OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [object.cc] - Blame information for rev 306

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// object.cc -- support for an object file for linking in gold
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cerrno>
26
#include <cstring>
27
#include <cstdarg>
28
#include "demangle.h"
29
#include "libiberty.h"
30
 
31
#include "gc.h"
32
#include "target-select.h"
33
#include "dwarf_reader.h"
34
#include "layout.h"
35
#include "output.h"
36
#include "symtab.h"
37
#include "cref.h"
38
#include "reloc.h"
39
#include "object.h"
40
#include "dynobj.h"
41
#include "plugin.h"
42
#include "compressed_output.h"
43
#include "incremental.h"
44
 
45
namespace gold
46
{
47
 
48
// Struct Read_symbols_data.
49
 
50
// Destroy any remaining File_view objects.
51
 
52
Read_symbols_data::~Read_symbols_data()
53
{
54
  if (this->section_headers != NULL)
55
    delete this->section_headers;
56
  if (this->section_names != NULL)
57
    delete this->section_names;
58
  if (this->symbols != NULL)
59
    delete this->symbols;
60
  if (this->symbol_names != NULL)
61
    delete this->symbol_names;
62
  if (this->versym != NULL)
63
    delete this->versym;
64
  if (this->verdef != NULL)
65
    delete this->verdef;
66
  if (this->verneed != NULL)
67
    delete this->verneed;
68
}
69
 
70
// Class Xindex.
71
 
72
// Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73
// section and read it in.  SYMTAB_SHNDX is the index of the symbol
74
// table we care about.
75
 
76
template<int size, bool big_endian>
77
void
78
Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79
{
80
  if (!this->symtab_xindex_.empty())
81
    return;
82
 
83
  gold_assert(symtab_shndx != 0);
84
 
85
  // Look through the sections in reverse order, on the theory that it
86
  // is more likely to be near the end than the beginning.
87
  unsigned int i = object->shnum();
88
  while (i > 0)
89
    {
90
      --i;
91
      if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92
          && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93
        {
94
          this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95
          return;
96
        }
97
    }
98
 
99
  object->error(_("missing SHT_SYMTAB_SHNDX section"));
100
}
101
 
102
// Read in the symtab_xindex_ array, given the section index of the
103
// SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104
// section headers.
105
 
106
template<int size, bool big_endian>
107
void
108
Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109
                           const unsigned char* pshdrs)
110
{
111
  section_size_type bytecount;
112
  const unsigned char* contents;
113
  if (pshdrs == NULL)
114
    contents = object->section_contents(xindex_shndx, &bytecount, false);
115
  else
116
    {
117
      const unsigned char* p = (pshdrs
118
                                + (xindex_shndx
119
                                   * elfcpp::Elf_sizes<size>::shdr_size));
120
      typename elfcpp::Shdr<size, big_endian> shdr(p);
121
      bytecount = convert_to_section_size_type(shdr.get_sh_size());
122
      contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123
    }
124
 
125
  gold_assert(this->symtab_xindex_.empty());
126
  this->symtab_xindex_.reserve(bytecount / 4);
127
  for (section_size_type i = 0; i < bytecount; i += 4)
128
    {
129
      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130
      // We preadjust the section indexes we save.
131
      this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132
    }
133
}
134
 
135
// Symbol symndx has a section of SHN_XINDEX; return the real section
136
// index.
137
 
138
unsigned int
139
Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140
{
141
  if (symndx >= this->symtab_xindex_.size())
142
    {
143
      object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144
                    symndx);
145
      return elfcpp::SHN_UNDEF;
146
    }
147
  unsigned int shndx = this->symtab_xindex_[symndx];
148
  if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149
    {
150
      object->error(_("extended index for symbol %u out of range: %u"),
151
                    symndx, shndx);
152
      return elfcpp::SHN_UNDEF;
153
    }
154
  return shndx;
155
}
156
 
157
// Class Object.
158
 
159
// Report an error for this object file.  This is used by the
160
// elfcpp::Elf_file interface, and also called by the Object code
161
// itself.
162
 
163
void
164
Object::error(const char* format, ...) const
165
{
166
  va_list args;
167
  va_start(args, format);
168
  char* buf = NULL;
169
  if (vasprintf(&buf, format, args) < 0)
170
    gold_nomem();
171
  va_end(args);
172
  gold_error(_("%s: %s"), this->name().c_str(), buf);
173
  free(buf);
174
}
175
 
176
// Return a view of the contents of a section.
177
 
178
const unsigned char*
179
Object::section_contents(unsigned int shndx, section_size_type* plen,
180
                         bool cache)
181
{
182
  Location loc(this->do_section_contents(shndx));
183
  *plen = convert_to_section_size_type(loc.data_size);
184
  if (*plen == 0)
185
    {
186
      static const unsigned char empty[1] = { '\0' };
187
      return empty;
188
    }
189
  return this->get_view(loc.file_offset, *plen, true, cache);
190
}
191
 
192
// Read the section data into SD.  This is code common to Sized_relobj_file
193
// and Sized_dynobj, so we put it into Object.
194
 
195
template<int size, bool big_endian>
196
void
197
Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198
                          Read_symbols_data* sd)
199
{
200
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
 
202
  // Read the section headers.
203
  const off_t shoff = elf_file->shoff();
204
  const unsigned int shnum = this->shnum();
205
  sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206
                                               true, true);
207
 
208
  // Read the section names.
209
  const unsigned char* pshdrs = sd->section_headers->data();
210
  const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211
  typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
 
213
  if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214
    this->error(_("section name section has wrong type: %u"),
215
                static_cast<unsigned int>(shdrnames.get_sh_type()));
216
 
217
  sd->section_names_size =
218
    convert_to_section_size_type(shdrnames.get_sh_size());
219
  sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220
                                             sd->section_names_size, false,
221
                                             false);
222
}
223
 
224
// If NAME is the name of a special .gnu.warning section, arrange for
225
// the warning to be issued.  SHNDX is the section index.  Return
226
// whether it is a warning section.
227
 
228
bool
229
Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230
                                   Symbol_table* symtab)
231
{
232
  const char warn_prefix[] = ".gnu.warning.";
233
  const int warn_prefix_len = sizeof warn_prefix - 1;
234
  if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235
    {
236
      // Read the section contents to get the warning text.  It would
237
      // be nicer if we only did this if we have to actually issue a
238
      // warning.  Unfortunately, warnings are issued as we relocate
239
      // sections.  That means that we can not lock the object then,
240
      // as we might try to issue the same warning multiple times
241
      // simultaneously.
242
      section_size_type len;
243
      const unsigned char* contents = this->section_contents(shndx, &len,
244
                                                             false);
245
      if (len == 0)
246
        {
247
          const char* warning = name + warn_prefix_len;
248
          contents = reinterpret_cast<const unsigned char*>(warning);
249
          len = strlen(warning);
250
        }
251
      std::string warning(reinterpret_cast<const char*>(contents), len);
252
      symtab->add_warning(name + warn_prefix_len, this, warning);
253
      return true;
254
    }
255
  return false;
256
}
257
 
258
// If NAME is the name of the special section which indicates that
259
// this object was compiled with -fsplit-stack, mark it accordingly.
260
 
261
bool
262
Object::handle_split_stack_section(const char* name)
263
{
264
  if (strcmp(name, ".note.GNU-split-stack") == 0)
265
    {
266
      this->uses_split_stack_ = true;
267
      return true;
268
    }
269
  if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270
    {
271
      this->has_no_split_stack_ = true;
272
      return true;
273
    }
274
  return false;
275
}
276
 
277
// Class Relobj
278
 
279
// To copy the symbols data read from the file to a local data structure.
280
// This function is called from do_layout only while doing garbage 
281
// collection.
282
 
283
void
284
Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285
                          unsigned int section_header_size)
286
{
287
  gc_sd->section_headers_data =
288
         new unsigned char[(section_header_size)];
289
  memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290
         section_header_size);
291
  gc_sd->section_names_data =
292
         new unsigned char[sd->section_names_size];
293
  memcpy(gc_sd->section_names_data, sd->section_names->data(),
294
         sd->section_names_size);
295
  gc_sd->section_names_size = sd->section_names_size;
296
  if (sd->symbols != NULL)
297
    {
298
      gc_sd->symbols_data =
299
             new unsigned char[sd->symbols_size];
300
      memcpy(gc_sd->symbols_data, sd->symbols->data(),
301
            sd->symbols_size);
302
    }
303
  else
304
    {
305
      gc_sd->symbols_data = NULL;
306
    }
307
  gc_sd->symbols_size = sd->symbols_size;
308
  gc_sd->external_symbols_offset = sd->external_symbols_offset;
309
  if (sd->symbol_names != NULL)
310
    {
311
      gc_sd->symbol_names_data =
312
             new unsigned char[sd->symbol_names_size];
313
      memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314
            sd->symbol_names_size);
315
    }
316
  else
317
    {
318
      gc_sd->symbol_names_data = NULL;
319
    }
320
  gc_sd->symbol_names_size = sd->symbol_names_size;
321
}
322
 
323
// This function determines if a particular section name must be included
324
// in the link.  This is used during garbage collection to determine the
325
// roots of the worklist.
326
 
327
bool
328
Relobj::is_section_name_included(const char* name)
329
{
330
  if (is_prefix_of(".ctors", name)
331
      || is_prefix_of(".dtors", name)
332
      || is_prefix_of(".note", name)
333
      || is_prefix_of(".init", name)
334
      || is_prefix_of(".fini", name)
335
      || is_prefix_of(".gcc_except_table", name)
336
      || is_prefix_of(".jcr", name)
337
      || is_prefix_of(".preinit_array", name)
338
      || (is_prefix_of(".text", name)
339
          && strstr(name, "personality"))
340
      || (is_prefix_of(".data", name)
341
          &&  strstr(name, "personality"))
342
      || (is_prefix_of(".gnu.linkonce.d", name)
343
          && strstr(name, "personality")))
344
    {
345
      return true;
346
    }
347
  return false;
348
}
349
 
350
// Finalize the incremental relocation information.  Allocates a block
351
// of relocation entries for each symbol, and sets the reloc_bases_
352
// array to point to the first entry in each block.  If CLEAR_COUNTS
353
// is TRUE, also clear the per-symbol relocation counters.
354
 
355
void
356
Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357
{
358
  unsigned int nsyms = this->get_global_symbols()->size();
359
  this->reloc_bases_ = new unsigned int[nsyms];
360
 
361
  gold_assert(this->reloc_bases_ != NULL);
362
  gold_assert(layout->incremental_inputs() != NULL);
363
 
364
  unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365
  for (unsigned int i = 0; i < nsyms; ++i)
366
    {
367
      this->reloc_bases_[i] = rindex;
368
      rindex += this->reloc_counts_[i];
369
      if (clear_counts)
370
        this->reloc_counts_[i] = 0;
371
    }
372
  layout->incremental_inputs()->set_reloc_count(rindex);
373
}
374
 
375
// Class Sized_relobj.
376
 
377
// Iterate over local symbols, calling a visitor class V for each GOT offset
378
// associated with a local symbol.
379
 
380
template<int size, bool big_endian>
381
void
382
Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383
    Got_offset_list::Visitor* v) const
384
{
385
  unsigned int nsyms = this->local_symbol_count();
386
  for (unsigned int i = 0; i < nsyms; i++)
387
    {
388
      Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389
      if (p != this->local_got_offsets_.end())
390
        {
391
          const Got_offset_list* got_offsets = p->second;
392
          got_offsets->for_all_got_offsets(v);
393
        }
394
    }
395
}
396
 
397
// Class Sized_relobj_file.
398
 
399
template<int size, bool big_endian>
400
Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401
    const std::string& name,
402
    Input_file* input_file,
403
    off_t offset,
404
    const elfcpp::Ehdr<size, big_endian>& ehdr)
405
  : Sized_relobj<size, big_endian>(name, input_file, offset),
406
    elf_file_(this, ehdr),
407
    symtab_shndx_(-1U),
408
    local_symbol_count_(0),
409
    output_local_symbol_count_(0),
410
    output_local_dynsym_count_(0),
411
    symbols_(),
412
    defined_count_(0),
413
    local_symbol_offset_(0),
414
    local_dynsym_offset_(0),
415
    local_values_(),
416
    local_plt_offsets_(),
417
    kept_comdat_sections_(),
418
    has_eh_frame_(false),
419
    discarded_eh_frame_shndx_(-1U),
420
    deferred_layout_(),
421
    deferred_layout_relocs_(),
422
    compressed_sections_()
423
{
424 159 khays
  this->e_type_ = ehdr.get_e_type();
425 27 khays
}
426
 
427
template<int size, bool big_endian>
428
Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429
{
430
}
431
 
432
// Set up an object file based on the file header.  This sets up the
433
// section information.
434
 
435
template<int size, bool big_endian>
436
void
437
Sized_relobj_file<size, big_endian>::do_setup()
438
{
439
  const unsigned int shnum = this->elf_file_.shnum();
440
  this->set_shnum(shnum);
441
}
442
 
443
// Find the SHT_SYMTAB section, given the section headers.  The ELF
444
// standard says that maybe in the future there can be more than one
445
// SHT_SYMTAB section.  Until somebody figures out how that could
446
// work, we assume there is only one.
447
 
448
template<int size, bool big_endian>
449
void
450
Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451
{
452
  const unsigned int shnum = this->shnum();
453
  this->symtab_shndx_ = 0;
454
  if (shnum > 0)
455
    {
456
      // Look through the sections in reverse order, since gas tends
457
      // to put the symbol table at the end.
458
      const unsigned char* p = pshdrs + shnum * This::shdr_size;
459
      unsigned int i = shnum;
460
      unsigned int xindex_shndx = 0;
461
      unsigned int xindex_link = 0;
462
      while (i > 0)
463
        {
464
          --i;
465
          p -= This::shdr_size;
466
          typename This::Shdr shdr(p);
467
          if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468
            {
469
              this->symtab_shndx_ = i;
470
              if (xindex_shndx > 0 && xindex_link == i)
471
                {
472
                  Xindex* xindex =
473
                    new Xindex(this->elf_file_.large_shndx_offset());
474
                  xindex->read_symtab_xindex<size, big_endian>(this,
475
                                                               xindex_shndx,
476
                                                               pshdrs);
477
                  this->set_xindex(xindex);
478
                }
479
              break;
480
            }
481
 
482
          // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483
          // one.  This will work if it follows the SHT_SYMTAB
484
          // section.
485
          if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486
            {
487
              xindex_shndx = i;
488
              xindex_link = this->adjust_shndx(shdr.get_sh_link());
489
            }
490
        }
491
    }
492
}
493
 
494
// Return the Xindex structure to use for object with lots of
495
// sections.
496
 
497
template<int size, bool big_endian>
498
Xindex*
499
Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500
{
501
  gold_assert(this->symtab_shndx_ != -1U);
502
  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503
  xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504
  return xindex;
505
}
506
 
507
// Return whether SHDR has the right type and flags to be a GNU
508
// .eh_frame section.
509
 
510
template<int size, bool big_endian>
511
bool
512
Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513
    const elfcpp::Shdr<size, big_endian>* shdr) const
514
{
515 159 khays
  elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516
  return ((sh_type == elfcpp::SHT_PROGBITS
517
           || sh_type == elfcpp::SHT_X86_64_UNWIND)
518 27 khays
          && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519
}
520
 
521
// Return whether there is a GNU .eh_frame section, given the section
522
// headers and the section names.
523
 
524
template<int size, bool big_endian>
525
bool
526
Sized_relobj_file<size, big_endian>::find_eh_frame(
527
    const unsigned char* pshdrs,
528
    const char* names,
529
    section_size_type names_size) const
530
{
531
  const unsigned int shnum = this->shnum();
532
  const unsigned char* p = pshdrs + This::shdr_size;
533
  for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534
    {
535
      typename This::Shdr shdr(p);
536
      if (this->check_eh_frame_flags(&shdr))
537
        {
538
          if (shdr.get_sh_name() >= names_size)
539
            {
540
              this->error(_("bad section name offset for section %u: %lu"),
541
                          i, static_cast<unsigned long>(shdr.get_sh_name()));
542
              continue;
543
            }
544
 
545
          const char* name = names + shdr.get_sh_name();
546
          if (strcmp(name, ".eh_frame") == 0)
547
            return true;
548
        }
549
    }
550
  return false;
551
}
552
 
553 166 khays
#ifdef ENABLE_THREADS
554
 
555
// Return TRUE if this is a section whose contents will be needed in the
556
// Add_symbols task.
557
 
558
static bool
559
need_decompressed_section(const char* name)
560
{
561
  // We will need .zdebug_str if this is not an incremental link
562
  // (i.e., we are processing string merge sections).
563
  if (!parameters->incremental() && strcmp(name, ".zdebug_str") == 0)
564
    return true;
565
 
566
  return false;
567
}
568
 
569
#endif
570
 
571 27 khays
// Build a table for any compressed debug sections, mapping each section index
572 166 khays
// to the uncompressed size and (if needed) the decompressed contents.
573 27 khays
 
574
template<int size, bool big_endian>
575
Compressed_section_map*
576
build_compressed_section_map(
577
    const unsigned char* pshdrs,
578
    unsigned int shnum,
579
    const char* names,
580
    section_size_type names_size,
581
    Sized_relobj_file<size, big_endian>* obj)
582
{
583 166 khays
  Compressed_section_map* uncompressed_map = new Compressed_section_map();
584 27 khays
  const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
585
  const unsigned char* p = pshdrs + shdr_size;
586 166 khays
 
587 27 khays
  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
588
    {
589
      typename elfcpp::Shdr<size, big_endian> shdr(p);
590
      if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
591
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
592
        {
593
          if (shdr.get_sh_name() >= names_size)
594
            {
595
              obj->error(_("bad section name offset for section %u: %lu"),
596
                         i, static_cast<unsigned long>(shdr.get_sh_name()));
597
              continue;
598
            }
599
 
600
          const char* name = names + shdr.get_sh_name();
601
          if (is_compressed_debug_section(name))
602
            {
603
              section_size_type len;
604
              const unsigned char* contents =
605
                  obj->section_contents(i, &len, false);
606
              uint64_t uncompressed_size = get_uncompressed_size(contents, len);
607
              if (uncompressed_size != -1ULL)
608 166 khays
                {
609
                  Compressed_section_info info;
610
                  info.size = convert_to_section_size_type(uncompressed_size);
611
                  info.contents = NULL;
612
 
613
#ifdef ENABLE_THREADS
614
                  // If we're multi-threaded, it will help to decompress
615
                  // any sections that will be needed during the Add_symbols
616
                  // task, so that several decompressions can run in
617
                  // parallel.
618
                  if (parameters->options().threads())
619
                    {
620
                      unsigned char* uncompressed_data = NULL;
621
                      if (need_decompressed_section(name))
622
                        {
623
                          uncompressed_data = new unsigned char[uncompressed_size];
624
                          if (decompress_input_section(contents, len,
625
                                                       uncompressed_data,
626
                                                       uncompressed_size))
627
                            info.contents = uncompressed_data;
628
                          else
629
                            delete[] uncompressed_data;
630
                        }
631
                    }
632
#endif
633
 
634
                  (*uncompressed_map)[i] = info;
635
                }
636 27 khays
            }
637
        }
638
    }
639 166 khays
  return uncompressed_map;
640 27 khays
}
641
 
642
// Read the sections and symbols from an object file.
643
 
644
template<int size, bool big_endian>
645
void
646
Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
647
{
648
  this->read_section_data(&this->elf_file_, sd);
649
 
650
  const unsigned char* const pshdrs = sd->section_headers->data();
651
 
652
  this->find_symtab(pshdrs);
653
 
654
  const unsigned char* namesu = sd->section_names->data();
655
  const char* names = reinterpret_cast<const char*>(namesu);
656
  if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
657
    {
658
      if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
659
        this->has_eh_frame_ = true;
660
    }
661
  if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
662
    this->compressed_sections_ =
663
        build_compressed_section_map(pshdrs, this->shnum(), names,
664
                                     sd->section_names_size, this);
665
 
666
  sd->symbols = NULL;
667
  sd->symbols_size = 0;
668
  sd->external_symbols_offset = 0;
669
  sd->symbol_names = NULL;
670
  sd->symbol_names_size = 0;
671
 
672
  if (this->symtab_shndx_ == 0)
673
    {
674
      // No symbol table.  Weird but legal.
675
      return;
676
    }
677
 
678
  // Get the symbol table section header.
679
  typename This::Shdr symtabshdr(pshdrs
680
                                 + this->symtab_shndx_ * This::shdr_size);
681
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
682
 
683
  // If this object has a .eh_frame section, we need all the symbols.
684
  // Otherwise we only need the external symbols.  While it would be
685
  // simpler to just always read all the symbols, I've seen object
686
  // files with well over 2000 local symbols, which for a 64-bit
687
  // object file format is over 5 pages that we don't need to read
688
  // now.
689
 
690
  const int sym_size = This::sym_size;
691
  const unsigned int loccount = symtabshdr.get_sh_info();
692
  this->local_symbol_count_ = loccount;
693
  this->local_values_.resize(loccount);
694
  section_offset_type locsize = loccount * sym_size;
695
  off_t dataoff = symtabshdr.get_sh_offset();
696
  section_size_type datasize =
697
    convert_to_section_size_type(symtabshdr.get_sh_size());
698
  off_t extoff = dataoff + locsize;
699
  section_size_type extsize = datasize - locsize;
700
 
701
  off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
702
  section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
703
 
704
  if (readsize == 0)
705
    {
706
      // No external symbols.  Also weird but also legal.
707
      return;
708
    }
709
 
710
  File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
711
 
712
  // Read the section header for the symbol names.
713
  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
714
  if (strtab_shndx >= this->shnum())
715
    {
716
      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
717
      return;
718
    }
719
  typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
720
  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
721
    {
722
      this->error(_("symbol table name section has wrong type: %u"),
723
                  static_cast<unsigned int>(strtabshdr.get_sh_type()));
724
      return;
725
    }
726
 
727
  // Read the symbol names.
728
  File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
729
                                               strtabshdr.get_sh_size(),
730
                                               false, true);
731
 
732
  sd->symbols = fvsymtab;
733
  sd->symbols_size = readsize;
734
  sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
735
  sd->symbol_names = fvstrtab;
736
  sd->symbol_names_size =
737
    convert_to_section_size_type(strtabshdr.get_sh_size());
738
}
739
 
740
// Return the section index of symbol SYM.  Set *VALUE to its value in
741
// the object file.  Set *IS_ORDINARY if this is an ordinary section
742
// index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
743
// Note that for a symbol which is not defined in this object file,
744
// this will set *VALUE to 0 and return SHN_UNDEF; it will not return
745
// the final value of the symbol in the link.
746
 
747
template<int size, bool big_endian>
748
unsigned int
749
Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
750
                                                              Address* value,
751
                                                              bool* is_ordinary)
752
{
753
  section_size_type symbols_size;
754
  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
755
                                                        &symbols_size,
756
                                                        false);
757
 
758
  const size_t count = symbols_size / This::sym_size;
759
  gold_assert(sym < count);
760
 
761
  elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
762
  *value = elfsym.get_st_value();
763
 
764
  return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
765
}
766
 
767
// Return whether to include a section group in the link.  LAYOUT is
768
// used to keep track of which section groups we have already seen.
769
// INDEX is the index of the section group and SHDR is the section
770
// header.  If we do not want to include this group, we set bits in
771
// OMIT for each section which should be discarded.
772
 
773
template<int size, bool big_endian>
774
bool
775
Sized_relobj_file<size, big_endian>::include_section_group(
776
    Symbol_table* symtab,
777
    Layout* layout,
778
    unsigned int index,
779
    const char* name,
780
    const unsigned char* shdrs,
781
    const char* section_names,
782
    section_size_type section_names_size,
783
    std::vector<bool>* omit)
784
{
785
  // Read the section contents.
786
  typename This::Shdr shdr(shdrs + index * This::shdr_size);
787
  const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
788
                                             shdr.get_sh_size(), true, false);
789
  const elfcpp::Elf_Word* pword =
790
    reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
791
 
792
  // The first word contains flags.  We only care about COMDAT section
793
  // groups.  Other section groups are always included in the link
794
  // just like ordinary sections.
795
  elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
796
 
797 159 khays
  // Look up the group signature, which is the name of a symbol.  ELF
798
  // uses a symbol name because some group signatures are long, and
799
  // the name is generally already in the symbol table, so it makes
800
  // sense to put the long string just once in .strtab rather than in
801
  // both .strtab and .shstrtab.
802 27 khays
 
803
  // Get the appropriate symbol table header (this will normally be
804
  // the single SHT_SYMTAB section, but in principle it need not be).
805
  const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
806
  typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
807
 
808
  // Read the symbol table entry.
809
  unsigned int symndx = shdr.get_sh_info();
810
  if (symndx >= symshdr.get_sh_size() / This::sym_size)
811
    {
812
      this->error(_("section group %u info %u out of range"),
813
                  index, symndx);
814
      return false;
815
    }
816
  off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
817
  const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
818
                                             false);
819
  elfcpp::Sym<size, big_endian> sym(psym);
820
 
821
  // Read the symbol table names.
822
  section_size_type symnamelen;
823
  const unsigned char* psymnamesu;
824
  psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
825
                                      &symnamelen, true);
826
  const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
827
 
828
  // Get the section group signature.
829
  if (sym.get_st_name() >= symnamelen)
830
    {
831
      this->error(_("symbol %u name offset %u out of range"),
832
                  symndx, sym.get_st_name());
833
      return false;
834
    }
835
 
836
  std::string signature(psymnames + sym.get_st_name());
837
 
838
  // It seems that some versions of gas will create a section group
839
  // associated with a section symbol, and then fail to give a name to
840
  // the section symbol.  In such a case, use the name of the section.
841
  if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
842
    {
843
      bool is_ordinary;
844
      unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
845
                                                      sym.get_st_shndx(),
846
                                                      &is_ordinary);
847
      if (!is_ordinary || sym_shndx >= this->shnum())
848
        {
849
          this->error(_("symbol %u invalid section index %u"),
850
                      symndx, sym_shndx);
851
          return false;
852
        }
853
      typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
854
      if (member_shdr.get_sh_name() < section_names_size)
855
        signature = section_names + member_shdr.get_sh_name();
856
    }
857
 
858
  // Record this section group in the layout, and see whether we've already
859
  // seen one with the same signature.
860
  bool include_group;
861
  bool is_comdat;
862
  Kept_section* kept_section = NULL;
863
 
864
  if ((flags & elfcpp::GRP_COMDAT) == 0)
865
    {
866
      include_group = true;
867
      is_comdat = false;
868
    }
869
  else
870
    {
871
      include_group = layout->find_or_add_kept_section(signature,
872
                                                       this, index, true,
873
                                                       true, &kept_section);
874
      is_comdat = true;
875
    }
876
 
877
  if (is_comdat && include_group)
878
    {
879
      Incremental_inputs* incremental_inputs = layout->incremental_inputs();
880
      if (incremental_inputs != NULL)
881
        incremental_inputs->report_comdat_group(this, signature.c_str());
882
    }
883
 
884
  size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
885
 
886
  std::vector<unsigned int> shndxes;
887
  bool relocate_group = include_group && parameters->options().relocatable();
888
  if (relocate_group)
889
    shndxes.reserve(count - 1);
890
 
891
  for (size_t i = 1; i < count; ++i)
892
    {
893
      elfcpp::Elf_Word shndx =
894
        this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
895
 
896
      if (relocate_group)
897
        shndxes.push_back(shndx);
898
 
899
      if (shndx >= this->shnum())
900
        {
901
          this->error(_("section %u in section group %u out of range"),
902
                      shndx, index);
903
          continue;
904
        }
905
 
906
      // Check for an earlier section number, since we're going to get
907
      // it wrong--we may have already decided to include the section.
908
      if (shndx < index)
909
        this->error(_("invalid section group %u refers to earlier section %u"),
910
                    index, shndx);
911
 
912
      // Get the name of the member section.
913
      typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
914
      if (member_shdr.get_sh_name() >= section_names_size)
915
        {
916
          // This is an error, but it will be diagnosed eventually
917
          // in do_layout, so we don't need to do anything here but
918
          // ignore it.
919
          continue;
920
        }
921
      std::string mname(section_names + member_shdr.get_sh_name());
922
 
923
      if (include_group)
924
        {
925
          if (is_comdat)
926
            kept_section->add_comdat_section(mname, shndx,
927
                                             member_shdr.get_sh_size());
928
        }
929
      else
930
        {
931
          (*omit)[shndx] = true;
932
 
933
          if (is_comdat)
934
            {
935
              Relobj* kept_object = kept_section->object();
936
              if (kept_section->is_comdat())
937
                {
938
                  // Find the corresponding kept section, and store
939
                  // that info in the discarded section table.
940
                  unsigned int kept_shndx;
941
                  uint64_t kept_size;
942
                  if (kept_section->find_comdat_section(mname, &kept_shndx,
943
                                                        &kept_size))
944
                    {
945
                      // We don't keep a mapping for this section if
946
                      // it has a different size.  The mapping is only
947
                      // used for relocation processing, and we don't
948
                      // want to treat the sections as similar if the
949
                      // sizes are different.  Checking the section
950
                      // size is the approach used by the GNU linker.
951
                      if (kept_size == member_shdr.get_sh_size())
952
                        this->set_kept_comdat_section(shndx, kept_object,
953
                                                      kept_shndx);
954
                    }
955
                }
956
              else
957
                {
958
                  // The existing section is a linkonce section.  Add
959
                  // a mapping if there is exactly one section in the
960
                  // group (which is true when COUNT == 2) and if it
961
                  // is the same size.
962
                  if (count == 2
963
                      && (kept_section->linkonce_size()
964
                          == member_shdr.get_sh_size()))
965
                    this->set_kept_comdat_section(shndx, kept_object,
966
                                                  kept_section->shndx());
967
                }
968
            }
969
        }
970
    }
971
 
972
  if (relocate_group)
973
    layout->layout_group(symtab, this, index, name, signature.c_str(),
974
                         shdr, flags, &shndxes);
975
 
976
  return include_group;
977
}
978
 
979
// Whether to include a linkonce section in the link.  NAME is the
980
// name of the section and SHDR is the section header.
981
 
982
// Linkonce sections are a GNU extension implemented in the original
983
// GNU linker before section groups were defined.  The semantics are
984
// that we only include one linkonce section with a given name.  The
985
// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
986
// where T is the type of section and SYMNAME is the name of a symbol.
987
// In an attempt to make linkonce sections interact well with section
988
// groups, we try to identify SYMNAME and use it like a section group
989
// signature.  We want to block section groups with that signature,
990
// but not other linkonce sections with that signature.  We also use
991
// the full name of the linkonce section as a normal section group
992
// signature.
993
 
994
template<int size, bool big_endian>
995
bool
996
Sized_relobj_file<size, big_endian>::include_linkonce_section(
997
    Layout* layout,
998
    unsigned int index,
999
    const char* name,
1000
    const elfcpp::Shdr<size, big_endian>& shdr)
1001
{
1002
  typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1003
  // In general the symbol name we want will be the string following
1004
  // the last '.'.  However, we have to handle the case of
1005
  // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1006
  // some versions of gcc.  So we use a heuristic: if the name starts
1007
  // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1008
  // we look for the last '.'.  We can't always simply skip
1009
  // ".gnu.linkonce.X", because we have to deal with cases like
1010
  // ".gnu.linkonce.d.rel.ro.local".
1011
  const char* const linkonce_t = ".gnu.linkonce.t.";
1012
  const char* symname;
1013
  if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1014
    symname = name + strlen(linkonce_t);
1015
  else
1016
    symname = strrchr(name, '.') + 1;
1017
  std::string sig1(symname);
1018
  std::string sig2(name);
1019
  Kept_section* kept1;
1020
  Kept_section* kept2;
1021
  bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1022
                                                   false, &kept1);
1023
  bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1024
                                                   true, &kept2);
1025
 
1026
  if (!include2)
1027
    {
1028
      // We are not including this section because we already saw the
1029
      // name of the section as a signature.  This normally implies
1030
      // that the kept section is another linkonce section.  If it is
1031
      // the same size, record it as the section which corresponds to
1032
      // this one.
1033
      if (kept2->object() != NULL
1034
          && !kept2->is_comdat()
1035
          && kept2->linkonce_size() == sh_size)
1036
        this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1037
    }
1038
  else if (!include1)
1039
    {
1040
      // The section is being discarded on the basis of its symbol
1041
      // name.  This means that the corresponding kept section was
1042
      // part of a comdat group, and it will be difficult to identify
1043
      // the specific section within that group that corresponds to
1044
      // this linkonce section.  We'll handle the simple case where
1045
      // the group has only one member section.  Otherwise, it's not
1046
      // worth the effort.
1047
      unsigned int kept_shndx;
1048
      uint64_t kept_size;
1049
      if (kept1->object() != NULL
1050
          && kept1->is_comdat()
1051
          && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1052
          && kept_size == sh_size)
1053
        this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1054
    }
1055
  else
1056
    {
1057
      kept1->set_linkonce_size(sh_size);
1058
      kept2->set_linkonce_size(sh_size);
1059
    }
1060
 
1061
  return include1 && include2;
1062
}
1063
 
1064
// Layout an input section.
1065
 
1066
template<int size, bool big_endian>
1067
inline void
1068 159 khays
Sized_relobj_file<size, big_endian>::layout_section(
1069
    Layout* layout,
1070
    unsigned int shndx,
1071
    const char* name,
1072
    const typename This::Shdr& shdr,
1073
    unsigned int reloc_shndx,
1074
    unsigned int reloc_type)
1075 27 khays
{
1076
  off_t offset;
1077
  Output_section* os = layout->layout(this, shndx, name, shdr,
1078
                                          reloc_shndx, reloc_type, &offset);
1079
 
1080
  this->output_sections()[shndx] = os;
1081
  if (offset == -1)
1082
    this->section_offsets()[shndx] = invalid_address;
1083
  else
1084
    this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1085
 
1086
  // If this section requires special handling, and if there are
1087
  // relocs that apply to it, then we must do the special handling
1088
  // before we apply the relocs.
1089
  if (offset == -1 && reloc_shndx != 0)
1090
    this->set_relocs_must_follow_section_writes();
1091
}
1092
 
1093 159 khays
// Layout an input .eh_frame section.
1094
 
1095
template<int size, bool big_endian>
1096
void
1097
Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1098
    Layout* layout,
1099
    const unsigned char* symbols_data,
1100
    section_size_type symbols_size,
1101
    const unsigned char* symbol_names_data,
1102
    section_size_type symbol_names_size,
1103
    unsigned int shndx,
1104
    const typename This::Shdr& shdr,
1105
    unsigned int reloc_shndx,
1106
    unsigned int reloc_type)
1107
{
1108
  gold_assert(this->has_eh_frame_);
1109
 
1110
  off_t offset;
1111
  Output_section* os = layout->layout_eh_frame(this,
1112
                                               symbols_data,
1113
                                               symbols_size,
1114
                                               symbol_names_data,
1115
                                               symbol_names_size,
1116
                                               shndx,
1117
                                               shdr,
1118
                                               reloc_shndx,
1119
                                               reloc_type,
1120
                                               &offset);
1121
  this->output_sections()[shndx] = os;
1122
  if (os == NULL || offset == -1)
1123
    {
1124
      // An object can contain at most one section holding exception
1125
      // frame information.
1126
      gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1127
      this->discarded_eh_frame_shndx_ = shndx;
1128
      this->section_offsets()[shndx] = invalid_address;
1129
    }
1130
  else
1131
    this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1132
 
1133
  // If this section requires special handling, and if there are
1134
  // relocs that aply to it, then we must do the special handling
1135
  // before we apply the relocs.
1136
  if (os != NULL && offset == -1 && reloc_shndx != 0)
1137
    this->set_relocs_must_follow_section_writes();
1138
}
1139
 
1140 27 khays
// Lay out the input sections.  We walk through the sections and check
1141
// whether they should be included in the link.  If they should, we
1142
// pass them to the Layout object, which will return an output section
1143
// and an offset.  
1144
// During garbage collection (--gc-sections) and identical code folding 
1145
// (--icf), this function is called twice.  When it is called the first 
1146
// time, it is for setting up some sections as roots to a work-list for
1147
// --gc-sections and to do comdat processing.  Actual layout happens the 
1148
// second time around after all the relevant sections have been determined.  
1149
// The first time, is_worklist_ready or is_icf_ready is false. It is then 
1150
// set to true after the garbage collection worklist or identical code 
1151
// folding is processed and the relevant sections to be kept are 
1152
// determined.  Then, this function is called again to layout the sections.
1153
 
1154
template<int size, bool big_endian>
1155
void
1156
Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1157
                                               Layout* layout,
1158
                                               Read_symbols_data* sd)
1159
{
1160
  const unsigned int shnum = this->shnum();
1161
  bool is_gc_pass_one = ((parameters->options().gc_sections()
1162
                          && !symtab->gc()->is_worklist_ready())
1163
                         || (parameters->options().icf_enabled()
1164
                             && !symtab->icf()->is_icf_ready()));
1165
 
1166
  bool is_gc_pass_two = ((parameters->options().gc_sections()
1167
                          && symtab->gc()->is_worklist_ready())
1168
                         || (parameters->options().icf_enabled()
1169
                             && symtab->icf()->is_icf_ready()));
1170
 
1171
  bool is_gc_or_icf = (parameters->options().gc_sections()
1172
                       || parameters->options().icf_enabled());
1173
 
1174
  // Both is_gc_pass_one and is_gc_pass_two should not be true.
1175
  gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1176
 
1177
  if (shnum == 0)
1178
    return;
1179
  Symbols_data* gc_sd = NULL;
1180
  if (is_gc_pass_one)
1181
    {
1182
      // During garbage collection save the symbols data to use it when 
1183
      // re-entering this function.   
1184
      gc_sd = new Symbols_data;
1185
      this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1186
      this->set_symbols_data(gc_sd);
1187
    }
1188
  else if (is_gc_pass_two)
1189
    {
1190
      gc_sd = this->get_symbols_data();
1191
    }
1192
 
1193
  const unsigned char* section_headers_data = NULL;
1194
  section_size_type section_names_size;
1195
  const unsigned char* symbols_data = NULL;
1196
  section_size_type symbols_size;
1197
  const unsigned char* symbol_names_data = NULL;
1198
  section_size_type symbol_names_size;
1199
 
1200
  if (is_gc_or_icf)
1201
    {
1202
      section_headers_data = gc_sd->section_headers_data;
1203
      section_names_size = gc_sd->section_names_size;
1204
      symbols_data = gc_sd->symbols_data;
1205
      symbols_size = gc_sd->symbols_size;
1206
      symbol_names_data = gc_sd->symbol_names_data;
1207
      symbol_names_size = gc_sd->symbol_names_size;
1208
    }
1209
  else
1210
    {
1211
      section_headers_data = sd->section_headers->data();
1212
      section_names_size = sd->section_names_size;
1213
      if (sd->symbols != NULL)
1214
        symbols_data = sd->symbols->data();
1215
      symbols_size = sd->symbols_size;
1216
      if (sd->symbol_names != NULL)
1217
        symbol_names_data = sd->symbol_names->data();
1218
      symbol_names_size = sd->symbol_names_size;
1219
    }
1220
 
1221
  // Get the section headers.
1222
  const unsigned char* shdrs = section_headers_data;
1223
  const unsigned char* pshdrs;
1224
 
1225
  // Get the section names.
1226
  const unsigned char* pnamesu = (is_gc_or_icf)
1227
                                 ? gc_sd->section_names_data
1228
                                 : sd->section_names->data();
1229
 
1230
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
1231
 
1232
  // If any input files have been claimed by plugins, we need to defer
1233
  // actual layout until the replacement files have arrived.
1234
  const bool should_defer_layout =
1235
      (parameters->options().has_plugins()
1236
       && parameters->options().plugins()->should_defer_layout());
1237
  unsigned int num_sections_to_defer = 0;
1238
 
1239
  // For each section, record the index of the reloc section if any.
1240
  // Use 0 to mean that there is no reloc section, -1U to mean that
1241
  // there is more than one.
1242
  std::vector<unsigned int> reloc_shndx(shnum, 0);
1243
  std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1244
  // Skip the first, dummy, section.
1245
  pshdrs = shdrs + This::shdr_size;
1246
  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1247
    {
1248
      typename This::Shdr shdr(pshdrs);
1249
 
1250
      // Count the number of sections whose layout will be deferred.
1251
      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1252
        ++num_sections_to_defer;
1253
 
1254
      unsigned int sh_type = shdr.get_sh_type();
1255
      if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1256
        {
1257
          unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1258
          if (target_shndx == 0 || target_shndx >= shnum)
1259
            {
1260
              this->error(_("relocation section %u has bad info %u"),
1261
                          i, target_shndx);
1262
              continue;
1263
            }
1264
 
1265
          if (reloc_shndx[target_shndx] != 0)
1266
            reloc_shndx[target_shndx] = -1U;
1267
          else
1268
            {
1269
              reloc_shndx[target_shndx] = i;
1270
              reloc_type[target_shndx] = sh_type;
1271
            }
1272
        }
1273
    }
1274
 
1275
  Output_sections& out_sections(this->output_sections());
1276
  std::vector<Address>& out_section_offsets(this->section_offsets());
1277
 
1278
  if (!is_gc_pass_two)
1279
    {
1280
      out_sections.resize(shnum);
1281
      out_section_offsets.resize(shnum);
1282
    }
1283
 
1284
  // If we are only linking for symbols, then there is nothing else to
1285
  // do here.
1286
  if (this->input_file()->just_symbols())
1287
    {
1288
      if (!is_gc_pass_two)
1289
        {
1290
          delete sd->section_headers;
1291
          sd->section_headers = NULL;
1292
          delete sd->section_names;
1293
          sd->section_names = NULL;
1294
        }
1295
      return;
1296
    }
1297
 
1298
  if (num_sections_to_defer > 0)
1299
    {
1300
      parameters->options().plugins()->add_deferred_layout_object(this);
1301
      this->deferred_layout_.reserve(num_sections_to_defer);
1302
    }
1303
 
1304
  // Whether we've seen a .note.GNU-stack section.
1305
  bool seen_gnu_stack = false;
1306
  // The flags of a .note.GNU-stack section.
1307
  uint64_t gnu_stack_flags = 0;
1308
 
1309
  // Keep track of which sections to omit.
1310
  std::vector<bool> omit(shnum, false);
1311
 
1312
  // Keep track of reloc sections when emitting relocations.
1313
  const bool relocatable = parameters->options().relocatable();
1314
  const bool emit_relocs = (relocatable
1315
                            || parameters->options().emit_relocs());
1316
  std::vector<unsigned int> reloc_sections;
1317
 
1318
  // Keep track of .eh_frame sections.
1319
  std::vector<unsigned int> eh_frame_sections;
1320
 
1321
  // Skip the first, dummy, section.
1322
  pshdrs = shdrs + This::shdr_size;
1323
  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1324
    {
1325
      typename This::Shdr shdr(pshdrs);
1326
 
1327
      if (shdr.get_sh_name() >= section_names_size)
1328
        {
1329
          this->error(_("bad section name offset for section %u: %lu"),
1330
                      i, static_cast<unsigned long>(shdr.get_sh_name()));
1331
          return;
1332
        }
1333
 
1334
      const char* name = pnames + shdr.get_sh_name();
1335
 
1336
      if (!is_gc_pass_two)
1337
        {
1338
          if (this->handle_gnu_warning_section(name, i, symtab))
1339
            {
1340 159 khays
              if (!relocatable && !parameters->options().shared())
1341 27 khays
                omit[i] = true;
1342
            }
1343
 
1344
          // The .note.GNU-stack section is special.  It gives the
1345
          // protection flags that this object file requires for the stack
1346
          // in memory.
1347
          if (strcmp(name, ".note.GNU-stack") == 0)
1348
            {
1349
              seen_gnu_stack = true;
1350
              gnu_stack_flags |= shdr.get_sh_flags();
1351
              omit[i] = true;
1352
            }
1353
 
1354
          // The .note.GNU-split-stack section is also special.  It
1355
          // indicates that the object was compiled with
1356
          // -fsplit-stack.
1357
          if (this->handle_split_stack_section(name))
1358
            {
1359 159 khays
              if (!relocatable && !parameters->options().shared())
1360 27 khays
                omit[i] = true;
1361
            }
1362
 
1363
          // Skip attributes section.
1364
          if (parameters->target().is_attributes_section(name))
1365
            {
1366
              omit[i] = true;
1367
            }
1368
 
1369
          bool discard = omit[i];
1370
          if (!discard)
1371
            {
1372
              if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1373
                {
1374
                  if (!this->include_section_group(symtab, layout, i, name,
1375
                                                   shdrs, pnames,
1376
                                                   section_names_size,
1377
                                                   &omit))
1378
                    discard = true;
1379
                }
1380
              else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1381
                       && Layout::is_linkonce(name))
1382
                {
1383
                  if (!this->include_linkonce_section(layout, i, name, shdr))
1384
                    discard = true;
1385
                }
1386
            }
1387
 
1388
          // Add the section to the incremental inputs layout.
1389
          Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1390
          if (incremental_inputs != NULL
1391
              && !discard
1392 163 khays
              && can_incremental_update(shdr.get_sh_type()))
1393 148 khays
            {
1394
              off_t sh_size = shdr.get_sh_size();
1395
              section_size_type uncompressed_size;
1396
              if (this->section_is_compressed(i, &uncompressed_size))
1397
                sh_size = uncompressed_size;
1398
              incremental_inputs->report_input_section(this, i, name, sh_size);
1399
            }
1400 27 khays
 
1401
          if (discard)
1402
            {
1403
              // Do not include this section in the link.
1404
              out_sections[i] = NULL;
1405
              out_section_offsets[i] = invalid_address;
1406
              continue;
1407
            }
1408
        }
1409
 
1410
      if (is_gc_pass_one && parameters->options().gc_sections())
1411
        {
1412
          if (this->is_section_name_included(name)
1413
              || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1414
              || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1415
            {
1416
              symtab->gc()->worklist().push(Section_id(this, i));
1417
            }
1418
          // If the section name XXX can be represented as a C identifier
1419
          // it cannot be discarded if there are references to
1420
          // __start_XXX and __stop_XXX symbols.  These need to be
1421
          // specially handled.
1422
          if (is_cident(name))
1423
            {
1424
              symtab->gc()->add_cident_section(name, Section_id(this, i));
1425
            }
1426
        }
1427
 
1428
      // When doing a relocatable link we are going to copy input
1429
      // reloc sections into the output.  We only want to copy the
1430
      // ones associated with sections which are not being discarded.
1431
      // However, we don't know that yet for all sections.  So save
1432
      // reloc sections and process them later. Garbage collection is
1433
      // not triggered when relocatable code is desired.
1434
      if (emit_relocs
1435
          && (shdr.get_sh_type() == elfcpp::SHT_REL
1436
              || shdr.get_sh_type() == elfcpp::SHT_RELA))
1437
        {
1438
          reloc_sections.push_back(i);
1439
          continue;
1440
        }
1441
 
1442
      if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1443
        continue;
1444
 
1445
      // The .eh_frame section is special.  It holds exception frame
1446
      // information that we need to read in order to generate the
1447
      // exception frame header.  We process these after all the other
1448
      // sections so that the exception frame reader can reliably
1449
      // determine which sections are being discarded, and discard the
1450
      // corresponding information.
1451
      if (!relocatable
1452
          && strcmp(name, ".eh_frame") == 0
1453
          && this->check_eh_frame_flags(&shdr))
1454
        {
1455
          if (is_gc_pass_one)
1456
            {
1457
              out_sections[i] = reinterpret_cast<Output_section*>(1);
1458
              out_section_offsets[i] = invalid_address;
1459
            }
1460 159 khays
          else if (should_defer_layout)
1461
            this->deferred_layout_.push_back(Deferred_layout(i, name,
1462
                                                             pshdrs,
1463
                                                             reloc_shndx[i],
1464
                                                             reloc_type[i]));
1465
          else
1466 27 khays
            eh_frame_sections.push_back(i);
1467
          continue;
1468
        }
1469
 
1470
      if (is_gc_pass_two && parameters->options().gc_sections())
1471
        {
1472
          // This is executed during the second pass of garbage 
1473
          // collection. do_layout has been called before and some 
1474
          // sections have been already discarded. Simply ignore 
1475
          // such sections this time around.
1476
          if (out_sections[i] == NULL)
1477
            {
1478
              gold_assert(out_section_offsets[i] == invalid_address);
1479
              continue;
1480
            }
1481
          if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1482
              && symtab->gc()->is_section_garbage(this, i))
1483
              {
1484
                if (parameters->options().print_gc_sections())
1485
                  gold_info(_("%s: removing unused section from '%s'"
1486
                              " in file '%s'"),
1487
                            program_name, this->section_name(i).c_str(),
1488
                            this->name().c_str());
1489
                out_sections[i] = NULL;
1490
                out_section_offsets[i] = invalid_address;
1491
                continue;
1492
              }
1493
        }
1494
 
1495
      if (is_gc_pass_two && parameters->options().icf_enabled())
1496
        {
1497
          if (out_sections[i] == NULL)
1498
            {
1499
              gold_assert(out_section_offsets[i] == invalid_address);
1500
              continue;
1501
            }
1502
          if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1503
              && symtab->icf()->is_section_folded(this, i))
1504
              {
1505
                if (parameters->options().print_icf_sections())
1506
                  {
1507
                    Section_id folded =
1508
                                symtab->icf()->get_folded_section(this, i);
1509
                    Relobj* folded_obj =
1510
                                reinterpret_cast<Relobj*>(folded.first);
1511
                    gold_info(_("%s: ICF folding section '%s' in file '%s'"
1512
                                "into '%s' in file '%s'"),
1513
                              program_name, this->section_name(i).c_str(),
1514
                              this->name().c_str(),
1515
                              folded_obj->section_name(folded.second).c_str(),
1516
                              folded_obj->name().c_str());
1517
                  }
1518
                out_sections[i] = NULL;
1519
                out_section_offsets[i] = invalid_address;
1520
                continue;
1521
              }
1522
        }
1523
 
1524
      // Defer layout here if input files are claimed by plugins.  When gc
1525
      // is turned on this function is called twice.  For the second call
1526
      // should_defer_layout should be false.
1527
      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1528
        {
1529
          gold_assert(!is_gc_pass_two);
1530
          this->deferred_layout_.push_back(Deferred_layout(i, name,
1531
                                                           pshdrs,
1532
                                                           reloc_shndx[i],
1533
                                                           reloc_type[i]));
1534
          // Put dummy values here; real values will be supplied by
1535
          // do_layout_deferred_sections.
1536
          out_sections[i] = reinterpret_cast<Output_section*>(2);
1537
          out_section_offsets[i] = invalid_address;
1538
          continue;
1539
        }
1540
 
1541
      // During gc_pass_two if a section that was previously deferred is
1542
      // found, do not layout the section as layout_deferred_sections will
1543
      // do it later from gold.cc.
1544
      if (is_gc_pass_two
1545
          && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1546
        continue;
1547
 
1548
      if (is_gc_pass_one)
1549
        {
1550
          // This is during garbage collection. The out_sections are 
1551
          // assigned in the second call to this function. 
1552
          out_sections[i] = reinterpret_cast<Output_section*>(1);
1553
          out_section_offsets[i] = invalid_address;
1554
        }
1555
      else
1556
        {
1557
          // When garbage collection is switched on the actual layout
1558
          // only happens in the second call.
1559
          this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1560
                               reloc_type[i]);
1561
        }
1562
    }
1563
 
1564
  if (!is_gc_pass_two)
1565
    layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1566
 
1567
  // When doing a relocatable link handle the reloc sections at the
1568
  // end.  Garbage collection  and Identical Code Folding is not 
1569
  // turned on for relocatable code. 
1570
  if (emit_relocs)
1571
    this->size_relocatable_relocs();
1572
 
1573
  gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1574
 
1575
  for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1576
       p != reloc_sections.end();
1577
       ++p)
1578
    {
1579
      unsigned int i = *p;
1580
      const unsigned char* pshdr;
1581
      pshdr = section_headers_data + i * This::shdr_size;
1582
      typename This::Shdr shdr(pshdr);
1583
 
1584
      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1585
      if (data_shndx >= shnum)
1586
        {
1587
          // We already warned about this above.
1588
          continue;
1589
        }
1590
 
1591
      Output_section* data_section = out_sections[data_shndx];
1592
      if (data_section == reinterpret_cast<Output_section*>(2))
1593
        {
1594
          // The layout for the data section was deferred, so we need
1595
          // to defer the relocation section, too.
1596
          const char* name = pnames + shdr.get_sh_name();
1597
          this->deferred_layout_relocs_.push_back(
1598
              Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1599
          out_sections[i] = reinterpret_cast<Output_section*>(2);
1600
          out_section_offsets[i] = invalid_address;
1601
          continue;
1602
        }
1603
      if (data_section == NULL)
1604
        {
1605
          out_sections[i] = NULL;
1606
          out_section_offsets[i] = invalid_address;
1607
          continue;
1608
        }
1609
 
1610
      Relocatable_relocs* rr = new Relocatable_relocs();
1611
      this->set_relocatable_relocs(i, rr);
1612
 
1613
      Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1614
                                                rr);
1615
      out_sections[i] = os;
1616
      out_section_offsets[i] = invalid_address;
1617
    }
1618
 
1619
  // Handle the .eh_frame sections at the end.
1620
  gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1621
  for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1622
       p != eh_frame_sections.end();
1623
       ++p)
1624
    {
1625
      unsigned int i = *p;
1626
      const unsigned char* pshdr;
1627
      pshdr = section_headers_data + i * This::shdr_size;
1628
      typename This::Shdr shdr(pshdr);
1629
 
1630 159 khays
      this->layout_eh_frame_section(layout,
1631
                                    symbols_data,
1632
                                    symbols_size,
1633
                                    symbol_names_data,
1634
                                    symbol_names_size,
1635
                                    i,
1636
                                    shdr,
1637
                                    reloc_shndx[i],
1638
                                    reloc_type[i]);
1639 27 khays
    }
1640
 
1641
  if (is_gc_pass_two)
1642
    {
1643
      delete[] gc_sd->section_headers_data;
1644
      delete[] gc_sd->section_names_data;
1645
      delete[] gc_sd->symbols_data;
1646
      delete[] gc_sd->symbol_names_data;
1647
      this->set_symbols_data(NULL);
1648
    }
1649
  else
1650
    {
1651
      delete sd->section_headers;
1652
      sd->section_headers = NULL;
1653
      delete sd->section_names;
1654
      sd->section_names = NULL;
1655
    }
1656
}
1657
 
1658
// Layout sections whose layout was deferred while waiting for
1659
// input files from a plugin.
1660
 
1661
template<int size, bool big_endian>
1662
void
1663
Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1664
{
1665
  typename std::vector<Deferred_layout>::iterator deferred;
1666
 
1667
  for (deferred = this->deferred_layout_.begin();
1668
       deferred != this->deferred_layout_.end();
1669
       ++deferred)
1670
    {
1671
      typename This::Shdr shdr(deferred->shdr_data_);
1672
      // If the section is not included, it is because the garbage collector
1673
      // decided it is not needed.  Avoid reverting that decision.
1674
      if (!this->is_section_included(deferred->shndx_))
1675
        continue;
1676
 
1677 159 khays
      if (parameters->options().relocatable()
1678
          || deferred->name_ != ".eh_frame"
1679
          || !this->check_eh_frame_flags(&shdr))
1680
        this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1681
                             shdr, deferred->reloc_shndx_,
1682
                             deferred->reloc_type_);
1683
      else
1684
        {
1685
          // Reading the symbols again here may be slow.
1686
          Read_symbols_data sd;
1687
          this->read_symbols(&sd);
1688
          this->layout_eh_frame_section(layout,
1689
                                        sd.symbols->data(),
1690
                                        sd.symbols_size,
1691
                                        sd.symbol_names->data(),
1692
                                        sd.symbol_names_size,
1693
                                        deferred->shndx_,
1694
                                        shdr,
1695
                                        deferred->reloc_shndx_,
1696
                                        deferred->reloc_type_);
1697
        }
1698 27 khays
    }
1699
 
1700
  this->deferred_layout_.clear();
1701
 
1702
  // Now handle the deferred relocation sections.
1703
 
1704
  Output_sections& out_sections(this->output_sections());
1705
  std::vector<Address>& out_section_offsets(this->section_offsets());
1706
 
1707
  for (deferred = this->deferred_layout_relocs_.begin();
1708
       deferred != this->deferred_layout_relocs_.end();
1709
       ++deferred)
1710
    {
1711
      unsigned int shndx = deferred->shndx_;
1712
      typename This::Shdr shdr(deferred->shdr_data_);
1713
      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1714
 
1715
      Output_section* data_section = out_sections[data_shndx];
1716
      if (data_section == NULL)
1717
        {
1718
          out_sections[shndx] = NULL;
1719
          out_section_offsets[shndx] = invalid_address;
1720
          continue;
1721
        }
1722
 
1723
      Relocatable_relocs* rr = new Relocatable_relocs();
1724
      this->set_relocatable_relocs(shndx, rr);
1725
 
1726
      Output_section* os = layout->layout_reloc(this, shndx, shdr,
1727
                                                data_section, rr);
1728
      out_sections[shndx] = os;
1729
      out_section_offsets[shndx] = invalid_address;
1730
    }
1731
}
1732
 
1733
// Add the symbols to the symbol table.
1734
 
1735
template<int size, bool big_endian>
1736
void
1737
Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1738
                                                    Read_symbols_data* sd,
1739
                                                    Layout*)
1740
{
1741
  if (sd->symbols == NULL)
1742
    {
1743
      gold_assert(sd->symbol_names == NULL);
1744
      return;
1745
    }
1746
 
1747
  const int sym_size = This::sym_size;
1748
  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1749
                     / sym_size);
1750
  if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1751
    {
1752
      this->error(_("size of symbols is not multiple of symbol size"));
1753
      return;
1754
    }
1755
 
1756
  this->symbols_.resize(symcount);
1757
 
1758
  const char* sym_names =
1759
    reinterpret_cast<const char*>(sd->symbol_names->data());
1760
  symtab->add_from_relobj(this,
1761
                          sd->symbols->data() + sd->external_symbols_offset,
1762
                          symcount, this->local_symbol_count_,
1763
                          sym_names, sd->symbol_names_size,
1764
                          &this->symbols_,
1765
                          &this->defined_count_);
1766
 
1767
  delete sd->symbols;
1768
  sd->symbols = NULL;
1769
  delete sd->symbol_names;
1770
  sd->symbol_names = NULL;
1771
}
1772
 
1773
// Find out if this object, that is a member of a lib group, should be included
1774
// in the link. We check every symbol defined by this object. If the symbol
1775
// table has a strong undefined reference to that symbol, we have to include
1776
// the object.
1777
 
1778
template<int size, bool big_endian>
1779
Archive::Should_include
1780
Sized_relobj_file<size, big_endian>::do_should_include_member(
1781
    Symbol_table* symtab,
1782
    Layout* layout,
1783
    Read_symbols_data* sd,
1784
    std::string* why)
1785
{
1786
  char* tmpbuf = NULL;
1787
  size_t tmpbuflen = 0;
1788
  const char* sym_names =
1789
      reinterpret_cast<const char*>(sd->symbol_names->data());
1790
  const unsigned char* syms =
1791
      sd->symbols->data() + sd->external_symbols_offset;
1792
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1793
  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1794
                         / sym_size);
1795
 
1796
  const unsigned char* p = syms;
1797
 
1798
  for (size_t i = 0; i < symcount; ++i, p += sym_size)
1799
    {
1800
      elfcpp::Sym<size, big_endian> sym(p);
1801
      unsigned int st_shndx = sym.get_st_shndx();
1802
      if (st_shndx == elfcpp::SHN_UNDEF)
1803
        continue;
1804
 
1805
      unsigned int st_name = sym.get_st_name();
1806
      const char* name = sym_names + st_name;
1807
      Symbol* symbol;
1808
      Archive::Should_include t = Archive::should_include_member(symtab,
1809
                                                                 layout,
1810
                                                                 name,
1811
                                                                 &symbol, why,
1812
                                                                 &tmpbuf,
1813
                                                                 &tmpbuflen);
1814
      if (t == Archive::SHOULD_INCLUDE_YES)
1815
        {
1816
          if (tmpbuf != NULL)
1817
            free(tmpbuf);
1818
          return t;
1819
        }
1820
    }
1821
  if (tmpbuf != NULL)
1822
    free(tmpbuf);
1823
  return Archive::SHOULD_INCLUDE_UNKNOWN;
1824
}
1825
 
1826
// Iterate over global defined symbols, calling a visitor class V for each.
1827
 
1828
template<int size, bool big_endian>
1829
void
1830
Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1831
    Read_symbols_data* sd,
1832
    Library_base::Symbol_visitor_base* v)
1833
{
1834
  const char* sym_names =
1835
      reinterpret_cast<const char*>(sd->symbol_names->data());
1836
  const unsigned char* syms =
1837
      sd->symbols->data() + sd->external_symbols_offset;
1838
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1839
  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1840
                     / sym_size);
1841
  const unsigned char* p = syms;
1842
 
1843
  for (size_t i = 0; i < symcount; ++i, p += sym_size)
1844
    {
1845
      elfcpp::Sym<size, big_endian> sym(p);
1846
      if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1847
        v->visit(sym_names + sym.get_st_name());
1848
    }
1849
}
1850
 
1851
// Return whether the local symbol SYMNDX has a PLT offset.
1852
 
1853
template<int size, bool big_endian>
1854
bool
1855
Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1856
    unsigned int symndx) const
1857
{
1858
  typename Local_plt_offsets::const_iterator p =
1859
    this->local_plt_offsets_.find(symndx);
1860
  return p != this->local_plt_offsets_.end();
1861
}
1862
 
1863
// Get the PLT offset of a local symbol.
1864
 
1865
template<int size, bool big_endian>
1866
unsigned int
1867 166 khays
Sized_relobj_file<size, big_endian>::do_local_plt_offset(
1868
    unsigned int symndx) const
1869 27 khays
{
1870
  typename Local_plt_offsets::const_iterator p =
1871
    this->local_plt_offsets_.find(symndx);
1872
  gold_assert(p != this->local_plt_offsets_.end());
1873
  return p->second;
1874
}
1875
 
1876
// Set the PLT offset of a local symbol.
1877
 
1878
template<int size, bool big_endian>
1879
void
1880
Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1881
    unsigned int symndx, unsigned int plt_offset)
1882
{
1883
  std::pair<typename Local_plt_offsets::iterator, bool> ins =
1884
    this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1885
  gold_assert(ins.second);
1886
}
1887
 
1888
// First pass over the local symbols.  Here we add their names to
1889
// *POOL and *DYNPOOL, and we store the symbol value in
1890
// THIS->LOCAL_VALUES_.  This function is always called from a
1891
// singleton thread.  This is followed by a call to
1892
// finalize_local_symbols.
1893
 
1894
template<int size, bool big_endian>
1895
void
1896
Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1897
                                                            Stringpool* dynpool)
1898
{
1899
  gold_assert(this->symtab_shndx_ != -1U);
1900
  if (this->symtab_shndx_ == 0)
1901
    {
1902
      // This object has no symbols.  Weird but legal.
1903
      return;
1904
    }
1905
 
1906
  // Read the symbol table section header.
1907
  const unsigned int symtab_shndx = this->symtab_shndx_;
1908
  typename This::Shdr symtabshdr(this,
1909
                                 this->elf_file_.section_header(symtab_shndx));
1910
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1911
 
1912
  // Read the local symbols.
1913
  const int sym_size = This::sym_size;
1914
  const unsigned int loccount = this->local_symbol_count_;
1915
  gold_assert(loccount == symtabshdr.get_sh_info());
1916
  off_t locsize = loccount * sym_size;
1917
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1918
                                              locsize, true, true);
1919
 
1920
  // Read the symbol names.
1921
  const unsigned int strtab_shndx =
1922
    this->adjust_shndx(symtabshdr.get_sh_link());
1923
  section_size_type strtab_size;
1924
  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1925
                                                        &strtab_size,
1926
                                                        true);
1927
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
1928
 
1929
  // Loop over the local symbols.
1930
 
1931
  const Output_sections& out_sections(this->output_sections());
1932
  unsigned int shnum = this->shnum();
1933
  unsigned int count = 0;
1934
  unsigned int dyncount = 0;
1935
  // Skip the first, dummy, symbol.
1936
  psyms += sym_size;
1937
  bool strip_all = parameters->options().strip_all();
1938
  bool discard_all = parameters->options().discard_all();
1939
  bool discard_locals = parameters->options().discard_locals();
1940
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1941
    {
1942
      elfcpp::Sym<size, big_endian> sym(psyms);
1943
 
1944
      Symbol_value<size>& lv(this->local_values_[i]);
1945
 
1946
      bool is_ordinary;
1947
      unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1948
                                                  &is_ordinary);
1949
      lv.set_input_shndx(shndx, is_ordinary);
1950
 
1951
      if (sym.get_st_type() == elfcpp::STT_SECTION)
1952
        lv.set_is_section_symbol();
1953
      else if (sym.get_st_type() == elfcpp::STT_TLS)
1954
        lv.set_is_tls_symbol();
1955
      else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1956
        lv.set_is_ifunc_symbol();
1957
 
1958
      // Save the input symbol value for use in do_finalize_local_symbols().
1959
      lv.set_input_value(sym.get_st_value());
1960
 
1961
      // Decide whether this symbol should go into the output file.
1962
 
1963
      if ((shndx < shnum && out_sections[shndx] == NULL)
1964
          || shndx == this->discarded_eh_frame_shndx_)
1965
        {
1966
          lv.set_no_output_symtab_entry();
1967
          gold_assert(!lv.needs_output_dynsym_entry());
1968
          continue;
1969
        }
1970
 
1971
      if (sym.get_st_type() == elfcpp::STT_SECTION)
1972
        {
1973
          lv.set_no_output_symtab_entry();
1974
          gold_assert(!lv.needs_output_dynsym_entry());
1975
          continue;
1976
        }
1977
 
1978
      if (sym.get_st_name() >= strtab_size)
1979
        {
1980
          this->error(_("local symbol %u section name out of range: %u >= %u"),
1981
                      i, sym.get_st_name(),
1982
                      static_cast<unsigned int>(strtab_size));
1983
          lv.set_no_output_symtab_entry();
1984
          continue;
1985
        }
1986
 
1987
      const char* name = pnames + sym.get_st_name();
1988
 
1989
      // If needed, add the symbol to the dynamic symbol table string pool.
1990
      if (lv.needs_output_dynsym_entry())
1991
        {
1992
          dynpool->add(name, true, NULL);
1993
          ++dyncount;
1994
        }
1995
 
1996
      if (strip_all
1997
          || (discard_all && lv.may_be_discarded_from_output_symtab()))
1998
        {
1999
          lv.set_no_output_symtab_entry();
2000
          continue;
2001
        }
2002
 
2003
      // If --discard-locals option is used, discard all temporary local
2004
      // symbols.  These symbols start with system-specific local label
2005
      // prefixes, typically .L for ELF system.  We want to be compatible
2006
      // with GNU ld so here we essentially use the same check in
2007
      // bfd_is_local_label().  The code is different because we already
2008
      // know that:
2009
      //
2010
      //   - the symbol is local and thus cannot have global or weak binding.
2011
      //   - the symbol is not a section symbol.
2012
      //   - the symbol has a name.
2013
      //
2014
      // We do not discard a symbol if it needs a dynamic symbol entry.
2015
      if (discard_locals
2016
          && sym.get_st_type() != elfcpp::STT_FILE
2017
          && !lv.needs_output_dynsym_entry()
2018
          && lv.may_be_discarded_from_output_symtab()
2019
          && parameters->target().is_local_label_name(name))
2020
        {
2021
          lv.set_no_output_symtab_entry();
2022
          continue;
2023
        }
2024
 
2025
      // Discard the local symbol if -retain_symbols_file is specified
2026
      // and the local symbol is not in that file.
2027
      if (!parameters->options().should_retain_symbol(name))
2028
        {
2029
          lv.set_no_output_symtab_entry();
2030
          continue;
2031
        }
2032
 
2033
      // Add the symbol to the symbol table string pool.
2034
      pool->add(name, true, NULL);
2035
      ++count;
2036
    }
2037
 
2038
  this->output_local_symbol_count_ = count;
2039
  this->output_local_dynsym_count_ = dyncount;
2040
}
2041
 
2042
// Compute the final value of a local symbol.
2043
 
2044
template<int size, bool big_endian>
2045
typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2046
Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2047
    unsigned int r_sym,
2048
    const Symbol_value<size>* lv_in,
2049
    Symbol_value<size>* lv_out,
2050
    bool relocatable,
2051
    const Output_sections& out_sections,
2052
    const std::vector<Address>& out_offsets,
2053
    const Symbol_table* symtab)
2054
{
2055
  // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2056
  // we may have a memory leak.
2057
  gold_assert(lv_out->has_output_value());
2058
 
2059
  bool is_ordinary;
2060
  unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2061
 
2062
  // Set the output symbol value.
2063
 
2064
  if (!is_ordinary)
2065
    {
2066
      if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2067
        lv_out->set_output_value(lv_in->input_value());
2068
      else
2069
        {
2070
          this->error(_("unknown section index %u for local symbol %u"),
2071
                      shndx, r_sym);
2072
          lv_out->set_output_value(0);
2073
          return This::CFLV_ERROR;
2074
        }
2075
    }
2076
  else
2077
    {
2078
      if (shndx >= this->shnum())
2079
        {
2080
          this->error(_("local symbol %u section index %u out of range"),
2081
                      r_sym, shndx);
2082
          lv_out->set_output_value(0);
2083
          return This::CFLV_ERROR;
2084
        }
2085
 
2086
      Output_section* os = out_sections[shndx];
2087
      Address secoffset = out_offsets[shndx];
2088
      if (symtab->is_section_folded(this, shndx))
2089
        {
2090
          gold_assert(os == NULL && secoffset == invalid_address);
2091
          // Get the os of the section it is folded onto.
2092
          Section_id folded = symtab->icf()->get_folded_section(this,
2093
                                                                shndx);
2094
          gold_assert(folded.first != NULL);
2095
          Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2096
            <Sized_relobj_file<size, big_endian>*>(folded.first);
2097
          os = folded_obj->output_section(folded.second);
2098
          gold_assert(os != NULL);
2099
          secoffset = folded_obj->get_output_section_offset(folded.second);
2100
 
2101
          // This could be a relaxed input section.
2102
          if (secoffset == invalid_address)
2103
            {
2104
              const Output_relaxed_input_section* relaxed_section =
2105
                os->find_relaxed_input_section(folded_obj, folded.second);
2106
              gold_assert(relaxed_section != NULL);
2107
              secoffset = relaxed_section->address() - os->address();
2108
            }
2109
        }
2110
 
2111
      if (os == NULL)
2112
        {
2113
          // This local symbol belongs to a section we are discarding.
2114
          // In some cases when applying relocations later, we will
2115
          // attempt to match it to the corresponding kept section,
2116
          // so we leave the input value unchanged here.
2117
          return This::CFLV_DISCARDED;
2118
        }
2119
      else if (secoffset == invalid_address)
2120
        {
2121
          uint64_t start;
2122
 
2123
          // This is a SHF_MERGE section or one which otherwise
2124
          // requires special handling.
2125
          if (shndx == this->discarded_eh_frame_shndx_)
2126
            {
2127
              // This local symbol belongs to a discarded .eh_frame
2128
              // section.  Just treat it like the case in which
2129
              // os == NULL above.
2130
              gold_assert(this->has_eh_frame_);
2131
              return This::CFLV_DISCARDED;
2132
            }
2133
          else if (!lv_in->is_section_symbol())
2134
            {
2135
              // This is not a section symbol.  We can determine
2136
              // the final value now.
2137
              lv_out->set_output_value(
2138
                  os->output_address(this, shndx, lv_in->input_value()));
2139
            }
2140
          else if (!os->find_starting_output_address(this, shndx, &start))
2141
            {
2142
              // This is a section symbol, but apparently not one in a
2143
              // merged section.  First check to see if this is a relaxed
2144
              // input section.  If so, use its address.  Otherwise just
2145
              // use the start of the output section.  This happens with
2146
              // relocatable links when the input object has section
2147
              // symbols for arbitrary non-merge sections.
2148
              const Output_section_data* posd =
2149
                os->find_relaxed_input_section(this, shndx);
2150
              if (posd != NULL)
2151
                {
2152
                  Address relocatable_link_adjustment =
2153
                    relocatable ? os->address() : 0;
2154
                  lv_out->set_output_value(posd->address()
2155
                                           - relocatable_link_adjustment);
2156
                }
2157
              else
2158
                lv_out->set_output_value(os->address());
2159
            }
2160
          else
2161
            {
2162
              // We have to consider the addend to determine the
2163
              // value to use in a relocation.  START is the start
2164
              // of this input section.  If we are doing a relocatable
2165
              // link, use offset from start output section instead of
2166
              // address.
2167
              Address adjusted_start =
2168
                relocatable ? start - os->address() : start;
2169
              Merged_symbol_value<size>* msv =
2170
                new Merged_symbol_value<size>(lv_in->input_value(),
2171
                                              adjusted_start);
2172
              lv_out->set_merged_symbol_value(msv);
2173
            }
2174
        }
2175
      else if (lv_in->is_tls_symbol())
2176
        lv_out->set_output_value(os->tls_offset()
2177
                                 + secoffset
2178
                                 + lv_in->input_value());
2179
      else
2180
        lv_out->set_output_value((relocatable ? 0 : os->address())
2181
                                 + secoffset
2182
                                 + lv_in->input_value());
2183
    }
2184
  return This::CFLV_OK;
2185
}
2186
 
2187
// Compute final local symbol value.  R_SYM is the index of a local
2188
// symbol in symbol table.  LV points to a symbol value, which is
2189
// expected to hold the input value and to be over-written by the
2190
// final value.  SYMTAB points to a symbol table.  Some targets may want
2191
// to know would-be-finalized local symbol values in relaxation.
2192
// Hence we provide this method.  Since this method updates *LV, a
2193
// callee should make a copy of the original local symbol value and
2194
// use the copy instead of modifying an object's local symbols before
2195
// everything is finalized.  The caller should also free up any allocated
2196
// memory in the return value in *LV.
2197
template<int size, bool big_endian>
2198
typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2199
Sized_relobj_file<size, big_endian>::compute_final_local_value(
2200
    unsigned int r_sym,
2201
    const Symbol_value<size>* lv_in,
2202
    Symbol_value<size>* lv_out,
2203
    const Symbol_table* symtab)
2204
{
2205
  // This is just a wrapper of compute_final_local_value_internal.
2206
  const bool relocatable = parameters->options().relocatable();
2207
  const Output_sections& out_sections(this->output_sections());
2208
  const std::vector<Address>& out_offsets(this->section_offsets());
2209
  return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2210
                                                  relocatable, out_sections,
2211
                                                  out_offsets, symtab);
2212
}
2213
 
2214
// Finalize the local symbols.  Here we set the final value in
2215
// THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2216
// This function is always called from a singleton thread.  The actual
2217
// output of the local symbols will occur in a separate task.
2218
 
2219
template<int size, bool big_endian>
2220
unsigned int
2221
Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2222
    unsigned int index,
2223
    off_t off,
2224
    Symbol_table* symtab)
2225
{
2226
  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2227
 
2228
  const unsigned int loccount = this->local_symbol_count_;
2229
  this->local_symbol_offset_ = off;
2230
 
2231
  const bool relocatable = parameters->options().relocatable();
2232
  const Output_sections& out_sections(this->output_sections());
2233
  const std::vector<Address>& out_offsets(this->section_offsets());
2234
 
2235
  for (unsigned int i = 1; i < loccount; ++i)
2236
    {
2237
      Symbol_value<size>* lv = &this->local_values_[i];
2238
 
2239
      Compute_final_local_value_status cflv_status =
2240
        this->compute_final_local_value_internal(i, lv, lv, relocatable,
2241
                                                 out_sections, out_offsets,
2242
                                                 symtab);
2243
      switch (cflv_status)
2244
        {
2245
        case CFLV_OK:
2246
          if (!lv->is_output_symtab_index_set())
2247
            {
2248
              lv->set_output_symtab_index(index);
2249
              ++index;
2250
            }
2251
          break;
2252
        case CFLV_DISCARDED:
2253
        case CFLV_ERROR:
2254
          // Do nothing.
2255
          break;
2256
        default:
2257
          gold_unreachable();
2258
        }
2259
    }
2260
  return index;
2261
}
2262
 
2263
// Set the output dynamic symbol table indexes for the local variables.
2264
 
2265
template<int size, bool big_endian>
2266
unsigned int
2267
Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2268
    unsigned int index)
2269
{
2270
  const unsigned int loccount = this->local_symbol_count_;
2271
  for (unsigned int i = 1; i < loccount; ++i)
2272
    {
2273
      Symbol_value<size>& lv(this->local_values_[i]);
2274
      if (lv.needs_output_dynsym_entry())
2275
        {
2276
          lv.set_output_dynsym_index(index);
2277
          ++index;
2278
        }
2279
    }
2280
  return index;
2281
}
2282
 
2283
// Set the offset where local dynamic symbol information will be stored.
2284
// Returns the count of local symbols contributed to the symbol table by
2285
// this object.
2286
 
2287
template<int size, bool big_endian>
2288
unsigned int
2289
Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2290
{
2291
  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2292
  this->local_dynsym_offset_ = off;
2293
  return this->output_local_dynsym_count_;
2294
}
2295
 
2296
// If Symbols_data is not NULL get the section flags from here otherwise
2297
// get it from the file.
2298
 
2299
template<int size, bool big_endian>
2300
uint64_t
2301
Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2302
{
2303
  Symbols_data* sd = this->get_symbols_data();
2304
  if (sd != NULL)
2305
    {
2306
      const unsigned char* pshdrs = sd->section_headers_data
2307
                                    + This::shdr_size * shndx;
2308
      typename This::Shdr shdr(pshdrs);
2309
      return shdr.get_sh_flags();
2310
    }
2311
  // If sd is NULL, read the section header from the file.
2312
  return this->elf_file_.section_flags(shndx);
2313
}
2314
 
2315
// Get the section's ent size from Symbols_data.  Called by get_section_contents
2316
// in icf.cc
2317
 
2318
template<int size, bool big_endian>
2319
uint64_t
2320
Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2321
{
2322
  Symbols_data* sd = this->get_symbols_data();
2323
  gold_assert(sd != NULL);
2324
 
2325
  const unsigned char* pshdrs = sd->section_headers_data
2326
                                + This::shdr_size * shndx;
2327
  typename This::Shdr shdr(pshdrs);
2328
  return shdr.get_sh_entsize();
2329
}
2330
 
2331
// Write out the local symbols.
2332
 
2333
template<int size, bool big_endian>
2334
void
2335
Sized_relobj_file<size, big_endian>::write_local_symbols(
2336
    Output_file* of,
2337
    const Stringpool* sympool,
2338
    const Stringpool* dynpool,
2339
    Output_symtab_xindex* symtab_xindex,
2340
    Output_symtab_xindex* dynsym_xindex,
2341
    off_t symtab_off)
2342
{
2343
  const bool strip_all = parameters->options().strip_all();
2344
  if (strip_all)
2345
    {
2346
      if (this->output_local_dynsym_count_ == 0)
2347
        return;
2348
      this->output_local_symbol_count_ = 0;
2349
    }
2350
 
2351
  gold_assert(this->symtab_shndx_ != -1U);
2352
  if (this->symtab_shndx_ == 0)
2353
    {
2354
      // This object has no symbols.  Weird but legal.
2355
      return;
2356
    }
2357
 
2358
  // Read the symbol table section header.
2359
  const unsigned int symtab_shndx = this->symtab_shndx_;
2360
  typename This::Shdr symtabshdr(this,
2361
                                 this->elf_file_.section_header(symtab_shndx));
2362
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2363
  const unsigned int loccount = this->local_symbol_count_;
2364
  gold_assert(loccount == symtabshdr.get_sh_info());
2365
 
2366
  // Read the local symbols.
2367
  const int sym_size = This::sym_size;
2368
  off_t locsize = loccount * sym_size;
2369
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2370
                                              locsize, true, false);
2371
 
2372
  // Read the symbol names.
2373
  const unsigned int strtab_shndx =
2374
    this->adjust_shndx(symtabshdr.get_sh_link());
2375
  section_size_type strtab_size;
2376
  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2377
                                                        &strtab_size,
2378
                                                        false);
2379
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
2380
 
2381
  // Get views into the output file for the portions of the symbol table
2382
  // and the dynamic symbol table that we will be writing.
2383
  off_t output_size = this->output_local_symbol_count_ * sym_size;
2384
  unsigned char* oview = NULL;
2385
  if (output_size > 0)
2386
    oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2387
                                output_size);
2388
 
2389
  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2390
  unsigned char* dyn_oview = NULL;
2391
  if (dyn_output_size > 0)
2392
    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2393
                                    dyn_output_size);
2394
 
2395
  const Output_sections out_sections(this->output_sections());
2396
 
2397
  gold_assert(this->local_values_.size() == loccount);
2398
 
2399
  unsigned char* ov = oview;
2400
  unsigned char* dyn_ov = dyn_oview;
2401
  psyms += sym_size;
2402
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2403
    {
2404
      elfcpp::Sym<size, big_endian> isym(psyms);
2405
 
2406
      Symbol_value<size>& lv(this->local_values_[i]);
2407
 
2408
      bool is_ordinary;
2409
      unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2410
                                                     &is_ordinary);
2411
      if (is_ordinary)
2412
        {
2413
          gold_assert(st_shndx < out_sections.size());
2414
          if (out_sections[st_shndx] == NULL)
2415
            continue;
2416
          st_shndx = out_sections[st_shndx]->out_shndx();
2417
          if (st_shndx >= elfcpp::SHN_LORESERVE)
2418
            {
2419
              if (lv.has_output_symtab_entry())
2420
                symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2421
              if (lv.has_output_dynsym_entry())
2422
                dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2423
              st_shndx = elfcpp::SHN_XINDEX;
2424
            }
2425
        }
2426
 
2427
      // Write the symbol to the output symbol table.
2428
      if (lv.has_output_symtab_entry())
2429
        {
2430
          elfcpp::Sym_write<size, big_endian> osym(ov);
2431
 
2432
          gold_assert(isym.get_st_name() < strtab_size);
2433
          const char* name = pnames + isym.get_st_name();
2434
          osym.put_st_name(sympool->get_offset(name));
2435
          osym.put_st_value(this->local_values_[i].value(this, 0));
2436
          osym.put_st_size(isym.get_st_size());
2437
          osym.put_st_info(isym.get_st_info());
2438
          osym.put_st_other(isym.get_st_other());
2439
          osym.put_st_shndx(st_shndx);
2440
 
2441
          ov += sym_size;
2442
        }
2443
 
2444
      // Write the symbol to the output dynamic symbol table.
2445
      if (lv.has_output_dynsym_entry())
2446
        {
2447
          gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2448
          elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2449
 
2450
          gold_assert(isym.get_st_name() < strtab_size);
2451
          const char* name = pnames + isym.get_st_name();
2452
          osym.put_st_name(dynpool->get_offset(name));
2453
          osym.put_st_value(this->local_values_[i].value(this, 0));
2454
          osym.put_st_size(isym.get_st_size());
2455
          osym.put_st_info(isym.get_st_info());
2456
          osym.put_st_other(isym.get_st_other());
2457
          osym.put_st_shndx(st_shndx);
2458
 
2459
          dyn_ov += sym_size;
2460
        }
2461
    }
2462
 
2463
 
2464
  if (output_size > 0)
2465
    {
2466
      gold_assert(ov - oview == output_size);
2467
      of->write_output_view(symtab_off + this->local_symbol_offset_,
2468
                            output_size, oview);
2469
    }
2470
 
2471
  if (dyn_output_size > 0)
2472
    {
2473
      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2474
      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2475
                            dyn_oview);
2476
    }
2477
}
2478
 
2479
// Set *INFO to symbolic information about the offset OFFSET in the
2480
// section SHNDX.  Return true if we found something, false if we
2481
// found nothing.
2482
 
2483
template<int size, bool big_endian>
2484
bool
2485
Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2486
    unsigned int shndx,
2487
    off_t offset,
2488
    Symbol_location_info* info)
2489
{
2490
  if (this->symtab_shndx_ == 0)
2491
    return false;
2492
 
2493
  section_size_type symbols_size;
2494
  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2495
                                                        &symbols_size,
2496
                                                        false);
2497
 
2498
  unsigned int symbol_names_shndx =
2499
    this->adjust_shndx(this->section_link(this->symtab_shndx_));
2500
  section_size_type names_size;
2501
  const unsigned char* symbol_names_u =
2502
    this->section_contents(symbol_names_shndx, &names_size, false);
2503
  const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2504
 
2505
  const int sym_size = This::sym_size;
2506
  const size_t count = symbols_size / sym_size;
2507
 
2508
  const unsigned char* p = symbols;
2509
  for (size_t i = 0; i < count; ++i, p += sym_size)
2510
    {
2511
      elfcpp::Sym<size, big_endian> sym(p);
2512
 
2513
      if (sym.get_st_type() == elfcpp::STT_FILE)
2514
        {
2515
          if (sym.get_st_name() >= names_size)
2516
            info->source_file = "(invalid)";
2517
          else
2518
            info->source_file = symbol_names + sym.get_st_name();
2519
          continue;
2520
        }
2521
 
2522
      bool is_ordinary;
2523
      unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2524
                                                     &is_ordinary);
2525
      if (is_ordinary
2526
          && st_shndx == shndx
2527
          && static_cast<off_t>(sym.get_st_value()) <= offset
2528
          && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2529
              > offset))
2530
        {
2531
          if (sym.get_st_name() > names_size)
2532
            info->enclosing_symbol_name = "(invalid)";
2533
          else
2534
            {
2535
              info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2536
              if (parameters->options().do_demangle())
2537
                {
2538
                  char* demangled_name = cplus_demangle(
2539
                      info->enclosing_symbol_name.c_str(),
2540
                      DMGL_ANSI | DMGL_PARAMS);
2541
                  if (demangled_name != NULL)
2542
                    {
2543
                      info->enclosing_symbol_name.assign(demangled_name);
2544
                      free(demangled_name);
2545
                    }
2546
                }
2547
            }
2548
          return true;
2549
        }
2550
    }
2551
 
2552
  return false;
2553
}
2554
 
2555
// Look for a kept section corresponding to the given discarded section,
2556
// and return its output address.  This is used only for relocations in
2557
// debugging sections.  If we can't find the kept section, return 0.
2558
 
2559
template<int size, bool big_endian>
2560
typename Sized_relobj_file<size, big_endian>::Address
2561
Sized_relobj_file<size, big_endian>::map_to_kept_section(
2562
    unsigned int shndx,
2563
    bool* found) const
2564
{
2565
  Relobj* kept_object;
2566
  unsigned int kept_shndx;
2567
  if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2568
    {
2569
      Sized_relobj_file<size, big_endian>* kept_relobj =
2570
        static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2571
      Output_section* os = kept_relobj->output_section(kept_shndx);
2572
      Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2573
      if (os != NULL && offset != invalid_address)
2574
        {
2575
          *found = true;
2576
          return os->address() + offset;
2577
        }
2578
    }
2579
  *found = false;
2580
  return 0;
2581
}
2582
 
2583
// Get symbol counts.
2584
 
2585
template<int size, bool big_endian>
2586
void
2587
Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2588
    const Symbol_table*,
2589
    size_t* defined,
2590
    size_t* used) const
2591
{
2592
  *defined = this->defined_count_;
2593
  size_t count = 0;
2594
  for (typename Symbols::const_iterator p = this->symbols_.begin();
2595
       p != this->symbols_.end();
2596
       ++p)
2597
    if (*p != NULL
2598
        && (*p)->source() == Symbol::FROM_OBJECT
2599
        && (*p)->object() == this
2600
        && (*p)->is_defined())
2601
      ++count;
2602
  *used = count;
2603
}
2604
 
2605 166 khays
// Return a view of the decompressed contents of a section.  Set *PLEN
2606
// to the size.  Set *IS_NEW to true if the contents need to be freed
2607
// by the caller.
2608
 
2609
template<int size, bool big_endian>
2610
const unsigned char*
2611
Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2612
    unsigned int shndx,
2613
    section_size_type* plen,
2614
    bool* is_new)
2615
{
2616
  section_size_type buffer_size;
2617
  const unsigned char* buffer = this->section_contents(shndx, &buffer_size,
2618
                                                       false);
2619
 
2620
  if (this->compressed_sections_ == NULL)
2621
    {
2622
      *plen = buffer_size;
2623
      *is_new = false;
2624
      return buffer;
2625
    }
2626
 
2627
  Compressed_section_map::const_iterator p =
2628
      this->compressed_sections_->find(shndx);
2629
  if (p == this->compressed_sections_->end())
2630
    {
2631
      *plen = buffer_size;
2632
      *is_new = false;
2633
      return buffer;
2634
    }
2635
 
2636
  section_size_type uncompressed_size = p->second.size;
2637
  if (p->second.contents != NULL)
2638
    {
2639
      *plen = uncompressed_size;
2640
      *is_new = false;
2641
      return p->second.contents;
2642
    }
2643
 
2644
  unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2645
  if (!decompress_input_section(buffer,
2646
                                buffer_size,
2647
                                uncompressed_data,
2648
                                uncompressed_size))
2649
    this->error(_("could not decompress section %s"),
2650
                this->do_section_name(shndx).c_str());
2651
 
2652
  // We could cache the results in p->second.contents and store
2653
  // false in *IS_NEW, but build_compressed_section_map() would
2654
  // have done so if it had expected it to be profitable.  If
2655
  // we reach this point, we expect to need the contents only
2656
  // once in this pass.
2657
  *plen = uncompressed_size;
2658
  *is_new = true;
2659
  return uncompressed_data;
2660
}
2661
 
2662
// Discard any buffers of uncompressed sections.  This is done
2663
// at the end of the Add_symbols task.
2664
 
2665
template<int size, bool big_endian>
2666
void
2667
Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2668
{
2669
  if (this->compressed_sections_ == NULL)
2670
    return;
2671
 
2672
  for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2673
       p != this->compressed_sections_->end();
2674
       ++p)
2675
    {
2676
      if (p->second.contents != NULL)
2677
        {
2678
          delete[] p->second.contents;
2679
          p->second.contents = NULL;
2680
        }
2681
    }
2682
}
2683
 
2684 27 khays
// Input_objects methods.
2685
 
2686
// Add a regular relocatable object to the list.  Return false if this
2687
// object should be ignored.
2688
 
2689
bool
2690
Input_objects::add_object(Object* obj)
2691
{
2692
  // Print the filename if the -t/--trace option is selected.
2693
  if (parameters->options().trace())
2694
    gold_info("%s", obj->name().c_str());
2695
 
2696
  if (!obj->is_dynamic())
2697
    this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2698
  else
2699
    {
2700
      // See if this is a duplicate SONAME.
2701
      Dynobj* dynobj = static_cast<Dynobj*>(obj);
2702
      const char* soname = dynobj->soname();
2703
 
2704
      std::pair<Unordered_set<std::string>::iterator, bool> ins =
2705
        this->sonames_.insert(soname);
2706
      if (!ins.second)
2707
        {
2708
          // We have already seen a dynamic object with this soname.
2709
          return false;
2710
        }
2711
 
2712
      this->dynobj_list_.push_back(dynobj);
2713
    }
2714
 
2715
  // Add this object to the cross-referencer if requested.
2716
  if (parameters->options().user_set_print_symbol_counts()
2717
      || parameters->options().cref())
2718
    {
2719
      if (this->cref_ == NULL)
2720
        this->cref_ = new Cref();
2721
      this->cref_->add_object(obj);
2722
    }
2723
 
2724
  return true;
2725
}
2726
 
2727
// For each dynamic object, record whether we've seen all of its
2728
// explicit dependencies.
2729
 
2730
void
2731
Input_objects::check_dynamic_dependencies() const
2732
{
2733
  bool issued_copy_dt_needed_error = false;
2734
  for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2735
       p != this->dynobj_list_.end();
2736
       ++p)
2737
    {
2738
      const Dynobj::Needed& needed((*p)->needed());
2739
      bool found_all = true;
2740
      Dynobj::Needed::const_iterator pneeded;
2741
      for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2742
        {
2743
          if (this->sonames_.find(*pneeded) == this->sonames_.end())
2744
            {
2745
              found_all = false;
2746
              break;
2747
            }
2748
        }
2749
      (*p)->set_has_unknown_needed_entries(!found_all);
2750
 
2751
      // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2752
      // that gold does not support.  However, they cause no trouble
2753
      // unless there is a DT_NEEDED entry that we don't know about;
2754
      // warn only in that case.
2755
      if (!found_all
2756
          && !issued_copy_dt_needed_error
2757
          && (parameters->options().copy_dt_needed_entries()
2758
              || parameters->options().add_needed()))
2759
        {
2760
          const char* optname;
2761
          if (parameters->options().copy_dt_needed_entries())
2762
            optname = "--copy-dt-needed-entries";
2763
          else
2764
            optname = "--add-needed";
2765
          gold_error(_("%s is not supported but is required for %s in %s"),
2766
                     optname, (*pneeded).c_str(), (*p)->name().c_str());
2767
          issued_copy_dt_needed_error = true;
2768
        }
2769
    }
2770
}
2771
 
2772
// Start processing an archive.
2773
 
2774
void
2775
Input_objects::archive_start(Archive* archive)
2776
{
2777
  if (parameters->options().user_set_print_symbol_counts()
2778
      || parameters->options().cref())
2779
    {
2780
      if (this->cref_ == NULL)
2781
        this->cref_ = new Cref();
2782
      this->cref_->add_archive_start(archive);
2783
    }
2784
}
2785
 
2786
// Stop processing an archive.
2787
 
2788
void
2789
Input_objects::archive_stop(Archive* archive)
2790
{
2791
  if (parameters->options().user_set_print_symbol_counts()
2792
      || parameters->options().cref())
2793
    this->cref_->add_archive_stop(archive);
2794
}
2795
 
2796
// Print symbol counts
2797
 
2798
void
2799
Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2800
{
2801
  if (parameters->options().user_set_print_symbol_counts()
2802
      && this->cref_ != NULL)
2803
    this->cref_->print_symbol_counts(symtab);
2804
}
2805
 
2806
// Print a cross reference table.
2807
 
2808
void
2809
Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2810
{
2811
  if (parameters->options().cref() && this->cref_ != NULL)
2812
    this->cref_->print_cref(symtab, f);
2813
}
2814
 
2815
// Relocate_info methods.
2816
 
2817
// Return a string describing the location of a relocation when file
2818
// and lineno information is not available.  This is only used in
2819
// error messages.
2820
 
2821
template<int size, bool big_endian>
2822
std::string
2823
Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2824
{
2825
  Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2826
  std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2827
  if (!ret.empty())
2828
    return ret;
2829
 
2830
  ret = this->object->name();
2831
 
2832
  Symbol_location_info info;
2833
  if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2834
    {
2835
      if (!info.source_file.empty())
2836
        {
2837
          ret += ":";
2838
          ret += info.source_file;
2839
        }
2840
      size_t len = info.enclosing_symbol_name.length() + 100;
2841
      char* buf = new char[len];
2842
      snprintf(buf, len, _(":function %s"),
2843
               info.enclosing_symbol_name.c_str());
2844
      ret += buf;
2845
      delete[] buf;
2846
      return ret;
2847
    }
2848
 
2849
  ret += "(";
2850
  ret += this->object->section_name(this->data_shndx);
2851
  char buf[100];
2852
  snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2853
  ret += buf;
2854
  return ret;
2855
}
2856
 
2857
} // End namespace gold.
2858
 
2859
namespace
2860
{
2861
 
2862
using namespace gold;
2863
 
2864
// Read an ELF file with the header and return the appropriate
2865
// instance of Object.
2866
 
2867
template<int size, bool big_endian>
2868
Object*
2869
make_elf_sized_object(const std::string& name, Input_file* input_file,
2870
                      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2871
                      bool* punconfigured)
2872
{
2873
  Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2874
                                 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2875
                                 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2876
  if (target == NULL)
2877
    gold_fatal(_("%s: unsupported ELF machine number %d"),
2878
               name.c_str(), ehdr.get_e_machine());
2879
 
2880
  if (!parameters->target_valid())
2881
    set_parameters_target(target);
2882
  else if (target != &parameters->target())
2883
    {
2884
      if (punconfigured != NULL)
2885
        *punconfigured = true;
2886
      else
2887
        gold_error(_("%s: incompatible target"), name.c_str());
2888
      return NULL;
2889
    }
2890
 
2891
  return target->make_elf_object<size, big_endian>(name, input_file, offset,
2892
                                                   ehdr);
2893
}
2894
 
2895
} // End anonymous namespace.
2896
 
2897
namespace gold
2898
{
2899
 
2900
// Return whether INPUT_FILE is an ELF object.
2901
 
2902
bool
2903
is_elf_object(Input_file* input_file, off_t offset,
2904
              const unsigned char** start, int* read_size)
2905
{
2906
  off_t filesize = input_file->file().filesize();
2907
  int want = elfcpp::Elf_recognizer::max_header_size;
2908
  if (filesize - offset < want)
2909
    want = filesize - offset;
2910
 
2911
  const unsigned char* p = input_file->file().get_view(offset, 0, want,
2912
                                                       true, false);
2913
  *start = p;
2914
  *read_size = want;
2915
 
2916
  return elfcpp::Elf_recognizer::is_elf_file(p, want);
2917
}
2918
 
2919
// Read an ELF file and return the appropriate instance of Object.
2920
 
2921
Object*
2922
make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2923
                const unsigned char* p, section_offset_type bytes,
2924
                bool* punconfigured)
2925
{
2926
  if (punconfigured != NULL)
2927
    *punconfigured = false;
2928
 
2929
  std::string error;
2930
  bool big_endian = false;
2931
  int size = 0;
2932
  if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2933
                                               &big_endian, &error))
2934
    {
2935
      gold_error(_("%s: %s"), name.c_str(), error.c_str());
2936
      return NULL;
2937
    }
2938
 
2939
  if (size == 32)
2940
    {
2941
      if (big_endian)
2942
        {
2943
#ifdef HAVE_TARGET_32_BIG
2944
          elfcpp::Ehdr<32, true> ehdr(p);
2945
          return make_elf_sized_object<32, true>(name, input_file,
2946
                                                 offset, ehdr, punconfigured);
2947
#else
2948
          if (punconfigured != NULL)
2949
            *punconfigured = true;
2950
          else
2951
            gold_error(_("%s: not configured to support "
2952
                         "32-bit big-endian object"),
2953
                       name.c_str());
2954
          return NULL;
2955
#endif
2956
        }
2957
      else
2958
        {
2959
#ifdef HAVE_TARGET_32_LITTLE
2960
          elfcpp::Ehdr<32, false> ehdr(p);
2961
          return make_elf_sized_object<32, false>(name, input_file,
2962
                                                  offset, ehdr, punconfigured);
2963
#else
2964
          if (punconfigured != NULL)
2965
            *punconfigured = true;
2966
          else
2967
            gold_error(_("%s: not configured to support "
2968
                         "32-bit little-endian object"),
2969
                       name.c_str());
2970
          return NULL;
2971
#endif
2972
        }
2973
    }
2974
  else if (size == 64)
2975
    {
2976
      if (big_endian)
2977
        {
2978
#ifdef HAVE_TARGET_64_BIG
2979
          elfcpp::Ehdr<64, true> ehdr(p);
2980
          return make_elf_sized_object<64, true>(name, input_file,
2981
                                                 offset, ehdr, punconfigured);
2982
#else
2983
          if (punconfigured != NULL)
2984
            *punconfigured = true;
2985
          else
2986
            gold_error(_("%s: not configured to support "
2987
                         "64-bit big-endian object"),
2988
                       name.c_str());
2989
          return NULL;
2990
#endif
2991
        }
2992
      else
2993
        {
2994
#ifdef HAVE_TARGET_64_LITTLE
2995
          elfcpp::Ehdr<64, false> ehdr(p);
2996
          return make_elf_sized_object<64, false>(name, input_file,
2997
                                                  offset, ehdr, punconfigured);
2998
#else
2999
          if (punconfigured != NULL)
3000
            *punconfigured = true;
3001
          else
3002
            gold_error(_("%s: not configured to support "
3003
                         "64-bit little-endian object"),
3004
                       name.c_str());
3005
          return NULL;
3006
#endif
3007
        }
3008
    }
3009
  else
3010
    gold_unreachable();
3011
}
3012
 
3013
// Instantiate the templates we need.
3014
 
3015
#ifdef HAVE_TARGET_32_LITTLE
3016
template
3017
void
3018
Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3019
                                     Read_symbols_data*);
3020
#endif
3021
 
3022
#ifdef HAVE_TARGET_32_BIG
3023
template
3024
void
3025
Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3026
                                    Read_symbols_data*);
3027
#endif
3028
 
3029
#ifdef HAVE_TARGET_64_LITTLE
3030
template
3031
void
3032
Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3033
                                     Read_symbols_data*);
3034
#endif
3035
 
3036
#ifdef HAVE_TARGET_64_BIG
3037
template
3038
void
3039
Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3040
                                    Read_symbols_data*);
3041
#endif
3042
 
3043
#ifdef HAVE_TARGET_32_LITTLE
3044
template
3045
class Sized_relobj_file<32, false>;
3046
#endif
3047
 
3048
#ifdef HAVE_TARGET_32_BIG
3049
template
3050
class Sized_relobj_file<32, true>;
3051
#endif
3052
 
3053
#ifdef HAVE_TARGET_64_LITTLE
3054
template
3055
class Sized_relobj_file<64, false>;
3056
#endif
3057
 
3058
#ifdef HAVE_TARGET_64_BIG
3059
template
3060
class Sized_relobj_file<64, true>;
3061
#endif
3062
 
3063
#ifdef HAVE_TARGET_32_LITTLE
3064
template
3065
struct Relocate_info<32, false>;
3066
#endif
3067
 
3068
#ifdef HAVE_TARGET_32_BIG
3069
template
3070
struct Relocate_info<32, true>;
3071
#endif
3072
 
3073
#ifdef HAVE_TARGET_64_LITTLE
3074
template
3075
struct Relocate_info<64, false>;
3076
#endif
3077
 
3078
#ifdef HAVE_TARGET_64_BIG
3079
template
3080
struct Relocate_info<64, true>;
3081
#endif
3082
 
3083
#ifdef HAVE_TARGET_32_LITTLE
3084
template
3085
void
3086
Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3087
 
3088
template
3089
void
3090
Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3091
                                      const unsigned char*);
3092
#endif
3093
 
3094
#ifdef HAVE_TARGET_32_BIG
3095
template
3096
void
3097
Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3098
 
3099
template
3100
void
3101
Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3102
                                     const unsigned char*);
3103
#endif
3104
 
3105
#ifdef HAVE_TARGET_64_LITTLE
3106
template
3107
void
3108
Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3109
 
3110
template
3111
void
3112
Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3113
                                      const unsigned char*);
3114
#endif
3115
 
3116
#ifdef HAVE_TARGET_64_BIG
3117
template
3118
void
3119
Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3120
 
3121
template
3122
void
3123
Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3124
                                     const unsigned char*);
3125
#endif
3126
 
3127
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.