OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [object.cc] - Blame information for rev 161

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// object.cc -- support for an object file for linking in gold
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cerrno>
26
#include <cstring>
27
#include <cstdarg>
28
#include "demangle.h"
29
#include "libiberty.h"
30
 
31
#include "gc.h"
32
#include "target-select.h"
33
#include "dwarf_reader.h"
34
#include "layout.h"
35
#include "output.h"
36
#include "symtab.h"
37
#include "cref.h"
38
#include "reloc.h"
39
#include "object.h"
40
#include "dynobj.h"
41
#include "plugin.h"
42
#include "compressed_output.h"
43
#include "incremental.h"
44
 
45
namespace gold
46
{
47
 
48
// Struct Read_symbols_data.
49
 
50
// Destroy any remaining File_view objects.
51
 
52
Read_symbols_data::~Read_symbols_data()
53
{
54
  if (this->section_headers != NULL)
55
    delete this->section_headers;
56
  if (this->section_names != NULL)
57
    delete this->section_names;
58
  if (this->symbols != NULL)
59
    delete this->symbols;
60
  if (this->symbol_names != NULL)
61
    delete this->symbol_names;
62
  if (this->versym != NULL)
63
    delete this->versym;
64
  if (this->verdef != NULL)
65
    delete this->verdef;
66
  if (this->verneed != NULL)
67
    delete this->verneed;
68
}
69
 
70
// Class Xindex.
71
 
72
// Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73
// section and read it in.  SYMTAB_SHNDX is the index of the symbol
74
// table we care about.
75
 
76
template<int size, bool big_endian>
77
void
78
Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79
{
80
  if (!this->symtab_xindex_.empty())
81
    return;
82
 
83
  gold_assert(symtab_shndx != 0);
84
 
85
  // Look through the sections in reverse order, on the theory that it
86
  // is more likely to be near the end than the beginning.
87
  unsigned int i = object->shnum();
88
  while (i > 0)
89
    {
90
      --i;
91
      if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92
          && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93
        {
94
          this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95
          return;
96
        }
97
    }
98
 
99
  object->error(_("missing SHT_SYMTAB_SHNDX section"));
100
}
101
 
102
// Read in the symtab_xindex_ array, given the section index of the
103
// SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104
// section headers.
105
 
106
template<int size, bool big_endian>
107
void
108
Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109
                           const unsigned char* pshdrs)
110
{
111
  section_size_type bytecount;
112
  const unsigned char* contents;
113
  if (pshdrs == NULL)
114
    contents = object->section_contents(xindex_shndx, &bytecount, false);
115
  else
116
    {
117
      const unsigned char* p = (pshdrs
118
                                + (xindex_shndx
119
                                   * elfcpp::Elf_sizes<size>::shdr_size));
120
      typename elfcpp::Shdr<size, big_endian> shdr(p);
121
      bytecount = convert_to_section_size_type(shdr.get_sh_size());
122
      contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123
    }
124
 
125
  gold_assert(this->symtab_xindex_.empty());
126
  this->symtab_xindex_.reserve(bytecount / 4);
127
  for (section_size_type i = 0; i < bytecount; i += 4)
128
    {
129
      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130
      // We preadjust the section indexes we save.
131
      this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132
    }
133
}
134
 
135
// Symbol symndx has a section of SHN_XINDEX; return the real section
136
// index.
137
 
138
unsigned int
139
Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140
{
141
  if (symndx >= this->symtab_xindex_.size())
142
    {
143
      object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144
                    symndx);
145
      return elfcpp::SHN_UNDEF;
146
    }
147
  unsigned int shndx = this->symtab_xindex_[symndx];
148
  if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149
    {
150
      object->error(_("extended index for symbol %u out of range: %u"),
151
                    symndx, shndx);
152
      return elfcpp::SHN_UNDEF;
153
    }
154
  return shndx;
155
}
156
 
157
// Class Object.
158
 
159
// Report an error for this object file.  This is used by the
160
// elfcpp::Elf_file interface, and also called by the Object code
161
// itself.
162
 
163
void
164
Object::error(const char* format, ...) const
165
{
166
  va_list args;
167
  va_start(args, format);
168
  char* buf = NULL;
169
  if (vasprintf(&buf, format, args) < 0)
170
    gold_nomem();
171
  va_end(args);
172
  gold_error(_("%s: %s"), this->name().c_str(), buf);
173
  free(buf);
174
}
175
 
176
// Return a view of the contents of a section.
177
 
178
const unsigned char*
179
Object::section_contents(unsigned int shndx, section_size_type* plen,
180
                         bool cache)
181
{
182
  Location loc(this->do_section_contents(shndx));
183
  *plen = convert_to_section_size_type(loc.data_size);
184
  if (*plen == 0)
185
    {
186
      static const unsigned char empty[1] = { '\0' };
187
      return empty;
188
    }
189
  return this->get_view(loc.file_offset, *plen, true, cache);
190
}
191
 
192
// Read the section data into SD.  This is code common to Sized_relobj_file
193
// and Sized_dynobj, so we put it into Object.
194
 
195
template<int size, bool big_endian>
196
void
197
Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198
                          Read_symbols_data* sd)
199
{
200
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
 
202
  // Read the section headers.
203
  const off_t shoff = elf_file->shoff();
204
  const unsigned int shnum = this->shnum();
205
  sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206
                                               true, true);
207
 
208
  // Read the section names.
209
  const unsigned char* pshdrs = sd->section_headers->data();
210
  const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211
  typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
 
213
  if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214
    this->error(_("section name section has wrong type: %u"),
215
                static_cast<unsigned int>(shdrnames.get_sh_type()));
216
 
217
  sd->section_names_size =
218
    convert_to_section_size_type(shdrnames.get_sh_size());
219
  sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220
                                             sd->section_names_size, false,
221
                                             false);
222
}
223
 
224
// If NAME is the name of a special .gnu.warning section, arrange for
225
// the warning to be issued.  SHNDX is the section index.  Return
226
// whether it is a warning section.
227
 
228
bool
229
Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230
                                   Symbol_table* symtab)
231
{
232
  const char warn_prefix[] = ".gnu.warning.";
233
  const int warn_prefix_len = sizeof warn_prefix - 1;
234
  if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235
    {
236
      // Read the section contents to get the warning text.  It would
237
      // be nicer if we only did this if we have to actually issue a
238
      // warning.  Unfortunately, warnings are issued as we relocate
239
      // sections.  That means that we can not lock the object then,
240
      // as we might try to issue the same warning multiple times
241
      // simultaneously.
242
      section_size_type len;
243
      const unsigned char* contents = this->section_contents(shndx, &len,
244
                                                             false);
245
      if (len == 0)
246
        {
247
          const char* warning = name + warn_prefix_len;
248
          contents = reinterpret_cast<const unsigned char*>(warning);
249
          len = strlen(warning);
250
        }
251
      std::string warning(reinterpret_cast<const char*>(contents), len);
252
      symtab->add_warning(name + warn_prefix_len, this, warning);
253
      return true;
254
    }
255
  return false;
256
}
257
 
258
// If NAME is the name of the special section which indicates that
259
// this object was compiled with -fsplit-stack, mark it accordingly.
260
 
261
bool
262
Object::handle_split_stack_section(const char* name)
263
{
264
  if (strcmp(name, ".note.GNU-split-stack") == 0)
265
    {
266
      this->uses_split_stack_ = true;
267
      return true;
268
    }
269
  if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270
    {
271
      this->has_no_split_stack_ = true;
272
      return true;
273
    }
274
  return false;
275
}
276
 
277
// Class Relobj
278
 
279
// To copy the symbols data read from the file to a local data structure.
280
// This function is called from do_layout only while doing garbage 
281
// collection.
282
 
283
void
284
Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285
                          unsigned int section_header_size)
286
{
287
  gc_sd->section_headers_data =
288
         new unsigned char[(section_header_size)];
289
  memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290
         section_header_size);
291
  gc_sd->section_names_data =
292
         new unsigned char[sd->section_names_size];
293
  memcpy(gc_sd->section_names_data, sd->section_names->data(),
294
         sd->section_names_size);
295
  gc_sd->section_names_size = sd->section_names_size;
296
  if (sd->symbols != NULL)
297
    {
298
      gc_sd->symbols_data =
299
             new unsigned char[sd->symbols_size];
300
      memcpy(gc_sd->symbols_data, sd->symbols->data(),
301
            sd->symbols_size);
302
    }
303
  else
304
    {
305
      gc_sd->symbols_data = NULL;
306
    }
307
  gc_sd->symbols_size = sd->symbols_size;
308
  gc_sd->external_symbols_offset = sd->external_symbols_offset;
309
  if (sd->symbol_names != NULL)
310
    {
311
      gc_sd->symbol_names_data =
312
             new unsigned char[sd->symbol_names_size];
313
      memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314
            sd->symbol_names_size);
315
    }
316
  else
317
    {
318
      gc_sd->symbol_names_data = NULL;
319
    }
320
  gc_sd->symbol_names_size = sd->symbol_names_size;
321
}
322
 
323
// This function determines if a particular section name must be included
324
// in the link.  This is used during garbage collection to determine the
325
// roots of the worklist.
326
 
327
bool
328
Relobj::is_section_name_included(const char* name)
329
{
330
  if (is_prefix_of(".ctors", name)
331
      || is_prefix_of(".dtors", name)
332
      || is_prefix_of(".note", name)
333
      || is_prefix_of(".init", name)
334
      || is_prefix_of(".fini", name)
335
      || is_prefix_of(".gcc_except_table", name)
336
      || is_prefix_of(".jcr", name)
337
      || is_prefix_of(".preinit_array", name)
338
      || (is_prefix_of(".text", name)
339
          && strstr(name, "personality"))
340
      || (is_prefix_of(".data", name)
341
          &&  strstr(name, "personality"))
342
      || (is_prefix_of(".gnu.linkonce.d", name)
343
          && strstr(name, "personality")))
344
    {
345
      return true;
346
    }
347
  return false;
348
}
349
 
350
// Finalize the incremental relocation information.  Allocates a block
351
// of relocation entries for each symbol, and sets the reloc_bases_
352
// array to point to the first entry in each block.  If CLEAR_COUNTS
353
// is TRUE, also clear the per-symbol relocation counters.
354
 
355
void
356
Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357
{
358
  unsigned int nsyms = this->get_global_symbols()->size();
359
  this->reloc_bases_ = new unsigned int[nsyms];
360
 
361
  gold_assert(this->reloc_bases_ != NULL);
362
  gold_assert(layout->incremental_inputs() != NULL);
363
 
364
  unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365
  for (unsigned int i = 0; i < nsyms; ++i)
366
    {
367
      this->reloc_bases_[i] = rindex;
368
      rindex += this->reloc_counts_[i];
369
      if (clear_counts)
370
        this->reloc_counts_[i] = 0;
371
    }
372
  layout->incremental_inputs()->set_reloc_count(rindex);
373
}
374
 
375
// Class Sized_relobj.
376
 
377
// Iterate over local symbols, calling a visitor class V for each GOT offset
378
// associated with a local symbol.
379
 
380
template<int size, bool big_endian>
381
void
382
Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383
    Got_offset_list::Visitor* v) const
384
{
385
  unsigned int nsyms = this->local_symbol_count();
386
  for (unsigned int i = 0; i < nsyms; i++)
387
    {
388
      Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389
      if (p != this->local_got_offsets_.end())
390
        {
391
          const Got_offset_list* got_offsets = p->second;
392
          got_offsets->for_all_got_offsets(v);
393
        }
394
    }
395
}
396
 
397
// Class Sized_relobj_file.
398
 
399
template<int size, bool big_endian>
400
Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401
    const std::string& name,
402
    Input_file* input_file,
403
    off_t offset,
404
    const elfcpp::Ehdr<size, big_endian>& ehdr)
405
  : Sized_relobj<size, big_endian>(name, input_file, offset),
406
    elf_file_(this, ehdr),
407
    symtab_shndx_(-1U),
408
    local_symbol_count_(0),
409
    output_local_symbol_count_(0),
410
    output_local_dynsym_count_(0),
411
    symbols_(),
412
    defined_count_(0),
413
    local_symbol_offset_(0),
414
    local_dynsym_offset_(0),
415
    local_values_(),
416
    local_plt_offsets_(),
417
    kept_comdat_sections_(),
418
    has_eh_frame_(false),
419
    discarded_eh_frame_shndx_(-1U),
420
    deferred_layout_(),
421
    deferred_layout_relocs_(),
422
    compressed_sections_()
423
{
424 159 khays
  this->e_type_ = ehdr.get_e_type();
425 27 khays
}
426
 
427
template<int size, bool big_endian>
428
Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429
{
430
}
431
 
432
// Set up an object file based on the file header.  This sets up the
433
// section information.
434
 
435
template<int size, bool big_endian>
436
void
437
Sized_relobj_file<size, big_endian>::do_setup()
438
{
439
  const unsigned int shnum = this->elf_file_.shnum();
440
  this->set_shnum(shnum);
441
}
442
 
443
// Find the SHT_SYMTAB section, given the section headers.  The ELF
444
// standard says that maybe in the future there can be more than one
445
// SHT_SYMTAB section.  Until somebody figures out how that could
446
// work, we assume there is only one.
447
 
448
template<int size, bool big_endian>
449
void
450
Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451
{
452
  const unsigned int shnum = this->shnum();
453
  this->symtab_shndx_ = 0;
454
  if (shnum > 0)
455
    {
456
      // Look through the sections in reverse order, since gas tends
457
      // to put the symbol table at the end.
458
      const unsigned char* p = pshdrs + shnum * This::shdr_size;
459
      unsigned int i = shnum;
460
      unsigned int xindex_shndx = 0;
461
      unsigned int xindex_link = 0;
462
      while (i > 0)
463
        {
464
          --i;
465
          p -= This::shdr_size;
466
          typename This::Shdr shdr(p);
467
          if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468
            {
469
              this->symtab_shndx_ = i;
470
              if (xindex_shndx > 0 && xindex_link == i)
471
                {
472
                  Xindex* xindex =
473
                    new Xindex(this->elf_file_.large_shndx_offset());
474
                  xindex->read_symtab_xindex<size, big_endian>(this,
475
                                                               xindex_shndx,
476
                                                               pshdrs);
477
                  this->set_xindex(xindex);
478
                }
479
              break;
480
            }
481
 
482
          // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483
          // one.  This will work if it follows the SHT_SYMTAB
484
          // section.
485
          if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486
            {
487
              xindex_shndx = i;
488
              xindex_link = this->adjust_shndx(shdr.get_sh_link());
489
            }
490
        }
491
    }
492
}
493
 
494
// Return the Xindex structure to use for object with lots of
495
// sections.
496
 
497
template<int size, bool big_endian>
498
Xindex*
499
Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500
{
501
  gold_assert(this->symtab_shndx_ != -1U);
502
  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503
  xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504
  return xindex;
505
}
506
 
507
// Return whether SHDR has the right type and flags to be a GNU
508
// .eh_frame section.
509
 
510
template<int size, bool big_endian>
511
bool
512
Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513
    const elfcpp::Shdr<size, big_endian>* shdr) const
514
{
515 159 khays
  elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516
  return ((sh_type == elfcpp::SHT_PROGBITS
517
           || sh_type == elfcpp::SHT_X86_64_UNWIND)
518 27 khays
          && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519
}
520
 
521
// Return whether there is a GNU .eh_frame section, given the section
522
// headers and the section names.
523
 
524
template<int size, bool big_endian>
525
bool
526
Sized_relobj_file<size, big_endian>::find_eh_frame(
527
    const unsigned char* pshdrs,
528
    const char* names,
529
    section_size_type names_size) const
530
{
531
  const unsigned int shnum = this->shnum();
532
  const unsigned char* p = pshdrs + This::shdr_size;
533
  for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534
    {
535
      typename This::Shdr shdr(p);
536
      if (this->check_eh_frame_flags(&shdr))
537
        {
538
          if (shdr.get_sh_name() >= names_size)
539
            {
540
              this->error(_("bad section name offset for section %u: %lu"),
541
                          i, static_cast<unsigned long>(shdr.get_sh_name()));
542
              continue;
543
            }
544
 
545
          const char* name = names + shdr.get_sh_name();
546
          if (strcmp(name, ".eh_frame") == 0)
547
            return true;
548
        }
549
    }
550
  return false;
551
}
552
 
553
// Build a table for any compressed debug sections, mapping each section index
554
// to the uncompressed size.
555
 
556
template<int size, bool big_endian>
557
Compressed_section_map*
558
build_compressed_section_map(
559
    const unsigned char* pshdrs,
560
    unsigned int shnum,
561
    const char* names,
562
    section_size_type names_size,
563
    Sized_relobj_file<size, big_endian>* obj)
564
{
565
  Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
566
  const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
567
  const unsigned char* p = pshdrs + shdr_size;
568
  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
569
    {
570
      typename elfcpp::Shdr<size, big_endian> shdr(p);
571
      if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
572
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573
        {
574
          if (shdr.get_sh_name() >= names_size)
575
            {
576
              obj->error(_("bad section name offset for section %u: %lu"),
577
                         i, static_cast<unsigned long>(shdr.get_sh_name()));
578
              continue;
579
            }
580
 
581
          const char* name = names + shdr.get_sh_name();
582
          if (is_compressed_debug_section(name))
583
            {
584
              section_size_type len;
585
              const unsigned char* contents =
586
                  obj->section_contents(i, &len, false);
587
              uint64_t uncompressed_size = get_uncompressed_size(contents, len);
588
              if (uncompressed_size != -1ULL)
589
                (*uncompressed_sizes)[i] =
590
                    convert_to_section_size_type(uncompressed_size);
591
            }
592
        }
593
    }
594
  return uncompressed_sizes;
595
}
596
 
597
// Read the sections and symbols from an object file.
598
 
599
template<int size, bool big_endian>
600
void
601
Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
602
{
603
  this->read_section_data(&this->elf_file_, sd);
604
 
605
  const unsigned char* const pshdrs = sd->section_headers->data();
606
 
607
  this->find_symtab(pshdrs);
608
 
609
  const unsigned char* namesu = sd->section_names->data();
610
  const char* names = reinterpret_cast<const char*>(namesu);
611
  if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
612
    {
613
      if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
614
        this->has_eh_frame_ = true;
615
    }
616
  if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
617
    this->compressed_sections_ =
618
        build_compressed_section_map(pshdrs, this->shnum(), names,
619
                                     sd->section_names_size, this);
620
 
621
  sd->symbols = NULL;
622
  sd->symbols_size = 0;
623
  sd->external_symbols_offset = 0;
624
  sd->symbol_names = NULL;
625
  sd->symbol_names_size = 0;
626
 
627
  if (this->symtab_shndx_ == 0)
628
    {
629
      // No symbol table.  Weird but legal.
630
      return;
631
    }
632
 
633
  // Get the symbol table section header.
634
  typename This::Shdr symtabshdr(pshdrs
635
                                 + this->symtab_shndx_ * This::shdr_size);
636
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
637
 
638
  // If this object has a .eh_frame section, we need all the symbols.
639
  // Otherwise we only need the external symbols.  While it would be
640
  // simpler to just always read all the symbols, I've seen object
641
  // files with well over 2000 local symbols, which for a 64-bit
642
  // object file format is over 5 pages that we don't need to read
643
  // now.
644
 
645
  const int sym_size = This::sym_size;
646
  const unsigned int loccount = symtabshdr.get_sh_info();
647
  this->local_symbol_count_ = loccount;
648
  this->local_values_.resize(loccount);
649
  section_offset_type locsize = loccount * sym_size;
650
  off_t dataoff = symtabshdr.get_sh_offset();
651
  section_size_type datasize =
652
    convert_to_section_size_type(symtabshdr.get_sh_size());
653
  off_t extoff = dataoff + locsize;
654
  section_size_type extsize = datasize - locsize;
655
 
656
  off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
657
  section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
658
 
659
  if (readsize == 0)
660
    {
661
      // No external symbols.  Also weird but also legal.
662
      return;
663
    }
664
 
665
  File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
666
 
667
  // Read the section header for the symbol names.
668
  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
669
  if (strtab_shndx >= this->shnum())
670
    {
671
      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
672
      return;
673
    }
674
  typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
675
  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
676
    {
677
      this->error(_("symbol table name section has wrong type: %u"),
678
                  static_cast<unsigned int>(strtabshdr.get_sh_type()));
679
      return;
680
    }
681
 
682
  // Read the symbol names.
683
  File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
684
                                               strtabshdr.get_sh_size(),
685
                                               false, true);
686
 
687
  sd->symbols = fvsymtab;
688
  sd->symbols_size = readsize;
689
  sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
690
  sd->symbol_names = fvstrtab;
691
  sd->symbol_names_size =
692
    convert_to_section_size_type(strtabshdr.get_sh_size());
693
}
694
 
695
// Return the section index of symbol SYM.  Set *VALUE to its value in
696
// the object file.  Set *IS_ORDINARY if this is an ordinary section
697
// index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
698
// Note that for a symbol which is not defined in this object file,
699
// this will set *VALUE to 0 and return SHN_UNDEF; it will not return
700
// the final value of the symbol in the link.
701
 
702
template<int size, bool big_endian>
703
unsigned int
704
Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
705
                                                              Address* value,
706
                                                              bool* is_ordinary)
707
{
708
  section_size_type symbols_size;
709
  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
710
                                                        &symbols_size,
711
                                                        false);
712
 
713
  const size_t count = symbols_size / This::sym_size;
714
  gold_assert(sym < count);
715
 
716
  elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
717
  *value = elfsym.get_st_value();
718
 
719
  return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
720
}
721
 
722
// Return whether to include a section group in the link.  LAYOUT is
723
// used to keep track of which section groups we have already seen.
724
// INDEX is the index of the section group and SHDR is the section
725
// header.  If we do not want to include this group, we set bits in
726
// OMIT for each section which should be discarded.
727
 
728
template<int size, bool big_endian>
729
bool
730
Sized_relobj_file<size, big_endian>::include_section_group(
731
    Symbol_table* symtab,
732
    Layout* layout,
733
    unsigned int index,
734
    const char* name,
735
    const unsigned char* shdrs,
736
    const char* section_names,
737
    section_size_type section_names_size,
738
    std::vector<bool>* omit)
739
{
740
  // Read the section contents.
741
  typename This::Shdr shdr(shdrs + index * This::shdr_size);
742
  const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
743
                                             shdr.get_sh_size(), true, false);
744
  const elfcpp::Elf_Word* pword =
745
    reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
746
 
747
  // The first word contains flags.  We only care about COMDAT section
748
  // groups.  Other section groups are always included in the link
749
  // just like ordinary sections.
750
  elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
751
 
752 159 khays
  // Look up the group signature, which is the name of a symbol.  ELF
753
  // uses a symbol name because some group signatures are long, and
754
  // the name is generally already in the symbol table, so it makes
755
  // sense to put the long string just once in .strtab rather than in
756
  // both .strtab and .shstrtab.
757 27 khays
 
758
  // Get the appropriate symbol table header (this will normally be
759
  // the single SHT_SYMTAB section, but in principle it need not be).
760
  const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
761
  typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
762
 
763
  // Read the symbol table entry.
764
  unsigned int symndx = shdr.get_sh_info();
765
  if (symndx >= symshdr.get_sh_size() / This::sym_size)
766
    {
767
      this->error(_("section group %u info %u out of range"),
768
                  index, symndx);
769
      return false;
770
    }
771
  off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
772
  const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
773
                                             false);
774
  elfcpp::Sym<size, big_endian> sym(psym);
775
 
776
  // Read the symbol table names.
777
  section_size_type symnamelen;
778
  const unsigned char* psymnamesu;
779
  psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
780
                                      &symnamelen, true);
781
  const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
782
 
783
  // Get the section group signature.
784
  if (sym.get_st_name() >= symnamelen)
785
    {
786
      this->error(_("symbol %u name offset %u out of range"),
787
                  symndx, sym.get_st_name());
788
      return false;
789
    }
790
 
791
  std::string signature(psymnames + sym.get_st_name());
792
 
793
  // It seems that some versions of gas will create a section group
794
  // associated with a section symbol, and then fail to give a name to
795
  // the section symbol.  In such a case, use the name of the section.
796
  if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
797
    {
798
      bool is_ordinary;
799
      unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
800
                                                      sym.get_st_shndx(),
801
                                                      &is_ordinary);
802
      if (!is_ordinary || sym_shndx >= this->shnum())
803
        {
804
          this->error(_("symbol %u invalid section index %u"),
805
                      symndx, sym_shndx);
806
          return false;
807
        }
808
      typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
809
      if (member_shdr.get_sh_name() < section_names_size)
810
        signature = section_names + member_shdr.get_sh_name();
811
    }
812
 
813
  // Record this section group in the layout, and see whether we've already
814
  // seen one with the same signature.
815
  bool include_group;
816
  bool is_comdat;
817
  Kept_section* kept_section = NULL;
818
 
819
  if ((flags & elfcpp::GRP_COMDAT) == 0)
820
    {
821
      include_group = true;
822
      is_comdat = false;
823
    }
824
  else
825
    {
826
      include_group = layout->find_or_add_kept_section(signature,
827
                                                       this, index, true,
828
                                                       true, &kept_section);
829
      is_comdat = true;
830
    }
831
 
832
  if (is_comdat && include_group)
833
    {
834
      Incremental_inputs* incremental_inputs = layout->incremental_inputs();
835
      if (incremental_inputs != NULL)
836
        incremental_inputs->report_comdat_group(this, signature.c_str());
837
    }
838
 
839
  size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
840
 
841
  std::vector<unsigned int> shndxes;
842
  bool relocate_group = include_group && parameters->options().relocatable();
843
  if (relocate_group)
844
    shndxes.reserve(count - 1);
845
 
846
  for (size_t i = 1; i < count; ++i)
847
    {
848
      elfcpp::Elf_Word shndx =
849
        this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
850
 
851
      if (relocate_group)
852
        shndxes.push_back(shndx);
853
 
854
      if (shndx >= this->shnum())
855
        {
856
          this->error(_("section %u in section group %u out of range"),
857
                      shndx, index);
858
          continue;
859
        }
860
 
861
      // Check for an earlier section number, since we're going to get
862
      // it wrong--we may have already decided to include the section.
863
      if (shndx < index)
864
        this->error(_("invalid section group %u refers to earlier section %u"),
865
                    index, shndx);
866
 
867
      // Get the name of the member section.
868
      typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
869
      if (member_shdr.get_sh_name() >= section_names_size)
870
        {
871
          // This is an error, but it will be diagnosed eventually
872
          // in do_layout, so we don't need to do anything here but
873
          // ignore it.
874
          continue;
875
        }
876
      std::string mname(section_names + member_shdr.get_sh_name());
877
 
878
      if (include_group)
879
        {
880
          if (is_comdat)
881
            kept_section->add_comdat_section(mname, shndx,
882
                                             member_shdr.get_sh_size());
883
        }
884
      else
885
        {
886
          (*omit)[shndx] = true;
887
 
888
          if (is_comdat)
889
            {
890
              Relobj* kept_object = kept_section->object();
891
              if (kept_section->is_comdat())
892
                {
893
                  // Find the corresponding kept section, and store
894
                  // that info in the discarded section table.
895
                  unsigned int kept_shndx;
896
                  uint64_t kept_size;
897
                  if (kept_section->find_comdat_section(mname, &kept_shndx,
898
                                                        &kept_size))
899
                    {
900
                      // We don't keep a mapping for this section if
901
                      // it has a different size.  The mapping is only
902
                      // used for relocation processing, and we don't
903
                      // want to treat the sections as similar if the
904
                      // sizes are different.  Checking the section
905
                      // size is the approach used by the GNU linker.
906
                      if (kept_size == member_shdr.get_sh_size())
907
                        this->set_kept_comdat_section(shndx, kept_object,
908
                                                      kept_shndx);
909
                    }
910
                }
911
              else
912
                {
913
                  // The existing section is a linkonce section.  Add
914
                  // a mapping if there is exactly one section in the
915
                  // group (which is true when COUNT == 2) and if it
916
                  // is the same size.
917
                  if (count == 2
918
                      && (kept_section->linkonce_size()
919
                          == member_shdr.get_sh_size()))
920
                    this->set_kept_comdat_section(shndx, kept_object,
921
                                                  kept_section->shndx());
922
                }
923
            }
924
        }
925
    }
926
 
927
  if (relocate_group)
928
    layout->layout_group(symtab, this, index, name, signature.c_str(),
929
                         shdr, flags, &shndxes);
930
 
931
  return include_group;
932
}
933
 
934
// Whether to include a linkonce section in the link.  NAME is the
935
// name of the section and SHDR is the section header.
936
 
937
// Linkonce sections are a GNU extension implemented in the original
938
// GNU linker before section groups were defined.  The semantics are
939
// that we only include one linkonce section with a given name.  The
940
// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
941
// where T is the type of section and SYMNAME is the name of a symbol.
942
// In an attempt to make linkonce sections interact well with section
943
// groups, we try to identify SYMNAME and use it like a section group
944
// signature.  We want to block section groups with that signature,
945
// but not other linkonce sections with that signature.  We also use
946
// the full name of the linkonce section as a normal section group
947
// signature.
948
 
949
template<int size, bool big_endian>
950
bool
951
Sized_relobj_file<size, big_endian>::include_linkonce_section(
952
    Layout* layout,
953
    unsigned int index,
954
    const char* name,
955
    const elfcpp::Shdr<size, big_endian>& shdr)
956
{
957
  typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
958
  // In general the symbol name we want will be the string following
959
  // the last '.'.  However, we have to handle the case of
960
  // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
961
  // some versions of gcc.  So we use a heuristic: if the name starts
962
  // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
963
  // we look for the last '.'.  We can't always simply skip
964
  // ".gnu.linkonce.X", because we have to deal with cases like
965
  // ".gnu.linkonce.d.rel.ro.local".
966
  const char* const linkonce_t = ".gnu.linkonce.t.";
967
  const char* symname;
968
  if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
969
    symname = name + strlen(linkonce_t);
970
  else
971
    symname = strrchr(name, '.') + 1;
972
  std::string sig1(symname);
973
  std::string sig2(name);
974
  Kept_section* kept1;
975
  Kept_section* kept2;
976
  bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
977
                                                   false, &kept1);
978
  bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
979
                                                   true, &kept2);
980
 
981
  if (!include2)
982
    {
983
      // We are not including this section because we already saw the
984
      // name of the section as a signature.  This normally implies
985
      // that the kept section is another linkonce section.  If it is
986
      // the same size, record it as the section which corresponds to
987
      // this one.
988
      if (kept2->object() != NULL
989
          && !kept2->is_comdat()
990
          && kept2->linkonce_size() == sh_size)
991
        this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
992
    }
993
  else if (!include1)
994
    {
995
      // The section is being discarded on the basis of its symbol
996
      // name.  This means that the corresponding kept section was
997
      // part of a comdat group, and it will be difficult to identify
998
      // the specific section within that group that corresponds to
999
      // this linkonce section.  We'll handle the simple case where
1000
      // the group has only one member section.  Otherwise, it's not
1001
      // worth the effort.
1002
      unsigned int kept_shndx;
1003
      uint64_t kept_size;
1004
      if (kept1->object() != NULL
1005
          && kept1->is_comdat()
1006
          && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1007
          && kept_size == sh_size)
1008
        this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1009
    }
1010
  else
1011
    {
1012
      kept1->set_linkonce_size(sh_size);
1013
      kept2->set_linkonce_size(sh_size);
1014
    }
1015
 
1016
  return include1 && include2;
1017
}
1018
 
1019
// Layout an input section.
1020
 
1021
template<int size, bool big_endian>
1022
inline void
1023 159 khays
Sized_relobj_file<size, big_endian>::layout_section(
1024
    Layout* layout,
1025
    unsigned int shndx,
1026
    const char* name,
1027
    const typename This::Shdr& shdr,
1028
    unsigned int reloc_shndx,
1029
    unsigned int reloc_type)
1030 27 khays
{
1031
  off_t offset;
1032
  Output_section* os = layout->layout(this, shndx, name, shdr,
1033
                                          reloc_shndx, reloc_type, &offset);
1034
 
1035
  this->output_sections()[shndx] = os;
1036
  if (offset == -1)
1037
    this->section_offsets()[shndx] = invalid_address;
1038
  else
1039
    this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1040
 
1041
  // If this section requires special handling, and if there are
1042
  // relocs that apply to it, then we must do the special handling
1043
  // before we apply the relocs.
1044
  if (offset == -1 && reloc_shndx != 0)
1045
    this->set_relocs_must_follow_section_writes();
1046
}
1047
 
1048 159 khays
// Layout an input .eh_frame section.
1049
 
1050
template<int size, bool big_endian>
1051
void
1052
Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1053
    Layout* layout,
1054
    const unsigned char* symbols_data,
1055
    section_size_type symbols_size,
1056
    const unsigned char* symbol_names_data,
1057
    section_size_type symbol_names_size,
1058
    unsigned int shndx,
1059
    const typename This::Shdr& shdr,
1060
    unsigned int reloc_shndx,
1061
    unsigned int reloc_type)
1062
{
1063
  gold_assert(this->has_eh_frame_);
1064
 
1065
  off_t offset;
1066
  Output_section* os = layout->layout_eh_frame(this,
1067
                                               symbols_data,
1068
                                               symbols_size,
1069
                                               symbol_names_data,
1070
                                               symbol_names_size,
1071
                                               shndx,
1072
                                               shdr,
1073
                                               reloc_shndx,
1074
                                               reloc_type,
1075
                                               &offset);
1076
  this->output_sections()[shndx] = os;
1077
  if (os == NULL || offset == -1)
1078
    {
1079
      // An object can contain at most one section holding exception
1080
      // frame information.
1081
      gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1082
      this->discarded_eh_frame_shndx_ = shndx;
1083
      this->section_offsets()[shndx] = invalid_address;
1084
    }
1085
  else
1086
    this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1087
 
1088
  // If this section requires special handling, and if there are
1089
  // relocs that aply to it, then we must do the special handling
1090
  // before we apply the relocs.
1091
  if (os != NULL && offset == -1 && reloc_shndx != 0)
1092
    this->set_relocs_must_follow_section_writes();
1093
}
1094
 
1095 27 khays
// Lay out the input sections.  We walk through the sections and check
1096
// whether they should be included in the link.  If they should, we
1097
// pass them to the Layout object, which will return an output section
1098
// and an offset.  
1099
// During garbage collection (--gc-sections) and identical code folding 
1100
// (--icf), this function is called twice.  When it is called the first 
1101
// time, it is for setting up some sections as roots to a work-list for
1102
// --gc-sections and to do comdat processing.  Actual layout happens the 
1103
// second time around after all the relevant sections have been determined.  
1104
// The first time, is_worklist_ready or is_icf_ready is false. It is then 
1105
// set to true after the garbage collection worklist or identical code 
1106
// folding is processed and the relevant sections to be kept are 
1107
// determined.  Then, this function is called again to layout the sections.
1108
 
1109
template<int size, bool big_endian>
1110
void
1111
Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1112
                                               Layout* layout,
1113
                                               Read_symbols_data* sd)
1114
{
1115
  const unsigned int shnum = this->shnum();
1116
  bool is_gc_pass_one = ((parameters->options().gc_sections()
1117
                          && !symtab->gc()->is_worklist_ready())
1118
                         || (parameters->options().icf_enabled()
1119
                             && !symtab->icf()->is_icf_ready()));
1120
 
1121
  bool is_gc_pass_two = ((parameters->options().gc_sections()
1122
                          && symtab->gc()->is_worklist_ready())
1123
                         || (parameters->options().icf_enabled()
1124
                             && symtab->icf()->is_icf_ready()));
1125
 
1126
  bool is_gc_or_icf = (parameters->options().gc_sections()
1127
                       || parameters->options().icf_enabled());
1128
 
1129
  // Both is_gc_pass_one and is_gc_pass_two should not be true.
1130
  gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1131
 
1132
  if (shnum == 0)
1133
    return;
1134
  Symbols_data* gc_sd = NULL;
1135
  if (is_gc_pass_one)
1136
    {
1137
      // During garbage collection save the symbols data to use it when 
1138
      // re-entering this function.   
1139
      gc_sd = new Symbols_data;
1140
      this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1141
      this->set_symbols_data(gc_sd);
1142
    }
1143
  else if (is_gc_pass_two)
1144
    {
1145
      gc_sd = this->get_symbols_data();
1146
    }
1147
 
1148
  const unsigned char* section_headers_data = NULL;
1149
  section_size_type section_names_size;
1150
  const unsigned char* symbols_data = NULL;
1151
  section_size_type symbols_size;
1152
  section_offset_type external_symbols_offset;
1153
  const unsigned char* symbol_names_data = NULL;
1154
  section_size_type symbol_names_size;
1155
 
1156
  if (is_gc_or_icf)
1157
    {
1158
      section_headers_data = gc_sd->section_headers_data;
1159
      section_names_size = gc_sd->section_names_size;
1160
      symbols_data = gc_sd->symbols_data;
1161
      symbols_size = gc_sd->symbols_size;
1162
      external_symbols_offset = gc_sd->external_symbols_offset;
1163
      symbol_names_data = gc_sd->symbol_names_data;
1164
      symbol_names_size = gc_sd->symbol_names_size;
1165
    }
1166
  else
1167
    {
1168
      section_headers_data = sd->section_headers->data();
1169
      section_names_size = sd->section_names_size;
1170
      if (sd->symbols != NULL)
1171
        symbols_data = sd->symbols->data();
1172
      symbols_size = sd->symbols_size;
1173
      external_symbols_offset = sd->external_symbols_offset;
1174
      if (sd->symbol_names != NULL)
1175
        symbol_names_data = sd->symbol_names->data();
1176
      symbol_names_size = sd->symbol_names_size;
1177
    }
1178
 
1179
  // Get the section headers.
1180
  const unsigned char* shdrs = section_headers_data;
1181
  const unsigned char* pshdrs;
1182
 
1183
  // Get the section names.
1184
  const unsigned char* pnamesu = (is_gc_or_icf)
1185
                                 ? gc_sd->section_names_data
1186
                                 : sd->section_names->data();
1187
 
1188
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
1189
 
1190
  // If any input files have been claimed by plugins, we need to defer
1191
  // actual layout until the replacement files have arrived.
1192
  const bool should_defer_layout =
1193
      (parameters->options().has_plugins()
1194
       && parameters->options().plugins()->should_defer_layout());
1195
  unsigned int num_sections_to_defer = 0;
1196
 
1197
  // For each section, record the index of the reloc section if any.
1198
  // Use 0 to mean that there is no reloc section, -1U to mean that
1199
  // there is more than one.
1200
  std::vector<unsigned int> reloc_shndx(shnum, 0);
1201
  std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1202
  // Skip the first, dummy, section.
1203
  pshdrs = shdrs + This::shdr_size;
1204
  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1205
    {
1206
      typename This::Shdr shdr(pshdrs);
1207
 
1208
      // Count the number of sections whose layout will be deferred.
1209
      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1210
        ++num_sections_to_defer;
1211
 
1212
      unsigned int sh_type = shdr.get_sh_type();
1213
      if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1214
        {
1215
          unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1216
          if (target_shndx == 0 || target_shndx >= shnum)
1217
            {
1218
              this->error(_("relocation section %u has bad info %u"),
1219
                          i, target_shndx);
1220
              continue;
1221
            }
1222
 
1223
          if (reloc_shndx[target_shndx] != 0)
1224
            reloc_shndx[target_shndx] = -1U;
1225
          else
1226
            {
1227
              reloc_shndx[target_shndx] = i;
1228
              reloc_type[target_shndx] = sh_type;
1229
            }
1230
        }
1231
    }
1232
 
1233
  Output_sections& out_sections(this->output_sections());
1234
  std::vector<Address>& out_section_offsets(this->section_offsets());
1235
 
1236
  if (!is_gc_pass_two)
1237
    {
1238
      out_sections.resize(shnum);
1239
      out_section_offsets.resize(shnum);
1240
    }
1241
 
1242
  // If we are only linking for symbols, then there is nothing else to
1243
  // do here.
1244
  if (this->input_file()->just_symbols())
1245
    {
1246
      if (!is_gc_pass_two)
1247
        {
1248
          delete sd->section_headers;
1249
          sd->section_headers = NULL;
1250
          delete sd->section_names;
1251
          sd->section_names = NULL;
1252
        }
1253
      return;
1254
    }
1255
 
1256
  if (num_sections_to_defer > 0)
1257
    {
1258
      parameters->options().plugins()->add_deferred_layout_object(this);
1259
      this->deferred_layout_.reserve(num_sections_to_defer);
1260
    }
1261
 
1262
  // Whether we've seen a .note.GNU-stack section.
1263
  bool seen_gnu_stack = false;
1264
  // The flags of a .note.GNU-stack section.
1265
  uint64_t gnu_stack_flags = 0;
1266
 
1267
  // Keep track of which sections to omit.
1268
  std::vector<bool> omit(shnum, false);
1269
 
1270
  // Keep track of reloc sections when emitting relocations.
1271
  const bool relocatable = parameters->options().relocatable();
1272
  const bool emit_relocs = (relocatable
1273
                            || parameters->options().emit_relocs());
1274
  std::vector<unsigned int> reloc_sections;
1275
 
1276
  // Keep track of .eh_frame sections.
1277
  std::vector<unsigned int> eh_frame_sections;
1278
 
1279
  // Skip the first, dummy, section.
1280
  pshdrs = shdrs + This::shdr_size;
1281
  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1282
    {
1283
      typename This::Shdr shdr(pshdrs);
1284
 
1285
      if (shdr.get_sh_name() >= section_names_size)
1286
        {
1287
          this->error(_("bad section name offset for section %u: %lu"),
1288
                      i, static_cast<unsigned long>(shdr.get_sh_name()));
1289
          return;
1290
        }
1291
 
1292
      const char* name = pnames + shdr.get_sh_name();
1293
 
1294
      if (!is_gc_pass_two)
1295
        {
1296
          if (this->handle_gnu_warning_section(name, i, symtab))
1297
            {
1298 159 khays
              if (!relocatable && !parameters->options().shared())
1299 27 khays
                omit[i] = true;
1300
            }
1301
 
1302
          // The .note.GNU-stack section is special.  It gives the
1303
          // protection flags that this object file requires for the stack
1304
          // in memory.
1305
          if (strcmp(name, ".note.GNU-stack") == 0)
1306
            {
1307
              seen_gnu_stack = true;
1308
              gnu_stack_flags |= shdr.get_sh_flags();
1309
              omit[i] = true;
1310
            }
1311
 
1312
          // The .note.GNU-split-stack section is also special.  It
1313
          // indicates that the object was compiled with
1314
          // -fsplit-stack.
1315
          if (this->handle_split_stack_section(name))
1316
            {
1317 159 khays
              if (!relocatable && !parameters->options().shared())
1318 27 khays
                omit[i] = true;
1319
            }
1320
 
1321
          // Skip attributes section.
1322
          if (parameters->target().is_attributes_section(name))
1323
            {
1324
              omit[i] = true;
1325
            }
1326
 
1327
          bool discard = omit[i];
1328
          if (!discard)
1329
            {
1330
              if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1331
                {
1332
                  if (!this->include_section_group(symtab, layout, i, name,
1333
                                                   shdrs, pnames,
1334
                                                   section_names_size,
1335
                                                   &omit))
1336
                    discard = true;
1337
                }
1338
              else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1339
                       && Layout::is_linkonce(name))
1340
                {
1341
                  if (!this->include_linkonce_section(layout, i, name, shdr))
1342
                    discard = true;
1343
                }
1344
            }
1345
 
1346
          // Add the section to the incremental inputs layout.
1347
          Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1348
          if (incremental_inputs != NULL
1349
              && !discard
1350
              && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1351
                  || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1352
                  || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1353 148 khays
            {
1354
              off_t sh_size = shdr.get_sh_size();
1355
              section_size_type uncompressed_size;
1356
              if (this->section_is_compressed(i, &uncompressed_size))
1357
                sh_size = uncompressed_size;
1358
              incremental_inputs->report_input_section(this, i, name, sh_size);
1359
            }
1360 27 khays
 
1361
          if (discard)
1362
            {
1363
              // Do not include this section in the link.
1364
              out_sections[i] = NULL;
1365
              out_section_offsets[i] = invalid_address;
1366
              continue;
1367
            }
1368
        }
1369
 
1370
      if (is_gc_pass_one && parameters->options().gc_sections())
1371
        {
1372
          if (this->is_section_name_included(name)
1373
              || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1374
              || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1375
            {
1376
              symtab->gc()->worklist().push(Section_id(this, i));
1377
            }
1378
          // If the section name XXX can be represented as a C identifier
1379
          // it cannot be discarded if there are references to
1380
          // __start_XXX and __stop_XXX symbols.  These need to be
1381
          // specially handled.
1382
          if (is_cident(name))
1383
            {
1384
              symtab->gc()->add_cident_section(name, Section_id(this, i));
1385
            }
1386
        }
1387
 
1388
      // When doing a relocatable link we are going to copy input
1389
      // reloc sections into the output.  We only want to copy the
1390
      // ones associated with sections which are not being discarded.
1391
      // However, we don't know that yet for all sections.  So save
1392
      // reloc sections and process them later. Garbage collection is
1393
      // not triggered when relocatable code is desired.
1394
      if (emit_relocs
1395
          && (shdr.get_sh_type() == elfcpp::SHT_REL
1396
              || shdr.get_sh_type() == elfcpp::SHT_RELA))
1397
        {
1398
          reloc_sections.push_back(i);
1399
          continue;
1400
        }
1401
 
1402
      if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1403
        continue;
1404
 
1405
      // The .eh_frame section is special.  It holds exception frame
1406
      // information that we need to read in order to generate the
1407
      // exception frame header.  We process these after all the other
1408
      // sections so that the exception frame reader can reliably
1409
      // determine which sections are being discarded, and discard the
1410
      // corresponding information.
1411
      if (!relocatable
1412
          && strcmp(name, ".eh_frame") == 0
1413
          && this->check_eh_frame_flags(&shdr))
1414
        {
1415
          if (is_gc_pass_one)
1416
            {
1417
              out_sections[i] = reinterpret_cast<Output_section*>(1);
1418
              out_section_offsets[i] = invalid_address;
1419
            }
1420 159 khays
          else if (should_defer_layout)
1421
            this->deferred_layout_.push_back(Deferred_layout(i, name,
1422
                                                             pshdrs,
1423
                                                             reloc_shndx[i],
1424
                                                             reloc_type[i]));
1425
          else
1426 27 khays
            eh_frame_sections.push_back(i);
1427
          continue;
1428
        }
1429
 
1430
      if (is_gc_pass_two && parameters->options().gc_sections())
1431
        {
1432
          // This is executed during the second pass of garbage 
1433
          // collection. do_layout has been called before and some 
1434
          // sections have been already discarded. Simply ignore 
1435
          // such sections this time around.
1436
          if (out_sections[i] == NULL)
1437
            {
1438
              gold_assert(out_section_offsets[i] == invalid_address);
1439
              continue;
1440
            }
1441
          if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1442
              && symtab->gc()->is_section_garbage(this, i))
1443
              {
1444
                if (parameters->options().print_gc_sections())
1445
                  gold_info(_("%s: removing unused section from '%s'"
1446
                              " in file '%s'"),
1447
                            program_name, this->section_name(i).c_str(),
1448
                            this->name().c_str());
1449
                out_sections[i] = NULL;
1450
                out_section_offsets[i] = invalid_address;
1451
                continue;
1452
              }
1453
        }
1454
 
1455
      if (is_gc_pass_two && parameters->options().icf_enabled())
1456
        {
1457
          if (out_sections[i] == NULL)
1458
            {
1459
              gold_assert(out_section_offsets[i] == invalid_address);
1460
              continue;
1461
            }
1462
          if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1463
              && symtab->icf()->is_section_folded(this, i))
1464
              {
1465
                if (parameters->options().print_icf_sections())
1466
                  {
1467
                    Section_id folded =
1468
                                symtab->icf()->get_folded_section(this, i);
1469
                    Relobj* folded_obj =
1470
                                reinterpret_cast<Relobj*>(folded.first);
1471
                    gold_info(_("%s: ICF folding section '%s' in file '%s'"
1472
                                "into '%s' in file '%s'"),
1473
                              program_name, this->section_name(i).c_str(),
1474
                              this->name().c_str(),
1475
                              folded_obj->section_name(folded.second).c_str(),
1476
                              folded_obj->name().c_str());
1477
                  }
1478
                out_sections[i] = NULL;
1479
                out_section_offsets[i] = invalid_address;
1480
                continue;
1481
              }
1482
        }
1483
 
1484
      // Defer layout here if input files are claimed by plugins.  When gc
1485
      // is turned on this function is called twice.  For the second call
1486
      // should_defer_layout should be false.
1487
      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1488
        {
1489
          gold_assert(!is_gc_pass_two);
1490
          this->deferred_layout_.push_back(Deferred_layout(i, name,
1491
                                                           pshdrs,
1492
                                                           reloc_shndx[i],
1493
                                                           reloc_type[i]));
1494
          // Put dummy values here; real values will be supplied by
1495
          // do_layout_deferred_sections.
1496
          out_sections[i] = reinterpret_cast<Output_section*>(2);
1497
          out_section_offsets[i] = invalid_address;
1498
          continue;
1499
        }
1500
 
1501
      // During gc_pass_two if a section that was previously deferred is
1502
      // found, do not layout the section as layout_deferred_sections will
1503
      // do it later from gold.cc.
1504
      if (is_gc_pass_two
1505
          && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1506
        continue;
1507
 
1508
      if (is_gc_pass_one)
1509
        {
1510
          // This is during garbage collection. The out_sections are 
1511
          // assigned in the second call to this function. 
1512
          out_sections[i] = reinterpret_cast<Output_section*>(1);
1513
          out_section_offsets[i] = invalid_address;
1514
        }
1515
      else
1516
        {
1517
          // When garbage collection is switched on the actual layout
1518
          // only happens in the second call.
1519
          this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1520
                               reloc_type[i]);
1521
        }
1522
    }
1523
 
1524
  if (!is_gc_pass_two)
1525
    layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1526
 
1527
  // When doing a relocatable link handle the reloc sections at the
1528
  // end.  Garbage collection  and Identical Code Folding is not 
1529
  // turned on for relocatable code. 
1530
  if (emit_relocs)
1531
    this->size_relocatable_relocs();
1532
 
1533
  gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1534
 
1535
  for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1536
       p != reloc_sections.end();
1537
       ++p)
1538
    {
1539
      unsigned int i = *p;
1540
      const unsigned char* pshdr;
1541
      pshdr = section_headers_data + i * This::shdr_size;
1542
      typename This::Shdr shdr(pshdr);
1543
 
1544
      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1545
      if (data_shndx >= shnum)
1546
        {
1547
          // We already warned about this above.
1548
          continue;
1549
        }
1550
 
1551
      Output_section* data_section = out_sections[data_shndx];
1552
      if (data_section == reinterpret_cast<Output_section*>(2))
1553
        {
1554
          // The layout for the data section was deferred, so we need
1555
          // to defer the relocation section, too.
1556
          const char* name = pnames + shdr.get_sh_name();
1557
          this->deferred_layout_relocs_.push_back(
1558
              Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1559
          out_sections[i] = reinterpret_cast<Output_section*>(2);
1560
          out_section_offsets[i] = invalid_address;
1561
          continue;
1562
        }
1563
      if (data_section == NULL)
1564
        {
1565
          out_sections[i] = NULL;
1566
          out_section_offsets[i] = invalid_address;
1567
          continue;
1568
        }
1569
 
1570
      Relocatable_relocs* rr = new Relocatable_relocs();
1571
      this->set_relocatable_relocs(i, rr);
1572
 
1573
      Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1574
                                                rr);
1575
      out_sections[i] = os;
1576
      out_section_offsets[i] = invalid_address;
1577
    }
1578
 
1579
  // Handle the .eh_frame sections at the end.
1580
  gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1581
  for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1582
       p != eh_frame_sections.end();
1583
       ++p)
1584
    {
1585
      gold_assert(external_symbols_offset != 0);
1586
 
1587
      unsigned int i = *p;
1588
      const unsigned char* pshdr;
1589
      pshdr = section_headers_data + i * This::shdr_size;
1590
      typename This::Shdr shdr(pshdr);
1591
 
1592 159 khays
      this->layout_eh_frame_section(layout,
1593
                                    symbols_data,
1594
                                    symbols_size,
1595
                                    symbol_names_data,
1596
                                    symbol_names_size,
1597
                                    i,
1598
                                    shdr,
1599
                                    reloc_shndx[i],
1600
                                    reloc_type[i]);
1601 27 khays
    }
1602
 
1603
  if (is_gc_pass_two)
1604
    {
1605
      delete[] gc_sd->section_headers_data;
1606
      delete[] gc_sd->section_names_data;
1607
      delete[] gc_sd->symbols_data;
1608
      delete[] gc_sd->symbol_names_data;
1609
      this->set_symbols_data(NULL);
1610
    }
1611
  else
1612
    {
1613
      delete sd->section_headers;
1614
      sd->section_headers = NULL;
1615
      delete sd->section_names;
1616
      sd->section_names = NULL;
1617
    }
1618
}
1619
 
1620
// Layout sections whose layout was deferred while waiting for
1621
// input files from a plugin.
1622
 
1623
template<int size, bool big_endian>
1624
void
1625
Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1626
{
1627
  typename std::vector<Deferred_layout>::iterator deferred;
1628
 
1629
  for (deferred = this->deferred_layout_.begin();
1630
       deferred != this->deferred_layout_.end();
1631
       ++deferred)
1632
    {
1633
      typename This::Shdr shdr(deferred->shdr_data_);
1634
      // If the section is not included, it is because the garbage collector
1635
      // decided it is not needed.  Avoid reverting that decision.
1636
      if (!this->is_section_included(deferred->shndx_))
1637
        continue;
1638
 
1639 159 khays
      if (parameters->options().relocatable()
1640
          || deferred->name_ != ".eh_frame"
1641
          || !this->check_eh_frame_flags(&shdr))
1642
        this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1643
                             shdr, deferred->reloc_shndx_,
1644
                             deferred->reloc_type_);
1645
      else
1646
        {
1647
          // Reading the symbols again here may be slow.
1648
          Read_symbols_data sd;
1649
          this->read_symbols(&sd);
1650
          this->layout_eh_frame_section(layout,
1651
                                        sd.symbols->data(),
1652
                                        sd.symbols_size,
1653
                                        sd.symbol_names->data(),
1654
                                        sd.symbol_names_size,
1655
                                        deferred->shndx_,
1656
                                        shdr,
1657
                                        deferred->reloc_shndx_,
1658
                                        deferred->reloc_type_);
1659
        }
1660 27 khays
    }
1661
 
1662
  this->deferred_layout_.clear();
1663
 
1664
  // Now handle the deferred relocation sections.
1665
 
1666
  Output_sections& out_sections(this->output_sections());
1667
  std::vector<Address>& out_section_offsets(this->section_offsets());
1668
 
1669
  for (deferred = this->deferred_layout_relocs_.begin();
1670
       deferred != this->deferred_layout_relocs_.end();
1671
       ++deferred)
1672
    {
1673
      unsigned int shndx = deferred->shndx_;
1674
      typename This::Shdr shdr(deferred->shdr_data_);
1675
      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1676
 
1677
      Output_section* data_section = out_sections[data_shndx];
1678
      if (data_section == NULL)
1679
        {
1680
          out_sections[shndx] = NULL;
1681
          out_section_offsets[shndx] = invalid_address;
1682
          continue;
1683
        }
1684
 
1685
      Relocatable_relocs* rr = new Relocatable_relocs();
1686
      this->set_relocatable_relocs(shndx, rr);
1687
 
1688
      Output_section* os = layout->layout_reloc(this, shndx, shdr,
1689
                                                data_section, rr);
1690
      out_sections[shndx] = os;
1691
      out_section_offsets[shndx] = invalid_address;
1692
    }
1693
}
1694
 
1695
// Add the symbols to the symbol table.
1696
 
1697
template<int size, bool big_endian>
1698
void
1699
Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1700
                                                    Read_symbols_data* sd,
1701
                                                    Layout*)
1702
{
1703
  if (sd->symbols == NULL)
1704
    {
1705
      gold_assert(sd->symbol_names == NULL);
1706
      return;
1707
    }
1708
 
1709
  const int sym_size = This::sym_size;
1710
  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1711
                     / sym_size);
1712
  if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1713
    {
1714
      this->error(_("size of symbols is not multiple of symbol size"));
1715
      return;
1716
    }
1717
 
1718
  this->symbols_.resize(symcount);
1719
 
1720
  const char* sym_names =
1721
    reinterpret_cast<const char*>(sd->symbol_names->data());
1722
  symtab->add_from_relobj(this,
1723
                          sd->symbols->data() + sd->external_symbols_offset,
1724
                          symcount, this->local_symbol_count_,
1725
                          sym_names, sd->symbol_names_size,
1726
                          &this->symbols_,
1727
                          &this->defined_count_);
1728
 
1729
  delete sd->symbols;
1730
  sd->symbols = NULL;
1731
  delete sd->symbol_names;
1732
  sd->symbol_names = NULL;
1733
}
1734
 
1735
// Find out if this object, that is a member of a lib group, should be included
1736
// in the link. We check every symbol defined by this object. If the symbol
1737
// table has a strong undefined reference to that symbol, we have to include
1738
// the object.
1739
 
1740
template<int size, bool big_endian>
1741
Archive::Should_include
1742
Sized_relobj_file<size, big_endian>::do_should_include_member(
1743
    Symbol_table* symtab,
1744
    Layout* layout,
1745
    Read_symbols_data* sd,
1746
    std::string* why)
1747
{
1748
  char* tmpbuf = NULL;
1749
  size_t tmpbuflen = 0;
1750
  const char* sym_names =
1751
      reinterpret_cast<const char*>(sd->symbol_names->data());
1752
  const unsigned char* syms =
1753
      sd->symbols->data() + sd->external_symbols_offset;
1754
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1755
  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1756
                         / sym_size);
1757
 
1758
  const unsigned char* p = syms;
1759
 
1760
  for (size_t i = 0; i < symcount; ++i, p += sym_size)
1761
    {
1762
      elfcpp::Sym<size, big_endian> sym(p);
1763
      unsigned int st_shndx = sym.get_st_shndx();
1764
      if (st_shndx == elfcpp::SHN_UNDEF)
1765
        continue;
1766
 
1767
      unsigned int st_name = sym.get_st_name();
1768
      const char* name = sym_names + st_name;
1769
      Symbol* symbol;
1770
      Archive::Should_include t = Archive::should_include_member(symtab,
1771
                                                                 layout,
1772
                                                                 name,
1773
                                                                 &symbol, why,
1774
                                                                 &tmpbuf,
1775
                                                                 &tmpbuflen);
1776
      if (t == Archive::SHOULD_INCLUDE_YES)
1777
        {
1778
          if (tmpbuf != NULL)
1779
            free(tmpbuf);
1780
          return t;
1781
        }
1782
    }
1783
  if (tmpbuf != NULL)
1784
    free(tmpbuf);
1785
  return Archive::SHOULD_INCLUDE_UNKNOWN;
1786
}
1787
 
1788
// Iterate over global defined symbols, calling a visitor class V for each.
1789
 
1790
template<int size, bool big_endian>
1791
void
1792
Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1793
    Read_symbols_data* sd,
1794
    Library_base::Symbol_visitor_base* v)
1795
{
1796
  const char* sym_names =
1797
      reinterpret_cast<const char*>(sd->symbol_names->data());
1798
  const unsigned char* syms =
1799
      sd->symbols->data() + sd->external_symbols_offset;
1800
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1801
  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1802
                     / sym_size);
1803
  const unsigned char* p = syms;
1804
 
1805
  for (size_t i = 0; i < symcount; ++i, p += sym_size)
1806
    {
1807
      elfcpp::Sym<size, big_endian> sym(p);
1808
      if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1809
        v->visit(sym_names + sym.get_st_name());
1810
    }
1811
}
1812
 
1813
// Return whether the local symbol SYMNDX has a PLT offset.
1814
 
1815
template<int size, bool big_endian>
1816
bool
1817
Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1818
    unsigned int symndx) const
1819
{
1820
  typename Local_plt_offsets::const_iterator p =
1821
    this->local_plt_offsets_.find(symndx);
1822
  return p != this->local_plt_offsets_.end();
1823
}
1824
 
1825
// Get the PLT offset of a local symbol.
1826
 
1827
template<int size, bool big_endian>
1828
unsigned int
1829
Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1830
{
1831
  typename Local_plt_offsets::const_iterator p =
1832
    this->local_plt_offsets_.find(symndx);
1833
  gold_assert(p != this->local_plt_offsets_.end());
1834
  return p->second;
1835
}
1836
 
1837
// Set the PLT offset of a local symbol.
1838
 
1839
template<int size, bool big_endian>
1840
void
1841
Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1842
    unsigned int symndx, unsigned int plt_offset)
1843
{
1844
  std::pair<typename Local_plt_offsets::iterator, bool> ins =
1845
    this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1846
  gold_assert(ins.second);
1847
}
1848
 
1849
// First pass over the local symbols.  Here we add their names to
1850
// *POOL and *DYNPOOL, and we store the symbol value in
1851
// THIS->LOCAL_VALUES_.  This function is always called from a
1852
// singleton thread.  This is followed by a call to
1853
// finalize_local_symbols.
1854
 
1855
template<int size, bool big_endian>
1856
void
1857
Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1858
                                                            Stringpool* dynpool)
1859
{
1860
  gold_assert(this->symtab_shndx_ != -1U);
1861
  if (this->symtab_shndx_ == 0)
1862
    {
1863
      // This object has no symbols.  Weird but legal.
1864
      return;
1865
    }
1866
 
1867
  // Read the symbol table section header.
1868
  const unsigned int symtab_shndx = this->symtab_shndx_;
1869
  typename This::Shdr symtabshdr(this,
1870
                                 this->elf_file_.section_header(symtab_shndx));
1871
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1872
 
1873
  // Read the local symbols.
1874
  const int sym_size = This::sym_size;
1875
  const unsigned int loccount = this->local_symbol_count_;
1876
  gold_assert(loccount == symtabshdr.get_sh_info());
1877
  off_t locsize = loccount * sym_size;
1878
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1879
                                              locsize, true, true);
1880
 
1881
  // Read the symbol names.
1882
  const unsigned int strtab_shndx =
1883
    this->adjust_shndx(symtabshdr.get_sh_link());
1884
  section_size_type strtab_size;
1885
  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1886
                                                        &strtab_size,
1887
                                                        true);
1888
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
1889
 
1890
  // Loop over the local symbols.
1891
 
1892
  const Output_sections& out_sections(this->output_sections());
1893
  unsigned int shnum = this->shnum();
1894
  unsigned int count = 0;
1895
  unsigned int dyncount = 0;
1896
  // Skip the first, dummy, symbol.
1897
  psyms += sym_size;
1898
  bool strip_all = parameters->options().strip_all();
1899
  bool discard_all = parameters->options().discard_all();
1900
  bool discard_locals = parameters->options().discard_locals();
1901
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1902
    {
1903
      elfcpp::Sym<size, big_endian> sym(psyms);
1904
 
1905
      Symbol_value<size>& lv(this->local_values_[i]);
1906
 
1907
      bool is_ordinary;
1908
      unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1909
                                                  &is_ordinary);
1910
      lv.set_input_shndx(shndx, is_ordinary);
1911
 
1912
      if (sym.get_st_type() == elfcpp::STT_SECTION)
1913
        lv.set_is_section_symbol();
1914
      else if (sym.get_st_type() == elfcpp::STT_TLS)
1915
        lv.set_is_tls_symbol();
1916
      else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1917
        lv.set_is_ifunc_symbol();
1918
 
1919
      // Save the input symbol value for use in do_finalize_local_symbols().
1920
      lv.set_input_value(sym.get_st_value());
1921
 
1922
      // Decide whether this symbol should go into the output file.
1923
 
1924
      if ((shndx < shnum && out_sections[shndx] == NULL)
1925
          || shndx == this->discarded_eh_frame_shndx_)
1926
        {
1927
          lv.set_no_output_symtab_entry();
1928
          gold_assert(!lv.needs_output_dynsym_entry());
1929
          continue;
1930
        }
1931
 
1932
      if (sym.get_st_type() == elfcpp::STT_SECTION)
1933
        {
1934
          lv.set_no_output_symtab_entry();
1935
          gold_assert(!lv.needs_output_dynsym_entry());
1936
          continue;
1937
        }
1938
 
1939
      if (sym.get_st_name() >= strtab_size)
1940
        {
1941
          this->error(_("local symbol %u section name out of range: %u >= %u"),
1942
                      i, sym.get_st_name(),
1943
                      static_cast<unsigned int>(strtab_size));
1944
          lv.set_no_output_symtab_entry();
1945
          continue;
1946
        }
1947
 
1948
      const char* name = pnames + sym.get_st_name();
1949
 
1950
      // If needed, add the symbol to the dynamic symbol table string pool.
1951
      if (lv.needs_output_dynsym_entry())
1952
        {
1953
          dynpool->add(name, true, NULL);
1954
          ++dyncount;
1955
        }
1956
 
1957
      if (strip_all
1958
          || (discard_all && lv.may_be_discarded_from_output_symtab()))
1959
        {
1960
          lv.set_no_output_symtab_entry();
1961
          continue;
1962
        }
1963
 
1964
      // If --discard-locals option is used, discard all temporary local
1965
      // symbols.  These symbols start with system-specific local label
1966
      // prefixes, typically .L for ELF system.  We want to be compatible
1967
      // with GNU ld so here we essentially use the same check in
1968
      // bfd_is_local_label().  The code is different because we already
1969
      // know that:
1970
      //
1971
      //   - the symbol is local and thus cannot have global or weak binding.
1972
      //   - the symbol is not a section symbol.
1973
      //   - the symbol has a name.
1974
      //
1975
      // We do not discard a symbol if it needs a dynamic symbol entry.
1976
      if (discard_locals
1977
          && sym.get_st_type() != elfcpp::STT_FILE
1978
          && !lv.needs_output_dynsym_entry()
1979
          && lv.may_be_discarded_from_output_symtab()
1980
          && parameters->target().is_local_label_name(name))
1981
        {
1982
          lv.set_no_output_symtab_entry();
1983
          continue;
1984
        }
1985
 
1986
      // Discard the local symbol if -retain_symbols_file is specified
1987
      // and the local symbol is not in that file.
1988
      if (!parameters->options().should_retain_symbol(name))
1989
        {
1990
          lv.set_no_output_symtab_entry();
1991
          continue;
1992
        }
1993
 
1994
      // Add the symbol to the symbol table string pool.
1995
      pool->add(name, true, NULL);
1996
      ++count;
1997
    }
1998
 
1999
  this->output_local_symbol_count_ = count;
2000
  this->output_local_dynsym_count_ = dyncount;
2001
}
2002
 
2003
// Compute the final value of a local symbol.
2004
 
2005
template<int size, bool big_endian>
2006
typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2007
Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2008
    unsigned int r_sym,
2009
    const Symbol_value<size>* lv_in,
2010
    Symbol_value<size>* lv_out,
2011
    bool relocatable,
2012
    const Output_sections& out_sections,
2013
    const std::vector<Address>& out_offsets,
2014
    const Symbol_table* symtab)
2015
{
2016
  // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2017
  // we may have a memory leak.
2018
  gold_assert(lv_out->has_output_value());
2019
 
2020
  bool is_ordinary;
2021
  unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2022
 
2023
  // Set the output symbol value.
2024
 
2025
  if (!is_ordinary)
2026
    {
2027
      if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2028
        lv_out->set_output_value(lv_in->input_value());
2029
      else
2030
        {
2031
          this->error(_("unknown section index %u for local symbol %u"),
2032
                      shndx, r_sym);
2033
          lv_out->set_output_value(0);
2034
          return This::CFLV_ERROR;
2035
        }
2036
    }
2037
  else
2038
    {
2039
      if (shndx >= this->shnum())
2040
        {
2041
          this->error(_("local symbol %u section index %u out of range"),
2042
                      r_sym, shndx);
2043
          lv_out->set_output_value(0);
2044
          return This::CFLV_ERROR;
2045
        }
2046
 
2047
      Output_section* os = out_sections[shndx];
2048
      Address secoffset = out_offsets[shndx];
2049
      if (symtab->is_section_folded(this, shndx))
2050
        {
2051
          gold_assert(os == NULL && secoffset == invalid_address);
2052
          // Get the os of the section it is folded onto.
2053
          Section_id folded = symtab->icf()->get_folded_section(this,
2054
                                                                shndx);
2055
          gold_assert(folded.first != NULL);
2056
          Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2057
            <Sized_relobj_file<size, big_endian>*>(folded.first);
2058
          os = folded_obj->output_section(folded.second);
2059
          gold_assert(os != NULL);
2060
          secoffset = folded_obj->get_output_section_offset(folded.second);
2061
 
2062
          // This could be a relaxed input section.
2063
          if (secoffset == invalid_address)
2064
            {
2065
              const Output_relaxed_input_section* relaxed_section =
2066
                os->find_relaxed_input_section(folded_obj, folded.second);
2067
              gold_assert(relaxed_section != NULL);
2068
              secoffset = relaxed_section->address() - os->address();
2069
            }
2070
        }
2071
 
2072
      if (os == NULL)
2073
        {
2074
          // This local symbol belongs to a section we are discarding.
2075
          // In some cases when applying relocations later, we will
2076
          // attempt to match it to the corresponding kept section,
2077
          // so we leave the input value unchanged here.
2078
          return This::CFLV_DISCARDED;
2079
        }
2080
      else if (secoffset == invalid_address)
2081
        {
2082
          uint64_t start;
2083
 
2084
          // This is a SHF_MERGE section or one which otherwise
2085
          // requires special handling.
2086
          if (shndx == this->discarded_eh_frame_shndx_)
2087
            {
2088
              // This local symbol belongs to a discarded .eh_frame
2089
              // section.  Just treat it like the case in which
2090
              // os == NULL above.
2091
              gold_assert(this->has_eh_frame_);
2092
              return This::CFLV_DISCARDED;
2093
            }
2094
          else if (!lv_in->is_section_symbol())
2095
            {
2096
              // This is not a section symbol.  We can determine
2097
              // the final value now.
2098
              lv_out->set_output_value(
2099
                  os->output_address(this, shndx, lv_in->input_value()));
2100
            }
2101
          else if (!os->find_starting_output_address(this, shndx, &start))
2102
            {
2103
              // This is a section symbol, but apparently not one in a
2104
              // merged section.  First check to see if this is a relaxed
2105
              // input section.  If so, use its address.  Otherwise just
2106
              // use the start of the output section.  This happens with
2107
              // relocatable links when the input object has section
2108
              // symbols for arbitrary non-merge sections.
2109
              const Output_section_data* posd =
2110
                os->find_relaxed_input_section(this, shndx);
2111
              if (posd != NULL)
2112
                {
2113
                  Address relocatable_link_adjustment =
2114
                    relocatable ? os->address() : 0;
2115
                  lv_out->set_output_value(posd->address()
2116
                                           - relocatable_link_adjustment);
2117
                }
2118
              else
2119
                lv_out->set_output_value(os->address());
2120
            }
2121
          else
2122
            {
2123
              // We have to consider the addend to determine the
2124
              // value to use in a relocation.  START is the start
2125
              // of this input section.  If we are doing a relocatable
2126
              // link, use offset from start output section instead of
2127
              // address.
2128
              Address adjusted_start =
2129
                relocatable ? start - os->address() : start;
2130
              Merged_symbol_value<size>* msv =
2131
                new Merged_symbol_value<size>(lv_in->input_value(),
2132
                                              adjusted_start);
2133
              lv_out->set_merged_symbol_value(msv);
2134
            }
2135
        }
2136
      else if (lv_in->is_tls_symbol())
2137
        lv_out->set_output_value(os->tls_offset()
2138
                                 + secoffset
2139
                                 + lv_in->input_value());
2140
      else
2141
        lv_out->set_output_value((relocatable ? 0 : os->address())
2142
                                 + secoffset
2143
                                 + lv_in->input_value());
2144
    }
2145
  return This::CFLV_OK;
2146
}
2147
 
2148
// Compute final local symbol value.  R_SYM is the index of a local
2149
// symbol in symbol table.  LV points to a symbol value, which is
2150
// expected to hold the input value and to be over-written by the
2151
// final value.  SYMTAB points to a symbol table.  Some targets may want
2152
// to know would-be-finalized local symbol values in relaxation.
2153
// Hence we provide this method.  Since this method updates *LV, a
2154
// callee should make a copy of the original local symbol value and
2155
// use the copy instead of modifying an object's local symbols before
2156
// everything is finalized.  The caller should also free up any allocated
2157
// memory in the return value in *LV.
2158
template<int size, bool big_endian>
2159
typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2160
Sized_relobj_file<size, big_endian>::compute_final_local_value(
2161
    unsigned int r_sym,
2162
    const Symbol_value<size>* lv_in,
2163
    Symbol_value<size>* lv_out,
2164
    const Symbol_table* symtab)
2165
{
2166
  // This is just a wrapper of compute_final_local_value_internal.
2167
  const bool relocatable = parameters->options().relocatable();
2168
  const Output_sections& out_sections(this->output_sections());
2169
  const std::vector<Address>& out_offsets(this->section_offsets());
2170
  return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2171
                                                  relocatable, out_sections,
2172
                                                  out_offsets, symtab);
2173
}
2174
 
2175
// Finalize the local symbols.  Here we set the final value in
2176
// THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2177
// This function is always called from a singleton thread.  The actual
2178
// output of the local symbols will occur in a separate task.
2179
 
2180
template<int size, bool big_endian>
2181
unsigned int
2182
Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2183
    unsigned int index,
2184
    off_t off,
2185
    Symbol_table* symtab)
2186
{
2187
  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2188
 
2189
  const unsigned int loccount = this->local_symbol_count_;
2190
  this->local_symbol_offset_ = off;
2191
 
2192
  const bool relocatable = parameters->options().relocatable();
2193
  const Output_sections& out_sections(this->output_sections());
2194
  const std::vector<Address>& out_offsets(this->section_offsets());
2195
 
2196
  for (unsigned int i = 1; i < loccount; ++i)
2197
    {
2198
      Symbol_value<size>* lv = &this->local_values_[i];
2199
 
2200
      Compute_final_local_value_status cflv_status =
2201
        this->compute_final_local_value_internal(i, lv, lv, relocatable,
2202
                                                 out_sections, out_offsets,
2203
                                                 symtab);
2204
      switch (cflv_status)
2205
        {
2206
        case CFLV_OK:
2207
          if (!lv->is_output_symtab_index_set())
2208
            {
2209
              lv->set_output_symtab_index(index);
2210
              ++index;
2211
            }
2212
          break;
2213
        case CFLV_DISCARDED:
2214
        case CFLV_ERROR:
2215
          // Do nothing.
2216
          break;
2217
        default:
2218
          gold_unreachable();
2219
        }
2220
    }
2221
  return index;
2222
}
2223
 
2224
// Set the output dynamic symbol table indexes for the local variables.
2225
 
2226
template<int size, bool big_endian>
2227
unsigned int
2228
Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2229
    unsigned int index)
2230
{
2231
  const unsigned int loccount = this->local_symbol_count_;
2232
  for (unsigned int i = 1; i < loccount; ++i)
2233
    {
2234
      Symbol_value<size>& lv(this->local_values_[i]);
2235
      if (lv.needs_output_dynsym_entry())
2236
        {
2237
          lv.set_output_dynsym_index(index);
2238
          ++index;
2239
        }
2240
    }
2241
  return index;
2242
}
2243
 
2244
// Set the offset where local dynamic symbol information will be stored.
2245
// Returns the count of local symbols contributed to the symbol table by
2246
// this object.
2247
 
2248
template<int size, bool big_endian>
2249
unsigned int
2250
Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2251
{
2252
  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2253
  this->local_dynsym_offset_ = off;
2254
  return this->output_local_dynsym_count_;
2255
}
2256
 
2257
// If Symbols_data is not NULL get the section flags from here otherwise
2258
// get it from the file.
2259
 
2260
template<int size, bool big_endian>
2261
uint64_t
2262
Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2263
{
2264
  Symbols_data* sd = this->get_symbols_data();
2265
  if (sd != NULL)
2266
    {
2267
      const unsigned char* pshdrs = sd->section_headers_data
2268
                                    + This::shdr_size * shndx;
2269
      typename This::Shdr shdr(pshdrs);
2270
      return shdr.get_sh_flags();
2271
    }
2272
  // If sd is NULL, read the section header from the file.
2273
  return this->elf_file_.section_flags(shndx);
2274
}
2275
 
2276
// Get the section's ent size from Symbols_data.  Called by get_section_contents
2277
// in icf.cc
2278
 
2279
template<int size, bool big_endian>
2280
uint64_t
2281
Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2282
{
2283
  Symbols_data* sd = this->get_symbols_data();
2284
  gold_assert(sd != NULL);
2285
 
2286
  const unsigned char* pshdrs = sd->section_headers_data
2287
                                + This::shdr_size * shndx;
2288
  typename This::Shdr shdr(pshdrs);
2289
  return shdr.get_sh_entsize();
2290
}
2291
 
2292
// Write out the local symbols.
2293
 
2294
template<int size, bool big_endian>
2295
void
2296
Sized_relobj_file<size, big_endian>::write_local_symbols(
2297
    Output_file* of,
2298
    const Stringpool* sympool,
2299
    const Stringpool* dynpool,
2300
    Output_symtab_xindex* symtab_xindex,
2301
    Output_symtab_xindex* dynsym_xindex,
2302
    off_t symtab_off)
2303
{
2304
  const bool strip_all = parameters->options().strip_all();
2305
  if (strip_all)
2306
    {
2307
      if (this->output_local_dynsym_count_ == 0)
2308
        return;
2309
      this->output_local_symbol_count_ = 0;
2310
    }
2311
 
2312
  gold_assert(this->symtab_shndx_ != -1U);
2313
  if (this->symtab_shndx_ == 0)
2314
    {
2315
      // This object has no symbols.  Weird but legal.
2316
      return;
2317
    }
2318
 
2319
  // Read the symbol table section header.
2320
  const unsigned int symtab_shndx = this->symtab_shndx_;
2321
  typename This::Shdr symtabshdr(this,
2322
                                 this->elf_file_.section_header(symtab_shndx));
2323
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2324
  const unsigned int loccount = this->local_symbol_count_;
2325
  gold_assert(loccount == symtabshdr.get_sh_info());
2326
 
2327
  // Read the local symbols.
2328
  const int sym_size = This::sym_size;
2329
  off_t locsize = loccount * sym_size;
2330
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2331
                                              locsize, true, false);
2332
 
2333
  // Read the symbol names.
2334
  const unsigned int strtab_shndx =
2335
    this->adjust_shndx(symtabshdr.get_sh_link());
2336
  section_size_type strtab_size;
2337
  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2338
                                                        &strtab_size,
2339
                                                        false);
2340
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
2341
 
2342
  // Get views into the output file for the portions of the symbol table
2343
  // and the dynamic symbol table that we will be writing.
2344
  off_t output_size = this->output_local_symbol_count_ * sym_size;
2345
  unsigned char* oview = NULL;
2346
  if (output_size > 0)
2347
    oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2348
                                output_size);
2349
 
2350
  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2351
  unsigned char* dyn_oview = NULL;
2352
  if (dyn_output_size > 0)
2353
    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2354
                                    dyn_output_size);
2355
 
2356
  const Output_sections out_sections(this->output_sections());
2357
 
2358
  gold_assert(this->local_values_.size() == loccount);
2359
 
2360
  unsigned char* ov = oview;
2361
  unsigned char* dyn_ov = dyn_oview;
2362
  psyms += sym_size;
2363
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2364
    {
2365
      elfcpp::Sym<size, big_endian> isym(psyms);
2366
 
2367
      Symbol_value<size>& lv(this->local_values_[i]);
2368
 
2369
      bool is_ordinary;
2370
      unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2371
                                                     &is_ordinary);
2372
      if (is_ordinary)
2373
        {
2374
          gold_assert(st_shndx < out_sections.size());
2375
          if (out_sections[st_shndx] == NULL)
2376
            continue;
2377
          st_shndx = out_sections[st_shndx]->out_shndx();
2378
          if (st_shndx >= elfcpp::SHN_LORESERVE)
2379
            {
2380
              if (lv.has_output_symtab_entry())
2381
                symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2382
              if (lv.has_output_dynsym_entry())
2383
                dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2384
              st_shndx = elfcpp::SHN_XINDEX;
2385
            }
2386
        }
2387
 
2388
      // Write the symbol to the output symbol table.
2389
      if (lv.has_output_symtab_entry())
2390
        {
2391
          elfcpp::Sym_write<size, big_endian> osym(ov);
2392
 
2393
          gold_assert(isym.get_st_name() < strtab_size);
2394
          const char* name = pnames + isym.get_st_name();
2395
          osym.put_st_name(sympool->get_offset(name));
2396
          osym.put_st_value(this->local_values_[i].value(this, 0));
2397
          osym.put_st_size(isym.get_st_size());
2398
          osym.put_st_info(isym.get_st_info());
2399
          osym.put_st_other(isym.get_st_other());
2400
          osym.put_st_shndx(st_shndx);
2401
 
2402
          ov += sym_size;
2403
        }
2404
 
2405
      // Write the symbol to the output dynamic symbol table.
2406
      if (lv.has_output_dynsym_entry())
2407
        {
2408
          gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2409
          elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2410
 
2411
          gold_assert(isym.get_st_name() < strtab_size);
2412
          const char* name = pnames + isym.get_st_name();
2413
          osym.put_st_name(dynpool->get_offset(name));
2414
          osym.put_st_value(this->local_values_[i].value(this, 0));
2415
          osym.put_st_size(isym.get_st_size());
2416
          osym.put_st_info(isym.get_st_info());
2417
          osym.put_st_other(isym.get_st_other());
2418
          osym.put_st_shndx(st_shndx);
2419
 
2420
          dyn_ov += sym_size;
2421
        }
2422
    }
2423
 
2424
 
2425
  if (output_size > 0)
2426
    {
2427
      gold_assert(ov - oview == output_size);
2428
      of->write_output_view(symtab_off + this->local_symbol_offset_,
2429
                            output_size, oview);
2430
    }
2431
 
2432
  if (dyn_output_size > 0)
2433
    {
2434
      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2435
      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2436
                            dyn_oview);
2437
    }
2438
}
2439
 
2440
// Set *INFO to symbolic information about the offset OFFSET in the
2441
// section SHNDX.  Return true if we found something, false if we
2442
// found nothing.
2443
 
2444
template<int size, bool big_endian>
2445
bool
2446
Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2447
    unsigned int shndx,
2448
    off_t offset,
2449
    Symbol_location_info* info)
2450
{
2451
  if (this->symtab_shndx_ == 0)
2452
    return false;
2453
 
2454
  section_size_type symbols_size;
2455
  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2456
                                                        &symbols_size,
2457
                                                        false);
2458
 
2459
  unsigned int symbol_names_shndx =
2460
    this->adjust_shndx(this->section_link(this->symtab_shndx_));
2461
  section_size_type names_size;
2462
  const unsigned char* symbol_names_u =
2463
    this->section_contents(symbol_names_shndx, &names_size, false);
2464
  const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2465
 
2466
  const int sym_size = This::sym_size;
2467
  const size_t count = symbols_size / sym_size;
2468
 
2469
  const unsigned char* p = symbols;
2470
  for (size_t i = 0; i < count; ++i, p += sym_size)
2471
    {
2472
      elfcpp::Sym<size, big_endian> sym(p);
2473
 
2474
      if (sym.get_st_type() == elfcpp::STT_FILE)
2475
        {
2476
          if (sym.get_st_name() >= names_size)
2477
            info->source_file = "(invalid)";
2478
          else
2479
            info->source_file = symbol_names + sym.get_st_name();
2480
          continue;
2481
        }
2482
 
2483
      bool is_ordinary;
2484
      unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2485
                                                     &is_ordinary);
2486
      if (is_ordinary
2487
          && st_shndx == shndx
2488
          && static_cast<off_t>(sym.get_st_value()) <= offset
2489
          && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2490
              > offset))
2491
        {
2492
          if (sym.get_st_name() > names_size)
2493
            info->enclosing_symbol_name = "(invalid)";
2494
          else
2495
            {
2496
              info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2497
              if (parameters->options().do_demangle())
2498
                {
2499
                  char* demangled_name = cplus_demangle(
2500
                      info->enclosing_symbol_name.c_str(),
2501
                      DMGL_ANSI | DMGL_PARAMS);
2502
                  if (demangled_name != NULL)
2503
                    {
2504
                      info->enclosing_symbol_name.assign(demangled_name);
2505
                      free(demangled_name);
2506
                    }
2507
                }
2508
            }
2509
          return true;
2510
        }
2511
    }
2512
 
2513
  return false;
2514
}
2515
 
2516
// Look for a kept section corresponding to the given discarded section,
2517
// and return its output address.  This is used only for relocations in
2518
// debugging sections.  If we can't find the kept section, return 0.
2519
 
2520
template<int size, bool big_endian>
2521
typename Sized_relobj_file<size, big_endian>::Address
2522
Sized_relobj_file<size, big_endian>::map_to_kept_section(
2523
    unsigned int shndx,
2524
    bool* found) const
2525
{
2526
  Relobj* kept_object;
2527
  unsigned int kept_shndx;
2528
  if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2529
    {
2530
      Sized_relobj_file<size, big_endian>* kept_relobj =
2531
        static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2532
      Output_section* os = kept_relobj->output_section(kept_shndx);
2533
      Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2534
      if (os != NULL && offset != invalid_address)
2535
        {
2536
          *found = true;
2537
          return os->address() + offset;
2538
        }
2539
    }
2540
  *found = false;
2541
  return 0;
2542
}
2543
 
2544
// Get symbol counts.
2545
 
2546
template<int size, bool big_endian>
2547
void
2548
Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2549
    const Symbol_table*,
2550
    size_t* defined,
2551
    size_t* used) const
2552
{
2553
  *defined = this->defined_count_;
2554
  size_t count = 0;
2555
  for (typename Symbols::const_iterator p = this->symbols_.begin();
2556
       p != this->symbols_.end();
2557
       ++p)
2558
    if (*p != NULL
2559
        && (*p)->source() == Symbol::FROM_OBJECT
2560
        && (*p)->object() == this
2561
        && (*p)->is_defined())
2562
      ++count;
2563
  *used = count;
2564
}
2565
 
2566
// Input_objects methods.
2567
 
2568
// Add a regular relocatable object to the list.  Return false if this
2569
// object should be ignored.
2570
 
2571
bool
2572
Input_objects::add_object(Object* obj)
2573
{
2574
  // Print the filename if the -t/--trace option is selected.
2575
  if (parameters->options().trace())
2576
    gold_info("%s", obj->name().c_str());
2577
 
2578
  if (!obj->is_dynamic())
2579
    this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2580
  else
2581
    {
2582
      // See if this is a duplicate SONAME.
2583
      Dynobj* dynobj = static_cast<Dynobj*>(obj);
2584
      const char* soname = dynobj->soname();
2585
 
2586
      std::pair<Unordered_set<std::string>::iterator, bool> ins =
2587
        this->sonames_.insert(soname);
2588
      if (!ins.second)
2589
        {
2590
          // We have already seen a dynamic object with this soname.
2591
          return false;
2592
        }
2593
 
2594
      this->dynobj_list_.push_back(dynobj);
2595
    }
2596
 
2597
  // Add this object to the cross-referencer if requested.
2598
  if (parameters->options().user_set_print_symbol_counts()
2599
      || parameters->options().cref())
2600
    {
2601
      if (this->cref_ == NULL)
2602
        this->cref_ = new Cref();
2603
      this->cref_->add_object(obj);
2604
    }
2605
 
2606
  return true;
2607
}
2608
 
2609
// For each dynamic object, record whether we've seen all of its
2610
// explicit dependencies.
2611
 
2612
void
2613
Input_objects::check_dynamic_dependencies() const
2614
{
2615
  bool issued_copy_dt_needed_error = false;
2616
  for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2617
       p != this->dynobj_list_.end();
2618
       ++p)
2619
    {
2620
      const Dynobj::Needed& needed((*p)->needed());
2621
      bool found_all = true;
2622
      Dynobj::Needed::const_iterator pneeded;
2623
      for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2624
        {
2625
          if (this->sonames_.find(*pneeded) == this->sonames_.end())
2626
            {
2627
              found_all = false;
2628
              break;
2629
            }
2630
        }
2631
      (*p)->set_has_unknown_needed_entries(!found_all);
2632
 
2633
      // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2634
      // that gold does not support.  However, they cause no trouble
2635
      // unless there is a DT_NEEDED entry that we don't know about;
2636
      // warn only in that case.
2637
      if (!found_all
2638
          && !issued_copy_dt_needed_error
2639
          && (parameters->options().copy_dt_needed_entries()
2640
              || parameters->options().add_needed()))
2641
        {
2642
          const char* optname;
2643
          if (parameters->options().copy_dt_needed_entries())
2644
            optname = "--copy-dt-needed-entries";
2645
          else
2646
            optname = "--add-needed";
2647
          gold_error(_("%s is not supported but is required for %s in %s"),
2648
                     optname, (*pneeded).c_str(), (*p)->name().c_str());
2649
          issued_copy_dt_needed_error = true;
2650
        }
2651
    }
2652
}
2653
 
2654
// Start processing an archive.
2655
 
2656
void
2657
Input_objects::archive_start(Archive* archive)
2658
{
2659
  if (parameters->options().user_set_print_symbol_counts()
2660
      || parameters->options().cref())
2661
    {
2662
      if (this->cref_ == NULL)
2663
        this->cref_ = new Cref();
2664
      this->cref_->add_archive_start(archive);
2665
    }
2666
}
2667
 
2668
// Stop processing an archive.
2669
 
2670
void
2671
Input_objects::archive_stop(Archive* archive)
2672
{
2673
  if (parameters->options().user_set_print_symbol_counts()
2674
      || parameters->options().cref())
2675
    this->cref_->add_archive_stop(archive);
2676
}
2677
 
2678
// Print symbol counts
2679
 
2680
void
2681
Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2682
{
2683
  if (parameters->options().user_set_print_symbol_counts()
2684
      && this->cref_ != NULL)
2685
    this->cref_->print_symbol_counts(symtab);
2686
}
2687
 
2688
// Print a cross reference table.
2689
 
2690
void
2691
Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2692
{
2693
  if (parameters->options().cref() && this->cref_ != NULL)
2694
    this->cref_->print_cref(symtab, f);
2695
}
2696
 
2697
// Relocate_info methods.
2698
 
2699
// Return a string describing the location of a relocation when file
2700
// and lineno information is not available.  This is only used in
2701
// error messages.
2702
 
2703
template<int size, bool big_endian>
2704
std::string
2705
Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2706
{
2707
  Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2708
  std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2709
  if (!ret.empty())
2710
    return ret;
2711
 
2712
  ret = this->object->name();
2713
 
2714
  Symbol_location_info info;
2715
  if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2716
    {
2717
      if (!info.source_file.empty())
2718
        {
2719
          ret += ":";
2720
          ret += info.source_file;
2721
        }
2722
      size_t len = info.enclosing_symbol_name.length() + 100;
2723
      char* buf = new char[len];
2724
      snprintf(buf, len, _(":function %s"),
2725
               info.enclosing_symbol_name.c_str());
2726
      ret += buf;
2727
      delete[] buf;
2728
      return ret;
2729
    }
2730
 
2731
  ret += "(";
2732
  ret += this->object->section_name(this->data_shndx);
2733
  char buf[100];
2734
  snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2735
  ret += buf;
2736
  return ret;
2737
}
2738
 
2739
} // End namespace gold.
2740
 
2741
namespace
2742
{
2743
 
2744
using namespace gold;
2745
 
2746
// Read an ELF file with the header and return the appropriate
2747
// instance of Object.
2748
 
2749
template<int size, bool big_endian>
2750
Object*
2751
make_elf_sized_object(const std::string& name, Input_file* input_file,
2752
                      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2753
                      bool* punconfigured)
2754
{
2755
  Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2756
                                 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2757
                                 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2758
  if (target == NULL)
2759
    gold_fatal(_("%s: unsupported ELF machine number %d"),
2760
               name.c_str(), ehdr.get_e_machine());
2761
 
2762
  if (!parameters->target_valid())
2763
    set_parameters_target(target);
2764
  else if (target != &parameters->target())
2765
    {
2766
      if (punconfigured != NULL)
2767
        *punconfigured = true;
2768
      else
2769
        gold_error(_("%s: incompatible target"), name.c_str());
2770
      return NULL;
2771
    }
2772
 
2773
  return target->make_elf_object<size, big_endian>(name, input_file, offset,
2774
                                                   ehdr);
2775
}
2776
 
2777
} // End anonymous namespace.
2778
 
2779
namespace gold
2780
{
2781
 
2782
// Return whether INPUT_FILE is an ELF object.
2783
 
2784
bool
2785
is_elf_object(Input_file* input_file, off_t offset,
2786
              const unsigned char** start, int* read_size)
2787
{
2788
  off_t filesize = input_file->file().filesize();
2789
  int want = elfcpp::Elf_recognizer::max_header_size;
2790
  if (filesize - offset < want)
2791
    want = filesize - offset;
2792
 
2793
  const unsigned char* p = input_file->file().get_view(offset, 0, want,
2794
                                                       true, false);
2795
  *start = p;
2796
  *read_size = want;
2797
 
2798
  return elfcpp::Elf_recognizer::is_elf_file(p, want);
2799
}
2800
 
2801
// Read an ELF file and return the appropriate instance of Object.
2802
 
2803
Object*
2804
make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2805
                const unsigned char* p, section_offset_type bytes,
2806
                bool* punconfigured)
2807
{
2808
  if (punconfigured != NULL)
2809
    *punconfigured = false;
2810
 
2811
  std::string error;
2812
  bool big_endian = false;
2813
  int size = 0;
2814
  if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2815
                                               &big_endian, &error))
2816
    {
2817
      gold_error(_("%s: %s"), name.c_str(), error.c_str());
2818
      return NULL;
2819
    }
2820
 
2821
  if (size == 32)
2822
    {
2823
      if (big_endian)
2824
        {
2825
#ifdef HAVE_TARGET_32_BIG
2826
          elfcpp::Ehdr<32, true> ehdr(p);
2827
          return make_elf_sized_object<32, true>(name, input_file,
2828
                                                 offset, ehdr, punconfigured);
2829
#else
2830
          if (punconfigured != NULL)
2831
            *punconfigured = true;
2832
          else
2833
            gold_error(_("%s: not configured to support "
2834
                         "32-bit big-endian object"),
2835
                       name.c_str());
2836
          return NULL;
2837
#endif
2838
        }
2839
      else
2840
        {
2841
#ifdef HAVE_TARGET_32_LITTLE
2842
          elfcpp::Ehdr<32, false> ehdr(p);
2843
          return make_elf_sized_object<32, false>(name, input_file,
2844
                                                  offset, ehdr, punconfigured);
2845
#else
2846
          if (punconfigured != NULL)
2847
            *punconfigured = true;
2848
          else
2849
            gold_error(_("%s: not configured to support "
2850
                         "32-bit little-endian object"),
2851
                       name.c_str());
2852
          return NULL;
2853
#endif
2854
        }
2855
    }
2856
  else if (size == 64)
2857
    {
2858
      if (big_endian)
2859
        {
2860
#ifdef HAVE_TARGET_64_BIG
2861
          elfcpp::Ehdr<64, true> ehdr(p);
2862
          return make_elf_sized_object<64, true>(name, input_file,
2863
                                                 offset, ehdr, punconfigured);
2864
#else
2865
          if (punconfigured != NULL)
2866
            *punconfigured = true;
2867
          else
2868
            gold_error(_("%s: not configured to support "
2869
                         "64-bit big-endian object"),
2870
                       name.c_str());
2871
          return NULL;
2872
#endif
2873
        }
2874
      else
2875
        {
2876
#ifdef HAVE_TARGET_64_LITTLE
2877
          elfcpp::Ehdr<64, false> ehdr(p);
2878
          return make_elf_sized_object<64, false>(name, input_file,
2879
                                                  offset, ehdr, punconfigured);
2880
#else
2881
          if (punconfigured != NULL)
2882
            *punconfigured = true;
2883
          else
2884
            gold_error(_("%s: not configured to support "
2885
                         "64-bit little-endian object"),
2886
                       name.c_str());
2887
          return NULL;
2888
#endif
2889
        }
2890
    }
2891
  else
2892
    gold_unreachable();
2893
}
2894
 
2895
// Instantiate the templates we need.
2896
 
2897
#ifdef HAVE_TARGET_32_LITTLE
2898
template
2899
void
2900
Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2901
                                     Read_symbols_data*);
2902
#endif
2903
 
2904
#ifdef HAVE_TARGET_32_BIG
2905
template
2906
void
2907
Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2908
                                    Read_symbols_data*);
2909
#endif
2910
 
2911
#ifdef HAVE_TARGET_64_LITTLE
2912
template
2913
void
2914
Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2915
                                     Read_symbols_data*);
2916
#endif
2917
 
2918
#ifdef HAVE_TARGET_64_BIG
2919
template
2920
void
2921
Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2922
                                    Read_symbols_data*);
2923
#endif
2924
 
2925
#ifdef HAVE_TARGET_32_LITTLE
2926
template
2927
class Sized_relobj_file<32, false>;
2928
#endif
2929
 
2930
#ifdef HAVE_TARGET_32_BIG
2931
template
2932
class Sized_relobj_file<32, true>;
2933
#endif
2934
 
2935
#ifdef HAVE_TARGET_64_LITTLE
2936
template
2937
class Sized_relobj_file<64, false>;
2938
#endif
2939
 
2940
#ifdef HAVE_TARGET_64_BIG
2941
template
2942
class Sized_relobj_file<64, true>;
2943
#endif
2944
 
2945
#ifdef HAVE_TARGET_32_LITTLE
2946
template
2947
struct Relocate_info<32, false>;
2948
#endif
2949
 
2950
#ifdef HAVE_TARGET_32_BIG
2951
template
2952
struct Relocate_info<32, true>;
2953
#endif
2954
 
2955
#ifdef HAVE_TARGET_64_LITTLE
2956
template
2957
struct Relocate_info<64, false>;
2958
#endif
2959
 
2960
#ifdef HAVE_TARGET_64_BIG
2961
template
2962
struct Relocate_info<64, true>;
2963
#endif
2964
 
2965
#ifdef HAVE_TARGET_32_LITTLE
2966
template
2967
void
2968
Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2969
 
2970
template
2971
void
2972
Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2973
                                      const unsigned char*);
2974
#endif
2975
 
2976
#ifdef HAVE_TARGET_32_BIG
2977
template
2978
void
2979
Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2980
 
2981
template
2982
void
2983
Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2984
                                     const unsigned char*);
2985
#endif
2986
 
2987
#ifdef HAVE_TARGET_64_LITTLE
2988
template
2989
void
2990
Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2991
 
2992
template
2993
void
2994
Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2995
                                      const unsigned char*);
2996
#endif
2997
 
2998
#ifdef HAVE_TARGET_64_BIG
2999
template
3000
void
3001
Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3002
 
3003
template
3004
void
3005
Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3006
                                     const unsigned char*);
3007
#endif
3008
 
3009
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.