found.
151
// We use a simple first-fit algorithm.
152
 
153
off_t
154
Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155
{
156
  gold_debug(DEBUG_INCREMENTAL,
157
             "Free_list::allocate(%08lx, %d, %08lx)",
158
             static_cast<long>(len), static_cast<int>(align),
159
             static_cast<long>(minoff));
160
  if (len == 0)
161
    return align_address(minoff, align);
162
 
163
  ++Free_list::num_allocates;
164
 
165 159 khays
  // We usually want to drop free chunks smaller than 4 bytes.
166
  // If we need to guarantee a minimum hole size, though, we need
167
  // to keep track of all free chunks.
168
  const int fuzz = this->min_hole_ > 0 ? 0 : 3;
169
 
170 27 khays
  for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
171
    {
172
      ++Free_list::num_allocate_visits;
173
      off_t start = p->start_ > minoff ? p->start_ : minoff;
174
      start = align_address(start, align);
175
      off_t end = start + len;
176 159 khays
      if (end > p->end_ && p->end_ == this->length_ && this->extend_)
177 27 khays
        {
178 159 khays
          this->length_ = end;
179
          p->end_ = end;
180
        }
181
      if (end == p->end_ || (end <= p->end_ - this->min_hole_))
182
        {
183
          if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
184 27 khays
            this->list_.erase(p);
185 159 khays
          else if (p->start_ + fuzz >= start)
186 27 khays
            p->start_ = end;
187 159 khays
          else if (p->end_ <= end + fuzz)
188 27 khays
            p->end_ = start;
189
          else
190
            {
191
              Free_list_node newnode(p->start_, start);
192
              p->start_ = end;
193
              this->list_.insert(p, newnode);
194
              ++Free_list::num_nodes;
195
            }
196
          return start;
197
        }
198
    }
199 159 khays
  if (this->extend_)
200
    {
201
      off_t start = align_address(this->length_, align);
202
      this->length_ = start + len;
203
      return start;
204
    }
205 27 khays
  return -1;
206
}
207
 
208
// Dump the free list (for debugging).
209
void
210
Free_list::dump()
211
{
212
  gold_info("Free list:\n     start      end   length\n");
213
  for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
214
    gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
215
              static_cast<long>(p->end_),
216
              static_cast<long>(p->end_ - p->start_));
217
}
218
 
219
// Print the statistics for the free lists.
220
void
221
Free_list::print_stats()
222
{
223
  fprintf(stderr, _("%s: total free lists: %u\n"),
224
          program_name, Free_list::num_lists);
225
  fprintf(stderr, _("%s: total free list nodes: %u\n"),
226
          program_name, Free_list::num_nodes);
227
  fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
228
          program_name, Free_list::num_removes);
229
  fprintf(stderr, _("%s: nodes visited: %u\n"),
230
          program_name, Free_list::num_remove_visits);
231
  fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
232
          program_name, Free_list::num_allocates);
233
  fprintf(stderr, _("%s: nodes visited: %u\n"),
234
          program_name, Free_list::num_allocate_visits);
235
}
236
 
237
// Layout::Relaxation_debug_check methods.
238
 
239
// Check that sections and special data are in reset states.
240
// We do not save states for Output_sections and special Output_data.
241
// So we check that they have not assigned any addresses or offsets.
242
// clean_up_after_relaxation simply resets their addresses and offsets.
243
void
244
Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245
    const Layout::Section_list& sections,
246
    const Layout::Data_list& special_outputs)
247
{
248
  for(Layout::Section_list::const_iterator p = sections.begin();
249
      p != sections.end();
250
      ++p)
251
    gold_assert((*p)->address_and_file_offset_have_reset_values());
252
 
253
  for(Layout::Data_list::const_iterator p = special_outputs.begin();
254
      p != special_outputs.end();
255
      ++p)
256
    gold_assert((*p)->address_and_file_offset_have_reset_values());
257
}
258
 
259
// Save information of SECTIONS for checking later.
260
 
261
void
262
Layout::Relaxation_debug_check::read_sections(
263
    const Layout::Section_list& sections)
264
{
265
  for(Layout::Section_list::const_iterator p = sections.begin();
266
      p != sections.end();
267
      ++p)
268
    {
269
      Output_section* os = *p;
270
      Section_info info;
271
      info.output_section = os;
272
      info.address = os->is_address_valid() ? os->address() : 0;
273
      info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
274
      info.offset = os->is_offset_valid()? os->offset() : -1 ;
275
      this->section_infos_.push_back(info);
276
    }
277
}
278
 
279
// Verify SECTIONS using previously recorded information.
280
 
281
void
282
Layout::Relaxation_debug_check::verify_sections(
283
    const Layout::Section_list& sections)
284
{
285
  size_t i = 0;
286
  for(Layout::Section_list::const_iterator p = sections.begin();
287
      p != sections.end();
288
      ++p, ++i)
289
    {
290
      Output_section* os = *p;
291
      uint64_t address = os->is_address_valid() ? os->address() : 0;
292
      off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
293
      off_t offset = os->is_offset_valid()? os->offset() : -1 ;
294
 
295
      if (i >= this->section_infos_.size())
296
        {
297
          gold_fatal("Section_info of %s missing.\n", os->name());
298
        }
299
      const Section_info& info = this->section_infos_[i];
300
      if (os != info.output_section)
301
        gold_fatal("Section order changed.  Expecting %s but see %s\n",
302
                   info.output_section->name(), os->name());
303
      if (address != info.address
304
          || data_size != info.data_size
305
          || offset != info.offset)
306
        gold_fatal("Section %s changed.\n", os->name());
307
    }
308
}
309
 
310
// Layout_task_runner methods.
311
 
312
// Lay out the sections.  This is called after all the input objects
313
// have been read.
314
 
315
void
316
Layout_task_runner::run(Workqueue* workqueue, const Task* task)
317
{
318
  Layout* layout = this->layout_;
319
  off_t file_size = layout->finalize(this->input_objects_,
320
                                     this->symtab_,
321
                                     this->target_,
322
                                     task);
323
 
324
  // Now we know the final size of the output file and we know where
325
  // each piece of information goes.
326
 
327
  if (this->mapfile_ != NULL)
328
    {
329
      this->mapfile_->print_discarded_sections(this->input_objects_);
330
      layout->print_to_mapfile(this->mapfile_);
331
    }
332
 
333
  Output_file* of;
334
  if (layout->incremental_base() == NULL)
335
    {
336
      of = new Output_file(parameters->options().output_file_name());
337
      if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
338
        of->set_is_temporary();
339
      of->open(file_size);
340
    }
341
  else
342
    {
343
      of = layout->incremental_base()->output_file();
344
 
345
      // Apply the incremental relocations for symbols whose values
346
      // have changed.  We do this before we resize the file and start
347
      // writing anything else to it, so that we can read the old
348
      // incremental information from the file before (possibly)
349
      // overwriting it.
350
      if (parameters->incremental_update())
351
        layout->incremental_base()->apply_incremental_relocs(this->symtab_,
352
                                                             this->layout_,
353
                                                             of);
354
 
355
      of->resize(file_size);
356
    }
357
 
358
  // Queue up the final set of tasks.
359
  gold::queue_final_tasks(this->options_, this->input_objects_,
360
                          this->symtab_, layout, workqueue, of);
361
}
362
 
363
// Layout methods.
364
 
365
Layout::Layout(int number_of_input_files, Script_options* script_options)
366
  : number_of_input_files_(number_of_input_files),
367
    script_options_(script_options),
368
    namepool_(),
369
    sympool_(),
370
    dynpool_(),
371
    signatures_(),
372
    section_name_map_(),
373
    segment_list_(),
374
    section_list_(),
375
    unattached_section_list_(),
376
    special_output_list_(),
377
    section_headers_(NULL),
378
    tls_segment_(NULL),
379
    relro_segment_(NULL),
380 159 khays
    interp_segment_(NULL),
381 27 khays
    increase_relro_(0),
382
    symtab_section_(NULL),
383
    symtab_xindex_(NULL),
384
    dynsym_section_(NULL),
385
    dynsym_xindex_(NULL),
386
    dynamic_section_(NULL),
387
    dynamic_symbol_(NULL),
388
    dynamic_data_(NULL),
389
    eh_frame_section_(NULL),
390
    eh_frame_data_(NULL),
391
    added_eh_frame_data_(false),
392
    eh_frame_hdr_section_(NULL),
393
    build_id_note_(NULL),
394
    debug_abbrev_(NULL),
395
    debug_info_(NULL),
396
    group_signatures_(),
397
    output_file_size_(-1),
398
    have_added_input_section_(false),
399
    sections_are_attached_(false),
400
    input_requires_executable_stack_(false),
401
    input_with_gnu_stack_note_(false),
402
    input_without_gnu_stack_note_(false),
403
    has_static_tls_(false),
404
    any_postprocessing_sections_(false),
405
    resized_signatures_(false),
406
    have_stabstr_section_(false),
407 159 khays
    section_ordering_specified_(false),
408 27 khays
    incremental_inputs_(NULL),
409
    record_output_section_data_from_script_(false),
410
    script_output_section_data_list_(),
411
    segment_states_(NULL),
412
    relaxation_debug_check_(NULL),
413 159 khays
    input_section_position_(),
414
    input_section_glob_(),
415 27 khays
    incremental_base_(NULL),
416
    free_list_()
417
{
418
  // Make space for more than enough segments for a typical file.
419
  // This is just for efficiency--it's OK if we wind up needing more.
420
  this->segment_list_.reserve(12);
421
 
422
  // We expect two unattached Output_data objects: the file header and
423
  // the segment headers.
424
  this->special_output_list_.reserve(2);
425
 
426
  // Initialize structure needed for an incremental build.
427
  if (parameters->incremental())
428
    this->incremental_inputs_ = new Incremental_inputs;
429
 
430
  // The section name pool is worth optimizing in all cases, because
431
  // it is small, but there are often overlaps due to .rel sections.
432
  this->namepool_.set_optimize();
433
}
434
 
435
// For incremental links, record the base file to be modified.
436
 
437
void
438
Layout::set_incremental_base(Incremental_binary* base)
439
{
440
  this->incremental_base_ = base;
441
  this->free_list_.init(base->output_file()->filesize(), true);
442
}
443
 
444
// Hash a key we use to look up an output section mapping.
445
 
446
size_t
447
Layout::Hash_key::operator()(const Layout::Key& k) const
448
{
449
 return k.first + k.second.first + k.second.second;
450
}
451
 
452
// Returns whether the given section is in the list of
453
// debug-sections-used-by-some-version-of-gdb.  Currently,
454
// we've checked versions of gdb up to and including 6.7.1.
455
 
456
static const char* gdb_sections[] =
457
{ ".debug_abbrev",
458
  // ".debug_aranges",   // not used by gdb as of 6.7.1
459
  ".debug_frame",
460
  ".debug_info",
461
  ".debug_types",
462
  ".debug_line",
463
  ".debug_loc",
464
  ".debug_macinfo",
465
  // ".debug_pubnames",  // not used by gdb as of 6.7.1
466
  ".debug_ranges",
467
  ".debug_str",
468
};
469
 
470
static const char* lines_only_debug_sections[] =
471
{ ".debug_abbrev",
472
  // ".debug_aranges",   // not used by gdb as of 6.7.1
473
  // ".debug_frame",
474
  ".debug_info",
475
  // ".debug_types",
476
  ".debug_line",
477
  // ".debug_loc",
478
  // ".debug_macinfo",
479
  // ".debug_pubnames",  // not used by gdb as of 6.7.1
480
  // ".debug_ranges",
481
  ".debug_str",
482
};
483
 
484
static inline bool
485
is_gdb_debug_section(const char* str)
486
{
487
  // We can do this faster: binary search or a hashtable.  But why bother?
488
  for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
489
    if (strcmp(str, gdb_sections[i]) == 0)
490
      return true;
491
  return false;
492
}
493
 
494
static inline bool
495
is_lines_only_debug_section(const char* str)
496
{
497
  // We can do this faster: binary search or a hashtable.  But why bother?
498
  for (size_t i = 0;
499
       i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
500
       ++i)
501
    if (strcmp(str, lines_only_debug_sections[i]) == 0)
502
      return true;
503
  return false;
504
}
505
 
506
// Sometimes we compress sections.  This is typically done for
507
// sections that are not part of normal program execution (such as
508
// .debug_* sections), and where the readers of these sections know
509
// how to deal with compressed sections.  This routine doesn't say for
510
// certain whether we'll compress -- it depends on commandline options
511
// as well -- just whether this section is a candidate for compression.
512
// (The Output_compressed_section class decides whether to compress
513
// a given section, and picks the name of the compressed section.)
514
 
515
static bool
516
is_compressible_debug_section(const char* secname)
517
{
518
  return (is_prefix_of(".debug", secname));
519
}
520
 
521
// We may see compressed debug sections in input files.  Return TRUE
522
// if this is the name of a compressed debug section.
523
 
524
bool
525
is_compressed_debug_section(const char* secname)
526
{
527
  return (is_prefix_of(".zdebug", secname));
528
}
529
 
530
// Whether to include this section in the link.
531
 
532
template<int size, bool big_endian>
533
bool
534
Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
535
                        const elfcpp::Shdr<size, big_endian>& shdr)
536
{
537
  if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
538
    return false;
539
 
540
  switch (shdr.get_sh_type())
541
    {
542
    case elfcpp::SHT_NULL:
543
    case elfcpp::SHT_SYMTAB:
544
    case elfcpp::SHT_DYNSYM:
545
    case elfcpp::SHT_HASH:
546
    case elfcpp::SHT_DYNAMIC:
547
    case elfcpp::SHT_SYMTAB_SHNDX:
548
      return false;
549
 
550
    case elfcpp::SHT_STRTAB:
551
      // Discard the sections which have special meanings in the ELF
552
      // ABI.  Keep others (e.g., .stabstr).  We could also do this by
553
      // checking the sh_link fields of the appropriate sections.
554
      return (strcmp(name, ".dynstr") != 0
555
              && strcmp(name, ".strtab") != 0
556
              && strcmp(name, ".shstrtab") != 0);
557
 
558
    case elfcpp::SHT_RELA:
559
    case elfcpp::SHT_REL:
560
    case elfcpp::SHT_GROUP:
561
      // If we are emitting relocations these should be handled
562
      // elsewhere.
563
      gold_assert(!parameters->options().relocatable()
564
                  && !parameters->options().emit_relocs());
565
      return false;
566
 
567
    case elfcpp::SHT_PROGBITS:
568
      if (parameters->options().strip_debug()
569
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570
        {
571
          if (is_debug_info_section(name))
572
            return false;
573
        }
574
      if (parameters->options().strip_debug_non_line()
575
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
576
        {
577
          // Debugging sections can only be recognized by name.
578
          if (is_prefix_of(".debug", name)
579
              && !is_lines_only_debug_section(name))
580
            return false;
581
        }
582
      if (parameters->options().strip_debug_gdb()
583
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
584
        {
585
          // Debugging sections can only be recognized by name.
586
          if (is_prefix_of(".debug", name)
587
              && !is_gdb_debug_section(name))
588
            return false;
589
        }
590
      if (parameters->options().strip_lto_sections()
591
          && !parameters->options().relocatable()
592
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
593
        {
594
          // Ignore LTO sections containing intermediate code.
595
          if (is_prefix_of(".gnu.lto_", name))
596
            return false;
597
        }
598
      // The GNU linker strips .gnu_debuglink sections, so we do too.
599
      // This is a feature used to keep debugging information in
600
      // separate files.
601
      if (strcmp(name, ".gnu_debuglink") == 0)
602
        return false;
603
      return true;
604
 
605
    default:
606
      return true;
607
    }
608
}
609
 
610
// Return an output section named NAME, or NULL if there is none.
611
 
612
Output_section*
613
Layout::find_output_section(const char* name) const
614
{
615
  for (Section_list::const_iterator p = this->section_list_.begin();
616
       p != this->section_list_.end();
617
       ++p)
618
    if (strcmp((*p)->name(), name) == 0)
619
      return *p;
620
  return NULL;
621
}
622
 
623
// Return an output segment of type TYPE, with segment flags SET set
624
// and segment flags CLEAR clear.  Return NULL if there is none.
625
 
626
Output_segment*
627
Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
628
                            elfcpp::Elf_Word clear) const
629
{
630
  for (Segment_list::const_iterator p = this->segment_list_.begin();
631
       p != this->segment_list_.end();
632
       ++p)
633
    if (static_cast<elfcpp::PT>((*p)->type()) == type
634
        && ((*p)->flags() & set) == set
635
        && ((*p)->flags() & clear) == 0)
636
      return *p;
637
  return NULL;
638
}
639
 
640 159 khays
// When we put a .ctors or .dtors section with more than one word into
641
// a .init_array or .fini_array section, we need to reverse the words
642
// in the .ctors/.dtors section.  This is because .init_array executes
643
// constructors front to back, where .ctors executes them back to
644
// front, and vice-versa for .fini_array/.dtors.  Although we do want
645
// to remap .ctors/.dtors into .init_array/.fini_array because it can
646
// be more efficient, we don't want to change the order in which
647
// constructors/destructors are run.  This set just keeps track of
648
// these sections which need to be reversed.  It is only changed by
649
// Layout::layout.  It should be a private member of Layout, but that
650
// would require layout.h to #include object.h to get the definition
651
// of Section_id.
652
static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
653
 
654
// Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
655
// .init_array/.fini_array section.
656
 
657
bool
658
Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
659
{
660
  return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
661
          != ctors_sections_in_init_array.end());
662
}
663
 
664 27 khays
// Return the output section to use for section NAME with type TYPE
665
// and section flags FLAGS.  NAME must be canonicalized in the string
666 159 khays
// pool, and NAME_KEY is the key.  ORDER is where this should appear
667
// in the output sections.  IS_RELRO is true for a relro section.
668 27 khays
 
669
Output_section*
670
Layout::get_output_section(const char* name, Stringpool::Key name_key,
671
                           elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
672
                           Output_section_order order, bool is_relro)
673
{
674 159 khays
  elfcpp::Elf_Word lookup_type = type;
675
 
676
  // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
677
  // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
678
  // .init_array, .fini_array, and .preinit_array sections by name
679
  // whatever their type in the input file.  We do this because the
680
  // types are not always right in the input files.
681
  if (lookup_type == elfcpp::SHT_INIT_ARRAY
682
      || lookup_type == elfcpp::SHT_FINI_ARRAY
683
      || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
684
    lookup_type = elfcpp::SHT_PROGBITS;
685
 
686 27 khays
  elfcpp::Elf_Xword lookup_flags = flags;
687
 
688
  // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
689
  // read-write with read-only sections.  Some other ELF linkers do
690
  // not do this.  FIXME: Perhaps there should be an option
691
  // controlling this.
692
  lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
693
 
694 159 khays
  const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
695 27 khays
  const std::pair<Key, Output_section*> v(key, NULL);
696
  std::pair<Section_name_map::iterator, bool> ins(
697
    this->section_name_map_.insert(v));
698
 
699
  if (!ins.second)
700
    return ins.first->second;
701
  else
702
    {
703
      // This is the first time we've seen this name/type/flags
704
      // combination.  For compatibility with the GNU linker, we
705
      // combine sections with contents and zero flags with sections
706
      // with non-zero flags.  This is a workaround for cases where
707
      // assembler code forgets to set section flags.  FIXME: Perhaps
708
      // there should be an option to control this.
709
      Output_section* os = NULL;
710
 
711 159 khays
      if (lookup_type == elfcpp::SHT_PROGBITS)
712 27 khays
        {
713
          if (flags == 0)
714
            {
715
              Output_section* same_name = this->find_output_section(name);
716
              if (same_name != NULL
717 159 khays
                  && (same_name->type() == elfcpp::SHT_PROGBITS
718
                      || same_name->type() == elfcpp::SHT_INIT_ARRAY
719
                      || same_name->type() == elfcpp::SHT_FINI_ARRAY
720
                      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
721 27 khays
                  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
722
                os = same_name;
723
            }
724
          else if ((flags & elfcpp::SHF_TLS) == 0)
725
            {
726
              elfcpp::Elf_Xword zero_flags = 0;
727 159 khays
              const Key zero_key(name_key, std::make_pair(lookup_type,
728
                                                          zero_flags));
729 27 khays
              Section_name_map::iterator p =
730
                  this->section_name_map_.find(zero_key);
731
              if (p != this->section_name_map_.end())
732
                os = p->second;
733
            }
734
        }
735
 
736
      if (os == NULL)
737
        os = this->make_output_section(name, type, flags, order, is_relro);
738
 
739
      ins.first->second = os;
740
      return os;
741
    }
742
}
743
 
744
// Pick the output section to use for section NAME, in input file
745
// RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
746
// linker created section.  IS_INPUT_SECTION is true if we are
747
// choosing an output section for an input section found in a input
748 159 khays
// file.  ORDER is where this section should appear in the output
749
// sections.  IS_RELRO is true for a relro section.  This will return
750
// NULL if the input section should be discarded.
751 27 khays
 
752
Output_section*
753
Layout::choose_output_section(const Relobj* relobj, const char* name,
754
                              elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
755
                              bool is_input_section, Output_section_order order,
756
                              bool is_relro)
757
{
758
  // We should not see any input sections after we have attached
759
  // sections to segments.
760
  gold_assert(!is_input_section || !this->sections_are_attached_);
761
 
762
  // Some flags in the input section should not be automatically
763
  // copied to the output section.
764
  flags &= ~ (elfcpp::SHF_INFO_LINK
765
              | elfcpp::SHF_GROUP
766
              | elfcpp::SHF_MERGE
767
              | elfcpp::SHF_STRINGS);
768
 
769
  // We only clear the SHF_LINK_ORDER flag in for
770
  // a non-relocatable link.
771
  if (!parameters->options().relocatable())
772
    flags &= ~elfcpp::SHF_LINK_ORDER;
773
 
774
  if (this->script_options_->saw_sections_clause())
775
    {
776
      // We are using a SECTIONS clause, so the output section is
777
      // chosen based only on the name.
778
 
779
      Script_sections* ss = this->script_options_->script_sections();
780
      const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
781
      Output_section** output_section_slot;
782
      Script_sections::Section_type script_section_type;
783
      const char* orig_name = name;
784
      name = ss->output_section_name(file_name, name, &output_section_slot,
785
                                     &script_section_type);
786
      if (name == NULL)
787
        {
788
          gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
789
                                     "because it is not allowed by the "
790
                                     "SECTIONS clause of the linker script"),
791
                     orig_name);
792
          // The SECTIONS clause says to discard this input section.
793
          return NULL;
794
        }
795
 
796
      // We can only handle script section types ST_NONE and ST_NOLOAD.
797
      switch (script_section_type)
798
        {
799
        case Script_sections::ST_NONE:
800
          break;
801
        case Script_sections::ST_NOLOAD:
802
          flags &= elfcpp::SHF_ALLOC;
803
          break;
804
        default:
805
          gold_unreachable();
806
        }
807
 
808
      // If this is an orphan section--one not mentioned in the linker
809
      // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
810
      // default processing below.
811
 
812
      if (output_section_slot != NULL)
813
        {
814
          if (*output_section_slot != NULL)
815
            {
816
              (*output_section_slot)->update_flags_for_input_section(flags);
817
              return *output_section_slot;
818
            }
819
 
820
          // We don't put sections found in the linker script into
821
          // SECTION_NAME_MAP_.  That keeps us from getting confused
822
          // if an orphan section is mapped to a section with the same
823
          // name as one in the linker script.
824
 
825
          name = this->namepool_.add(name, false, NULL);
826
 
827
          Output_section* os = this->make_output_section(name, type, flags,
828
                                                         order, is_relro);
829
 
830
          os->set_found_in_sections_clause();
831
 
832
          // Special handling for NOLOAD sections.
833
          if (script_section_type == Script_sections::ST_NOLOAD)
834
            {
835
              os->set_is_noload();
836
 
837
              // The constructor of Output_section sets addresses of non-ALLOC
838
              // sections to 0 by default.  We don't want that for NOLOAD
839
              // sections even if they have no SHF_ALLOC flag.
840
              if ((os->flags() & elfcpp::SHF_ALLOC) == 0
841
                  && os->is_address_valid())
842
                {
843
                  gold_assert(os->address() == 0
844
                              && !os->is_offset_valid()
845
                              && !os->is_data_size_valid());
846
                  os->reset_address_and_file_offset();
847
                }
848
            }
849
 
850
          *output_section_slot = os;
851
          return os;
852
        }
853
    }
854
 
855
  // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
856
 
857
  size_t len = strlen(name);
858
  char* uncompressed_name = NULL;
859
 
860
  // Compressed debug sections should be mapped to the corresponding
861
  // uncompressed section.
862
  if (is_compressed_debug_section(name))
863
    {
864
      uncompressed_name = new char[len];
865
      uncompressed_name[0] = '.';
866
      gold_assert(name[0] == '.' && name[1] == 'z');
867
      strncpy(&uncompressed_name[1], &name[2], len - 2);
868
      uncompressed_name[len - 1] = '\0';
869
      len -= 1;
870
      name = uncompressed_name;
871
    }
872
 
873
  // Turn NAME from the name of the input section into the name of the
874
  // output section.
875
  if (is_input_section
876
      && !this->script_options_->saw_sections_clause()
877
      && !parameters->options().relocatable())
878 159 khays
    name = Layout::output_section_name(relobj, name, &len);
879 27 khays
 
880
  Stringpool::Key name_key;
881
  name = this->namepool_.add_with_length(name, len, true, &name_key);
882
 
883
  if (uncompressed_name != NULL)
884
    delete[] uncompressed_name;
885
 
886
  // Find or make the output section.  The output section is selected
887
  // based on the section name, type, and flags.
888
  return this->get_output_section(name, name_key, type, flags, order, is_relro);
889
}
890
 
891
// For incremental links, record the initial fixed layout of a section
892
// from the base file, and return a pointer to the Output_section.
893
 
894
template<int size, bool big_endian>
895
Output_section*
896
Layout::init_fixed_output_section(const char* name,
897
                                  elfcpp::Shdr<size, big_endian>& shdr)
898
{
899
  unsigned int sh_type = shdr.get_sh_type();
900
 
901
  // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
902
  // All others will be created from scratch and reallocated.
903
  if (sh_type != elfcpp::SHT_PROGBITS
904
      && sh_type != elfcpp::SHT_NOBITS
905
      && sh_type != elfcpp::SHT_NOTE)
906
    return NULL;
907
 
908
  typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
909
  typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
910
  typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
911
  typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
912
  typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
913
      shdr.get_sh_addralign();
914
 
915
  // Make the output section.
916
  Stringpool::Key name_key;
917
  name = this->namepool_.add(name, true, &name_key);
918
  Output_section* os = this->get_output_section(name, name_key, sh_type,
919
                                                sh_flags, ORDER_INVALID, false);
920
  os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
921
  if (sh_type != elfcpp::SHT_NOBITS)
922
    this->free_list_.remove(sh_offset, sh_offset + sh_size);
923
  return os;
924
}
925
 
926
// Return the output section to use for input section SHNDX, with name
927
// NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
928
// index of a relocation section which applies to this section, or 0
929
// if none, or -1U if more than one.  RELOC_TYPE is the type of the
930
// relocation section if there is one.  Set *OFF to the offset of this
931
// input section without the output section.  Return NULL if the
932
// section should be discarded.  Set *OFF to -1 if the section
933
// contents should not be written directly to the output file, but
934
// will instead receive special handling.
935
 
936
template<int size, bool big_endian>
937
Output_section*
938
Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
939
               const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
940
               unsigned int reloc_shndx, unsigned int, off_t* off)
941
{
942
  *off = 0;
943
 
944
  if (!this->include_section(object, name, shdr))
945
    return NULL;
946
 
947
  elfcpp::Elf_Word sh_type = shdr.get_sh_type();
948
 
949
  // In a relocatable link a grouped section must not be combined with
950
  // any other sections.
951 159 khays
  Output_section* os;
952 27 khays
  if (parameters->options().relocatable()
953
      && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
954
    {
955
      name = this->namepool_.add(name, true, NULL);
956
      os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
957
                                     ORDER_INVALID, false);
958
    }
959
  else
960
    {
961
      os = this->choose_output_section(object, name, sh_type,
962
                                       shdr.get_sh_flags(), true,
963
                                       ORDER_INVALID, false);
964
      if (os == NULL)
965
        return NULL;
966
    }
967
 
968
  // By default the GNU linker sorts input sections whose names match
969 159 khays
  // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
970
  // sections are sorted by name.  This is used to implement
971
  // constructor priority ordering.  We are compatible.  When we put
972
  // .ctor sections in .init_array and .dtor sections in .fini_array,
973
  // we must also sort plain .ctor and .dtor sections.
974 27 khays
  if (!this->script_options_->saw_sections_clause()
975 159 khays
      && !parameters->options().relocatable()
976 27 khays
      && (is_prefix_of(".ctors.", name)
977
          || is_prefix_of(".dtors.", name)
978
          || is_prefix_of(".init_array.", name)
979 159 khays
          || is_prefix_of(".fini_array.", name)
980
          || (parameters->options().ctors_in_init_array()
981
              && (strcmp(name, ".ctors") == 0
982
                  || strcmp(name, ".dtors") == 0))))
983 27 khays
    os->set_must_sort_attached_input_sections();
984
 
985 159 khays
  // If this is a .ctors or .ctors.* section being mapped to a
986
  // .init_array section, or a .dtors or .dtors.* section being mapped
987
  // to a .fini_array section, we will need to reverse the words if
988
  // there is more than one.  Record this section for later.  See
989
  // ctors_sections_in_init_array above.
990
  if (!this->script_options_->saw_sections_clause()
991
      && !parameters->options().relocatable()
992
      && shdr.get_sh_size() > size / 8
993
      && (((strcmp(name, ".ctors") == 0
994
            || is_prefix_of(".ctors.", name))
995
           && strcmp(os->name(), ".init_array") == 0)
996
          || ((strcmp(name, ".dtors") == 0
997
               || is_prefix_of(".dtors.", name))
998
              && strcmp(os->name(), ".fini_array") == 0)))
999
    ctors_sections_in_init_array.insert(Section_id(object, shndx));
1000
 
1001 27 khays
  // FIXME: Handle SHF_LINK_ORDER somewhere.
1002
 
1003
  elfcpp::Elf_Xword orig_flags = os->flags();
1004
 
1005
  *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1006
                               this->script_options_->saw_sections_clause());
1007
 
1008
  // If the flags changed, we may have to change the order.
1009
  if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1010
    {
1011
      orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1012
      elfcpp::Elf_Xword new_flags =
1013
        os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1014
      if (orig_flags != new_flags)
1015
        os->set_order(this->default_section_order(os, false));
1016
    }
1017
 
1018
  this->have_added_input_section_ = true;
1019
 
1020
  return os;
1021
}
1022
 
1023
// Handle a relocation section when doing a relocatable link.
1024
 
1025
template<int size, bool big_endian>
1026
Output_section*
1027
Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1028
                     unsigned int,
1029
                     const elfcpp::Shdr<size, big_endian>& shdr,
1030
                     Output_section* data_section,
1031
                     Relocatable_relocs* rr)
1032
{
1033
  gold_assert(parameters->options().relocatable()
1034
              || parameters->options().emit_relocs());
1035
 
1036
  int sh_type = shdr.get_sh_type();
1037
 
1038
  std::string name;
1039
  if (sh_type == elfcpp::SHT_REL)
1040
    name = ".rel";
1041
  else if (sh_type == elfcpp::SHT_RELA)
1042
    name = ".rela";
1043
  else
1044
    gold_unreachable();
1045
  name += data_section->name();
1046
 
1047
  // In a relocatable link relocs for a grouped section must not be
1048
  // combined with other reloc sections.
1049
  Output_section* os;
1050
  if (!parameters->options().relocatable()
1051
      || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1052
    os = this->choose_output_section(object, name.c_str(), sh_type,
1053
                                     shdr.get_sh_flags(), false,
1054
                                     ORDER_INVALID, false);
1055
  else
1056
    {
1057
      const char* n = this->namepool_.add(name.c_str(), true, NULL);
1058
      os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1059
                                     ORDER_INVALID, false);
1060
    }
1061
 
1062
  os->set_should_link_to_symtab();
1063
  os->set_info_section(data_section);
1064
 
1065
  Output_section_data* posd;
1066
  if (sh_type == elfcpp::SHT_REL)
1067
    {
1068
      os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1069
      posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1070
                                           size,
1071
                                           big_endian>(rr);
1072
    }
1073
  else if (sh_type == elfcpp::SHT_RELA)
1074
    {
1075
      os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1076
      posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1077
                                           size,
1078
                                           big_endian>(rr);
1079
    }
1080
  else
1081
    gold_unreachable();
1082
 
1083
  os->add_output_section_data(posd);
1084
  rr->set_output_data(posd);
1085
 
1086
  return os;
1087
}
1088
 
1089
// Handle a group section when doing a relocatable link.
1090
 
1091
template<int size, bool big_endian>
1092
void
1093
Layout::layout_group(Symbol_table* symtab,
1094
                     Sized_relobj_file<size, big_endian>* object,
1095
                     unsigned int,
1096
                     const char* group_section_name,
1097
                     const char* signature,
1098
                     const elfcpp::Shdr<size, big_endian>& shdr,
1099
                     elfcpp::Elf_Word flags,
1100
                     std::vector<unsigned int>* shndxes)
1101
{
1102
  gold_assert(parameters->options().relocatable());
1103
  gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1104
  group_section_name = this->namepool_.add(group_section_name, true, NULL);
1105
  Output_section* os = this->make_output_section(group_section_name,
1106
                                                 elfcpp::SHT_GROUP,
1107
                                                 shdr.get_sh_flags(),
1108
                                                 ORDER_INVALID, false);
1109
 
1110
  // We need to find a symbol with the signature in the symbol table.
1111
  // If we don't find one now, we need to look again later.
1112
  Symbol* sym = symtab->lookup(signature, NULL);
1113
  if (sym != NULL)
1114
    os->set_info_symndx(sym);
1115
  else
1116
    {
1117
      // Reserve some space to minimize reallocations.
1118
      if (this->group_signatures_.empty())
1119
        this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1120
 
1121
      // We will wind up using a symbol whose name is the signature.
1122
      // So just put the signature in the symbol name pool to save it.
1123
      signature = symtab->canonicalize_name(signature);
1124
      this->group_signatures_.push_back(Group_signature(os, signature));
1125
    }
1126
 
1127
  os->set_should_link_to_symtab();
1128
  os->set_entsize(4);
1129
 
1130
  section_size_type entry_count =
1131
    convert_to_section_size_type(shdr.get_sh_size() / 4);
1132
  Output_section_data* posd =
1133
    new Output_data_group<size, big_endian>(object, entry_count, flags,
1134
                                            shndxes);
1135
  os->add_output_section_data(posd);
1136
}
1137
 
1138
// Special GNU handling of sections name .eh_frame.  They will
1139
// normally hold exception frame data as defined by the C++ ABI
1140
// (http://codesourcery.com/cxx-abi/).
1141
 
1142
template<int size, bool big_endian>
1143
Output_section*
1144
Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1145
                        const unsigned char* symbols,
1146
                        off_t symbols_size,
1147
                        const unsigned char* symbol_names,
1148
                        off_t symbol_names_size,
1149
                        unsigned int shndx,
1150
                        const elfcpp::Shdr<size, big_endian>& shdr,
1151
                        unsigned int reloc_shndx, unsigned int reloc_type,
1152
                        off_t* off)
1153
{
1154 159 khays
  gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1155
              || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1156 27 khays
  gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1157
 
1158 159 khays
  Output_section* os = this->make_eh_frame_section(object);
1159
  if (os == NULL)
1160
    return NULL;
1161
 
1162
  gold_assert(this->eh_frame_section_ == os);
1163
 
1164
  elfcpp::Elf_Xword orig_flags = os->flags();
1165
 
1166
  if (!parameters->incremental()
1167
      && this->eh_frame_data_->add_ehframe_input_section(object,
1168
                                                         symbols,
1169
                                                         symbols_size,
1170
                                                         symbol_names,
1171
                                                         symbol_names_size,
1172
                                                         shndx,
1173
                                                         reloc_shndx,
1174
                                                         reloc_type))
1175
    {
1176
      os->update_flags_for_input_section(shdr.get_sh_flags());
1177
 
1178
      // A writable .eh_frame section is a RELRO section.
1179
      if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1180
          != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1181
        {
1182
          os->set_is_relro();
1183
          os->set_order(ORDER_RELRO);
1184
        }
1185
 
1186
      // We found a .eh_frame section we are going to optimize, so now
1187
      // we can add the set of optimized sections to the output
1188
      // section.  We need to postpone adding this until we've found a
1189
      // section we can optimize so that the .eh_frame section in
1190
      // crtbegin.o winds up at the start of the output section.
1191
      if (!this->added_eh_frame_data_)
1192
        {
1193
          os->add_output_section_data(this->eh_frame_data_);
1194
          this->added_eh_frame_data_ = true;
1195
        }
1196
      *off = -1;
1197
    }
1198
  else
1199
    {
1200
      // We couldn't handle this .eh_frame section for some reason.
1201
      // Add it as a normal section.
1202
      bool saw_sections_clause = this->script_options_->saw_sections_clause();
1203
      *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1204
                                   reloc_shndx, saw_sections_clause);
1205
      this->have_added_input_section_ = true;
1206
 
1207
      if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1208
          != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1209
        os->set_order(this->default_section_order(os, false));
1210
    }
1211
 
1212
  return os;
1213
}
1214
 
1215
// Create and return the magic .eh_frame section.  Create
1216
// .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1217
// input .eh_frame section; it may be NULL.
1218
 
1219
Output_section*
1220
Layout::make_eh_frame_section(const Relobj* object)
1221
{
1222
  // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1223
  // SHT_PROGBITS.
1224
  Output_section* os = this->choose_output_section(object, ".eh_frame",
1225 27 khays
                                                   elfcpp::SHT_PROGBITS,
1226
                                                   elfcpp::SHF_ALLOC, false,
1227
                                                   ORDER_EHFRAME, false);
1228
  if (os == NULL)
1229
    return NULL;
1230
 
1231
  if (this->eh_frame_section_ == NULL)
1232
    {
1233
      this->eh_frame_section_ = os;
1234
      this->eh_frame_data_ = new Eh_frame();
1235
 
1236
      // For incremental linking, we do not optimize .eh_frame sections
1237
      // or create a .eh_frame_hdr section.
1238
      if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1239
        {
1240
          Output_section* hdr_os =
1241
            this->choose_output_section(NULL, ".eh_frame_hdr",
1242
                                        elfcpp::SHT_PROGBITS,
1243
                                        elfcpp::SHF_ALLOC, false,
1244
                                        ORDER_EHFRAME, false);
1245
 
1246
          if (hdr_os != NULL)
1247
            {
1248
              Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1249
                                                        this->eh_frame_data_);
1250
              hdr_os->add_output_section_data(hdr_posd);
1251
 
1252
              hdr_os->set_after_input_sections();
1253
 
1254
              if (!this->script_options_->saw_phdrs_clause())
1255
                {
1256
                  Output_segment* hdr_oseg;
1257
                  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1258
                                                       elfcpp::PF_R);
1259
                  hdr_oseg->add_output_section_to_nonload(hdr_os,
1260
                                                          elfcpp::PF_R);
1261
                }
1262
 
1263
              this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1264
            }
1265
        }
1266
    }
1267
 
1268 159 khays
  return os;
1269
}
1270 27 khays
 
1271 159 khays
// Add an exception frame for a PLT.  This is called from target code.
1272
 
1273
void
1274
Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1275
                             size_t cie_length, const unsigned char* fde_data,
1276
                             size_t fde_length)
1277
{
1278
  if (parameters->incremental())
1279 27 khays
    {
1280 159 khays
      // FIXME: Maybe this could work some day....
1281
      return;
1282 27 khays
    }
1283 159 khays
  Output_section* os = this->make_eh_frame_section(NULL);
1284
  if (os == NULL)
1285
    return;
1286
  this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1287
                                            fde_data, fde_length);
1288
  if (!this->added_eh_frame_data_)
1289 27 khays
    {
1290 159 khays
      os->add_output_section_data(this->eh_frame_data_);
1291
      this->added_eh_frame_data_ = true;
1292 27 khays
    }
1293
}
1294
 
1295
// Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1296
// the output section.
1297
 
1298
Output_section*
1299
Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1300
                                elfcpp::Elf_Xword flags,
1301
                                Output_section_data* posd,
1302
                                Output_section_order order, bool is_relro)
1303
{
1304
  Output_section* os = this->choose_output_section(NULL, name, type, flags,
1305
                                                   false, order, is_relro);
1306
  if (os != NULL)
1307
    os->add_output_section_data(posd);
1308
  return os;
1309
}
1310
 
1311
// Map section flags to segment flags.
1312
 
1313
elfcpp::Elf_Word
1314
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1315
{
1316
  elfcpp::Elf_Word ret = elfcpp::PF_R;
1317
  if ((flags & elfcpp::SHF_WRITE) != 0)
1318
    ret |= elfcpp::PF_W;
1319
  if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1320
    ret |= elfcpp::PF_X;
1321
  return ret;
1322
}
1323
 
1324
// Make a new Output_section, and attach it to segments as
1325
// appropriate.  ORDER is the order in which this section should
1326
// appear in the output segment.  IS_RELRO is true if this is a relro
1327
// (read-only after relocations) section.
1328
 
1329
Output_section*
1330
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1331
                            elfcpp::Elf_Xword flags,
1332
                            Output_section_order order, bool is_relro)
1333
{
1334
  Output_section* os;
1335
  if ((flags & elfcpp::SHF_ALLOC) == 0
1336
      && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1337
      && is_compressible_debug_section(name))
1338
    os = new Output_compressed_section(&parameters->options(), name, type,
1339
                                       flags);
1340
  else if ((flags & elfcpp::SHF_ALLOC) == 0
1341
           && parameters->options().strip_debug_non_line()
1342
           && strcmp(".debug_abbrev", name) == 0)
1343
    {
1344
      os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1345
          name, type, flags);
1346
      if (this->debug_info_)
1347
        this->debug_info_->set_abbreviations(this->debug_abbrev_);
1348
    }
1349
  else if ((flags & elfcpp::SHF_ALLOC) == 0
1350
           && parameters->options().strip_debug_non_line()
1351
           && strcmp(".debug_info", name) == 0)
1352
    {
1353
      os = this->debug_info_ = new Output_reduced_debug_info_section(
1354
          name, type, flags);
1355
      if (this->debug_abbrev_)
1356
        this->debug_info_->set_abbreviations(this->debug_abbrev_);
1357
    }
1358
  else
1359
    {
1360 159 khays
      // Sometimes .init_array*, .preinit_array* and .fini_array* do
1361
      // not have correct section types.  Force them here.
1362
      if (type == elfcpp::SHT_PROGBITS)
1363
        {
1364
          if (is_prefix_of(".init_array", name))
1365
            type = elfcpp::SHT_INIT_ARRAY;
1366
          else if (is_prefix_of(".preinit_array", name))
1367
            type = elfcpp::SHT_PREINIT_ARRAY;
1368
          else if (is_prefix_of(".fini_array", name))
1369
            type = elfcpp::SHT_FINI_ARRAY;
1370
        }
1371
 
1372 27 khays
      // FIXME: const_cast is ugly.
1373
      Target* target = const_cast<Target*>(&parameters->target());
1374
      os = target->make_output_section(name, type, flags);
1375
    }
1376
 
1377
  // With -z relro, we have to recognize the special sections by name.
1378
  // There is no other way.
1379
  bool is_relro_local = false;
1380
  if (!this->script_options_->saw_sections_clause()
1381
      && parameters->options().relro()
1382
      && type == elfcpp::SHT_PROGBITS
1383
      && (flags & elfcpp::SHF_ALLOC) != 0
1384
      && (flags & elfcpp::SHF_WRITE) != 0)
1385
    {
1386
      if (strcmp(name, ".data.rel.ro") == 0)
1387
        is_relro = true;
1388
      else if (strcmp(name, ".data.rel.ro.local") == 0)
1389
        {
1390
          is_relro = true;
1391
          is_relro_local = true;
1392
        }
1393
      else if (type == elfcpp::SHT_INIT_ARRAY
1394
               || type == elfcpp::SHT_FINI_ARRAY
1395
               || type == elfcpp::SHT_PREINIT_ARRAY)
1396
        is_relro = true;
1397
      else if (strcmp(name, ".ctors") == 0
1398
               || strcmp(name, ".dtors") == 0
1399
               || strcmp(name, ".jcr") == 0)
1400
        is_relro = true;
1401
    }
1402
 
1403
  if (is_relro)
1404
    os->set_is_relro();
1405
 
1406
  if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1407
    order = this->default_section_order(os, is_relro_local);
1408
 
1409
  os->set_order(order);
1410
 
1411
  parameters->target().new_output_section(os);
1412
 
1413
  this->section_list_.push_back(os);
1414
 
1415
  // The GNU linker by default sorts some sections by priority, so we
1416
  // do the same.  We need to know that this might happen before we
1417
  // attach any input sections.
1418
  if (!this->script_options_->saw_sections_clause()
1419 159 khays
      && !parameters->options().relocatable()
1420
      && (strcmp(name, ".init_array") == 0
1421
          || strcmp(name, ".fini_array") == 0
1422
          || (!parameters->options().ctors_in_init_array()
1423
              && (strcmp(name, ".ctors") == 0
1424
                  || strcmp(name, ".dtors") == 0))))
1425 27 khays
    os->set_may_sort_attached_input_sections();
1426
 
1427
  // Check for .stab*str sections, as .stab* sections need to link to
1428
  // them.
1429
  if (type == elfcpp::SHT_STRTAB
1430
      && !this->have_stabstr_section_
1431
      && strncmp(name, ".stab", 5) == 0
1432
      && strcmp(name + strlen(name) - 3, "str") == 0)
1433
    this->have_stabstr_section_ = true;
1434
 
1435 159 khays
  // During a full incremental link, we add patch space to most
1436
  // PROGBITS and NOBITS sections.  Flag those that may be
1437
  // arbitrarily padded.
1438
  if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1439
      && order != ORDER_INTERP
1440
      && order != ORDER_INIT
1441
      && order != ORDER_PLT
1442
      && order != ORDER_FINI
1443
      && order != ORDER_RELRO_LAST
1444
      && order != ORDER_NON_RELRO_FIRST
1445
      && strcmp(name, ".ctors") != 0
1446
      && strcmp(name, ".dtors") != 0
1447
      && strcmp(name, ".jcr") != 0)
1448
    {
1449
      os->set_is_patch_space_allowed();
1450
 
1451
      // Certain sections require "holes" to be filled with
1452
      // specific fill patterns.  These fill patterns may have
1453
      // a minimum size, so we must prevent allocations from the
1454
      // free list that leave a hole smaller than the minimum.
1455
      if (strcmp(name, ".debug_info") == 0)
1456
        os->set_free_space_fill(new Output_fill_debug_info(false));
1457
      else if (strcmp(name, ".debug_types") == 0)
1458
        os->set_free_space_fill(new Output_fill_debug_info(true));
1459
      else if (strcmp(name, ".debug_line") == 0)
1460
        os->set_free_space_fill(new Output_fill_debug_line());
1461
    }
1462
 
1463 27 khays
  // If we have already attached the sections to segments, then we
1464
  // need to attach this one now.  This happens for sections created
1465
  // directly by the linker.
1466
  if (this->sections_are_attached_)
1467
    this->attach_section_to_segment(os);
1468
 
1469
  return os;
1470
}
1471
 
1472
// Return the default order in which a section should be placed in an
1473
// output segment.  This function captures a lot of the ideas in
1474
// ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1475
// linker created section is normally set when the section is created;
1476
// this function is used for input sections.
1477
 
1478
Output_section_order
1479
Layout::default_section_order(Output_section* os, bool is_relro_local)
1480
{
1481
  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1482
  bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1483
  bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1484
  bool is_bss = false;
1485
 
1486
  switch (os->type())
1487
    {
1488
    default:
1489
    case elfcpp::SHT_PROGBITS:
1490
      break;
1491
    case elfcpp::SHT_NOBITS:
1492
      is_bss = true;
1493
      break;
1494
    case elfcpp::SHT_RELA:
1495
    case elfcpp::SHT_REL:
1496
      if (!is_write)
1497
        return ORDER_DYNAMIC_RELOCS;
1498
      break;
1499
    case elfcpp::SHT_HASH:
1500
    case elfcpp::SHT_DYNAMIC:
1501
    case elfcpp::SHT_SHLIB:
1502
    case elfcpp::SHT_DYNSYM:
1503
    case elfcpp::SHT_GNU_HASH:
1504
    case elfcpp::SHT_GNU_verdef:
1505
    case elfcpp::SHT_GNU_verneed:
1506
    case elfcpp::SHT_GNU_versym:
1507
      if (!is_write)
1508
        return ORDER_DYNAMIC_LINKER;
1509
      break;
1510
    case elfcpp::SHT_NOTE:
1511
      return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1512
    }
1513
 
1514
  if ((os->flags() & elfcpp::SHF_TLS) != 0)
1515
    return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1516
 
1517
  if (!is_bss && !is_write)
1518
    {
1519
      if (is_execinstr)
1520
        {
1521
          if (strcmp(os->name(), ".init") == 0)
1522
            return ORDER_INIT;
1523
          else if (strcmp(os->name(), ".fini") == 0)
1524
            return ORDER_FINI;
1525
        }
1526
      return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1527
    }
1528
 
1529
  if (os->is_relro())
1530
    return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1531
 
1532
  if (os->is_small_section())
1533
    return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1534
  if (os->is_large_section())
1535
    return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1536
 
1537
  return is_bss ? ORDER_BSS : ORDER_DATA;
1538
}
1539
 
1540
// Attach output sections to segments.  This is called after we have
1541
// seen all the input sections.
1542
 
1543
void
1544
Layout::attach_sections_to_segments()
1545
{
1546
  for (Section_list::iterator p = this->section_list_.begin();
1547
       p != this->section_list_.end();
1548
       ++p)
1549
    this->attach_section_to_segment(*p);
1550
 
1551
  this->sections_are_attached_ = true;
1552
}
1553
 
1554
// Attach an output section to a segment.
1555
 
1556
void
1557
Layout::attach_section_to_segment(Output_section* os)
1558
{
1559
  if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1560
    this->unattached_section_list_.push_back(os);
1561
  else
1562
    this->attach_allocated_section_to_segment(os);
1563
}
1564
 
1565
// Attach an allocated output section to a segment.
1566
 
1567
void
1568
Layout::attach_allocated_section_to_segment(Output_section* os)
1569
{
1570
  elfcpp::Elf_Xword flags = os->flags();
1571
  gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1572
 
1573
  if (parameters->options().relocatable())
1574
    return;
1575
 
1576
  // If we have a SECTIONS clause, we can't handle the attachment to
1577
  // segments until after we've seen all the sections.
1578
  if (this->script_options_->saw_sections_clause())
1579
    return;
1580
 
1581
  gold_assert(!this->script_options_->saw_phdrs_clause());
1582
 
1583
  // This output section goes into a PT_LOAD segment.
1584
 
1585
  elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1586
 
1587
  // Check for --section-start.
1588
  uint64_t addr;
1589
  bool is_address_set = parameters->options().section_start(os->name(), &addr);
1590
 
1591
  // In general the only thing we really care about for PT_LOAD
1592
  // segments is whether or not they are writable or executable,
1593
  // so that is how we search for them.
1594
  // Large data sections also go into their own PT_LOAD segment.
1595
  // People who need segments sorted on some other basis will
1596
  // have to use a linker script.
1597
 
1598
  Segment_list::const_iterator p;
1599
  for (p = this->segment_list_.begin();
1600
       p != this->segment_list_.end();
1601
       ++p)
1602
    {
1603
      if ((*p)->type() != elfcpp::PT_LOAD)
1604
        continue;
1605
      if (!parameters->options().omagic()
1606
          && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1607
        continue;
1608
      if (parameters->options().rosegment()
1609
          && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1610
        continue;
1611
      // If -Tbss was specified, we need to separate the data and BSS
1612
      // segments.
1613
      if (parameters->options().user_set_Tbss())
1614
        {
1615
          if ((os->type() == elfcpp::SHT_NOBITS)
1616
              == (*p)->has_any_data_sections())
1617
            continue;
1618
        }
1619
      if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1620
        continue;
1621
 
1622
      if (is_address_set)
1623
        {
1624
          if ((*p)->are_addresses_set())
1625
            continue;
1626
 
1627
          (*p)->add_initial_output_data(os);
1628
          (*p)->update_flags_for_output_section(seg_flags);
1629
          (*p)->set_addresses(addr, addr);
1630
          break;
1631
        }
1632
 
1633
      (*p)->add_output_section_to_load(this, os, seg_flags);
1634
      break;
1635
    }
1636
 
1637
  if (p == this->segment_list_.end())
1638
    {
1639
      Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1640
                                                       seg_flags);
1641
      if (os->is_large_data_section())
1642
        oseg->set_is_large_data_segment();
1643
      oseg->add_output_section_to_load(this, os, seg_flags);
1644
      if (is_address_set)
1645
        oseg->set_addresses(addr, addr);
1646
    }
1647
 
1648
  // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1649
  // segment.
1650
  if (os->type() == elfcpp::SHT_NOTE)
1651
    {
1652
      // See if we already have an equivalent PT_NOTE segment.
1653
      for (p = this->segment_list_.begin();
1654
           p != segment_list_.end();
1655
           ++p)
1656
        {
1657
          if ((*p)->type() == elfcpp::PT_NOTE
1658
              && (((*p)->flags() & elfcpp::PF_W)
1659
                  == (seg_flags & elfcpp::PF_W)))
1660
            {
1661
              (*p)->add_output_section_to_nonload(os, seg_flags);
1662
              break;
1663
            }
1664
        }
1665
 
1666
      if (p == this->segment_list_.end())
1667
        {
1668
          Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1669
                                                           seg_flags);
1670
          oseg->add_output_section_to_nonload(os, seg_flags);
1671
        }
1672
    }
1673
 
1674
  // If we see a loadable SHF_TLS section, we create a PT_TLS
1675
  // segment.  There can only be one such segment.
1676
  if ((flags & elfcpp::SHF_TLS) != 0)
1677
    {
1678
      if (this->tls_segment_ == NULL)
1679
        this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1680
      this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1681
    }
1682
 
1683
  // If -z relro is in effect, and we see a relro section, we create a
1684
  // PT_GNU_RELRO segment.  There can only be one such segment.
1685
  if (os->is_relro() && parameters->options().relro())
1686
    {
1687
      gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1688
      if (this->relro_segment_ == NULL)
1689
        this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1690
      this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1691
    }
1692 159 khays
 
1693
  // If we see a section named .interp, put it into a PT_INTERP
1694
  // segment.  This seems broken to me, but this is what GNU ld does,
1695
  // and glibc expects it.
1696
  if (strcmp(os->name(), ".interp") == 0
1697
      && !this->script_options_->saw_phdrs_clause())
1698
    {
1699
      if (this->interp_segment_ == NULL)
1700
        this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1701
      else
1702
        gold_warning(_("multiple '.interp' sections in input files "
1703
                       "may cause confusing PT_INTERP segment"));
1704
      this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1705
    }
1706 27 khays
}
1707
 
1708
// Make an output section for a script.
1709
 
1710
Output_section*
1711
Layout::make_output_section_for_script(
1712
    const char* name,
1713
    Script_sections::Section_type section_type)
1714
{
1715
  name = this->namepool_.add(name, false, NULL);
1716
  elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1717
  if (section_type == Script_sections::ST_NOLOAD)
1718
    sh_flags = 0;
1719
  Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1720
                                                 sh_flags, ORDER_INVALID,
1721
                                                 false);
1722
  os->set_found_in_sections_clause();
1723
  if (section_type == Script_sections::ST_NOLOAD)
1724
    os->set_is_noload();
1725
  return os;
1726
}
1727
 
1728
// Return the number of segments we expect to see.
1729
 
1730
size_t
1731
Layout::expected_segment_count() const
1732
{
1733
  size_t ret = this->segment_list_.size();
1734
 
1735
  // If we didn't see a SECTIONS clause in a linker script, we should
1736
  // already have the complete list of segments.  Otherwise we ask the
1737
  // SECTIONS clause how many segments it expects, and add in the ones
1738
  // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1739
 
1740
  if (!this->script_options_->saw_sections_clause())
1741
    return ret;
1742
  else
1743
    {
1744
      const Script_sections* ss = this->script_options_->script_sections();
1745
      return ret + ss->expected_segment_count(this);
1746
    }
1747
}
1748
 
1749
// Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1750
// is whether we saw a .note.GNU-stack section in the object file.
1751
// GNU_STACK_FLAGS is the section flags.  The flags give the
1752
// protection required for stack memory.  We record this in an
1753
// executable as a PT_GNU_STACK segment.  If an object file does not
1754
// have a .note.GNU-stack segment, we must assume that it is an old
1755
// object.  On some targets that will force an executable stack.
1756
 
1757
void
1758
Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1759
                         const Object* obj)
1760
{
1761
  if (!seen_gnu_stack)
1762
    {
1763
      this->input_without_gnu_stack_note_ = true;
1764
      if (parameters->options().warn_execstack()
1765
          && parameters->target().is_default_stack_executable())
1766
        gold_warning(_("%s: missing .note.GNU-stack section"
1767
                       " implies executable stack"),
1768
                     obj->name().c_str());
1769
    }
1770
  else
1771
    {
1772
      this->input_with_gnu_stack_note_ = true;
1773
      if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1774
        {
1775
          this->input_requires_executable_stack_ = true;
1776
          if (parameters->options().warn_execstack()
1777
              || parameters->options().is_stack_executable())
1778
            gold_warning(_("%s: requires executable stack"),
1779
                         obj->name().c_str());
1780
        }
1781
    }
1782
}
1783
 
1784
// Create automatic note sections.
1785
 
1786
void
1787
Layout::create_notes()
1788
{
1789
  this->create_gold_note();
1790
  this->create_executable_stack_info();
1791
  this->create_build_id();
1792
}
1793
 
1794
// Create the dynamic sections which are needed before we read the
1795
// relocs.
1796
 
1797
void
1798
Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1799
{
1800
  if (parameters->doing_static_link())
1801
    return;
1802
 
1803
  this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1804
                                                       elfcpp::SHT_DYNAMIC,
1805
                                                       (elfcpp::SHF_ALLOC
1806
                                                        | elfcpp::SHF_WRITE),
1807
                                                       false, ORDER_RELRO,
1808
                                                       true);
1809
 
1810 159 khays
  // A linker script may discard .dynamic, so check for NULL.
1811
  if (this->dynamic_section_ != NULL)
1812
    {
1813
      this->dynamic_symbol_ =
1814
        symtab->define_in_output_data("_DYNAMIC", NULL,
1815
                                      Symbol_table::PREDEFINED,
1816
                                      this->dynamic_section_, 0, 0,
1817
                                      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1818
                                      elfcpp::STV_HIDDEN, 0, false, false);
1819 27 khays
 
1820 159 khays
      this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1821 27 khays
 
1822 159 khays
      this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1823
    }
1824 27 khays
}
1825
 
1826
// For each output section whose name can be represented as C symbol,
1827
// define __start and __stop symbols for the section.  This is a GNU
1828
// extension.
1829
 
1830
void
1831
Layout::define_section_symbols(Symbol_table* symtab)
1832
{
1833
  for (Section_list::const_iterator p = this->section_list_.begin();
1834
       p != this->section_list_.end();
1835
       ++p)
1836
    {
1837
      const char* const name = (*p)->name();
1838
      if (is_cident(name))
1839
        {
1840
          const std::string name_string(name);
1841
          const std::string start_name(cident_section_start_prefix
1842
                                       + name_string);
1843
          const std::string stop_name(cident_section_stop_prefix
1844
                                      + name_string);
1845
 
1846
          symtab->define_in_output_data(start_name.c_str(),
1847
                                        NULL, // version
1848
                                        Symbol_table::PREDEFINED,
1849
                                        *p,
1850
                                        0, // value
1851
                                        0, // symsize
1852
                                        elfcpp::STT_NOTYPE,
1853
                                        elfcpp::STB_GLOBAL,
1854
                                        elfcpp::STV_DEFAULT,
1855
                                        0, // nonvis
1856
                                        false, // offset_is_from_end
1857
                                        true); // only_if_ref
1858
 
1859
          symtab->define_in_output_data(stop_name.c_str(),
1860
                                        NULL, // version
1861
                                        Symbol_table::PREDEFINED,
1862
                                        *p,
1863
                                        0, // value
1864
                                        0, // symsize
1865
                                        elfcpp::STT_NOTYPE,
1866
                                        elfcpp::STB_GLOBAL,
1867
                                        elfcpp::STV_DEFAULT,
1868
                                        0, // nonvis
1869
                                        true, // offset_is_from_end
1870
                                        true); // only_if_ref
1871
        }
1872
    }
1873
}
1874
 
1875
// Define symbols for group signatures.
1876
 
1877
void
1878
Layout::define_group_signatures(Symbol_table* symtab)
1879
{
1880
  for (Group_signatures::iterator p = this->group_signatures_.begin();
1881
       p != this->group_signatures_.end();
1882
       ++p)
1883
    {
1884
      Symbol* sym = symtab->lookup(p->signature, NULL);
1885
      if (sym != NULL)
1886
        p->section->set_info_symndx(sym);
1887
      else
1888
        {
1889
          // Force the name of the group section to the group
1890
          // signature, and use the group's section symbol as the
1891
          // signature symbol.
1892
          if (strcmp(p->section->name(), p->signature) != 0)
1893
            {
1894
              const char* name = this->namepool_.add(p->signature,
1895
                                                     true, NULL);
1896
              p->section->set_name(name);
1897
            }
1898
          p->section->set_needs_symtab_index();
1899
          p->section->set_info_section_symndx(p->section);
1900
        }
1901
    }
1902
 
1903
  this->group_signatures_.clear();
1904
}
1905
 
1906
// Find the first read-only PT_LOAD segment, creating one if
1907
// necessary.
1908
 
1909
Output_segment*
1910
Layout::find_first_load_seg()
1911
{
1912
  Output_segment* best = NULL;
1913
  for (Segment_list::const_iterator p = this->segment_list_.begin();
1914
       p != this->segment_list_.end();
1915
       ++p)
1916
    {
1917
      if ((*p)->type() == elfcpp::PT_LOAD
1918
          && ((*p)->flags() & elfcpp::PF_R) != 0
1919
          && (parameters->options().omagic()
1920
              || ((*p)->flags() & elfcpp::PF_W) == 0))
1921
        {
1922
          if (best == NULL || this->segment_precedes(*p, best))
1923
            best = *p;
1924
        }
1925
    }
1926
  if (best != NULL)
1927
    return best;
1928
 
1929
  gold_assert(!this->script_options_->saw_phdrs_clause());
1930
 
1931
  Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1932
                                                       elfcpp::PF_R);
1933
  return load_seg;
1934
}
1935
 
1936
// Save states of all current output segments.  Store saved states
1937
// in SEGMENT_STATES.
1938
 
1939
void
1940
Layout::save_segments(Segment_states* segment_states)
1941
{
1942
  for (Segment_list::const_iterator p = this->segment_list_.begin();
1943
       p != this->segment_list_.end();
1944
       ++p)
1945
    {
1946
      Output_segment* segment = *p;
1947
      // Shallow copy.
1948
      Output_segment* copy = new Output_segment(*segment);
1949
      (*segment_states)[segment] = copy;
1950
    }
1951
}
1952
 
1953
// Restore states of output segments and delete any segment not found in
1954
// SEGMENT_STATES.
1955
 
1956
void
1957
Layout::restore_segments(const Segment_states* segment_states)
1958
{
1959
  // Go through the segment list and remove any segment added in the
1960
  // relaxation loop.
1961
  this->tls_segment_ = NULL;
1962
  this->relro_segment_ = NULL;
1963
  Segment_list::iterator list_iter = this->segment_list_.begin();
1964
  while (list_iter != this->segment_list_.end())
1965
    {
1966
      Output_segment* segment = *list_iter;
1967
      Segment_states::const_iterator states_iter =
1968
          segment_states->find(segment);
1969
      if (states_iter != segment_states->end())
1970
        {
1971
          const Output_segment* copy = states_iter->second;
1972
          // Shallow copy to restore states.
1973
          *segment = *copy;
1974
 
1975
          // Also fix up TLS and RELRO segment pointers as appropriate.
1976
          if (segment->type() == elfcpp::PT_TLS)
1977
            this->tls_segment_ = segment;
1978
          else if (segment->type() == elfcpp::PT_GNU_RELRO)
1979
            this->relro_segment_ = segment;
1980
 
1981
          ++list_iter;
1982
        }
1983
      else
1984
        {
1985
          list_iter = this->segment_list_.erase(list_iter);
1986
          // This is a segment created during section layout.  It should be
1987
          // safe to remove it since we should have removed all pointers to it.
1988
          delete segment;
1989
        }
1990
    }
1991
}
1992
 
1993
// Clean up after relaxation so that sections can be laid out again.
1994
 
1995
void
1996
Layout::clean_up_after_relaxation()
1997
{
1998
  // Restore the segments to point state just prior to the relaxation loop.
1999
  Script_sections* script_section = this->script_options_->script_sections();
2000
  script_section->release_segments();
2001
  this->restore_segments(this->segment_states_);
2002
 
2003
  // Reset section addresses and file offsets
2004
  for (Section_list::iterator p = this->section_list_.begin();
2005
       p != this->section_list_.end();
2006
       ++p)
2007
    {
2008
      (*p)->restore_states();
2009
 
2010
      // If an input section changes size because of relaxation,
2011
      // we need to adjust the section offsets of all input sections.
2012
      // after such a section.
2013
      if ((*p)->section_offsets_need_adjustment())
2014
        (*p)->adjust_section_offsets();
2015
 
2016
      (*p)->reset_address_and_file_offset();
2017
    }
2018
 
2019
  // Reset special output object address and file offsets.
2020
  for (Data_list::iterator p = this->special_output_list_.begin();
2021
       p != this->special_output_list_.end();
2022
       ++p)
2023
    (*p)->reset_address_and_file_offset();
2024
 
2025
  // A linker script may have created some output section data objects.
2026
  // They are useless now.
2027
  for (Output_section_data_list::const_iterator p =
2028
         this->script_output_section_data_list_.begin();
2029
       p != this->script_output_section_data_list_.end();
2030
       ++p)
2031
    delete *p;
2032
  this->script_output_section_data_list_.clear();
2033
}
2034
 
2035
// Prepare for relaxation.
2036
 
2037
void
2038
Layout::prepare_for_relaxation()
2039
{
2040
  // Create an relaxation debug check if in debugging mode.
2041
  if (is_debugging_enabled(DEBUG_RELAXATION))
2042
    this->relaxation_debug_check_ = new Relaxation_debug_check();
2043
 
2044
  // Save segment states.
2045
  this->segment_states_ = new Segment_states();
2046
  this->save_segments(this->segment_states_);
2047
 
2048
  for(Section_list::const_iterator p = this->section_list_.begin();
2049
      p != this->section_list_.end();
2050
      ++p)
2051
    (*p)->save_states();
2052
 
2053
  if (is_debugging_enabled(DEBUG_RELAXATION))
2054
    this->relaxation_debug_check_->check_output_data_for_reset_values(
2055
        this->section_list_, this->special_output_list_);
2056
 
2057
  // Also enable recording of output section data from scripts.
2058
  this->record_output_section_data_from_script_ = true;
2059
}
2060
 
2061
// Relaxation loop body:  If target has no relaxation, this runs only once
2062
// Otherwise, the target relaxation hook is called at the end of
2063
// each iteration.  If the hook returns true, it means re-layout of
2064
// section is required.  
2065
//
2066
// The number of segments created by a linking script without a PHDRS
2067
// clause may be affected by section sizes and alignments.  There is
2068
// a remote chance that relaxation causes different number of PT_LOAD
2069
// segments are created and sections are attached to different segments.
2070
// Therefore, we always throw away all segments created during section
2071
// layout.  In order to be able to restart the section layout, we keep
2072
// a copy of the segment list right before the relaxation loop and use
2073
// that to restore the segments.
2074
// 
2075
// PASS is the current relaxation pass number. 
2076
// SYMTAB is a symbol table.
2077
// PLOAD_SEG is the address of a pointer for the load segment.
2078
// PHDR_SEG is a pointer to the PHDR segment.
2079
// SEGMENT_HEADERS points to the output segment header.
2080
// FILE_HEADER points to the output file header.
2081
// PSHNDX is the address to store the output section index.
2082
 
2083
off_t inline
2084
Layout::relaxation_loop_body(
2085
    int pass,
2086
    Target* target,
2087
    Symbol_table* symtab,
2088
    Output_segment** pload_seg,
2089
    Output_segment* phdr_seg,
2090
    Output_segment_headers* segment_headers,
2091
    Output_file_header* file_header,
2092
    unsigned int* pshndx)
2093
{
2094
  // If this is not the first iteration, we need to clean up after
2095
  // relaxation so that we can lay out the sections again.
2096
  if (pass != 0)
2097
    this->clean_up_after_relaxation();
2098
 
2099
  // If there is a SECTIONS clause, put all the input sections into
2100
  // the required order.
2101
  Output_segment* load_seg;
2102
  if (this->script_options_->saw_sections_clause())
2103
    load_seg = this->set_section_addresses_from_script(symtab);
2104
  else if (parameters->options().relocatable())
2105
    load_seg = NULL;
2106
  else
2107
    load_seg = this->find_first_load_seg();
2108
 
2109
  if (parameters->options().oformat_enum()
2110
      != General_options::OBJECT_FORMAT_ELF)
2111
    load_seg = NULL;
2112
 
2113
  // If the user set the address of the text segment, that may not be
2114
  // compatible with putting the segment headers and file headers into
2115
  // that segment.
2116 159 khays
  if (parameters->options().user_set_Ttext()
2117
      && parameters->options().Ttext() % target->common_pagesize() != 0)
2118
    {
2119
      load_seg = NULL;
2120
      phdr_seg = NULL;
2121
    }
2122 27 khays
 
2123
  gold_assert(phdr_seg == NULL
2124
              || load_seg != NULL
2125
              || this->script_options_->saw_sections_clause());
2126
 
2127
  // If the address of the load segment we found has been set by
2128
  // --section-start rather than by a script, then adjust the VMA and
2129
  // LMA downward if possible to include the file and section headers.
2130
  uint64_t header_gap = 0;
2131
  if (load_seg != NULL
2132
      && load_seg->are_addresses_set()
2133
      && !this->script_options_->saw_sections_clause()
2134
      && !parameters->options().relocatable())
2135
    {
2136
      file_header->finalize_data_size();
2137
      segment_headers->finalize_data_size();
2138
      size_t sizeof_headers = (file_header->data_size()
2139
                               + segment_headers->data_size());
2140
      const uint64_t abi_pagesize = target->abi_pagesize();
2141
      uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2142
      hdr_paddr &= ~(abi_pagesize - 1);
2143
      uint64_t subtract = load_seg->paddr() - hdr_paddr;
2144
      if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2145
        load_seg = NULL;
2146
      else
2147
        {
2148
          load_seg->set_addresses(load_seg->vaddr() - subtract,
2149
                                  load_seg->paddr() - subtract);
2150
          header_gap = subtract - sizeof_headers;
2151
        }
2152
    }
2153
 
2154
  // Lay out the segment headers.
2155
  if (!parameters->options().relocatable())
2156
    {
2157
      gold_assert(segment_headers != NULL);
2158
      if (header_gap != 0 && load_seg != NULL)
2159
        {
2160
          Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2161
          load_seg->add_initial_output_data(z);
2162
        }
2163
      if (load_seg != NULL)
2164
        load_seg->add_initial_output_data(segment_headers);
2165
      if (phdr_seg != NULL)
2166
        phdr_seg->add_initial_output_data(segment_headers);
2167
    }
2168
 
2169
  // Lay out the file header.
2170
  if (load_seg != NULL)
2171
    load_seg->add_initial_output_data(file_header);
2172
 
2173
  if (this->script_options_->saw_phdrs_clause()
2174
      && !parameters->options().relocatable())
2175
    {
2176
      // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2177
      // clause in a linker script.
2178
      Script_sections* ss = this->script_options_->script_sections();
2179
      ss->put_headers_in_phdrs(file_header, segment_headers);
2180
    }
2181
 
2182
  // We set the output section indexes in set_segment_offsets and
2183
  // set_section_indexes.
2184
  *pshndx = 1;
2185
 
2186
  // Set the file offsets of all the segments, and all the sections
2187
  // they contain.
2188
  off_t off;
2189
  if (!parameters->options().relocatable())
2190
    off = this->set_segment_offsets(target, load_seg, pshndx);
2191
  else
2192
    off = this->set_relocatable_section_offsets(file_header, pshndx);
2193
 
2194
   // Verify that the dummy relaxation does not change anything.
2195
  if (is_debugging_enabled(DEBUG_RELAXATION))
2196
    {
2197
      if (pass == 0)
2198
        this->relaxation_debug_check_->read_sections(this->section_list_);
2199
      else
2200
        this->relaxation_debug_check_->verify_sections(this->section_list_);
2201
    }
2202
 
2203
  *pload_seg = load_seg;
2204
  return off;
2205
}
2206
 
2207
// Search the list of patterns and find the postion of the given section
2208
// name in the output section.  If the section name matches a glob
2209
// pattern and a non-glob name, then the non-glob position takes
2210
// precedence.  Return 0 if no match is found.
2211
 
2212
unsigned int
2213
Layout::find_section_order_index(const std::string& section_name)
2214
{
2215
  Unordered_map<std::string, unsigned int>::iterator map_it;
2216
  map_it = this->input_section_position_.find(section_name);
2217
  if (map_it != this->input_section_position_.end())
2218
    return map_it->second;
2219
 
2220
  // Absolute match failed.  Linear search the glob patterns.
2221
  std::vector<std::string>::iterator it;
2222
  for (it = this->input_section_glob_.begin();
2223
       it != this->input_section_glob_.end();
2224
       ++it)
2225
    {
2226
       if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2227
         {
2228
           map_it = this->input_section_position_.find(*it);
2229
           gold_assert(map_it != this->input_section_position_.end());
2230
           return map_it->second;
2231
         }
2232
    }
2233
  return 0;
2234
}
2235
 
2236
// Read the sequence of input sections from the file specified with
2237 159 khays
// option --section-ordering-file.
2238 27 khays
 
2239
void
2240
Layout::read_layout_from_file()
2241
{
2242
  const char* filename = parameters->options().section_ordering_file();
2243
  std::ifstream in;
2244
  std::string line;
2245
 
2246
  in.open(filename);
2247
  if (!in)
2248
    gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2249
               filename, strerror(errno));
2250
 
2251
  std::getline(in, line);   // this chops off the trailing \n, if any
2252
  unsigned int position = 1;
2253 159 khays
  this->set_section_ordering_specified();
2254 27 khays
 
2255
  while (in)
2256
    {
2257
      if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2258
        line.resize(line.length() - 1);
2259
      // Ignore comments, beginning with '#'
2260
      if (line[0] == '#')
2261
        {
2262
          std::getline(in, line);
2263
          continue;
2264
        }
2265
      this->input_section_position_[line] = position;
2266
      // Store all glob patterns in a vector.
2267
      if (is_wildcard_string(line.c_str()))
2268
        this->input_section_glob_.push_back(line);
2269
      position++;
2270
      std::getline(in, line);
2271
    }
2272
}
2273
 
2274
// Finalize the layout.  When this is called, we have created all the
2275
// output sections and all the output segments which are based on
2276
// input sections.  We have several things to do, and we have to do
2277
// them in the right order, so that we get the right results correctly
2278
// and efficiently.
2279
 
2280
// 1) Finalize the list of output segments and create the segment
2281
// table header.
2282
 
2283
// 2) Finalize the dynamic symbol table and associated sections.
2284
 
2285
// 3) Determine the final file offset of all the output segments.
2286
 
2287
// 4) Determine the final file offset of all the SHF_ALLOC output
2288
// sections.
2289
 
2290
// 5) Create the symbol table sections and the section name table
2291
// section.
2292
 
2293
// 6) Finalize the symbol table: set symbol values to their final
2294
// value and make a final determination of which symbols are going
2295
// into the output symbol table.
2296
 
2297
// 7) Create the section table header.
2298
 
2299
// 8) Determine the final file offset of all the output sections which
2300
// are not SHF_ALLOC, including the section table header.
2301
 
2302
// 9) Finalize the ELF file header.
2303
 
2304
// This function returns the size of the output file.
2305
 
2306
off_t
2307
Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2308
                 Target* target, const Task* task)
2309
{
2310
  target->finalize_sections(this, input_objects, symtab);
2311
 
2312
  this->count_local_symbols(task, input_objects);
2313
 
2314
  this->link_stabs_sections();
2315
 
2316
  Output_segment* phdr_seg = NULL;
2317
  if (!parameters->options().relocatable() && !parameters->doing_static_link())
2318
    {
2319
      // There was a dynamic object in the link.  We need to create
2320
      // some information for the dynamic linker.
2321
 
2322
      // Create the PT_PHDR segment which will hold the program
2323
      // headers.
2324
      if (!this->script_options_->saw_phdrs_clause())
2325
        phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2326
 
2327
      // Create the dynamic symbol table, including the hash table.
2328
      Output_section* dynstr;
2329
      std::vector<Symbol*> dynamic_symbols;
2330
      unsigned int local_dynamic_count;
2331
      Versions versions(*this->script_options()->version_script_info(),
2332
                        &this->dynpool_);
2333
      this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2334
                                  &local_dynamic_count, &dynamic_symbols,
2335
                                  &versions);
2336
 
2337
      // Create the .interp section to hold the name of the
2338 159 khays
      // interpreter, and put it in a PT_INTERP segment.  Don't do it
2339
      // if we saw a .interp section in an input file.
2340
      if ((!parameters->options().shared()
2341
           || parameters->options().dynamic_linker() != NULL)
2342
          && this->interp_segment_ == NULL)
2343 27 khays
        this->create_interp(target);
2344
 
2345
      // Finish the .dynamic section to hold the dynamic data, and put
2346
      // it in a PT_DYNAMIC segment.
2347
      this->finish_dynamic_section(input_objects, symtab);
2348
 
2349
      // We should have added everything we need to the dynamic string
2350
      // table.
2351
      this->dynpool_.set_string_offsets();
2352
 
2353
      // Create the version sections.  We can't do this until the
2354
      // dynamic string table is complete.
2355
      this->create_version_sections(&versions, symtab, local_dynamic_count,
2356
                                    dynamic_symbols, dynstr);
2357
 
2358
      // Set the size of the _DYNAMIC symbol.  We can't do this until
2359
      // after we call create_version_sections.
2360
      this->set_dynamic_symbol_size(symtab);
2361
    }
2362
 
2363
  // Create segment headers.
2364
  Output_segment_headers* segment_headers =
2365
    (parameters->options().relocatable()
2366
     ? NULL
2367
     : new Output_segment_headers(this->segment_list_));
2368
 
2369
  // Lay out the file header.
2370
  Output_file_header* file_header = new Output_file_header(target, symtab,
2371
                                                           segment_headers);
2372
 
2373
  this->special_output_list_.push_back(file_header);
2374
  if (segment_headers != NULL)
2375
    this->special_output_list_.push_back(segment_headers);
2376
 
2377
  // Find approriate places for orphan output sections if we are using
2378
  // a linker script.
2379
  if (this->script_options_->saw_sections_clause())
2380
    this->place_orphan_sections_in_script();
2381
 
2382
  Output_segment* load_seg;
2383
  off_t off;
2384
  unsigned int shndx;
2385
  int pass = 0;
2386
 
2387
  // Take a snapshot of the section layout as needed.
2388
  if (target->may_relax())
2389
    this->prepare_for_relaxation();
2390
 
2391
  // Run the relaxation loop to lay out sections.
2392
  do
2393
    {
2394
      off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2395
                                       phdr_seg, segment_headers, file_header,
2396
                                       &shndx);
2397
      pass++;
2398
    }
2399
  while (target->may_relax()
2400
         && target->relax(pass, input_objects, symtab, this, task));
2401
 
2402
  // Set the file offsets of all the non-data sections we've seen so
2403
  // far which don't have to wait for the input sections.  We need
2404
  // this in order to finalize local symbols in non-allocated
2405
  // sections.
2406
  off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2407
 
2408
  // Set the section indexes of all unallocated sections seen so far,
2409
  // in case any of them are somehow referenced by a symbol.
2410
  shndx = this->set_section_indexes(shndx);
2411
 
2412
  // Create the symbol table sections.
2413
  this->create_symtab_sections(input_objects, symtab, shndx, &off);
2414
  if (!parameters->doing_static_link())
2415
    this->assign_local_dynsym_offsets(input_objects);
2416
 
2417
  // Process any symbol assignments from a linker script.  This must
2418
  // be called after the symbol table has been finalized.
2419
  this->script_options_->finalize_symbols(symtab, this);
2420
 
2421
  // Create the incremental inputs sections.
2422
  if (this->incremental_inputs_)
2423
    {
2424
      this->incremental_inputs_->finalize();
2425
      this->create_incremental_info_sections(symtab);
2426
    }
2427
 
2428
  // Create the .shstrtab section.
2429
  Output_section* shstrtab_section = this->create_shstrtab();
2430
 
2431
  // Set the file offsets of the rest of the non-data sections which
2432
  // don't have to wait for the input sections.
2433
  off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2434
 
2435
  // Now that all sections have been created, set the section indexes
2436
  // for any sections which haven't been done yet.
2437
  shndx = this->set_section_indexes(shndx);
2438
 
2439
  // Create the section table header.
2440
  this->create_shdrs(shstrtab_section, &off);
2441
 
2442
  // If there are no sections which require postprocessing, we can
2443
  // handle the section names now, and avoid a resize later.
2444
  if (!this->any_postprocessing_sections_)
2445
    {
2446
      off = this->set_section_offsets(off,
2447
                                      POSTPROCESSING_SECTIONS_PASS);
2448
      off =
2449
          this->set_section_offsets(off,
2450
                                    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2451
    }
2452
 
2453
  file_header->set_section_info(this->section_headers_, shstrtab_section);
2454
 
2455
  // Now we know exactly where everything goes in the output file
2456
  // (except for non-allocated sections which require postprocessing).
2457
  Output_data::layout_complete();
2458
 
2459
  this->output_file_size_ = off;
2460
 
2461
  return off;
2462
}
2463
 
2464
// Create a note header following the format defined in the ELF ABI.
2465
// NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2466
// of the section to create, DESCSZ is the size of the descriptor.
2467
// ALLOCATE is true if the section should be allocated in memory.
2468
// This returns the new note section.  It sets *TRAILING_PADDING to
2469
// the number of trailing zero bytes required.
2470
 
2471
Output_section*
2472
Layout::create_note(const char* name, int note_type,
2473
                    const char* section_name, size_t descsz,
2474
                    bool allocate, size_t* trailing_padding)
2475
{
2476
  // Authorities all agree that the values in a .note field should
2477
  // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2478
  // they differ on what the alignment is for 64-bit binaries.
2479
  // The GABI says unambiguously they take 8-byte alignment:
2480
  //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2481
  // Other documentation says alignment should always be 4 bytes:
2482
  //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2483
  // GNU ld and GNU readelf both support the latter (at least as of
2484
  // version 2.16.91), and glibc always generates the latter for
2485
  // .note.ABI-tag (as of version 1.6), so that's the one we go with
2486
  // here.
2487
#ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2488
  const int size = parameters->target().get_size();
2489
#else
2490
  const int size = 32;
2491
#endif
2492
 
2493
  // The contents of the .note section.
2494
  size_t namesz = strlen(name) + 1;
2495
  size_t aligned_namesz = align_address(namesz, size / 8);
2496
  size_t aligned_descsz = align_address(descsz, size / 8);
2497
 
2498
  size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2499
 
2500
  unsigned char* buffer = new unsigned char[notehdrsz];
2501
  memset(buffer, 0, notehdrsz);
2502
 
2503
  bool is_big_endian = parameters->target().is_big_endian();
2504
 
2505
  if (size == 32)
2506
    {
2507
      if (!is_big_endian)
2508
        {
2509
          elfcpp::Swap<32, false>::writeval(buffer, namesz);
2510
          elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2511
          elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2512
        }
2513
      else
2514
        {
2515
          elfcpp::Swap<32, true>::writeval(buffer, namesz);
2516
          elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2517
          elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2518
        }
2519
    }
2520
  else if (size == 64)
2521
    {
2522
      if (!is_big_endian)
2523
        {
2524
          elfcpp::Swap<64, false>::writeval(buffer, namesz);
2525
          elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2526
          elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2527
        }
2528
      else
2529
        {
2530
          elfcpp::Swap<64, true>::writeval(buffer, namesz);
2531
          elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2532
          elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2533
        }
2534
    }
2535
  else
2536
    gold_unreachable();
2537
 
2538
  memcpy(buffer + 3 * (size / 8), name, namesz);
2539
 
2540
  elfcpp::Elf_Xword flags = 0;
2541
  Output_section_order order = ORDER_INVALID;
2542
  if (allocate)
2543
    {
2544
      flags = elfcpp::SHF_ALLOC;
2545
      order = ORDER_RO_NOTE;
2546
    }
2547
  Output_section* os = this->choose_output_section(NULL, section_name,
2548
                                                   elfcpp::SHT_NOTE,
2549
                                                   flags, false, order, false);
2550
  if (os == NULL)
2551
    return NULL;
2552
 
2553
  Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2554
                                                           size / 8,
2555
                                                           "** note header");
2556
  os->add_output_section_data(posd);
2557
 
2558
  *trailing_padding = aligned_descsz - descsz;
2559
 
2560
  return os;
2561
}
2562
 
2563
// For an executable or shared library, create a note to record the
2564
// version of gold used to create the binary.
2565
 
2566
void
2567
Layout::create_gold_note()
2568
{
2569
  if (parameters->options().relocatable()
2570
      || parameters->incremental_update())
2571
    return;
2572
 
2573
  std::string desc = std::string("gold ") + gold::get_version_string();
2574
 
2575
  size_t trailing_padding;
2576
  Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2577
                                         ".note.gnu.gold-version", desc.size(),
2578
                                         false, &trailing_padding);
2579
  if (os == NULL)
2580
    return;
2581
 
2582
  Output_section_data* posd = new Output_data_const(desc, 4);
2583
  os->add_output_section_data(posd);
2584
 
2585
  if (trailing_padding > 0)
2586
    {
2587
      posd = new Output_data_zero_fill(trailing_padding, 0);
2588
      os->add_output_section_data(posd);
2589
    }
2590
}
2591
 
2592
// Record whether the stack should be executable.  This can be set
2593
// from the command line using the -z execstack or -z noexecstack
2594
// options.  Otherwise, if any input file has a .note.GNU-stack
2595
// section with the SHF_EXECINSTR flag set, the stack should be
2596
// executable.  Otherwise, if at least one input file a
2597
// .note.GNU-stack section, and some input file has no .note.GNU-stack
2598
// section, we use the target default for whether the stack should be
2599
// executable.  Otherwise, we don't generate a stack note.  When
2600
// generating a object file, we create a .note.GNU-stack section with
2601
// the appropriate marking.  When generating an executable or shared
2602
// library, we create a PT_GNU_STACK segment.
2603
 
2604
void
2605
Layout::create_executable_stack_info()
2606
{
2607
  bool is_stack_executable;
2608
  if (parameters->options().is_execstack_set())
2609
    is_stack_executable = parameters->options().is_stack_executable();
2610
  else if (!this->input_with_gnu_stack_note_)
2611
    return;
2612
  else
2613
    {
2614
      if (this->input_requires_executable_stack_)
2615
        is_stack_executable = true;
2616
      else if (this->input_without_gnu_stack_note_)
2617
        is_stack_executable =
2618
          parameters->target().is_default_stack_executable();
2619
      else
2620
        is_stack_executable = false;
2621
    }
2622
 
2623
  if (parameters->options().relocatable())
2624
    {
2625
      const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2626
      elfcpp::Elf_Xword flags = 0;
2627
      if (is_stack_executable)
2628
        flags |= elfcpp::SHF_EXECINSTR;
2629
      this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2630
                                ORDER_INVALID, false);
2631
    }
2632
  else
2633
    {
2634
      if (this->script_options_->saw_phdrs_clause())
2635
        return;
2636
      int flags = elfcpp::PF_R | elfcpp::PF_W;
2637
      if (is_stack_executable)
2638
        flags |= elfcpp::PF_X;
2639
      this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2640
    }
2641
}
2642
 
2643
// If --build-id was used, set up the build ID note.
2644
 
2645
void
2646
Layout::create_build_id()
2647
{
2648
  if (!parameters->options().user_set_build_id())
2649
    return;
2650
 
2651
  const char* style = parameters->options().build_id();
2652
  if (strcmp(style, "none") == 0)
2653
    return;
2654
 
2655
  // Set DESCSZ to the size of the note descriptor.  When possible,
2656
  // set DESC to the note descriptor contents.
2657
  size_t descsz;
2658
  std::string desc;
2659
  if (strcmp(style, "md5") == 0)
2660
    descsz = 128 / 8;
2661
  else if (strcmp(style, "sha1") == 0)
2662
    descsz = 160 / 8;
2663
  else if (strcmp(style, "uuid") == 0)
2664
    {
2665
      const size_t uuidsz = 128 / 8;
2666
 
2667
      char buffer[uuidsz];
2668
      memset(buffer, 0, uuidsz);
2669
 
2670
      int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2671
      if (descriptor < 0)
2672
        gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2673
                   strerror(errno));
2674
      else
2675
        {
2676
          ssize_t got = ::read(descriptor, buffer, uuidsz);
2677
          release_descriptor(descriptor, true);
2678
          if (got < 0)
2679
            gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2680
          else if (static_cast<size_t>(got) != uuidsz)
2681
            gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2682
                       uuidsz, got);
2683
        }
2684
 
2685
      desc.assign(buffer, uuidsz);
2686
      descsz = uuidsz;
2687
    }
2688
  else if (strncmp(style, "0x", 2) == 0)
2689
    {
2690
      hex_init();
2691
      const char* p = style + 2;
2692
      while (*p != '\0')
2693
        {
2694
          if (hex_p(p[0]) && hex_p(p[1]))
2695
            {
2696
              char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2697
              desc += c;
2698
              p += 2;
2699
            }
2700
          else if (*p == '-' || *p == ':')
2701
            ++p;
2702
          else
2703
            gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2704
                       style);
2705
        }
2706
      descsz = desc.size();
2707
    }
2708
  else
2709
    gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2710
 
2711
  // Create the note.
2712
  size_t trailing_padding;
2713
  Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2714
                                         ".note.gnu.build-id", descsz, true,
2715
                                         &trailing_padding);
2716
  if (os == NULL)
2717
    return;
2718
 
2719
  if (!desc.empty())
2720
    {
2721
      // We know the value already, so we fill it in now.
2722
      gold_assert(desc.size() == descsz);
2723
 
2724
      Output_section_data* posd = new Output_data_const(desc, 4);
2725
      os->add_output_section_data(posd);
2726
 
2727
      if (trailing_padding != 0)
2728
        {
2729
          posd = new Output_data_zero_fill(trailing_padding, 0);
2730
          os->add_output_section_data(posd);
2731
        }
2732
    }
2733
  else
2734
    {
2735
      // We need to compute a checksum after we have completed the
2736
      // link.
2737
      gold_assert(trailing_padding == 0);
2738
      this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2739
      os->add_output_section_data(this->build_id_note_);
2740
    }
2741
}
2742
 
2743
// If we have both .stabXX and .stabXXstr sections, then the sh_link
2744
// field of the former should point to the latter.  I'm not sure who
2745
// started this, but the GNU linker does it, and some tools depend
2746
// upon it.
2747
 
2748
void
2749
Layout::link_stabs_sections()
2750
{
2751
  if (!this->have_stabstr_section_)
2752
    return;
2753
 
2754
  for (Section_list::iterator p = this->section_list_.begin();
2755
       p != this->section_list_.end();
2756
       ++p)
2757
    {
2758
      if ((*p)->type() != elfcpp::SHT_STRTAB)
2759
        continue;
2760
 
2761
      const char* name = (*p)->name();
2762
      if (strncmp(name, ".stab", 5) != 0)
2763
        continue;
2764
 
2765
      size_t len = strlen(name);
2766
      if (strcmp(name + len - 3, "str") != 0)
2767
        continue;
2768
 
2769
      std::string stab_name(name, len - 3);
2770
      Output_section* stab_sec;
2771
      stab_sec = this->find_output_section(stab_name.c_str());
2772
      if (stab_sec != NULL)
2773
        stab_sec->set_link_section(*p);
2774
    }
2775
}
2776
 
2777
// Create .gnu_incremental_inputs and related sections needed
2778
// for the next run of incremental linking to check what has changed.
2779
 
2780
void
2781
Layout::create_incremental_info_sections(Symbol_table* symtab)
2782
{
2783
  Incremental_inputs* incr = this->incremental_inputs_;
2784
 
2785
  gold_assert(incr != NULL);
2786
 
2787
  // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2788
  incr->create_data_sections(symtab);
2789
 
2790
  // Add the .gnu_incremental_inputs section.
2791
  const char* incremental_inputs_name =
2792
    this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2793
  Output_section* incremental_inputs_os =
2794
    this->make_output_section(incremental_inputs_name,
2795
                              elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2796
                              ORDER_INVALID, false);
2797
  incremental_inputs_os->add_output_section_data(incr->inputs_section());
2798
 
2799
  // Add the .gnu_incremental_symtab section.
2800
  const char* incremental_symtab_name =
2801
    this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2802
  Output_section* incremental_symtab_os =
2803
    this->make_output_section(incremental_symtab_name,
2804
                              elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2805
                              ORDER_INVALID, false);
2806
  incremental_symtab_os->add_output_section_data(incr->symtab_section());
2807
  incremental_symtab_os->set_entsize(4);
2808
 
2809
  // Add the .gnu_incremental_relocs section.
2810
  const char* incremental_relocs_name =
2811
    this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2812
  Output_section* incremental_relocs_os =
2813
    this->make_output_section(incremental_relocs_name,
2814
                              elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2815
                              ORDER_INVALID, false);
2816
  incremental_relocs_os->add_output_section_data(incr->relocs_section());
2817
  incremental_relocs_os->set_entsize(incr->relocs_entsize());
2818
 
2819
  // Add the .gnu_incremental_got_plt section.
2820
  const char* incremental_got_plt_name =
2821
    this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2822
  Output_section* incremental_got_plt_os =
2823
    this->make_output_section(incremental_got_plt_name,
2824
                              elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2825
                              ORDER_INVALID, false);
2826
  incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2827
 
2828
  // Add the .gnu_incremental_strtab section.
2829
  const char* incremental_strtab_name =
2830
    this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2831
  Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2832
                                                        elfcpp::SHT_STRTAB, 0,
2833
                                                        ORDER_INVALID, false);
2834
  Output_data_strtab* strtab_data =
2835
      new Output_data_strtab(incr->get_stringpool());
2836
  incremental_strtab_os->add_output_section_data(strtab_data);
2837
 
2838
  incremental_inputs_os->set_after_input_sections();
2839
  incremental_symtab_os->set_after_input_sections();
2840
  incremental_relocs_os->set_after_input_sections();
2841
  incremental_got_plt_os->set_after_input_sections();
2842
 
2843
  incremental_inputs_os->set_link_section(incremental_strtab_os);
2844
  incremental_symtab_os->set_link_section(incremental_inputs_os);
2845
  incremental_relocs_os->set_link_section(incremental_inputs_os);
2846
  incremental_got_plt_os->set_link_section(incremental_inputs_os);
2847
}
2848
 
2849
// Return whether SEG1 should be before SEG2 in the output file.  This
2850
// is based entirely on the segment type and flags.  When this is
2851 159 khays
// called the segment addresses have normally not yet been set.
2852 27 khays
 
2853
bool
2854
Layout::segment_precedes(const Output_segment* seg1,
2855
                         const Output_segment* seg2)
2856
{
2857
  elfcpp::Elf_Word type1 = seg1->type();
2858
  elfcpp::Elf_Word type2 = seg2->type();
2859
 
2860
  // The single PT_PHDR segment is required to precede any loadable
2861
  // segment.  We simply make it always first.
2862
  if (type1 == elfcpp::PT_PHDR)
2863
    {
2864
      gold_assert(type2 != elfcpp::PT_PHDR);
2865
      return true;
2866
    }
2867
  if (type2 == elfcpp::PT_PHDR)
2868
    return false;
2869
 
2870
  // The single PT_INTERP segment is required to precede any loadable
2871
  // segment.  We simply make it always second.
2872
  if (type1 == elfcpp::PT_INTERP)
2873
    {
2874
      gold_assert(type2 != elfcpp::PT_INTERP);
2875
      return true;
2876
    }
2877
  if (type2 == elfcpp::PT_INTERP)
2878
    return false;
2879
 
2880
  // We then put PT_LOAD segments before any other segments.
2881
  if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2882
    return true;
2883
  if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2884
    return false;
2885
 
2886
  // We put the PT_TLS segment last except for the PT_GNU_RELRO
2887
  // segment, because that is where the dynamic linker expects to find
2888
  // it (this is just for efficiency; other positions would also work
2889
  // correctly).
2890
  if (type1 == elfcpp::PT_TLS
2891
      && type2 != elfcpp::PT_TLS
2892
      && type2 != elfcpp::PT_GNU_RELRO)
2893
    return false;
2894
  if (type2 == elfcpp::PT_TLS
2895
      && type1 != elfcpp::PT_TLS
2896
      && type1 != elfcpp::PT_GNU_RELRO)
2897
    return true;
2898
 
2899
  // We put the PT_GNU_RELRO segment last, because that is where the
2900
  // dynamic linker expects to find it (as with PT_TLS, this is just
2901
  // for efficiency).
2902
  if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2903
    return false;
2904
  if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2905
    return true;
2906
 
2907
  const elfcpp::Elf_Word flags1 = seg1->flags();
2908
  const elfcpp::Elf_Word flags2 = seg2->flags();
2909
 
2910
  // The order of non-PT_LOAD segments is unimportant.  We simply sort
2911
  // by the numeric segment type and flags values.  There should not
2912
  // be more than one segment with the same type and flags.
2913
  if (type1 != elfcpp::PT_LOAD)
2914
    {
2915
      if (type1 != type2)
2916
        return type1 < type2;
2917
      gold_assert(flags1 != flags2);
2918
      return flags1 < flags2;
2919
    }
2920
 
2921
  // If the addresses are set already, sort by load address.
2922
  if (seg1->are_addresses_set())
2923
    {
2924
      if (!seg2->are_addresses_set())
2925
        return true;
2926
 
2927
      unsigned int section_count1 = seg1->output_section_count();
2928
      unsigned int section_count2 = seg2->output_section_count();
2929
      if (section_count1 == 0 && section_count2 > 0)
2930
        return true;
2931
      if (section_count1 > 0 && section_count2 == 0)
2932
        return false;
2933
 
2934
      uint64_t paddr1 = (seg1->are_addresses_set()
2935
                         ? seg1->paddr()
2936
                         : seg1->first_section_load_address());
2937
      uint64_t paddr2 = (seg2->are_addresses_set()
2938
                         ? seg2->paddr()
2939
                         : seg2->first_section_load_address());
2940
 
2941
      if (paddr1 != paddr2)
2942
        return paddr1 < paddr2;
2943
    }
2944
  else if (seg2->are_addresses_set())
2945
    return false;
2946
 
2947
  // A segment which holds large data comes after a segment which does
2948
  // not hold large data.
2949
  if (seg1->is_large_data_segment())
2950
    {
2951
      if (!seg2->is_large_data_segment())
2952
        return false;
2953
    }
2954
  else if (seg2->is_large_data_segment())
2955
    return true;
2956
 
2957
  // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2958
  // segments come before writable segments.  Then writable segments
2959
  // with data come before writable segments without data.  Then
2960
  // executable segments come before non-executable segments.  Then
2961
  // the unlikely case of a non-readable segment comes before the
2962
  // normal case of a readable segment.  If there are multiple
2963
  // segments with the same type and flags, we require that the
2964
  // address be set, and we sort by virtual address and then physical
2965
  // address.
2966
  if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2967
    return (flags1 & elfcpp::PF_W) == 0;
2968
  if ((flags1 & elfcpp::PF_W) != 0
2969
      && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2970
    return seg1->has_any_data_sections();
2971
  if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2972
    return (flags1 & elfcpp::PF_X) != 0;
2973
  if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2974
    return (flags1 & elfcpp::PF_R) == 0;
2975
 
2976
  // We shouldn't get here--we shouldn't create segments which we
2977 159 khays
  // can't distinguish.  Unless of course we are using a weird linker
2978
  // script.
2979
  gold_assert(this->script_options_->saw_phdrs_clause());
2980
  return false;
2981 27 khays
}
2982
 
2983
// Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2984
 
2985
static off_t
2986
align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2987
{
2988
  uint64_t unsigned_off = off;
2989
  uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2990
                          | (addr & (abi_pagesize - 1)));
2991
  if (aligned_off < unsigned_off)
2992
    aligned_off += abi_pagesize;
2993
  return aligned_off;
2994
}
2995
 
2996
// Set the file offsets of all the segments, and all the sections they
2997
// contain.  They have all been created.  LOAD_SEG must be be laid out
2998
// first.  Return the offset of the data to follow.
2999
 
3000
off_t
3001
Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3002
                            unsigned int* pshndx)
3003
{
3004 159 khays
  // Sort them into the final order.  We use a stable sort so that we
3005
  // don't randomize the order of indistinguishable segments created
3006
  // by linker scripts.
3007
  std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3008
                   Layout::Compare_segments(this));
3009 27 khays
 
3010
  // Find the PT_LOAD segments, and set their addresses and offsets
3011
  // and their section's addresses and offsets.
3012
  uint64_t addr;
3013
  if (parameters->options().user_set_Ttext())
3014
    addr = parameters->options().Ttext();
3015
  else if (parameters->options().output_is_position_independent())
3016
    addr = 0;
3017
  else
3018
    addr = target->default_text_segment_address();
3019
  off_t off = 0;
3020
 
3021
  // If LOAD_SEG is NULL, then the file header and segment headers
3022
  // will not be loadable.  But they still need to be at offset 0 in
3023
  // the file.  Set their offsets now.
3024
  if (load_seg == NULL)
3025
    {
3026
      for (Data_list::iterator p = this->special_output_list_.begin();
3027
           p != this->special_output_list_.end();
3028
           ++p)
3029
        {
3030
          off = align_address(off, (*p)->addralign());
3031
          (*p)->set_address_and_file_offset(0, off);
3032
          off += (*p)->data_size();
3033
        }
3034
    }
3035
 
3036
  unsigned int increase_relro = this->increase_relro_;
3037
  if (this->script_options_->saw_sections_clause())
3038
    increase_relro = 0;
3039
 
3040
  const bool check_sections = parameters->options().check_sections();
3041
  Output_segment* last_load_segment = NULL;
3042
 
3043
  for (Segment_list::iterator p = this->segment_list_.begin();
3044
       p != this->segment_list_.end();
3045
       ++p)
3046
    {
3047
      if ((*p)->type() == elfcpp::PT_LOAD)
3048
        {
3049
          if (load_seg != NULL && load_seg != *p)
3050
            gold_unreachable();
3051
          load_seg = NULL;
3052
 
3053
          bool are_addresses_set = (*p)->are_addresses_set();
3054
          if (are_addresses_set)
3055
            {
3056
              // When it comes to setting file offsets, we care about
3057
              // the physical address.
3058
              addr = (*p)->paddr();
3059
            }
3060 159 khays
          else if (parameters->options().user_set_Ttext()
3061
                   && ((*p)->flags() & elfcpp::PF_W) == 0)
3062
            {
3063
              are_addresses_set = true;
3064
            }
3065 27 khays
          else if (parameters->options().user_set_Tdata()
3066
                   && ((*p)->flags() & elfcpp::PF_W) != 0
3067
                   && (!parameters->options().user_set_Tbss()
3068
                       || (*p)->has_any_data_sections()))
3069
            {
3070
              addr = parameters->options().Tdata();
3071
              are_addresses_set = true;
3072
            }
3073
          else if (parameters->options().user_set_Tbss()
3074
                   && ((*p)->flags() & elfcpp::PF_W) != 0
3075
                   && !(*p)->has_any_data_sections())
3076
            {
3077
              addr = parameters->options().Tbss();
3078
              are_addresses_set = true;
3079
            }
3080
 
3081
          uint64_t orig_addr = addr;
3082
          uint64_t orig_off = off;
3083
 
3084
          uint64_t aligned_addr = 0;
3085
          uint64_t abi_pagesize = target->abi_pagesize();
3086
          uint64_t common_pagesize = target->common_pagesize();
3087
 
3088
          if (!parameters->options().nmagic()
3089
              && !parameters->options().omagic())
3090
            (*p)->set_minimum_p_align(common_pagesize);
3091
 
3092
          if (!are_addresses_set)
3093
            {
3094
              // Skip the address forward one page, maintaining the same
3095
              // position within the page.  This lets us store both segments
3096
              // overlapping on a single page in the file, but the loader will
3097
              // put them on different pages in memory. We will revisit this
3098
              // decision once we know the size of the segment.
3099
 
3100
              addr = align_address(addr, (*p)->maximum_alignment());
3101
              aligned_addr = addr;
3102
 
3103
              if ((addr & (abi_pagesize - 1)) != 0)
3104
                addr = addr + abi_pagesize;
3105
 
3106
              off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3107
            }
3108
 
3109
          if (!parameters->options().nmagic()
3110
              && !parameters->options().omagic())
3111
            off = align_file_offset(off, addr, abi_pagesize);
3112
          else if (load_seg == NULL)
3113
            {
3114
              // This is -N or -n with a section script which prevents
3115
              // us from using a load segment.  We need to ensure that
3116
              // the file offset is aligned to the alignment of the
3117
              // segment.  This is because the linker script
3118
              // implicitly assumed a zero offset.  If we don't align
3119
              // here, then the alignment of the sections in the
3120
              // linker script may not match the alignment of the
3121
              // sections in the set_section_addresses call below,
3122
              // causing an error about dot moving backward.
3123
              off = align_address(off, (*p)->maximum_alignment());
3124
            }
3125
 
3126
          unsigned int shndx_hold = *pshndx;
3127
          bool has_relro = false;
3128
          uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3129
                                                          &increase_relro,
3130
                                                          &has_relro,
3131
                                                          &off, pshndx);
3132
 
3133
          // Now that we know the size of this segment, we may be able
3134
          // to save a page in memory, at the cost of wasting some
3135
          // file space, by instead aligning to the start of a new
3136
          // page.  Here we use the real machine page size rather than
3137
          // the ABI mandated page size.  If the segment has been
3138
          // aligned so that the relro data ends at a page boundary,
3139
          // we do not try to realign it.
3140
 
3141
          if (!are_addresses_set
3142
              && !has_relro
3143
              && aligned_addr != addr
3144 148 khays
              && !parameters->incremental())
3145 27 khays
            {
3146
              uint64_t first_off = (common_pagesize
3147
                                    - (aligned_addr
3148
                                       & (common_pagesize - 1)));
3149
              uint64_t last_off = new_addr & (common_pagesize - 1);
3150
              if (first_off > 0
3151
                  && last_off > 0
3152
                  && ((aligned_addr & ~ (common_pagesize - 1))
3153
                      != (new_addr & ~ (common_pagesize - 1)))
3154
                  && first_off + last_off <= common_pagesize)
3155
                {
3156
                  *pshndx = shndx_hold;
3157
                  addr = align_address(aligned_addr, common_pagesize);
3158
                  addr = align_address(addr, (*p)->maximum_alignment());
3159
                  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3160
                  off = align_file_offset(off, addr, abi_pagesize);
3161
 
3162
                  increase_relro = this->increase_relro_;
3163
                  if (this->script_options_->saw_sections_clause())
3164
                    increase_relro = 0;
3165
                  has_relro = false;
3166
 
3167
                  new_addr = (*p)->set_section_addresses(this, true, addr,
3168
                                                         &increase_relro,
3169
                                                         &has_relro,
3170
                                                         &off, pshndx);
3171
                }
3172
            }
3173
 
3174
          addr = new_addr;
3175
 
3176
          // Implement --check-sections.  We know that the segments
3177
          // are sorted by LMA.
3178
          if (check_sections && last_load_segment != NULL)
3179
            {
3180
              gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3181
              if (last_load_segment->paddr() + last_load_segment->memsz()
3182
                  > (*p)->paddr())
3183
                {
3184
                  unsigned long long lb1 = last_load_segment->paddr();
3185
                  unsigned long long le1 = lb1 + last_load_segment->memsz();
3186
                  unsigned long long lb2 = (*p)->paddr();
3187
                  unsigned long long le2 = lb2 + (*p)->memsz();
3188
                  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3189
                               "[0x%llx -> 0x%llx]"),
3190
                             lb1, le1, lb2, le2);
3191
                }
3192
            }
3193
          last_load_segment = *p;
3194
        }
3195
    }
3196
 
3197
  // Handle the non-PT_LOAD segments, setting their offsets from their
3198
  // section's offsets.
3199
  for (Segment_list::iterator p = this->segment_list_.begin();
3200
       p != this->segment_list_.end();
3201
       ++p)
3202
    {
3203
      if ((*p)->type() != elfcpp::PT_LOAD)
3204
        (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3205
                         ? increase_relro
3206
                         : 0);
3207
    }
3208
 
3209
  // Set the TLS offsets for each section in the PT_TLS segment.
3210
  if (this->tls_segment_ != NULL)
3211
    this->tls_segment_->set_tls_offsets();
3212
 
3213
  return off;
3214
}
3215
 
3216
// Set the offsets of all the allocated sections when doing a
3217
// relocatable link.  This does the same jobs as set_segment_offsets,
3218
// only for a relocatable link.
3219
 
3220
off_t
3221
Layout::set_relocatable_section_offsets(Output_data* file_header,
3222
                                        unsigned int* pshndx)
3223
{
3224
  off_t off = 0;
3225
 
3226
  file_header->set_address_and_file_offset(0, 0);
3227
  off += file_header->data_size();
3228
 
3229
  for (Section_list::iterator p = this->section_list_.begin();
3230
       p != this->section_list_.end();
3231
       ++p)
3232
    {
3233
      // We skip unallocated sections here, except that group sections
3234
      // have to come first.
3235
      if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3236
          && (*p)->type() != elfcpp::SHT_GROUP)
3237
        continue;
3238
 
3239
      off = align_address(off, (*p)->addralign());
3240
 
3241
      // The linker script might have set the address.
3242
      if (!(*p)->is_address_valid())
3243
        (*p)->set_address(0);
3244
      (*p)->set_file_offset(off);
3245
      (*p)->finalize_data_size();
3246
      off += (*p)->data_size();
3247
 
3248
      (*p)->set_out_shndx(*pshndx);
3249
      ++*pshndx;
3250
    }
3251
 
3252
  return off;
3253
}
3254
 
3255
// Set the file offset of all the sections not associated with a
3256
// segment.
3257
 
3258
off_t
3259
Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3260
{
3261
  off_t startoff = off;
3262
  off_t maxoff = off;
3263
 
3264
  for (Section_list::iterator p = this->unattached_section_list_.begin();
3265
       p != this->unattached_section_list_.end();
3266
       ++p)
3267
    {
3268
      // The symtab section is handled in create_symtab_sections.
3269
      if (*p == this->symtab_section_)
3270
        continue;
3271
 
3272
      // If we've already set the data size, don't set it again.
3273
      if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3274
        continue;
3275
 
3276
      if (pass == BEFORE_INPUT_SECTIONS_PASS
3277
          && (*p)->requires_postprocessing())
3278
        {
3279
          (*p)->create_postprocessing_buffer();
3280
          this->any_postprocessing_sections_ = true;
3281
        }
3282
 
3283
      if (pass == BEFORE_INPUT_SECTIONS_PASS
3284
          && (*p)->after_input_sections())
3285
        continue;
3286
      else if (pass == POSTPROCESSING_SECTIONS_PASS
3287
               && (!(*p)->after_input_sections()
3288
                   || (*p)->type() == elfcpp::SHT_STRTAB))
3289
        continue;
3290
      else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3291
               && (!(*p)->after_input_sections()
3292
                   || (*p)->type() != elfcpp::SHT_STRTAB))
3293
        continue;
3294
 
3295
      if (!parameters->incremental_update())
3296
        {
3297
          off = align_address(off, (*p)->addralign());
3298
          (*p)->set_file_offset(off);
3299
          (*p)->finalize_data_size();
3300
        }
3301
      else
3302
        {
3303
          // Incremental update: allocate file space from free list.
3304
          (*p)->pre_finalize_data_size();
3305
          off_t current_size = (*p)->current_data_size();
3306
          off = this->allocate(current_size, (*p)->addralign(), startoff);
3307
          if (off == -1)
3308
            {
3309
              if (is_debugging_enabled(DEBUG_INCREMENTAL))
3310
                this->free_list_.dump();
3311
              gold_assert((*p)->output_section() != NULL);
3312 148 khays
              gold_fallback(_("out of patch space for section %s; "
3313
                              "relink with --incremental-full"),
3314
                            (*p)->output_section()->name());
3315 27 khays
            }
3316
          (*p)->set_file_offset(off);
3317
          (*p)->finalize_data_size();
3318
          if ((*p)->data_size() > current_size)
3319
            {
3320
              gold_assert((*p)->output_section() != NULL);
3321 148 khays
              gold_fallback(_("%s: section changed size; "
3322
                              "relink with --incremental-full"),
3323
                            (*p)->output_section()->name());
3324 27 khays
            }
3325
          gold_debug(DEBUG_INCREMENTAL,
3326
                     "set_section_offsets: %08lx %08lx %s",
3327
                     static_cast<long>(off),
3328
                     static_cast<long>((*p)->data_size()),
3329
                     ((*p)->output_section() != NULL
3330
                      ? (*p)->output_section()->name() : "(special)"));
3331
        }
3332
 
3333
      off += (*p)->data_size();
3334
      if (off > maxoff)
3335
        maxoff = off;
3336
 
3337
      // At this point the name must be set.
3338
      if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3339
        this->namepool_.add((*p)->name(), false, NULL);
3340
    }
3341
  return maxoff;
3342
}
3343
 
3344
// Set the section indexes of all the sections not associated with a
3345
// segment.
3346
 
3347
unsigned int
3348
Layout::set_section_indexes(unsigned int shndx)
3349
{
3350
  for (Section_list::iterator p = this->unattached_section_list_.begin();
3351
       p != this->unattached_section_list_.end();
3352
       ++p)
3353
    {
3354
      if (!(*p)->has_out_shndx())
3355
        {
3356
          (*p)->set_out_shndx(shndx);
3357
          ++shndx;
3358
        }
3359
    }
3360
  return shndx;
3361
}
3362
 
3363
// Set the section addresses according to the linker script.  This is
3364
// only called when we see a SECTIONS clause.  This returns the
3365
// program segment which should hold the file header and segment
3366
// headers, if any.  It will return NULL if they should not be in a
3367
// segment.
3368
 
3369
Output_segment*
3370
Layout::set_section_addresses_from_script(Symbol_table* symtab)
3371
{
3372
  Script_sections* ss = this->script_options_->script_sections();
3373
  gold_assert(ss->saw_sections_clause());
3374
  return this->script_options_->set_section_addresses(symtab, this);
3375
}
3376
 
3377
// Place the orphan sections in the linker script.
3378
 
3379
void
3380
Layout::place_orphan_sections_in_script()
3381
{
3382
  Script_sections* ss = this->script_options_->script_sections();
3383
  gold_assert(ss->saw_sections_clause());
3384
 
3385
  // Place each orphaned output section in the script.
3386
  for (Section_list::iterator p = this->section_list_.begin();
3387
       p != this->section_list_.end();
3388
       ++p)
3389
    {
3390
      if (!(*p)->found_in_sections_clause())
3391
        ss->place_orphan(*p);
3392
    }
3393
}
3394
 
3395
// Count the local symbols in the regular symbol table and the dynamic
3396
// symbol table, and build the respective string pools.
3397
 
3398
void
3399
Layout::count_local_symbols(const Task* task,
3400
                            const Input_objects* input_objects)
3401
{
3402
  // First, figure out an upper bound on the number of symbols we'll
3403
  // be inserting into each pool.  This helps us create the pools with
3404
  // the right size, to avoid unnecessary hashtable resizing.
3405
  unsigned int symbol_count = 0;
3406
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3407
       p != input_objects->relobj_end();
3408
       ++p)
3409
    symbol_count += (*p)->local_symbol_count();
3410
 
3411
  // Go from "upper bound" to "estimate."  We overcount for two
3412
  // reasons: we double-count symbols that occur in more than one
3413
  // object file, and we count symbols that are dropped from the
3414
  // output.  Add it all together and assume we overcount by 100%.
3415
  symbol_count /= 2;
3416
 
3417
  // We assume all symbols will go into both the sympool and dynpool.
3418
  this->sympool_.reserve(symbol_count);
3419
  this->dynpool_.reserve(symbol_count);
3420
 
3421
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3422
       p != input_objects->relobj_end();
3423
       ++p)
3424
    {
3425
      Task_lock_obj<Object> tlo(task, *p);
3426
      (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3427
    }
3428
}
3429
 
3430
// Create the symbol table sections.  Here we also set the final
3431
// values of the symbols.  At this point all the loadable sections are
3432
// fully laid out.  SHNUM is the number of sections so far.
3433
 
3434
void
3435
Layout::create_symtab_sections(const Input_objects* input_objects,
3436
                               Symbol_table* symtab,
3437
                               unsigned int shnum,
3438
                               off_t* poff)
3439
{
3440
  int symsize;
3441
  unsigned int align;
3442
  if (parameters->target().get_size() == 32)
3443
    {
3444
      symsize = elfcpp::Elf_sizes<32>::sym_size;
3445
      align = 4;
3446
    }
3447
  else if (parameters->target().get_size() == 64)
3448
    {
3449
      symsize = elfcpp::Elf_sizes<64>::sym_size;
3450
      align = 8;
3451
    }
3452
  else
3453
    gold_unreachable();
3454
 
3455
  // Compute file offsets relative to the start of the symtab section.
3456
  off_t off = 0;
3457
 
3458
  // Save space for the dummy symbol at the start of the section.  We
3459
  // never bother to write this out--it will just be left as zero.
3460
  off += symsize;
3461
  unsigned int local_symbol_index = 1;
3462
 
3463
  // Add STT_SECTION symbols for each Output section which needs one.
3464
  for (Section_list::iterator p = this->section_list_.begin();
3465
       p != this->section_list_.end();
3466
       ++p)
3467
    {
3468
      if (!(*p)->needs_symtab_index())
3469
        (*p)->set_symtab_index(-1U);
3470
      else
3471
        {
3472
          (*p)->set_symtab_index(local_symbol_index);
3473
          ++local_symbol_index;
3474
          off += symsize;
3475
        }
3476
    }
3477
 
3478
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3479
       p != input_objects->relobj_end();
3480
       ++p)
3481
    {
3482
      unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3483
                                                        off, symtab);
3484
      off += (index - local_symbol_index) * symsize;
3485
      local_symbol_index = index;
3486
    }
3487
 
3488
  unsigned int local_symcount = local_symbol_index;
3489
  gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3490
 
3491
  off_t dynoff;
3492
  size_t dyn_global_index;
3493
  size_t dyncount;
3494
  if (this->dynsym_section_ == NULL)
3495
    {
3496
      dynoff = 0;
3497
      dyn_global_index = 0;
3498
      dyncount = 0;
3499
    }
3500
  else
3501
    {
3502
      dyn_global_index = this->dynsym_section_->info();
3503
      off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3504
      dynoff = this->dynsym_section_->offset() + locsize;
3505
      dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3506
      gold_assert(static_cast<off_t>(dyncount * symsize)
3507
                  == this->dynsym_section_->data_size() - locsize);
3508
    }
3509
 
3510
  off_t global_off = off;
3511
  off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3512
                         &this->sympool_, &local_symcount);
3513
 
3514
  if (!parameters->options().strip_all())
3515
    {
3516
      this->sympool_.set_string_offsets();
3517
 
3518
      const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3519
      Output_section* osymtab = this->make_output_section(symtab_name,
3520
                                                          elfcpp::SHT_SYMTAB,
3521
                                                          0, ORDER_INVALID,
3522
                                                          false);
3523
      this->symtab_section_ = osymtab;
3524
 
3525
      Output_section_data* pos = new Output_data_fixed_space(off, align,
3526
                                                             "** symtab");
3527
      osymtab->add_output_section_data(pos);
3528
 
3529
      // We generate a .symtab_shndx section if we have more than
3530
      // SHN_LORESERVE sections.  Technically it is possible that we
3531
      // don't need one, because it is possible that there are no
3532
      // symbols in any of sections with indexes larger than
3533
      // SHN_LORESERVE.  That is probably unusual, though, and it is
3534
      // easier to always create one than to compute section indexes
3535
      // twice (once here, once when writing out the symbols).
3536
      if (shnum >= elfcpp::SHN_LORESERVE)
3537
        {
3538
          const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3539
                                                               false, NULL);
3540
          Output_section* osymtab_xindex =
3541
            this->make_output_section(symtab_xindex_name,
3542
                                      elfcpp::SHT_SYMTAB_SHNDX, 0,
3543
                                      ORDER_INVALID, false);
3544
 
3545
          size_t symcount = off / symsize;
3546
          this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3547
 
3548
          osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3549
 
3550
          osymtab_xindex->set_link_section(osymtab);
3551
          osymtab_xindex->set_addralign(4);
3552
          osymtab_xindex->set_entsize(4);
3553
 
3554
          osymtab_xindex->set_after_input_sections();
3555
 
3556
          // This tells the driver code to wait until the symbol table
3557
          // has written out before writing out the postprocessing
3558
          // sections, including the .symtab_shndx section.
3559
          this->any_postprocessing_sections_ = true;
3560
        }
3561
 
3562
      const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3563
      Output_section* ostrtab = this->make_output_section(strtab_name,
3564
                                                          elfcpp::SHT_STRTAB,
3565
                                                          0, ORDER_INVALID,
3566
                                                          false);
3567
 
3568
      Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3569
      ostrtab->add_output_section_data(pstr);
3570
 
3571
      off_t symtab_off;
3572
      if (!parameters->incremental_update())
3573
        symtab_off = align_address(*poff, align);
3574
      else
3575
        {
3576
          symtab_off = this->allocate(off, align, *poff);
3577
          if (off == -1)
3578 148 khays
            gold_fallback(_("out of patch space for symbol table; "
3579
                            "relink with --incremental-full"));
3580 27 khays
          gold_debug(DEBUG_INCREMENTAL,
3581
                     "create_symtab_sections: %08lx %08lx .symtab",
3582
                     static_cast<long>(symtab_off),
3583
                     static_cast<long>(off));
3584
        }
3585
 
3586
      symtab->set_file_offset(symtab_off + global_off);
3587
      osymtab->set_file_offset(symtab_off);
3588
      osymtab->finalize_data_size();
3589
      osymtab->set_link_section(ostrtab);
3590
      osymtab->set_info(local_symcount);
3591
      osymtab->set_entsize(symsize);
3592
 
3593
      if (symtab_off + off > *poff)
3594
        *poff = symtab_off + off;
3595
    }
3596
}
3597
 
3598
// Create the .shstrtab section, which holds the names of the
3599
// sections.  At the time this is called, we have created all the
3600
// output sections except .shstrtab itself.
3601
 
3602
Output_section*
3603
Layout::create_shstrtab()
3604
{
3605
  // FIXME: We don't need to create a .shstrtab section if we are
3606
  // stripping everything.
3607
 
3608
  const char* name = this->namepool_.add(".shstrtab", false, NULL);
3609
 
3610
  Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3611
                                                 ORDER_INVALID, false);
3612
 
3613
  if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3614
    {
3615
      // We can't write out this section until we've set all the
3616
      // section names, and we don't set the names of compressed
3617
      // output sections until relocations are complete.  FIXME: With
3618
      // the current names we use, this is unnecessary.
3619
      os->set_after_input_sections();
3620
    }
3621
 
3622
  Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3623
  os->add_output_section_data(posd);
3624
 
3625
  return os;
3626
}
3627
 
3628
// Create the section headers.  SIZE is 32 or 64.  OFF is the file
3629
// offset.
3630
 
3631
void
3632
Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3633
{
3634
  Output_section_headers* oshdrs;
3635
  oshdrs = new Output_section_headers(this,
3636
                                      &this->segment_list_,
3637
                                      &this->section_list_,
3638
                                      &this->unattached_section_list_,
3639
                                      &this->namepool_,
3640
                                      shstrtab_section);
3641
  off_t off;
3642
  if (!parameters->incremental_update())
3643
    off = align_address(*poff, oshdrs->addralign());
3644
  else
3645
    {
3646
      oshdrs->pre_finalize_data_size();
3647
      off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3648
      if (off == -1)
3649 148 khays
          gold_fallback(_("out of patch space for section header table; "
3650
                          "relink with --incremental-full"));
3651 27 khays
      gold_debug(DEBUG_INCREMENTAL,
3652
                 "create_shdrs: %08lx %08lx (section header table)",
3653
                 static_cast<long>(off),
3654
                 static_cast<long>(off + oshdrs->data_size()));
3655
    }
3656
  oshdrs->set_address_and_file_offset(0, off);
3657
  off += oshdrs->data_size();
3658
  if (off > *poff)
3659
    *poff = off;
3660
  this->section_headers_ = oshdrs;
3661
}
3662
 
3663
// Count the allocated sections.
3664
 
3665
size_t
3666
Layout::allocated_output_section_count() const
3667
{
3668
  size_t section_count = 0;
3669
  for (Segment_list::const_iterator p = this->segment_list_.begin();
3670
       p != this->segment_list_.end();
3671
       ++p)
3672
    section_count += (*p)->output_section_count();
3673
  return section_count;
3674
}
3675
 
3676
// Create the dynamic symbol table.
3677
 
3678
void
3679
Layout::create_dynamic_symtab(const Input_objects* input_objects,
3680
                              Symbol_table* symtab,
3681
                              Output_section** pdynstr,
3682
                              unsigned int* plocal_dynamic_count,
3683
                              std::vector<Symbol*>* pdynamic_symbols,
3684
                              Versions* pversions)
3685
{
3686
  // Count all the symbols in the dynamic symbol table, and set the
3687
  // dynamic symbol indexes.
3688
 
3689
  // Skip symbol 0, which is always all zeroes.
3690
  unsigned int index = 1;
3691
 
3692
  // Add STT_SECTION symbols for each Output section which needs one.
3693
  for (Section_list::iterator p = this->section_list_.begin();
3694
       p != this->section_list_.end();
3695
       ++p)
3696
    {
3697
      if (!(*p)->needs_dynsym_index())
3698
        (*p)->set_dynsym_index(-1U);
3699
      else
3700
        {
3701
          (*p)->set_dynsym_index(index);
3702
          ++index;
3703
        }
3704
    }
3705
 
3706
  // Count the local symbols that need to go in the dynamic symbol table,
3707
  // and set the dynamic symbol indexes.
3708
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3709
       p != input_objects->relobj_end();
3710
       ++p)
3711
    {
3712
      unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3713
      index = new_index;
3714
    }
3715
 
3716
  unsigned int local_symcount = index;
3717
  *plocal_dynamic_count = local_symcount;
3718
 
3719
  index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3720
                                     &this->dynpool_, pversions);
3721
 
3722
  int symsize;
3723
  unsigned int align;
3724
  const int size = parameters->target().get_size();
3725
  if (size == 32)
3726
    {
3727
      symsize = elfcpp::Elf_sizes<32>::sym_size;
3728
      align = 4;
3729
    }
3730
  else if (size == 64)
3731
    {
3732
      symsize = elfcpp::Elf_sizes<64>::sym_size;
3733
      align = 8;
3734
    }
3735
  else
3736
    gold_unreachable();
3737
 
3738
  // Create the dynamic symbol table section.
3739
 
3740
  Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3741
                                                       elfcpp::SHT_DYNSYM,
3742
                                                       elfcpp::SHF_ALLOC,
3743
                                                       false,
3744
                                                       ORDER_DYNAMIC_LINKER,
3745
                                                       false);
3746
 
3747 159 khays
  // Check for NULL as a linker script may discard .dynsym.
3748
  if (dynsym != NULL)
3749
    {
3750
      Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3751
                                                               align,
3752
                                                               "** dynsym");
3753
      dynsym->add_output_section_data(odata);
3754 27 khays
 
3755 159 khays
      dynsym->set_info(local_symcount);
3756
      dynsym->set_entsize(symsize);
3757
      dynsym->set_addralign(align);
3758 27 khays
 
3759 159 khays
      this->dynsym_section_ = dynsym;
3760
    }
3761 27 khays
 
3762
  Output_data_dynamic* const odyn = this->dynamic_data_;
3763 159 khays
  if (odyn != NULL)
3764
    {
3765
      odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3766
      odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3767
    }
3768 27 khays
 
3769
  // If there are more than SHN_LORESERVE allocated sections, we
3770
  // create a .dynsym_shndx section.  It is possible that we don't
3771
  // need one, because it is possible that there are no dynamic
3772
  // symbols in any of the sections with indexes larger than
3773
  // SHN_LORESERVE.  This is probably unusual, though, and at this
3774
  // time we don't know the actual section indexes so it is
3775
  // inconvenient to check.
3776
  if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3777
    {
3778
      Output_section* dynsym_xindex =
3779
        this->choose_output_section(NULL, ".dynsym_shndx",
3780
                                    elfcpp::SHT_SYMTAB_SHNDX,
3781
                                    elfcpp::SHF_ALLOC,
3782
                                    false, ORDER_DYNAMIC_LINKER, false);
3783
 
3784 159 khays
      if (dynsym_xindex != NULL)
3785
        {
3786
          this->dynsym_xindex_ = new Output_symtab_xindex(index);
3787 27 khays
 
3788 159 khays
          dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3789 27 khays
 
3790 159 khays
          dynsym_xindex->set_link_section(dynsym);
3791
          dynsym_xindex->set_addralign(4);
3792
          dynsym_xindex->set_entsize(4);
3793 27 khays
 
3794 159 khays
          dynsym_xindex->set_after_input_sections();
3795 27 khays
 
3796 159 khays
          // This tells the driver code to wait until the symbol table
3797
          // has written out before writing out the postprocessing
3798
          // sections, including the .dynsym_shndx section.
3799
          this->any_postprocessing_sections_ = true;
3800
        }
3801 27 khays
    }
3802
 
3803
  // Create the dynamic string table section.
3804
 
3805
  Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3806
                                                       elfcpp::SHT_STRTAB,
3807
                                                       elfcpp::SHF_ALLOC,
3808
                                                       false,
3809
                                                       ORDER_DYNAMIC_LINKER,
3810
                                                       false);
3811
 
3812 159 khays
  if (dynstr != NULL)
3813
    {
3814
      Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3815
      dynstr->add_output_section_data(strdata);
3816 27 khays
 
3817 159 khays
      if (dynsym != NULL)
3818
        dynsym->set_link_section(dynstr);
3819
      if (this->dynamic_section_ != NULL)
3820
        this->dynamic_section_->set_link_section(dynstr);
3821 27 khays
 
3822 159 khays
      if (odyn != NULL)
3823
        {
3824
          odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3825
          odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3826
        }
3827 27 khays
 
3828 159 khays
      *pdynstr = dynstr;
3829
    }
3830 27 khays
 
3831
  // Create the hash tables.
3832
 
3833
  if (strcmp(parameters->options().hash_style(), "sysv") == 0
3834
      || strcmp(parameters->options().hash_style(), "both") == 0)
3835
    {
3836
      unsigned char* phash;
3837
      unsigned int hashlen;
3838
      Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3839
                                    &phash, &hashlen);
3840
 
3841
      Output_section* hashsec =
3842
        this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3843
                                    elfcpp::SHF_ALLOC, false,
3844
                                    ORDER_DYNAMIC_LINKER, false);
3845
 
3846
      Output_section_data* hashdata = new Output_data_const_buffer(phash,
3847
                                                                   hashlen,
3848
                                                                   align,
3849
                                                                   "** hash");
3850 159 khays
      if (hashsec != NULL && hashdata != NULL)
3851
        hashsec->add_output_section_data(hashdata);
3852 27 khays
 
3853 159 khays
      if (hashsec != NULL)
3854
        {
3855
          if (dynsym != NULL)
3856
            hashsec->set_link_section(dynsym);
3857
          hashsec->set_entsize(4);
3858
        }
3859 27 khays
 
3860 159 khays
      if (odyn != NULL)
3861
        odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3862 27 khays
    }
3863
 
3864
  if (strcmp(parameters->options().hash_style(), "gnu") == 0
3865
      || strcmp(parameters->options().hash_style(), "both") == 0)
3866
    {
3867
      unsigned char* phash;
3868
      unsigned int hashlen;
3869
      Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3870
                                    &phash, &hashlen);
3871
 
3872
      Output_section* hashsec =
3873
        this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3874
                                    elfcpp::SHF_ALLOC, false,
3875
                                    ORDER_DYNAMIC_LINKER, false);
3876
 
3877
      Output_section_data* hashdata = new Output_data_const_buffer(phash,
3878
                                                                   hashlen,
3879
                                                                   align,
3880
                                                                   "** hash");
3881 159 khays
      if (hashsec != NULL && hashdata != NULL)
3882
        hashsec->add_output_section_data(hashdata);
3883 27 khays
 
3884 159 khays
      if (hashsec != NULL)
3885
        {
3886
          if (dynsym != NULL)
3887
            hashsec->set_link_section(dynsym);
3888 27 khays
 
3889 159 khays
          // For a 64-bit target, the entries in .gnu.hash do not have
3890
          // a uniform size, so we only set the entry size for a
3891
          // 32-bit target.
3892
          if (parameters->target().get_size() == 32)
3893
            hashsec->set_entsize(4);
3894 27 khays
 
3895 159 khays
          if (odyn != NULL)
3896
            odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3897
        }
3898 27 khays
    }
3899
}
3900
 
3901
// Assign offsets to each local portion of the dynamic symbol table.
3902
 
3903
void
3904
Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3905
{
3906
  Output_section* dynsym = this->dynsym_section_;
3907 159 khays
  if (dynsym == NULL)
3908
    return;
3909 27 khays
 
3910
  off_t off = dynsym->offset();
3911
 
3912
  // Skip the dummy symbol at the start of the section.
3913
  off += dynsym->entsize();
3914
 
3915
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3916
       p != input_objects->relobj_end();
3917
       ++p)
3918
    {
3919
      unsigned int count = (*p)->set_local_dynsym_offset(off);
3920
      off += count * dynsym->entsize();
3921
    }
3922
}
3923
 
3924
// Create the version sections.
3925
 
3926
void
3927
Layout::create_version_sections(const Versions* versions,
3928
                                const Symbol_table* symtab,
3929
                                unsigned int local_symcount,
3930
                                const std::vector<Symbol*>& dynamic_symbols,
3931
                                const Output_section* dynstr)
3932
{
3933
  if (!versions->any_defs() && !versions->any_needs())
3934
    return;
3935
 
3936
  switch (parameters->size_and_endianness())
3937
    {
3938
#ifdef HAVE_TARGET_32_LITTLE
3939
    case Parameters::TARGET_32_LITTLE:
3940
      this->sized_create_version_sections<32, false>(versions, symtab,
3941
                                                     local_symcount,
3942
                                                     dynamic_symbols, dynstr);
3943
      break;
3944
#endif
3945
#ifdef HAVE_TARGET_32_BIG
3946
    case Parameters::TARGET_32_BIG:
3947
      this->sized_create_version_sections<32, true>(versions, symtab,
3948
                                                    local_symcount,
3949
                                                    dynamic_symbols, dynstr);
3950
      break;
3951
#endif
3952
#ifdef HAVE_TARGET_64_LITTLE
3953
    case Parameters::TARGET_64_LITTLE:
3954
      this->sized_create_version_sections<64, false>(versions, symtab,
3955
                                                     local_symcount,
3956
                                                     dynamic_symbols, dynstr);
3957
      break;
3958
#endif
3959
#ifdef HAVE_TARGET_64_BIG
3960
    case Parameters::TARGET_64_BIG:
3961
      this->sized_create_version_sections<64, true>(versions, symtab,
3962
                                                    local_symcount,
3963
                                                    dynamic_symbols, dynstr);
3964
      break;
3965
#endif
3966
    default:
3967
      gold_unreachable();
3968
    }
3969
}
3970
 
3971
// Create the version sections, sized version.
3972
 
3973
template<int size, bool big_endian>
3974
void
3975
Layout::sized_create_version_sections(
3976
    const Versions* versions,
3977
    const Symbol_table* symtab,
3978
    unsigned int local_symcount,
3979
    const std::vector<Symbol*>& dynamic_symbols,
3980
    const Output_section* dynstr)
3981
{
3982
  Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3983
                                                     elfcpp::SHT_GNU_versym,
3984
                                                     elfcpp::SHF_ALLOC,
3985
                                                     false,
3986
                                                     ORDER_DYNAMIC_LINKER,
3987
                                                     false);
3988
 
3989 159 khays
  // Check for NULL since a linker script may discard this section.
3990
  if (vsec != NULL)
3991
    {
3992
      unsigned char* vbuf;
3993
      unsigned int vsize;
3994
      versions->symbol_section_contents<size, big_endian>(symtab,
3995
                                                          &this->dynpool_,
3996
                                                          local_symcount,
3997
                                                          dynamic_symbols,
3998
                                                          &vbuf, &vsize);
3999 27 khays
 
4000 159 khays
      Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4001
                                                                "** versions");
4002 27 khays
 
4003 159 khays
      vsec->add_output_section_data(vdata);
4004
      vsec->set_entsize(2);
4005
      vsec->set_link_section(this->dynsym_section_);
4006
    }
4007 27 khays
 
4008
  Output_data_dynamic* const odyn = this->dynamic_data_;
4009 159 khays
  if (odyn != NULL && vsec != NULL)
4010
    odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4011 27 khays
 
4012
  if (versions->any_defs())
4013
    {
4014
      Output_section* vdsec;
4015 159 khays
      vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4016
                                          elfcpp::SHT_GNU_verdef,
4017
                                          elfcpp::SHF_ALLOC,
4018
                                          false, ORDER_DYNAMIC_LINKER, false);
4019 27 khays
 
4020 159 khays
      if (vdsec != NULL)
4021
        {
4022
          unsigned char* vdbuf;
4023
          unsigned int vdsize;
4024
          unsigned int vdentries;
4025
          versions->def_section_contents<size, big_endian>(&this->dynpool_,
4026
                                                           &vdbuf, &vdsize,
4027
                                                           &vdentries);
4028 27 khays
 
4029 159 khays
          Output_section_data* vddata =
4030
            new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4031 27 khays
 
4032 159 khays
          vdsec->add_output_section_data(vddata);
4033
          vdsec->set_link_section(dynstr);
4034
          vdsec->set_info(vdentries);
4035 27 khays
 
4036 159 khays
          if (odyn != NULL)
4037
            {
4038
              odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4039
              odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4040
            }
4041
        }
4042 27 khays
    }
4043
 
4044
  if (versions->any_needs())
4045
    {
4046
      Output_section* vnsec;
4047
      vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4048
                                          elfcpp::SHT_GNU_verneed,
4049
                                          elfcpp::SHF_ALLOC,
4050
                                          false, ORDER_DYNAMIC_LINKER, false);
4051
 
4052 159 khays
      if (vnsec != NULL)
4053
        {
4054
          unsigned char* vnbuf;
4055
          unsigned int vnsize;
4056
          unsigned int vnentries;
4057
          versions->need_section_contents<size, big_endian>(&this->dynpool_,
4058
                                                            &vnbuf, &vnsize,
4059
                                                            &vnentries);
4060 27 khays
 
4061 159 khays
          Output_section_data* vndata =
4062
            new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4063 27 khays
 
4064 159 khays
          vnsec->add_output_section_data(vndata);
4065
          vnsec->set_link_section(dynstr);
4066
          vnsec->set_info(vnentries);
4067 27 khays
 
4068 159 khays
          if (odyn != NULL)
4069
            {
4070
              odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4071
              odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4072
            }
4073
        }
4074 27 khays
    }
4075
}
4076
 
4077
// Create the .interp section and PT_INTERP segment.
4078
 
4079
void
4080
Layout::create_interp(const Target* target)
4081
{
4082 159 khays
  gold_assert(this->interp_segment_ == NULL);
4083
 
4084 27 khays
  const char* interp = parameters->options().dynamic_linker();
4085
  if (interp == NULL)
4086
    {
4087
      interp = target->dynamic_linker();
4088
      gold_assert(interp != NULL);
4089
    }
4090
 
4091
  size_t len = strlen(interp) + 1;
4092
 
4093
  Output_section_data* odata = new Output_data_const(interp, len, 1);
4094
 
4095
  Output_section* osec = this->choose_output_section(NULL, ".interp",
4096
                                                     elfcpp::SHT_PROGBITS,
4097
                                                     elfcpp::SHF_ALLOC,
4098
                                                     false, ORDER_INTERP,
4099
                                                     false);
4100 159 khays
  if (osec != NULL)
4101
    osec->add_output_section_data(odata);
4102 27 khays
}
4103
 
4104
// Add dynamic tags for the PLT and the dynamic relocs.  This is
4105
// called by the target-specific code.  This does nothing if not doing
4106
// a dynamic link.
4107
 
4108
// USE_REL is true for REL relocs rather than RELA relocs.
4109
 
4110
// If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4111
 
4112
// If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4113
// and we also set DT_PLTREL.  We use PLT_REL's output section, since
4114
// some targets have multiple reloc sections in PLT_REL.
4115
 
4116
// If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4117 159 khays
// DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4118
// section.
4119 27 khays
 
4120
// If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4121
// executable.
4122
 
4123
void
4124
Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4125
                                const Output_data* plt_rel,
4126
                                const Output_data_reloc_generic* dyn_rel,
4127
                                bool add_debug, bool dynrel_includes_plt)
4128
{
4129
  Output_data_dynamic* odyn = this->dynamic_data_;
4130
  if (odyn == NULL)
4131
    return;
4132
 
4133
  if (plt_got != NULL && plt_got->output_section() != NULL)
4134
    odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4135
 
4136
  if (plt_rel != NULL && plt_rel->output_section() != NULL)
4137
    {
4138
      odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4139
      odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4140
      odyn->add_constant(elfcpp::DT_PLTREL,
4141
                         use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4142
    }
4143
 
4144
  if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4145
    {
4146
      odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4147 159 khays
                                dyn_rel->output_section());
4148
      if (plt_rel != NULL
4149
          && plt_rel->output_section() != NULL
4150
          && dynrel_includes_plt)
4151 27 khays
        odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4152 159 khays
                               dyn_rel->output_section(),
4153
                               plt_rel->output_section());
4154 27 khays
      else
4155
        odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4156 159 khays
                               dyn_rel->output_section());
4157 27 khays
      const int size = parameters->target().get_size();
4158
      elfcpp::DT rel_tag;
4159
      int rel_size;
4160
      if (use_rel)
4161
        {
4162
          rel_tag = elfcpp::DT_RELENT;
4163
          if (size == 32)
4164
            rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4165
          else if (size == 64)
4166
            rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4167
          else
4168
            gold_unreachable();
4169
        }
4170
      else
4171
        {
4172
          rel_tag = elfcpp::DT_RELAENT;
4173
          if (size == 32)
4174
            rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4175
          else if (size == 64)
4176
            rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4177
          else
4178
            gold_unreachable();
4179
        }
4180
      odyn->add_constant(rel_tag, rel_size);
4181
 
4182
      if (parameters->options().combreloc())
4183
        {
4184
          size_t c = dyn_rel->relative_reloc_count();
4185
          if (c > 0)
4186
            odyn->add_constant((use_rel
4187
                                ? elfcpp::DT_RELCOUNT
4188
                                : elfcpp::DT_RELACOUNT),
4189
                               c);
4190
        }
4191
    }
4192
 
4193
  if (add_debug && !parameters->options().shared())
4194
    {
4195
      // The value of the DT_DEBUG tag is filled in by the dynamic
4196
      // linker at run time, and used by the debugger.
4197
      odyn->add_constant(elfcpp::DT_DEBUG, 0);
4198
    }
4199
}
4200
 
4201
// Finish the .dynamic section and PT_DYNAMIC segment.
4202
 
4203
void
4204
Layout::finish_dynamic_section(const Input_objects* input_objects,
4205
                               const Symbol_table* symtab)
4206
{
4207 159 khays
  if (!this->script_options_->saw_phdrs_clause()
4208
      && this->dynamic_section_ != NULL)
4209 27 khays
    {
4210
      Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4211
                                                       (elfcpp::PF_R
4212
                                                        | elfcpp::PF_W));
4213
      oseg->add_output_section_to_nonload(this->dynamic_section_,
4214
                                          elfcpp::PF_R | elfcpp::PF_W);
4215
    }
4216
 
4217
  Output_data_dynamic* const odyn = this->dynamic_data_;
4218 159 khays
  if (odyn == NULL)
4219
    return;
4220 27 khays
 
4221
  for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4222
       p != input_objects->dynobj_end();
4223
       ++p)
4224
    {
4225
      if (!(*p)->is_needed() && (*p)->as_needed())
4226
        {
4227
          // This dynamic object was linked with --as-needed, but it
4228
          // is not needed.
4229
          continue;
4230
        }
4231
 
4232
      odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4233
    }
4234
 
4235
  if (parameters->options().shared())
4236
    {
4237
      const char* soname = parameters->options().soname();
4238
      if (soname != NULL)
4239
        odyn->add_string(elfcpp::DT_SONAME, soname);
4240
    }
4241
 
4242
  Symbol* sym = symtab->lookup(parameters->options().init());
4243
  if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4244
    odyn->add_symbol(elfcpp::DT_INIT, sym);
4245
 
4246
  sym = symtab->lookup(parameters->options().fini());
4247
  if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4248
    odyn->add_symbol(elfcpp::DT_FINI, sym);
4249
 
4250
  // Look for .init_array, .preinit_array and .fini_array by checking
4251
  // section types.
4252
  for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4253
      p != this->section_list_.end();
4254
      ++p)
4255
    switch((*p)->type())
4256
      {
4257
      case elfcpp::SHT_FINI_ARRAY:
4258
        odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4259
        odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4260
        break;
4261
      case elfcpp::SHT_INIT_ARRAY:
4262
        odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4263
        odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4264
        break;
4265
      case elfcpp::SHT_PREINIT_ARRAY:
4266
        odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4267
        odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4268
        break;
4269
      default:
4270
        break;
4271
      }
4272
 
4273
  // Add a DT_RPATH entry if needed.
4274
  const General_options::Dir_list& rpath(parameters->options().rpath());
4275
  if (!rpath.empty())
4276
    {
4277
      std::string rpath_val;
4278
      for (General_options::Dir_list::const_iterator p = rpath.begin();
4279
           p != rpath.end();
4280
           ++p)
4281
        {
4282
          if (rpath_val.empty())
4283
            rpath_val = p->name();
4284
          else
4285
            {
4286
              // Eliminate duplicates.
4287
              General_options::Dir_list::const_iterator q;
4288
              for (q = rpath.begin(); q != p; ++q)
4289
                if (q->name() == p->name())
4290
                  break;
4291
              if (q == p)
4292
                {
4293
                  rpath_val += ':';
4294
                  rpath_val += p->name();
4295
                }
4296
            }
4297
        }
4298
 
4299
      odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4300
      if (parameters->options().enable_new_dtags())
4301
        odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4302
    }
4303
 
4304
  // Look for text segments that have dynamic relocations.
4305
  bool have_textrel = false;
4306
  if (!this->script_options_->saw_sections_clause())
4307
    {
4308
      for (Segment_list::const_iterator p = this->segment_list_.begin();
4309
           p != this->segment_list_.end();
4310
           ++p)
4311
        {
4312 159 khays
          if ((*p)->type() == elfcpp::PT_LOAD
4313
              && ((*p)->flags() & elfcpp::PF_W) == 0
4314 27 khays
              && (*p)->has_dynamic_reloc())
4315
            {
4316
              have_textrel = true;
4317
              break;
4318
            }
4319
        }
4320
    }
4321
  else
4322
    {
4323
      // We don't know the section -> segment mapping, so we are
4324
      // conservative and just look for readonly sections with
4325
      // relocations.  If those sections wind up in writable segments,
4326
      // then we have created an unnecessary DT_TEXTREL entry.
4327
      for (Section_list::const_iterator p = this->section_list_.begin();
4328
           p != this->section_list_.end();
4329
           ++p)
4330
        {
4331
          if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4332
              && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4333 159 khays
              && (*p)->has_dynamic_reloc())
4334 27 khays
            {
4335
              have_textrel = true;
4336
              break;
4337
            }
4338
        }
4339
    }
4340
 
4341 159 khays
  if (parameters->options().filter() != NULL)
4342
    odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4343
  if (parameters->options().any_auxiliary())
4344
    {
4345
      for (options::String_set::const_iterator p =
4346
             parameters->options().auxiliary_begin();
4347
           p != parameters->options().auxiliary_end();
4348
           ++p)
4349
        odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4350
    }
4351
 
4352
  // Add a DT_FLAGS entry if necessary.
4353 27 khays
  unsigned int flags = 0;
4354
  if (have_textrel)
4355
    {
4356
      // Add a DT_TEXTREL for compatibility with older loaders.
4357
      odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4358
      flags |= elfcpp::DF_TEXTREL;
4359
 
4360
      if (parameters->options().text())
4361
        gold_error(_("read-only segment has dynamic relocations"));
4362
      else if (parameters->options().warn_shared_textrel()
4363
               && parameters->options().shared())
4364
        gold_warning(_("shared library text segment is not shareable"));
4365
    }
4366
  if (parameters->options().shared() && this->has_static_tls())
4367
    flags |= elfcpp::DF_STATIC_TLS;
4368
  if (parameters->options().origin())
4369
    flags |= elfcpp::DF_ORIGIN;
4370
  if (parameters->options().Bsymbolic())
4371
    {
4372
      flags |= elfcpp::DF_SYMBOLIC;
4373
      // Add DT_SYMBOLIC for compatibility with older loaders.
4374
      odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4375
    }
4376
  if (parameters->options().now())
4377
    flags |= elfcpp::DF_BIND_NOW;
4378 159 khays
  if (flags != 0)
4379
    odyn->add_constant(elfcpp::DT_FLAGS, flags);
4380 27 khays
 
4381
  flags = 0;
4382
  if (parameters->options().initfirst())
4383
    flags |= elfcpp::DF_1_INITFIRST;
4384
  if (parameters->options().interpose())
4385
    flags |= elfcpp::DF_1_INTERPOSE;
4386
  if (parameters->options().loadfltr())
4387
    flags |= elfcpp::DF_1_LOADFLTR;
4388
  if (parameters->options().nodefaultlib())
4389
    flags |= elfcpp::DF_1_NODEFLIB;
4390
  if (parameters->options().nodelete())
4391
    flags |= elfcpp::DF_1_NODELETE;
4392
  if (parameters->options().nodlopen())
4393
    flags |= elfcpp::DF_1_NOOPEN;
4394
  if (parameters->options().nodump())
4395
    flags |= elfcpp::DF_1_NODUMP;
4396
  if (!parameters->options().shared())
4397
    flags &= ~(elfcpp::DF_1_INITFIRST
4398
               | elfcpp::DF_1_NODELETE
4399
               | elfcpp::DF_1_NOOPEN);
4400
  if (parameters->options().origin())
4401
    flags |= elfcpp::DF_1_ORIGIN;
4402
  if (parameters->options().now())
4403
    flags |= elfcpp::DF_1_NOW;
4404 159 khays
  if (parameters->options().Bgroup())
4405
    flags |= elfcpp::DF_1_GROUP;
4406
  if (flags != 0)
4407 27 khays
    odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4408
}
4409
 
4410
// Set the size of the _DYNAMIC symbol table to be the size of the
4411
// dynamic data.
4412
 
4413
void
4414
Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4415
{
4416
  Output_data_dynamic* const odyn = this->dynamic_data_;
4417 159 khays
  if (odyn == NULL)
4418
    return;
4419 27 khays
  odyn->finalize_data_size();
4420 159 khays
  if (this->dynamic_symbol_ == NULL)
4421
    return;
4422 27 khays
  off_t data_size = odyn->data_size();
4423
  const int size = parameters->target().get_size();
4424
  if (size == 32)
4425
    symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4426
  else if (size == 64)
4427
    symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4428
  else
4429
    gold_unreachable();
4430
}
4431
 
4432
// The mapping of input section name prefixes to output section names.
4433
// In some cases one prefix is itself a prefix of another prefix; in
4434
// such a case the longer prefix must come first.  These prefixes are
4435
// based on the GNU linker default ELF linker script.
4436
 
4437
#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4438
const Layout::Section_name_mapping Layout::section_name_mapping[] =
4439
{
4440
  MAPPING_INIT(".text.", ".text"),
4441
  MAPPING_INIT(".rodata.", ".rodata"),
4442
  MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4443
  MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4444
  MAPPING_INIT(".data.", ".data"),
4445
  MAPPING_INIT(".bss.", ".bss"),
4446
  MAPPING_INIT(".tdata.", ".tdata"),
4447
  MAPPING_INIT(".tbss.", ".tbss"),
4448
  MAPPING_INIT(".init_array.", ".init_array"),
4449
  MAPPING_INIT(".fini_array.", ".fini_array"),
4450
  MAPPING_INIT(".sdata.", ".sdata"),
4451
  MAPPING_INIT(".sbss.", ".sbss"),
4452
  // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4453
  // differently depending on whether it is creating a shared library.
4454
  MAPPING_INIT(".sdata2.", ".sdata"),
4455
  MAPPING_INIT(".sbss2.", ".sbss"),
4456
  MAPPING_INIT(".lrodata.", ".lrodata"),
4457
  MAPPING_INIT(".ldata.", ".ldata"),
4458
  MAPPING_INIT(".lbss.", ".lbss"),
4459
  MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4460
  MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4461
  MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4462
  MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4463
  MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4464
  MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4465
  MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4466
  MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4467
  MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4468
  MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4469
  MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4470
  MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4471
  MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4472
  MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4473
  MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4474
  MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4475
  MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4476
  MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4477
  MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4478
  MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4479
  MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4480
};
4481
#undef MAPPING_INIT
4482
 
4483
const int Layout::section_name_mapping_count =
4484
  (sizeof(Layout::section_name_mapping)
4485
   / sizeof(Layout::section_name_mapping[0]));
4486
 
4487
// Choose the output section name to use given an input section name.
4488
// Set *PLEN to the length of the name.  *PLEN is initialized to the
4489
// length of NAME.
4490
 
4491
const char*
4492 159 khays
Layout::output_section_name(const Relobj* relobj, const char* name,
4493
                            size_t* plen)
4494 27 khays
{
4495
  // gcc 4.3 generates the following sorts of section names when it
4496
  // needs a section name specific to a function:
4497
  //   .text.FN
4498
  //   .rodata.FN
4499
  //   .sdata2.FN
4500
  //   .data.FN
4501
  //   .data.rel.FN
4502
  //   .data.rel.local.FN
4503
  //   .data.rel.ro.FN
4504
  //   .data.rel.ro.local.FN
4505
  //   .sdata.FN
4506
  //   .bss.FN
4507
  //   .sbss.FN
4508
  //   .tdata.FN
4509
  //   .tbss.FN
4510
 
4511
  // The GNU linker maps all of those to the part before the .FN,
4512
  // except that .data.rel.local.FN is mapped to .data, and
4513
  // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4514
  // beginning with .data.rel.ro.local are grouped together.
4515
 
4516
  // For an anonymous namespace, the string FN can contain a '.'.
4517
 
4518
  // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4519
  // GNU linker maps to .rodata.
4520
 
4521
  // The .data.rel.ro sections are used with -z relro.  The sections
4522
  // are recognized by name.  We use the same names that the GNU
4523
  // linker does for these sections.
4524
 
4525
  // It is hard to handle this in a principled way, so we don't even
4526
  // try.  We use a table of mappings.  If the input section name is
4527
  // not found in the table, we simply use it as the output section
4528
  // name.
4529
 
4530
  const Section_name_mapping* psnm = section_name_mapping;
4531
  for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4532
    {
4533
      if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4534
        {
4535
          *plen = psnm->tolen;
4536
          return psnm->to;
4537
        }
4538
    }
4539
 
4540 159 khays
  // As an additional complication, .ctors sections are output in
4541
  // either .ctors or .init_array sections, and .dtors sections are
4542
  // output in either .dtors or .fini_array sections.
4543
  if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4544
    {
4545
      if (parameters->options().ctors_in_init_array())
4546
        {
4547
          *plen = 11;
4548
          return name[1] == 'c' ? ".init_array" : ".fini_array";
4549
        }
4550
      else
4551
        {
4552
          *plen = 6;
4553
          return name[1] == 'c' ? ".ctors" : ".dtors";
4554
        }
4555
    }
4556
  if (parameters->options().ctors_in_init_array()
4557
      && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4558
    {
4559
      // To make .init_array/.fini_array work with gcc we must exclude
4560
      // .ctors and .dtors sections from the crtbegin and crtend
4561
      // files.
4562
      if (relobj == NULL
4563
          || (!Layout::match_file_name(relobj, "crtbegin")
4564
              && !Layout::match_file_name(relobj, "crtend")))
4565
        {
4566
          *plen = 11;
4567
          return name[1] == 'c' ? ".init_array" : ".fini_array";
4568
        }
4569
    }
4570
 
4571 27 khays
  return name;
4572
}
4573
 
4574 159 khays
// Return true if RELOBJ is an input file whose base name matches
4575
// FILE_NAME.  The base name must have an extension of ".o", and must
4576
// be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4577
// to match crtbegin.o as well as crtbeginS.o without getting confused
4578
// by other possibilities.  Overall matching the file name this way is
4579
// a dreadful hack, but the GNU linker does it in order to better
4580
// support gcc, and we need to be compatible.
4581
 
4582
bool
4583
Layout::match_file_name(const Relobj* relobj, const char* match)
4584
{
4585
  const std::string& file_name(relobj->name());
4586
  const char* base_name = lbasename(file_name.c_str());
4587
  size_t match_len = strlen(match);
4588
  if (strncmp(base_name, match, match_len) != 0)
4589
    return false;
4590
  size_t base_len = strlen(base_name);
4591
  if (base_len != match_len + 2 && base_len != match_len + 3)
4592
    return false;
4593
  return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4594
}
4595
 
4596 27 khays
// Check if a comdat group or .gnu.linkonce section with the given
4597
// NAME is selected for the link.  If there is already a section,
4598
// *KEPT_SECTION is set to point to the existing section and the
4599
// function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4600
// IS_GROUP_NAME are recorded for this NAME in the layout object,
4601
// *KEPT_SECTION is set to the internal copy and the function returns
4602
// true.
4603
 
4604
bool
4605
Layout::find_or_add_kept_section(const std::string& name,
4606
                                 Relobj* object,
4607
                                 unsigned int shndx,
4608
                                 bool is_comdat,
4609
                                 bool is_group_name,
4610
                                 Kept_section** kept_section)
4611
{
4612
  // It's normal to see a couple of entries here, for the x86 thunk
4613
  // sections.  If we see more than a few, we're linking a C++
4614
  // program, and we resize to get more space to minimize rehashing.
4615
  if (this->signatures_.size() > 4
4616
      && !this->resized_signatures_)
4617
    {
4618
      reserve_unordered_map(&this->signatures_,
4619
                            this->number_of_input_files_ * 64);
4620
      this->resized_signatures_ = true;
4621
    }
4622
 
4623
  Kept_section candidate;
4624
  std::pair<Signatures::iterator, bool> ins =
4625
    this->signatures_.insert(std::make_pair(name, candidate));
4626
 
4627
  if (kept_section != NULL)
4628
    *kept_section = &ins.first->second;
4629
  if (ins.second)
4630
    {
4631
      // This is the first time we've seen this signature.
4632
      ins.first->second.set_object(object);
4633
      ins.first->second.set_shndx(shndx);
4634
      if (is_comdat)
4635
        ins.first->second.set_is_comdat();
4636
      if (is_group_name)
4637
        ins.first->second.set_is_group_name();
4638
      return true;
4639
    }
4640
 
4641
  // We have already seen this signature.
4642
 
4643
  if (ins.first->second.is_group_name())
4644
    {
4645
      // We've already seen a real section group with this signature.
4646
      // If the kept group is from a plugin object, and we're in the
4647
      // replacement phase, accept the new one as a replacement.
4648
      if (ins.first->second.object() == NULL
4649
          && parameters->options().plugins()->in_replacement_phase())
4650
        {
4651
          ins.first->second.set_object(object);
4652
          ins.first->second.set_shndx(shndx);
4653
          return true;
4654
        }
4655
      return false;
4656
    }
4657
  else if (is_group_name)
4658
    {
4659
      // This is a real section group, and we've already seen a
4660
      // linkonce section with this signature.  Record that we've seen
4661
      // a section group, and don't include this section group.
4662
      ins.first->second.set_is_group_name();
4663
      return false;
4664
    }
4665
  else
4666
    {
4667
      // We've already seen a linkonce section and this is a linkonce
4668
      // section.  These don't block each other--this may be the same
4669
      // symbol name with different section types.
4670
      return true;
4671
    }
4672
}
4673
 
4674
// Store the allocated sections into the section list.
4675
 
4676
void
4677
Layout::get_allocated_sections(Section_list* section_list) const
4678
{
4679
  for (Section_list::const_iterator p = this->section_list_.begin();
4680
       p != this->section_list_.end();
4681
       ++p)
4682
    if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4683
      section_list->push_back(*p);
4684
}
4685
 
4686
// Create an output segment.
4687
 
4688
Output_segment*
4689
Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4690
{
4691
  gold_assert(!parameters->options().relocatable());
4692
  Output_segment* oseg = new Output_segment(type, flags);
4693
  this->segment_list_.push_back(oseg);
4694
 
4695
  if (type == elfcpp::PT_TLS)
4696
    this->tls_segment_ = oseg;
4697
  else if (type == elfcpp::PT_GNU_RELRO)
4698
    this->relro_segment_ = oseg;
4699 159 khays
  else if (type == elfcpp::PT_INTERP)
4700
    this->interp_segment_ = oseg;
4701 27 khays
 
4702
  return oseg;
4703
}
4704
 
4705
// Return the file offset of the normal symbol table.
4706
 
4707
off_t
4708
Layout::symtab_section_offset() const
4709
{
4710
  if (this->symtab_section_ != NULL)
4711
    return this->symtab_section_->offset();
4712
  return 0;
4713
}
4714
 
4715 159 khays
// Return the section index of the normal symbol table.  It may have
4716
// been stripped by the -s/--strip-all option.
4717
 
4718
unsigned int
4719
Layout::symtab_section_shndx() const
4720
{
4721
  if (this->symtab_section_ != NULL)
4722
    return this->symtab_section_->out_shndx();
4723
  return 0;
4724
}
4725
 
4726 27 khays
// Write out the Output_sections.  Most won't have anything to write,
4727
// since most of the data will come from input sections which are
4728
// handled elsewhere.  But some Output_sections do have Output_data.
4729
 
4730
void
4731
Layout::write_output_sections(Output_file* of) const
4732
{
4733
  for (Section_list::const_iterator p = this->section_list_.begin();
4734
       p != this->section_list_.end();
4735
       ++p)
4736
    {
4737
      if (!(*p)->after_input_sections())
4738
        (*p)->write(of);
4739
    }
4740
}
4741
 
4742
// Write out data not associated with a section or the symbol table.
4743
 
4744
void
4745
Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4746
{
4747
  if (!parameters->options().strip_all())
4748
    {
4749
      const Output_section* symtab_section = this->symtab_section_;
4750
      for (Section_list::const_iterator p = this->section_list_.begin();
4751
           p != this->section_list_.end();
4752
           ++p)
4753
        {
4754
          if ((*p)->needs_symtab_index())
4755
            {
4756
              gold_assert(symtab_section != NULL);
4757
              unsigned int index = (*p)->symtab_index();
4758
              gold_assert(index > 0 && index != -1U);
4759
              off_t off = (symtab_section->offset()
4760
                           + index * symtab_section->entsize());
4761
              symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4762
            }
4763
        }
4764
    }
4765
 
4766
  const Output_section* dynsym_section = this->dynsym_section_;
4767
  for (Section_list::const_iterator p = this->section_list_.begin();
4768
       p != this->section_list_.end();
4769
       ++p)
4770
    {
4771
      if ((*p)->needs_dynsym_index())
4772
        {
4773
          gold_assert(dynsym_section != NULL);
4774
          unsigned int index = (*p)->dynsym_index();
4775
          gold_assert(index > 0 && index != -1U);
4776
          off_t off = (dynsym_section->offset()
4777
                       + index * dynsym_section->entsize());
4778
          symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4779
        }
4780
    }
4781
 
4782
  // Write out the Output_data which are not in an Output_section.
4783
  for (Data_list::const_iterator p = this->special_output_list_.begin();
4784
       p != this->special_output_list_.end();
4785
       ++p)
4786
    (*p)->write(of);
4787
}
4788
 
4789
// Write out the Output_sections which can only be written after the
4790
// input sections are complete.
4791
 
4792
void
4793
Layout::write_sections_after_input_sections(Output_file* of)
4794
{
4795
  // Determine the final section offsets, and thus the final output
4796
  // file size.  Note we finalize the .shstrab last, to allow the
4797
  // after_input_section sections to modify their section-names before
4798
  // writing.
4799
  if (this->any_postprocessing_sections_)
4800
    {
4801
      off_t off = this->output_file_size_;
4802
      off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4803
 
4804
      // Now that we've finalized the names, we can finalize the shstrab.
4805
      off =
4806
        this->set_section_offsets(off,
4807
                                  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4808
 
4809
      if (off > this->output_file_size_)
4810
        {
4811
          of->resize(off);
4812
          this->output_file_size_ = off;
4813
        }
4814
    }
4815
 
4816
  for (Section_list::const_iterator p = this->section_list_.begin();
4817
       p != this->section_list_.end();
4818
       ++p)
4819
    {
4820
      if ((*p)->after_input_sections())
4821
        (*p)->write(of);
4822
    }
4823
 
4824
  this->section_headers_->write(of);
4825
}
4826
 
4827
// If the build ID requires computing a checksum, do so here, and
4828
// write it out.  We compute a checksum over the entire file because
4829
// that is simplest.
4830
 
4831
void
4832
Layout::write_build_id(Output_file* of) const
4833
{
4834
  if (this->build_id_note_ == NULL)
4835
    return;
4836
 
4837
  const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4838
 
4839
  unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4840
                                          this->build_id_note_->data_size());
4841
 
4842
  const char* style = parameters->options().build_id();
4843
  if (strcmp(style, "sha1") == 0)
4844
    {
4845
      sha1_ctx ctx;
4846
      sha1_init_ctx(&ctx);
4847
      sha1_process_bytes(iv, this->output_file_size_, &ctx);
4848
      sha1_finish_ctx(&ctx, ov);
4849
    }
4850
  else if (strcmp(style, "md5") == 0)
4851
    {
4852
      md5_ctx ctx;
4853
      md5_init_ctx(&ctx);
4854
      md5_process_bytes(iv, this->output_file_size_, &ctx);
4855
      md5_finish_ctx(&ctx, ov);
4856
    }
4857
  else
4858
    gold_unreachable();
4859
 
4860
  of->write_output_view(this->build_id_note_->offset(),
4861
                        this->build_id_note_->data_size(),
4862
                        ov);
4863
 
4864
  of->free_input_view(0, this->output_file_size_, iv);
4865
}
4866
 
4867
// Write out a binary file.  This is called after the link is
4868
// complete.  IN is the temporary output file we used to generate the
4869
// ELF code.  We simply walk through the segments, read them from
4870
// their file offset in IN, and write them to their load address in
4871
// the output file.  FIXME: with a bit more work, we could support
4872
// S-records and/or Intel hex format here.
4873
 
4874
void
4875
Layout::write_binary(Output_file* in) const
4876
{
4877
  gold_assert(parameters->options().oformat_enum()
4878
              == General_options::OBJECT_FORMAT_BINARY);
4879
 
4880
  // Get the size of the binary file.
4881
  uint64_t max_load_address = 0;
4882
  for (Segment_list::const_iterator p = this->segment_list_.begin();
4883
       p != this->segment_list_.end();
4884
       ++p)
4885
    {
4886
      if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4887
        {
4888
          uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4889
          if (max_paddr > max_load_address)
4890
            max_load_address = max_paddr;
4891
        }
4892
    }
4893
 
4894
  Output_file out(parameters->options().output_file_name());
4895
  out.open(max_load_address);
4896
 
4897
  for (Segment_list::const_iterator p = this->segment_list_.begin();
4898
       p != this->segment_list_.end();
4899
       ++p)
4900
    {
4901
      if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4902
        {
4903
          const unsigned char* vin = in->get_input_view((*p)->offset(),
4904
                                                        (*p)->filesz());
4905
          unsigned char* vout = out.get_output_view((*p)->paddr(),
4906
                                                    (*p)->filesz());
4907
          memcpy(vout, vin, (*p)->filesz());
4908
          out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4909
          in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4910
        }
4911
    }
4912
 
4913
  out.close();
4914
}
4915
 
4916
// Print the output sections to the map file.
4917
 
4918
void
4919
Layout::print_to_mapfile(Mapfile* mapfile) const
4920
{
4921
  for (Segment_list::const_iterator p = this->segment_list_.begin();
4922
       p != this->segment_list_.end();
4923
       ++p)
4924
    (*p)->print_sections_to_mapfile(mapfile);
4925
}
4926
 
4927
// Print statistical information to stderr.  This is used for --stats.
4928
 
4929
void
4930
Layout::print_stats() const
4931
{
4932
  this->namepool_.print_stats("section name pool");
4933
  this->sympool_.print_stats("output symbol name pool");
4934
  this->dynpool_.print_stats("dynamic name pool");
4935
 
4936
  for (Section_list::const_iterator p = this->section_list_.begin();
4937
       p != this->section_list_.end();
4938
       ++p)
4939
    (*p)->print_merge_stats();
4940
}
4941
 
4942
// Write_sections_task methods.
4943
 
4944
// We can always run this task.
4945
 
4946
Task_token*
4947
Write_sections_task::is_runnable()
4948
{
4949
  return NULL;
4950
}
4951
 
4952
// We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4953
// when finished.
4954
 
4955
void
4956
Write_sections_task::locks(Task_locker* tl)
4957
{
4958
  tl->add(this, this->output_sections_blocker_);
4959
  tl->add(this, this->final_blocker_);
4960
}
4961
 
4962
// Run the task--write out the data.
4963
 
4964
void
4965
Write_sections_task::run(Workqueue*)
4966
{
4967
  this->layout_->write_output_sections(this->of_);
4968
}
4969
 
4970
// Write_data_task methods.
4971
 
4972
// We can always run this task.
4973
 
4974
Task_token*
4975
Write_data_task::is_runnable()
4976
{
4977
  return NULL;
4978
}
4979
 
4980
// We need to unlock FINAL_BLOCKER when finished.
4981
 
4982
void
4983
Write_data_task::locks(Task_locker* tl)
4984
{
4985
  tl->add(this, this->final_blocker_);
4986
}
4987
 
4988
// Run the task--write out the data.
4989
 
4990
void
4991
Write_data_task::run(Workqueue*)
4992
{
4993
  this->layout_->write_data(this->symtab_, this->of_);
4994
}
4995
 
4996
// Write_symbols_task methods.
4997
 
4998
// We can always run this task.
4999
 
5000
Task_token*
5001
Write_symbols_task::is_runnable()
5002
{
5003
  return NULL;
5004
}
5005
 
5006
// We need to unlock FINAL_BLOCKER when finished.
5007
 
5008
void
5009
Write_symbols_task::locks(Task_locker* tl)
5010
{
5011
  tl->add(this, this->final_blocker_);
5012
}
5013
 
5014
// Run the task--write out the symbols.
5015
 
5016
void
5017
Write_symbols_task::run(Workqueue*)
5018
{
5019
  this->symtab_->write_globals(this->sympool_, this->dynpool_,
5020
                               this->layout_->symtab_xindex(),
5021
                               this->layout_->dynsym_xindex(), this->of_);
5022
}
5023
 
5024
// Write_after_input_sections_task methods.
5025
 
5026
// We can only run this task after the input sections have completed.
5027
 
5028
Task_token*
5029
Write_after_input_sections_task::is_runnable()
5030
{
5031
  if (this->input_sections_blocker_->is_blocked())
5032
    return this->input_sections_blocker_;
5033
  return NULL;
5034
}
5035
 
5036
// We need to unlock FINAL_BLOCKER when finished.
5037
 
5038
void
5039
Write_after_input_sections_task::locks(Task_locker* tl)
5040
{
5041
  tl->add(this, this->final_blocker_);
5042
}
5043
 
5044
// Run the task.
5045
 
5046
void
5047
Write_after_input_sections_task::run(Workqueue*)
5048
{
5049
  this->layout_->write_sections_after_input_sections(this->of_);
5050
}
5051
 
5052
// Close_task_runner methods.
5053
 
5054
// Run the task--close the file.
5055
 
5056
void
5057
Close_task_runner::run(Workqueue*, const Task*)
5058
{
5059
  // If we need to compute a checksum for the BUILD if, we do so here.
5060
  this->layout_->write_build_id(this->of_);
5061
 
5062
  // If we've been asked to create a binary file, we do so here.
5063
  if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5064
    this->layout_->write_binary(this->of_);
5065
 
5066
  this->of_->close();
5067
}
5068
 
5069
// Instantiate the templates we need.  We could use the configure
5070
// script to restrict this to only the ones for implemented targets.
5071
 
5072
#ifdef HAVE_TARGET_32_LITTLE
5073
template
5074
Output_section*
5075
Layout::init_fixed_output_section<32, false>(
5076
    const char* name,
5077
    elfcpp::Shdr<32, false>& shdr);
5078
#endif
5079
 
5080
#ifdef HAVE_TARGET_32_BIG
5081
template
5082
Output_section*
5083
Layout::init_fixed_output_section<32, true>(
5084
    const char* name,
5085
    elfcpp::Shdr<32, true>& shdr);
5086
#endif
5087
 
5088
#ifdef HAVE_TARGET_64_LITTLE
5089
template
5090
Output_section*
5091
Layout::init_fixed_output_section<64, false>(
5092
    const char* name,
5093
    elfcpp::Shdr<64, false>& shdr);
5094
#endif
5095
 
5096
#ifdef HAVE_TARGET_64_BIG
5097
template
5098
Output_section*
5099
Layout::init_fixed_output_section<64, true>(
5100
    const char* name,
5101
    elfcpp::Shdr<64, true>& shdr);
5102
#endif
5103
 
5104
#ifdef HAVE_TARGET_32_LITTLE
5105
template
5106
Output_section*
5107
Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5108
                          unsigned int shndx,
5109
                          const char* name,
5110
                          const elfcpp::Shdr<32, false>& shdr,
5111
                          unsigned int, unsigned int, off_t*);
5112
#endif
5113
 
5114
#ifdef HAVE_TARGET_32_BIG
5115
template
5116
Output_section*
5117
Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5118
                         unsigned int shndx,
5119
                         const char* name,
5120
                         const elfcpp::Shdr<32, true>& shdr,
5121
                         unsigned int, unsigned int, off_t*);
5122
#endif
5123
 
5124
#ifdef HAVE_TARGET_64_LITTLE
5125
template
5126
Output_section*
5127
Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5128
                          unsigned int shndx,
5129
                          const char* name,
5130
                          const elfcpp::Shdr<64, false>& shdr,
5131
                          unsigned int, unsigned int, off_t*);
5132
#endif
5133
 
5134
#ifdef HAVE_TARGET_64_BIG
5135
template
5136
Output_section*
5137
Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5138
                         unsigned int shndx,
5139
                         const char* name,
5140
                         const elfcpp::Shdr<64, true>& shdr,
5141
                         unsigned int, unsigned int, off_t*);
5142
#endif
5143
 
5144
#ifdef HAVE_TARGET_32_LITTLE
5145
template
5146
Output_section*
5147
Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5148
                                unsigned int reloc_shndx,
5149
                                const elfcpp::Shdr<32, false>& shdr,
5150
                                Output_section* data_section,
5151
                                Relocatable_relocs* rr);
5152
#endif
5153
 
5154
#ifdef HAVE_TARGET_32_BIG
5155
template
5156
Output_section*
5157
Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5158
                               unsigned int reloc_shndx,
5159
                               const elfcpp::Shdr<32, true>& shdr,
5160
                               Output_section* data_section,
5161
                               Relocatable_relocs* rr);
5162
#endif
5163
 
5164
#ifdef HAVE_TARGET_64_LITTLE
5165
template
5166
Output_section*
5167
Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5168
                                unsigned int reloc_shndx,
5169
                                const elfcpp::Shdr<64, false>& shdr,
5170
                                Output_section* data_section,
5171
                                Relocatable_relocs* rr);
5172
#endif
5173
 
5174
#ifdef HAVE_TARGET_64_BIG
5175
template
5176
Output_section*
5177
Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5178
                               unsigned int reloc_shndx,
5179
                               const elfcpp::Shdr<64, true>& shdr,
5180
                               Output_section* data_section,
5181
                               Relocatable_relocs* rr);
5182
#endif
5183
 
5184
#ifdef HAVE_TARGET_32_LITTLE
5185
template
5186
void
5187
Layout::layout_group<32, false>(Symbol_table* symtab,
5188
                                Sized_relobj_file<32, false>* object,
5189
                                unsigned int,
5190
                                const char* group_section_name,
5191
                                const char* signature,
5192
                                const elfcpp::Shdr<32, false>& shdr,
5193
                                elfcpp::Elf_Word flags,
5194
                                std::vector<unsigned int>* shndxes);
5195
#endif
5196
 
5197
#ifdef HAVE_TARGET_32_BIG
5198
template
5199
void
5200
Layout::layout_group<32, true>(Symbol_table* symtab,
5201
                               Sized_relobj_file<32, true>* object,
5202
                               unsigned int,
5203
                               const char* group_section_name,
5204
                               const char* signature,
5205
                               const elfcpp::Shdr<32, true>& shdr,
5206
                               elfcpp::Elf_Word flags,
5207
                               std::vector<unsigned int>* shndxes);
5208
#endif
5209
 
5210
#ifdef HAVE_TARGET_64_LITTLE
5211
template
5212
void
5213
Layout::layout_group<64, false>(Symbol_table* symtab,
5214
                                Sized_relobj_file<64, false>* object,
5215
                                unsigned int,
5216
                                const char* group_section_name,
5217
                                const char* signature,
5218
                                const elfcpp::Shdr<64, false>& shdr,
5219
                                elfcpp::Elf_Word flags,
5220
                                std::vector<unsigned int>* shndxes);
5221
#endif
5222
 
5223
#ifdef HAVE_TARGET_64_BIG
5224
template
5225
void
5226
Layout::layout_group<64, true>(Symbol_table* symtab,
5227
                               Sized_relobj_file<64, true>* object,
5228
                               unsigned int,
5229
                               const char* group_section_name,
5230
                               const char* signature,
5231
                               const elfcpp::Shdr<64, true>& shdr,
5232
                               elfcpp::Elf_Word flags,
5233
                               std::vector<unsigned int>* shndxes);
5234
#endif
5235
 
5236
#ifdef HAVE_TARGET_32_LITTLE
5237
template
5238
Output_section*
5239
Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5240
                                   const unsigned char* symbols,
5241
                                   off_t symbols_size,
5242
                                   const unsigned char* symbol_names,
5243
                                   off_t symbol_names_size,
5244
                                   unsigned int shndx,
5245
                                   const elfcpp::Shdr<32, false>& shdr,
5246
                                   unsigned int reloc_shndx,
5247
                                   unsigned int reloc_type,
5248
                                   off_t* off);
5249
#endif
5250
 
5251
#ifdef HAVE_TARGET_32_BIG
5252
template
5253
Output_section*
5254
Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5255
                                  const unsigned char* symbols,
5256
                                  off_t symbols_size,
5257
                                  const unsigned char* symbol_names,
5258
                                  off_t symbol_names_size,
5259
                                  unsigned int shndx,
5260
                                  const elfcpp::Shdr<32, true>& shdr,
5261
                                  unsigned int reloc_shndx,
5262
                                  unsigned int reloc_type,
5263
                                  off_t* off);
5264
#endif
5265
 
5266
#ifdef HAVE_TARGET_64_LITTLE
5267
template
5268
Output_section*
5269
Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5270
                                   const unsigned char* symbols,
5271
                                   off_t symbols_size,
5272
                                   const unsigned char* symbol_names,
5273
                                   off_t symbol_names_size,
5274
                                   unsigned int shndx,
5275
                                   const elfcpp::Shdr<64, false>& shdr,
5276
                                   unsigned int reloc_shndx,
5277
                                   unsigned int reloc_type,
5278
                                   off_t* off);
5279
#endif
5280
 
5281
#ifdef HAVE_TARGET_64_BIG
5282
template
5283
Output_section*
5284
Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5285
                                  const unsigned char* symbols,
5286
                                  off_t symbols_size,
5287
                                  const unsigned char* symbol_names,
5288
                                  off_t symbol_names_size,
5289
                                  unsigned int shndx,
5290
                                  const elfcpp::Shdr<64, true>& shdr,
5291
                                  unsigned int reloc_shndx,
5292
                                  unsigned int reloc_type,
5293
                                  off_t* off);
5294
#endif
5295
 
5296
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.