OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [output.cc] - Blame information for rev 161

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// output.cc -- manage the output file for gold
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstdlib>
26
#include <cstring>
27
#include <cerrno>
28
#include <fcntl.h>
29
#include <unistd.h>
30
#include <sys/stat.h>
31
#include <algorithm>
32
 
33
#ifdef HAVE_SYS_MMAN_H
34
#include <sys/mman.h>
35
#endif
36
 
37
#include "libiberty.h"
38
 
39 159 khays
#include "dwarf.h"
40 27 khays
#include "parameters.h"
41
#include "object.h"
42
#include "symtab.h"
43
#include "reloc.h"
44
#include "merge.h"
45
#include "descriptors.h"
46 159 khays
#include "layout.h"
47 27 khays
#include "output.h"
48
 
49
// For systems without mmap support.
50
#ifndef HAVE_MMAP
51
# define mmap gold_mmap
52
# define munmap gold_munmap
53
# define mremap gold_mremap
54
# ifndef MAP_FAILED
55
#  define MAP_FAILED (reinterpret_cast<void*>(-1))
56
# endif
57
# ifndef PROT_READ
58
#  define PROT_READ 0
59
# endif
60
# ifndef PROT_WRITE
61
#  define PROT_WRITE 0
62
# endif
63
# ifndef MAP_PRIVATE
64
#  define MAP_PRIVATE 0
65
# endif
66
# ifndef MAP_ANONYMOUS
67
#  define MAP_ANONYMOUS 0
68
# endif
69
# ifndef MAP_SHARED
70
#  define MAP_SHARED 0
71
# endif
72
 
73
# ifndef ENOSYS
74
#  define ENOSYS EINVAL
75
# endif
76
 
77
static void *
78
gold_mmap(void *, size_t, int, int, int, off_t)
79
{
80
  errno = ENOSYS;
81
  return MAP_FAILED;
82
}
83
 
84
static int
85
gold_munmap(void *, size_t)
86
{
87
  errno = ENOSYS;
88
  return -1;
89
}
90
 
91
static void *
92
gold_mremap(void *, size_t, size_t, int)
93
{
94
  errno = ENOSYS;
95
  return MAP_FAILED;
96
}
97
 
98
#endif
99
 
100
#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101
# define mremap gold_mremap
102
extern "C" void *gold_mremap(void *, size_t, size_t, int);
103
#endif
104
 
105
// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106
#ifndef MAP_ANONYMOUS
107
# define MAP_ANONYMOUS  MAP_ANON
108
#endif
109
 
110
#ifndef MREMAP_MAYMOVE
111
# define MREMAP_MAYMOVE 1
112
#endif
113
 
114
#ifndef HAVE_POSIX_FALLOCATE
115
// A dummy, non general, version of posix_fallocate.  Here we just set
116
// the file size and hope that there is enough disk space.  FIXME: We
117
// could allocate disk space by walking block by block and writing a
118
// zero byte into each block.
119
static int
120
posix_fallocate(int o, off_t offset, off_t len)
121
{
122
  return ftruncate(o, offset + len);
123
}
124
#endif // !defined(HAVE_POSIX_FALLOCATE)
125
 
126
// Mingw does not have S_ISLNK.
127
#ifndef S_ISLNK
128
# define S_ISLNK(mode) 0
129
#endif
130
 
131
namespace gold
132
{
133
 
134
// Output_data variables.
135
 
136
bool Output_data::allocated_sizes_are_fixed;
137
 
138
// Output_data methods.
139
 
140
Output_data::~Output_data()
141
{
142
}
143
 
144
// Return the default alignment for the target size.
145
 
146
uint64_t
147
Output_data::default_alignment()
148
{
149
  return Output_data::default_alignment_for_size(
150
      parameters->target().get_size());
151
}
152
 
153
// Return the default alignment for a size--32 or 64.
154
 
155
uint64_t
156
Output_data::default_alignment_for_size(int size)
157
{
158
  if (size == 32)
159
    return 4;
160
  else if (size == 64)
161
    return 8;
162
  else
163
    gold_unreachable();
164
}
165
 
166
// Output_section_header methods.  This currently assumes that the
167
// segment and section lists are complete at construction time.
168
 
169
Output_section_headers::Output_section_headers(
170
    const Layout* layout,
171
    const Layout::Segment_list* segment_list,
172
    const Layout::Section_list* section_list,
173
    const Layout::Section_list* unattached_section_list,
174
    const Stringpool* secnamepool,
175
    const Output_section* shstrtab_section)
176
  : layout_(layout),
177
    segment_list_(segment_list),
178
    section_list_(section_list),
179
    unattached_section_list_(unattached_section_list),
180
    secnamepool_(secnamepool),
181
    shstrtab_section_(shstrtab_section)
182
{
183
}
184
 
185
// Compute the current data size.
186
 
187
off_t
188
Output_section_headers::do_size() const
189
{
190
  // Count all the sections.  Start with 1 for the null section.
191
  off_t count = 1;
192
  if (!parameters->options().relocatable())
193
    {
194
      for (Layout::Segment_list::const_iterator p =
195
             this->segment_list_->begin();
196
           p != this->segment_list_->end();
197
           ++p)
198
        if ((*p)->type() == elfcpp::PT_LOAD)
199
          count += (*p)->output_section_count();
200
    }
201
  else
202
    {
203
      for (Layout::Section_list::const_iterator p =
204
             this->section_list_->begin();
205
           p != this->section_list_->end();
206
           ++p)
207
        if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208
          ++count;
209
    }
210
  count += this->unattached_section_list_->size();
211
 
212
  const int size = parameters->target().get_size();
213
  int shdr_size;
214
  if (size == 32)
215
    shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216
  else if (size == 64)
217
    shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218
  else
219
    gold_unreachable();
220
 
221
  return count * shdr_size;
222
}
223
 
224
// Write out the section headers.
225
 
226
void
227
Output_section_headers::do_write(Output_file* of)
228
{
229
  switch (parameters->size_and_endianness())
230
    {
231
#ifdef HAVE_TARGET_32_LITTLE
232
    case Parameters::TARGET_32_LITTLE:
233
      this->do_sized_write<32, false>(of);
234
      break;
235
#endif
236
#ifdef HAVE_TARGET_32_BIG
237
    case Parameters::TARGET_32_BIG:
238
      this->do_sized_write<32, true>(of);
239
      break;
240
#endif
241
#ifdef HAVE_TARGET_64_LITTLE
242
    case Parameters::TARGET_64_LITTLE:
243
      this->do_sized_write<64, false>(of);
244
      break;
245
#endif
246
#ifdef HAVE_TARGET_64_BIG
247
    case Parameters::TARGET_64_BIG:
248
      this->do_sized_write<64, true>(of);
249
      break;
250
#endif
251
    default:
252
      gold_unreachable();
253
    }
254
}
255
 
256
template<int size, bool big_endian>
257
void
258
Output_section_headers::do_sized_write(Output_file* of)
259
{
260
  off_t all_shdrs_size = this->data_size();
261
  unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
 
263
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264
  unsigned char* v = view;
265
 
266
  {
267
    typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268
    oshdr.put_sh_name(0);
269
    oshdr.put_sh_type(elfcpp::SHT_NULL);
270
    oshdr.put_sh_flags(0);
271
    oshdr.put_sh_addr(0);
272
    oshdr.put_sh_offset(0);
273
 
274
    size_t section_count = (this->data_size()
275
                            / elfcpp::Elf_sizes<size>::shdr_size);
276
    if (section_count < elfcpp::SHN_LORESERVE)
277
      oshdr.put_sh_size(0);
278
    else
279
      oshdr.put_sh_size(section_count);
280
 
281
    unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282
    if (shstrndx < elfcpp::SHN_LORESERVE)
283
      oshdr.put_sh_link(0);
284
    else
285
      oshdr.put_sh_link(shstrndx);
286
 
287
    size_t segment_count = this->segment_list_->size();
288
    oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
 
290
    oshdr.put_sh_addralign(0);
291
    oshdr.put_sh_entsize(0);
292
  }
293
 
294
  v += shdr_size;
295
 
296
  unsigned int shndx = 1;
297
  if (!parameters->options().relocatable())
298
    {
299
      for (Layout::Segment_list::const_iterator p =
300
             this->segment_list_->begin();
301
           p != this->segment_list_->end();
302
           ++p)
303
        v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304
                                                          this->secnamepool_,
305
                                                          v,
306
                                                          &shndx);
307
    }
308
  else
309
    {
310
      for (Layout::Section_list::const_iterator p =
311
             this->section_list_->begin();
312
           p != this->section_list_->end();
313
           ++p)
314
        {
315
          // We do unallocated sections below, except that group
316
          // sections have to come first.
317
          if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318
              && (*p)->type() != elfcpp::SHT_GROUP)
319
            continue;
320
          gold_assert(shndx == (*p)->out_shndx());
321
          elfcpp::Shdr_write<size, big_endian> oshdr(v);
322
          (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323
          v += shdr_size;
324
          ++shndx;
325
        }
326
    }
327
 
328
  for (Layout::Section_list::const_iterator p =
329
         this->unattached_section_list_->begin();
330
       p != this->unattached_section_list_->end();
331
       ++p)
332
    {
333
      // For a relocatable link, we did unallocated group sections
334
      // above, since they have to come first.
335
      if ((*p)->type() == elfcpp::SHT_GROUP
336
          && parameters->options().relocatable())
337
        continue;
338
      gold_assert(shndx == (*p)->out_shndx());
339
      elfcpp::Shdr_write<size, big_endian> oshdr(v);
340
      (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
341
      v += shdr_size;
342
      ++shndx;
343
    }
344
 
345
  of->write_output_view(this->offset(), all_shdrs_size, view);
346
}
347
 
348
// Output_segment_header methods.
349
 
350
Output_segment_headers::Output_segment_headers(
351
    const Layout::Segment_list& segment_list)
352
  : segment_list_(segment_list)
353
{
354
  this->set_current_data_size_for_child(this->do_size());
355
}
356
 
357
void
358
Output_segment_headers::do_write(Output_file* of)
359
{
360
  switch (parameters->size_and_endianness())
361
    {
362
#ifdef HAVE_TARGET_32_LITTLE
363
    case Parameters::TARGET_32_LITTLE:
364
      this->do_sized_write<32, false>(of);
365
      break;
366
#endif
367
#ifdef HAVE_TARGET_32_BIG
368
    case Parameters::TARGET_32_BIG:
369
      this->do_sized_write<32, true>(of);
370
      break;
371
#endif
372
#ifdef HAVE_TARGET_64_LITTLE
373
    case Parameters::TARGET_64_LITTLE:
374
      this->do_sized_write<64, false>(of);
375
      break;
376
#endif
377
#ifdef HAVE_TARGET_64_BIG
378
    case Parameters::TARGET_64_BIG:
379
      this->do_sized_write<64, true>(of);
380
      break;
381
#endif
382
    default:
383
      gold_unreachable();
384
    }
385
}
386
 
387
template<int size, bool big_endian>
388
void
389
Output_segment_headers::do_sized_write(Output_file* of)
390
{
391
  const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392
  off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393
  gold_assert(all_phdrs_size == this->data_size());
394
  unsigned char* view = of->get_output_view(this->offset(),
395
                                            all_phdrs_size);
396
  unsigned char* v = view;
397
  for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398
       p != this->segment_list_.end();
399
       ++p)
400
    {
401
      elfcpp::Phdr_write<size, big_endian> ophdr(v);
402
      (*p)->write_header(&ophdr);
403
      v += phdr_size;
404
    }
405
 
406
  gold_assert(v - view == all_phdrs_size);
407
 
408
  of->write_output_view(this->offset(), all_phdrs_size, view);
409
}
410
 
411
off_t
412
Output_segment_headers::do_size() const
413
{
414
  const int size = parameters->target().get_size();
415
  int phdr_size;
416
  if (size == 32)
417
    phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418
  else if (size == 64)
419
    phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420
  else
421
    gold_unreachable();
422
 
423
  return this->segment_list_.size() * phdr_size;
424
}
425
 
426
// Output_file_header methods.
427
 
428
Output_file_header::Output_file_header(const Target* target,
429
                                       const Symbol_table* symtab,
430
                                       const Output_segment_headers* osh)
431
  : target_(target),
432
    symtab_(symtab),
433
    segment_header_(osh),
434
    section_header_(NULL),
435
    shstrtab_(NULL)
436
{
437
  this->set_data_size(this->do_size());
438
}
439
 
440
// Set the section table information for a file header.
441
 
442
void
443
Output_file_header::set_section_info(const Output_section_headers* shdrs,
444
                                     const Output_section* shstrtab)
445
{
446
  this->section_header_ = shdrs;
447
  this->shstrtab_ = shstrtab;
448
}
449
 
450
// Write out the file header.
451
 
452
void
453
Output_file_header::do_write(Output_file* of)
454
{
455
  gold_assert(this->offset() == 0);
456
 
457
  switch (parameters->size_and_endianness())
458
    {
459
#ifdef HAVE_TARGET_32_LITTLE
460
    case Parameters::TARGET_32_LITTLE:
461
      this->do_sized_write<32, false>(of);
462
      break;
463
#endif
464
#ifdef HAVE_TARGET_32_BIG
465
    case Parameters::TARGET_32_BIG:
466
      this->do_sized_write<32, true>(of);
467
      break;
468
#endif
469
#ifdef HAVE_TARGET_64_LITTLE
470
    case Parameters::TARGET_64_LITTLE:
471
      this->do_sized_write<64, false>(of);
472
      break;
473
#endif
474
#ifdef HAVE_TARGET_64_BIG
475
    case Parameters::TARGET_64_BIG:
476
      this->do_sized_write<64, true>(of);
477
      break;
478
#endif
479
    default:
480
      gold_unreachable();
481
    }
482
}
483
 
484
// Write out the file header with appropriate size and endianness.
485
 
486
template<int size, bool big_endian>
487
void
488
Output_file_header::do_sized_write(Output_file* of)
489
{
490
  gold_assert(this->offset() == 0);
491
 
492
  int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493
  unsigned char* view = of->get_output_view(0, ehdr_size);
494
  elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
 
496
  unsigned char e_ident[elfcpp::EI_NIDENT];
497
  memset(e_ident, 0, elfcpp::EI_NIDENT);
498
  e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499
  e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500
  e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501
  e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502
  if (size == 32)
503
    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504
  else if (size == 64)
505
    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506
  else
507
    gold_unreachable();
508
  e_ident[elfcpp::EI_DATA] = (big_endian
509
                              ? elfcpp::ELFDATA2MSB
510
                              : elfcpp::ELFDATA2LSB);
511
  e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512
  oehdr.put_e_ident(e_ident);
513
 
514
  elfcpp::ET e_type;
515
  if (parameters->options().relocatable())
516
    e_type = elfcpp::ET_REL;
517
  else if (parameters->options().output_is_position_independent())
518
    e_type = elfcpp::ET_DYN;
519
  else
520
    e_type = elfcpp::ET_EXEC;
521
  oehdr.put_e_type(e_type);
522
 
523
  oehdr.put_e_machine(this->target_->machine_code());
524
  oehdr.put_e_version(elfcpp::EV_CURRENT);
525
 
526
  oehdr.put_e_entry(this->entry<size>());
527
 
528
  if (this->segment_header_ == NULL)
529
    oehdr.put_e_phoff(0);
530
  else
531
    oehdr.put_e_phoff(this->segment_header_->offset());
532
 
533
  oehdr.put_e_shoff(this->section_header_->offset());
534
  oehdr.put_e_flags(this->target_->processor_specific_flags());
535
  oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
 
537
  if (this->segment_header_ == NULL)
538
    {
539
      oehdr.put_e_phentsize(0);
540
      oehdr.put_e_phnum(0);
541
    }
542
  else
543
    {
544
      oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545
      size_t phnum = (this->segment_header_->data_size()
546
                      / elfcpp::Elf_sizes<size>::phdr_size);
547
      if (phnum > elfcpp::PN_XNUM)
548
        phnum = elfcpp::PN_XNUM;
549
      oehdr.put_e_phnum(phnum);
550
    }
551
 
552
  oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553
  size_t section_count = (this->section_header_->data_size()
554
                          / elfcpp::Elf_sizes<size>::shdr_size);
555
 
556
  if (section_count < elfcpp::SHN_LORESERVE)
557
    oehdr.put_e_shnum(this->section_header_->data_size()
558
                      / elfcpp::Elf_sizes<size>::shdr_size);
559
  else
560
    oehdr.put_e_shnum(0);
561
 
562
  unsigned int shstrndx = this->shstrtab_->out_shndx();
563
  if (shstrndx < elfcpp::SHN_LORESERVE)
564
    oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565
  else
566
    oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
 
568
  // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569
  // the e_ident field.
570
  parameters->target().adjust_elf_header(view, ehdr_size);
571
 
572
  of->write_output_view(0, ehdr_size, view);
573
}
574
 
575
// Return the value to use for the entry address.
576
 
577
template<int size>
578
typename elfcpp::Elf_types<size>::Elf_Addr
579
Output_file_header::entry()
580
{
581
  const bool should_issue_warning = (parameters->options().entry() != NULL
582
                                     && !parameters->options().relocatable()
583
                                     && !parameters->options().shared());
584
  const char* entry = parameters->entry();
585
  Symbol* sym = this->symtab_->lookup(entry);
586
 
587
  typename Sized_symbol<size>::Value_type v;
588
  if (sym != NULL)
589
    {
590
      Sized_symbol<size>* ssym;
591
      ssym = this->symtab_->get_sized_symbol<size>(sym);
592
      if (!ssym->is_defined() && should_issue_warning)
593
        gold_warning("entry symbol '%s' exists but is not defined", entry);
594
      v = ssym->value();
595
    }
596
  else
597
    {
598
      // We couldn't find the entry symbol.  See if we can parse it as
599
      // a number.  This supports, e.g., -e 0x1000.
600
      char* endptr;
601
      v = strtoull(entry, &endptr, 0);
602
      if (*endptr != '\0')
603
        {
604
          if (should_issue_warning)
605
            gold_warning("cannot find entry symbol '%s'", entry);
606
          v = 0;
607
        }
608
    }
609
 
610
  return v;
611
}
612
 
613
// Compute the current data size.
614
 
615
off_t
616
Output_file_header::do_size() const
617
{
618
  const int size = parameters->target().get_size();
619
  if (size == 32)
620
    return elfcpp::Elf_sizes<32>::ehdr_size;
621
  else if (size == 64)
622
    return elfcpp::Elf_sizes<64>::ehdr_size;
623
  else
624
    gold_unreachable();
625
}
626
 
627
// Output_data_const methods.
628
 
629
void
630
Output_data_const::do_write(Output_file* of)
631
{
632
  of->write(this->offset(), this->data_.data(), this->data_.size());
633
}
634
 
635
// Output_data_const_buffer methods.
636
 
637
void
638
Output_data_const_buffer::do_write(Output_file* of)
639
{
640
  of->write(this->offset(), this->p_, this->data_size());
641
}
642
 
643
// Output_section_data methods.
644
 
645
// Record the output section, and set the entry size and such.
646
 
647
void
648
Output_section_data::set_output_section(Output_section* os)
649
{
650
  gold_assert(this->output_section_ == NULL);
651
  this->output_section_ = os;
652
  this->do_adjust_output_section(os);
653
}
654
 
655
// Return the section index of the output section.
656
 
657
unsigned int
658
Output_section_data::do_out_shndx() const
659
{
660
  gold_assert(this->output_section_ != NULL);
661
  return this->output_section_->out_shndx();
662
}
663
 
664
// Set the alignment, which means we may need to update the alignment
665
// of the output section.
666
 
667
void
668
Output_section_data::set_addralign(uint64_t addralign)
669
{
670
  this->addralign_ = addralign;
671
  if (this->output_section_ != NULL
672
      && this->output_section_->addralign() < addralign)
673
    this->output_section_->set_addralign(addralign);
674
}
675
 
676
// Output_data_strtab methods.
677
 
678
// Set the final data size.
679
 
680
void
681
Output_data_strtab::set_final_data_size()
682
{
683
  this->strtab_->set_string_offsets();
684
  this->set_data_size(this->strtab_->get_strtab_size());
685
}
686
 
687
// Write out a string table.
688
 
689
void
690
Output_data_strtab::do_write(Output_file* of)
691
{
692
  this->strtab_->write(of, this->offset());
693
}
694
 
695
// Output_reloc methods.
696
 
697
// A reloc against a global symbol.
698
 
699
template<bool dynamic, int size, bool big_endian>
700
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701
    Symbol* gsym,
702
    unsigned int type,
703
    Output_data* od,
704
    Address address,
705
    bool is_relative,
706
    bool is_symbolless)
707
  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708
    is_relative_(is_relative), is_symbolless_(is_symbolless),
709
    is_section_symbol_(false), shndx_(INVALID_CODE)
710
{
711
  // this->type_ is a bitfield; make sure TYPE fits.
712
  gold_assert(this->type_ == type);
713
  this->u1_.gsym = gsym;
714
  this->u2_.od = od;
715
  if (dynamic)
716
    this->set_needs_dynsym_index();
717
}
718
 
719
template<bool dynamic, int size, bool big_endian>
720
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721
    Symbol* gsym,
722
    unsigned int type,
723
    Sized_relobj<size, big_endian>* relobj,
724
    unsigned int shndx,
725
    Address address,
726
    bool is_relative,
727
    bool is_symbolless)
728
  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729
    is_relative_(is_relative), is_symbolless_(is_symbolless),
730
    is_section_symbol_(false), shndx_(shndx)
731
{
732
  gold_assert(shndx != INVALID_CODE);
733
  // this->type_ is a bitfield; make sure TYPE fits.
734
  gold_assert(this->type_ == type);
735
  this->u1_.gsym = gsym;
736
  this->u2_.relobj = relobj;
737
  if (dynamic)
738
    this->set_needs_dynsym_index();
739
}
740
 
741
// A reloc against a local symbol.
742
 
743
template<bool dynamic, int size, bool big_endian>
744
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745
    Sized_relobj<size, big_endian>* relobj,
746
    unsigned int local_sym_index,
747
    unsigned int type,
748
    Output_data* od,
749
    Address address,
750
    bool is_relative,
751
    bool is_symbolless,
752
    bool is_section_symbol)
753
  : address_(address), local_sym_index_(local_sym_index), type_(type),
754
    is_relative_(is_relative), is_symbolless_(is_symbolless),
755
    is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
756
{
757
  gold_assert(local_sym_index != GSYM_CODE
758
              && local_sym_index != INVALID_CODE);
759
  // this->type_ is a bitfield; make sure TYPE fits.
760
  gold_assert(this->type_ == type);
761
  this->u1_.relobj = relobj;
762
  this->u2_.od = od;
763
  if (dynamic)
764
    this->set_needs_dynsym_index();
765
}
766
 
767
template<bool dynamic, int size, bool big_endian>
768
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
769
    Sized_relobj<size, big_endian>* relobj,
770
    unsigned int local_sym_index,
771
    unsigned int type,
772
    unsigned int shndx,
773
    Address address,
774
    bool is_relative,
775
    bool is_symbolless,
776
    bool is_section_symbol)
777
  : address_(address), local_sym_index_(local_sym_index), type_(type),
778
    is_relative_(is_relative), is_symbolless_(is_symbolless),
779
    is_section_symbol_(is_section_symbol), shndx_(shndx)
780
{
781
  gold_assert(local_sym_index != GSYM_CODE
782
              && local_sym_index != INVALID_CODE);
783
  gold_assert(shndx != INVALID_CODE);
784
  // this->type_ is a bitfield; make sure TYPE fits.
785
  gold_assert(this->type_ == type);
786
  this->u1_.relobj = relobj;
787
  this->u2_.relobj = relobj;
788
  if (dynamic)
789
    this->set_needs_dynsym_index();
790
}
791
 
792
// A reloc against the STT_SECTION symbol of an output section.
793
 
794
template<bool dynamic, int size, bool big_endian>
795
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796
    Output_section* os,
797
    unsigned int type,
798
    Output_data* od,
799
    Address address)
800
  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
801
    is_relative_(false), is_symbolless_(false),
802
    is_section_symbol_(true), shndx_(INVALID_CODE)
803
{
804
  // this->type_ is a bitfield; make sure TYPE fits.
805
  gold_assert(this->type_ == type);
806
  this->u1_.os = os;
807
  this->u2_.od = od;
808
  if (dynamic)
809
    this->set_needs_dynsym_index();
810
  else
811
    os->set_needs_symtab_index();
812
}
813
 
814
template<bool dynamic, int size, bool big_endian>
815
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816
    Output_section* os,
817
    unsigned int type,
818
    Sized_relobj<size, big_endian>* relobj,
819
    unsigned int shndx,
820
    Address address)
821
  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
822
    is_relative_(false), is_symbolless_(false),
823
    is_section_symbol_(true), shndx_(shndx)
824
{
825
  gold_assert(shndx != INVALID_CODE);
826
  // this->type_ is a bitfield; make sure TYPE fits.
827
  gold_assert(this->type_ == type);
828
  this->u1_.os = os;
829
  this->u2_.relobj = relobj;
830
  if (dynamic)
831
    this->set_needs_dynsym_index();
832
  else
833
    os->set_needs_symtab_index();
834
}
835
 
836
// An absolute relocation.
837
 
838
template<bool dynamic, int size, bool big_endian>
839
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
840
    unsigned int type,
841
    Output_data* od,
842
    Address address)
843
  : address_(address), local_sym_index_(0), type_(type),
844
    is_relative_(false), is_symbolless_(false),
845
    is_section_symbol_(false), shndx_(INVALID_CODE)
846
{
847
  // this->type_ is a bitfield; make sure TYPE fits.
848
  gold_assert(this->type_ == type);
849
  this->u1_.relobj = NULL;
850
  this->u2_.od = od;
851
}
852
 
853
template<bool dynamic, int size, bool big_endian>
854
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855
    unsigned int type,
856
    Sized_relobj<size, big_endian>* relobj,
857
    unsigned int shndx,
858
    Address address)
859
  : address_(address), local_sym_index_(0), type_(type),
860
    is_relative_(false), is_symbolless_(false),
861
    is_section_symbol_(false), shndx_(shndx)
862
{
863
  gold_assert(shndx != INVALID_CODE);
864
  // this->type_ is a bitfield; make sure TYPE fits.
865
  gold_assert(this->type_ == type);
866
  this->u1_.relobj = NULL;
867
  this->u2_.relobj = relobj;
868
}
869
 
870
// A target specific relocation.
871
 
872
template<bool dynamic, int size, bool big_endian>
873
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874
    unsigned int type,
875
    void* arg,
876
    Output_data* od,
877
    Address address)
878
  : address_(address), local_sym_index_(TARGET_CODE), type_(type),
879
    is_relative_(false), is_symbolless_(false),
880
    is_section_symbol_(false), shndx_(INVALID_CODE)
881
{
882
  // this->type_ is a bitfield; make sure TYPE fits.
883
  gold_assert(this->type_ == type);
884
  this->u1_.arg = arg;
885
  this->u2_.od = od;
886
}
887
 
888
template<bool dynamic, int size, bool big_endian>
889
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
890
    unsigned int type,
891
    void* arg,
892
    Sized_relobj<size, big_endian>* relobj,
893
    unsigned int shndx,
894
    Address address)
895
  : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896
    is_relative_(false), is_symbolless_(false),
897
    is_section_symbol_(false), shndx_(shndx)
898
{
899
  gold_assert(shndx != INVALID_CODE);
900
  // this->type_ is a bitfield; make sure TYPE fits.
901
  gold_assert(this->type_ == type);
902
  this->u1_.arg = arg;
903
  this->u2_.relobj = relobj;
904
}
905
 
906
// Record that we need a dynamic symbol index for this relocation.
907
 
908
template<bool dynamic, int size, bool big_endian>
909
void
910
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
911
set_needs_dynsym_index()
912
{
913
  if (this->is_symbolless_)
914
    return;
915
  switch (this->local_sym_index_)
916
    {
917
    case INVALID_CODE:
918
      gold_unreachable();
919
 
920
    case GSYM_CODE:
921
      this->u1_.gsym->set_needs_dynsym_entry();
922
      break;
923
 
924
    case SECTION_CODE:
925
      this->u1_.os->set_needs_dynsym_index();
926
      break;
927
 
928
    case TARGET_CODE:
929
      // The target must take care of this if necessary.
930
      break;
931
 
932
    case 0:
933
      break;
934
 
935
    default:
936
      {
937
        const unsigned int lsi = this->local_sym_index_;
938
        Sized_relobj_file<size, big_endian>* relobj =
939
            this->u1_.relobj->sized_relobj();
940
        gold_assert(relobj != NULL);
941
        if (!this->is_section_symbol_)
942
          relobj->set_needs_output_dynsym_entry(lsi);
943
        else
944
          relobj->output_section(lsi)->set_needs_dynsym_index();
945
      }
946
      break;
947
    }
948
}
949
 
950
// Get the symbol index of a relocation.
951
 
952
template<bool dynamic, int size, bool big_endian>
953
unsigned int
954
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
955
  const
956
{
957
  unsigned int index;
958
  if (this->is_symbolless_)
959
    return 0;
960
  switch (this->local_sym_index_)
961
    {
962
    case INVALID_CODE:
963
      gold_unreachable();
964
 
965
    case GSYM_CODE:
966
      if (this->u1_.gsym == NULL)
967
        index = 0;
968
      else if (dynamic)
969
        index = this->u1_.gsym->dynsym_index();
970
      else
971
        index = this->u1_.gsym->symtab_index();
972
      break;
973
 
974
    case SECTION_CODE:
975
      if (dynamic)
976
        index = this->u1_.os->dynsym_index();
977
      else
978
        index = this->u1_.os->symtab_index();
979
      break;
980
 
981
    case TARGET_CODE:
982
      index = parameters->target().reloc_symbol_index(this->u1_.arg,
983
                                                      this->type_);
984
      break;
985
 
986
    case 0:
987
      // Relocations without symbols use a symbol index of 0.
988
      index = 0;
989
      break;
990
 
991
    default:
992
      {
993
        const unsigned int lsi = this->local_sym_index_;
994
        Sized_relobj_file<size, big_endian>* relobj =
995
            this->u1_.relobj->sized_relobj();
996
        gold_assert(relobj != NULL);
997
        if (!this->is_section_symbol_)
998
          {
999
            if (dynamic)
1000
              index = relobj->dynsym_index(lsi);
1001
            else
1002
              index = relobj->symtab_index(lsi);
1003
          }
1004
        else
1005
          {
1006
            Output_section* os = relobj->output_section(lsi);
1007
            gold_assert(os != NULL);
1008
            if (dynamic)
1009
              index = os->dynsym_index();
1010
            else
1011
              index = os->symtab_index();
1012
          }
1013
      }
1014
      break;
1015
    }
1016
  gold_assert(index != -1U);
1017
  return index;
1018
}
1019
 
1020
// For a local section symbol, get the address of the offset ADDEND
1021
// within the input section.
1022
 
1023
template<bool dynamic, int size, bool big_endian>
1024
typename elfcpp::Elf_types<size>::Elf_Addr
1025
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1026
  local_section_offset(Addend addend) const
1027
{
1028
  gold_assert(this->local_sym_index_ != GSYM_CODE
1029
              && this->local_sym_index_ != SECTION_CODE
1030
              && this->local_sym_index_ != TARGET_CODE
1031
              && this->local_sym_index_ != INVALID_CODE
1032
              && this->local_sym_index_ != 0
1033
              && this->is_section_symbol_);
1034
  const unsigned int lsi = this->local_sym_index_;
1035
  Output_section* os = this->u1_.relobj->output_section(lsi);
1036
  gold_assert(os != NULL);
1037
  Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1038
  if (offset != invalid_address)
1039
    return offset + addend;
1040
  // This is a merge section.
1041
  Sized_relobj_file<size, big_endian>* relobj =
1042
      this->u1_.relobj->sized_relobj();
1043
  gold_assert(relobj != NULL);
1044
  offset = os->output_address(relobj, lsi, addend);
1045
  gold_assert(offset != invalid_address);
1046
  return offset;
1047
}
1048
 
1049
// Get the output address of a relocation.
1050
 
1051
template<bool dynamic, int size, bool big_endian>
1052
typename elfcpp::Elf_types<size>::Elf_Addr
1053
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1054
{
1055
  Address address = this->address_;
1056
  if (this->shndx_ != INVALID_CODE)
1057
    {
1058
      Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1059
      gold_assert(os != NULL);
1060
      Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1061
      if (off != invalid_address)
1062
        address += os->address() + off;
1063
      else
1064
        {
1065
          Sized_relobj_file<size, big_endian>* relobj =
1066
              this->u2_.relobj->sized_relobj();
1067
          gold_assert(relobj != NULL);
1068
          address = os->output_address(relobj, this->shndx_, address);
1069
          gold_assert(address != invalid_address);
1070
        }
1071
    }
1072
  else if (this->u2_.od != NULL)
1073
    address += this->u2_.od->address();
1074
  return address;
1075
}
1076
 
1077
// Write out the offset and info fields of a Rel or Rela relocation
1078
// entry.
1079
 
1080
template<bool dynamic, int size, bool big_endian>
1081
template<typename Write_rel>
1082
void
1083
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1084
    Write_rel* wr) const
1085
{
1086
  wr->put_r_offset(this->get_address());
1087
  unsigned int sym_index = this->get_symbol_index();
1088
  wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1089
}
1090
 
1091
// Write out a Rel relocation.
1092
 
1093
template<bool dynamic, int size, bool big_endian>
1094
void
1095
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1096
    unsigned char* pov) const
1097
{
1098
  elfcpp::Rel_write<size, big_endian> orel(pov);
1099
  this->write_rel(&orel);
1100
}
1101
 
1102
// Get the value of the symbol referred to by a Rel relocation.
1103
 
1104
template<bool dynamic, int size, bool big_endian>
1105
typename elfcpp::Elf_types<size>::Elf_Addr
1106
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1107
    Addend addend) const
1108
{
1109
  if (this->local_sym_index_ == GSYM_CODE)
1110
    {
1111
      const Sized_symbol<size>* sym;
1112
      sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1113
      return sym->value() + addend;
1114
    }
1115
  gold_assert(this->local_sym_index_ != SECTION_CODE
1116
              && this->local_sym_index_ != TARGET_CODE
1117
              && this->local_sym_index_ != INVALID_CODE
1118
              && this->local_sym_index_ != 0
1119
              && !this->is_section_symbol_);
1120
  const unsigned int lsi = this->local_sym_index_;
1121
  Sized_relobj_file<size, big_endian>* relobj =
1122
      this->u1_.relobj->sized_relobj();
1123
  gold_assert(relobj != NULL);
1124
  const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1125
  return symval->value(relobj, addend);
1126
}
1127
 
1128
// Reloc comparison.  This function sorts the dynamic relocs for the
1129
// benefit of the dynamic linker.  First we sort all relative relocs
1130
// to the front.  Among relative relocs, we sort by output address.
1131
// Among non-relative relocs, we sort by symbol index, then by output
1132
// address.
1133
 
1134
template<bool dynamic, int size, bool big_endian>
1135
int
1136
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1137
  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1138
    const
1139
{
1140
  if (this->is_relative_)
1141
    {
1142
      if (!r2.is_relative_)
1143
        return -1;
1144
      // Otherwise sort by reloc address below.
1145
    }
1146
  else if (r2.is_relative_)
1147
    return 1;
1148
  else
1149
    {
1150
      unsigned int sym1 = this->get_symbol_index();
1151
      unsigned int sym2 = r2.get_symbol_index();
1152
      if (sym1 < sym2)
1153
        return -1;
1154
      else if (sym1 > sym2)
1155
        return 1;
1156
      // Otherwise sort by reloc address.
1157
    }
1158
 
1159
  section_offset_type addr1 = this->get_address();
1160
  section_offset_type addr2 = r2.get_address();
1161
  if (addr1 < addr2)
1162
    return -1;
1163
  else if (addr1 > addr2)
1164
    return 1;
1165
 
1166
  // Final tie breaker, in order to generate the same output on any
1167
  // host: reloc type.
1168
  unsigned int type1 = this->type_;
1169
  unsigned int type2 = r2.type_;
1170
  if (type1 < type2)
1171
    return -1;
1172
  else if (type1 > type2)
1173
    return 1;
1174
 
1175
  // These relocs appear to be exactly the same.
1176
  return 0;
1177
}
1178
 
1179
// Write out a Rela relocation.
1180
 
1181
template<bool dynamic, int size, bool big_endian>
1182
void
1183
Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1184
    unsigned char* pov) const
1185
{
1186
  elfcpp::Rela_write<size, big_endian> orel(pov);
1187
  this->rel_.write_rel(&orel);
1188
  Addend addend = this->addend_;
1189
  if (this->rel_.is_target_specific())
1190
    addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1191
                                               this->rel_.type(), addend);
1192
  else if (this->rel_.is_symbolless())
1193
    addend = this->rel_.symbol_value(addend);
1194
  else if (this->rel_.is_local_section_symbol())
1195
    addend = this->rel_.local_section_offset(addend);
1196
  orel.put_r_addend(addend);
1197
}
1198
 
1199
// Output_data_reloc_base methods.
1200
 
1201
// Adjust the output section.
1202
 
1203
template<int sh_type, bool dynamic, int size, bool big_endian>
1204
void
1205
Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1206
    ::do_adjust_output_section(Output_section* os)
1207
{
1208
  if (sh_type == elfcpp::SHT_REL)
1209
    os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1210
  else if (sh_type == elfcpp::SHT_RELA)
1211
    os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1212
  else
1213
    gold_unreachable();
1214
 
1215
  // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1216
  // static link.  The backends will generate a dynamic reloc section
1217
  // to hold this.  In that case we don't want to link to the dynsym
1218
  // section, because there isn't one.
1219
  if (!dynamic)
1220
    os->set_should_link_to_symtab();
1221
  else if (parameters->doing_static_link())
1222
    ;
1223
  else
1224
    os->set_should_link_to_dynsym();
1225
}
1226
 
1227
// Write out relocation data.
1228
 
1229
template<int sh_type, bool dynamic, int size, bool big_endian>
1230
void
1231
Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1232
    Output_file* of)
1233
{
1234
  const off_t off = this->offset();
1235
  const off_t oview_size = this->data_size();
1236
  unsigned char* const oview = of->get_output_view(off, oview_size);
1237
 
1238
  if (this->sort_relocs())
1239
    {
1240
      gold_assert(dynamic);
1241
      std::sort(this->relocs_.begin(), this->relocs_.end(),
1242
                Sort_relocs_comparison());
1243
    }
1244
 
1245
  unsigned char* pov = oview;
1246
  for (typename Relocs::const_iterator p = this->relocs_.begin();
1247
       p != this->relocs_.end();
1248
       ++p)
1249
    {
1250
      p->write(pov);
1251
      pov += reloc_size;
1252
    }
1253
 
1254
  gold_assert(pov - oview == oview_size);
1255
 
1256
  of->write_output_view(off, oview_size, oview);
1257
 
1258
  // We no longer need the relocation entries.
1259
  this->relocs_.clear();
1260
}
1261
 
1262
// Class Output_relocatable_relocs.
1263
 
1264
template<int sh_type, int size, bool big_endian>
1265
void
1266
Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1267
{
1268
  this->set_data_size(this->rr_->output_reloc_count()
1269
                      * Reloc_types<sh_type, size, big_endian>::reloc_size);
1270
}
1271
 
1272
// class Output_data_group.
1273
 
1274
template<int size, bool big_endian>
1275
Output_data_group<size, big_endian>::Output_data_group(
1276
    Sized_relobj_file<size, big_endian>* relobj,
1277
    section_size_type entry_count,
1278
    elfcpp::Elf_Word flags,
1279
    std::vector<unsigned int>* input_shndxes)
1280
  : Output_section_data(entry_count * 4, 4, false),
1281
    relobj_(relobj),
1282
    flags_(flags)
1283
{
1284
  this->input_shndxes_.swap(*input_shndxes);
1285
}
1286
 
1287
// Write out the section group, which means translating the section
1288
// indexes to apply to the output file.
1289
 
1290
template<int size, bool big_endian>
1291
void
1292
Output_data_group<size, big_endian>::do_write(Output_file* of)
1293
{
1294
  const off_t off = this->offset();
1295
  const section_size_type oview_size =
1296
    convert_to_section_size_type(this->data_size());
1297
  unsigned char* const oview = of->get_output_view(off, oview_size);
1298
 
1299
  elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1300
  elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1301
  ++contents;
1302
 
1303
  for (std::vector<unsigned int>::const_iterator p =
1304
         this->input_shndxes_.begin();
1305
       p != this->input_shndxes_.end();
1306
       ++p, ++contents)
1307
    {
1308
      Output_section* os = this->relobj_->output_section(*p);
1309
 
1310
      unsigned int output_shndx;
1311
      if (os != NULL)
1312
        output_shndx = os->out_shndx();
1313
      else
1314
        {
1315
          this->relobj_->error(_("section group retained but "
1316
                                 "group element discarded"));
1317
          output_shndx = 0;
1318
        }
1319
 
1320
      elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1321
    }
1322
 
1323
  size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1324
  gold_assert(wrote == oview_size);
1325
 
1326
  of->write_output_view(off, oview_size, oview);
1327
 
1328
  // We no longer need this information.
1329
  this->input_shndxes_.clear();
1330
}
1331
 
1332
// Output_data_got::Got_entry methods.
1333
 
1334
// Write out the entry.
1335
 
1336
template<int size, bool big_endian>
1337
void
1338
Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1339
{
1340
  Valtype val = 0;
1341
 
1342
  switch (this->local_sym_index_)
1343
    {
1344
    case GSYM_CODE:
1345
      {
1346
        // If the symbol is resolved locally, we need to write out the
1347
        // link-time value, which will be relocated dynamically by a
1348
        // RELATIVE relocation.
1349
        Symbol* gsym = this->u_.gsym;
1350
        if (this->use_plt_offset_ && gsym->has_plt_offset())
1351 159 khays
          val = (parameters->target().plt_address_for_global(gsym)
1352 27 khays
                 + gsym->plt_offset());
1353
        else
1354
          {
1355
            Sized_symbol<size>* sgsym;
1356
            // This cast is a bit ugly.  We don't want to put a
1357
            // virtual method in Symbol, because we want Symbol to be
1358
            // as small as possible.
1359
            sgsym = static_cast<Sized_symbol<size>*>(gsym);
1360
            val = sgsym->value();
1361
          }
1362
      }
1363
      break;
1364
 
1365
    case CONSTANT_CODE:
1366
      val = this->u_.constant;
1367
      break;
1368
 
1369
    case RESERVED_CODE:
1370
      // If we're doing an incremental update, don't touch this GOT entry.
1371
      if (parameters->incremental_update())
1372
        return;
1373
      val = this->u_.constant;
1374
      break;
1375
 
1376
    default:
1377
      {
1378
        const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1379
        const unsigned int lsi = this->local_sym_index_;
1380
        const Symbol_value<size>* symval = object->local_symbol(lsi);
1381
        if (!this->use_plt_offset_)
1382
          val = symval->value(this->u_.object, 0);
1383
        else
1384
          {
1385 159 khays
            uint64_t plt_address =
1386
              parameters->target().plt_address_for_local(object, lsi);
1387
            val = plt_address + object->local_plt_offset(lsi);
1388 27 khays
          }
1389
      }
1390
      break;
1391
    }
1392
 
1393
  elfcpp::Swap<size, big_endian>::writeval(pov, val);
1394
}
1395
 
1396
// Output_data_got methods.
1397
 
1398
// Add an entry for a global symbol to the GOT.  This returns true if
1399
// this is a new GOT entry, false if the symbol already had a GOT
1400
// entry.
1401
 
1402
template<int size, bool big_endian>
1403
bool
1404
Output_data_got<size, big_endian>::add_global(
1405
    Symbol* gsym,
1406
    unsigned int got_type)
1407
{
1408
  if (gsym->has_got_offset(got_type))
1409
    return false;
1410
 
1411
  unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1412
  gsym->set_got_offset(got_type, got_offset);
1413
  return true;
1414
}
1415
 
1416
// Like add_global, but use the PLT offset.
1417
 
1418
template<int size, bool big_endian>
1419
bool
1420
Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1421
                                                  unsigned int got_type)
1422
{
1423
  if (gsym->has_got_offset(got_type))
1424
    return false;
1425
 
1426
  unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1427
  gsym->set_got_offset(got_type, got_offset);
1428
  return true;
1429
}
1430
 
1431
// Add an entry for a global symbol to the GOT, and add a dynamic
1432
// relocation of type R_TYPE for the GOT entry.
1433
 
1434
template<int size, bool big_endian>
1435
void
1436
Output_data_got<size, big_endian>::add_global_with_rel(
1437
    Symbol* gsym,
1438
    unsigned int got_type,
1439
    Rel_dyn* rel_dyn,
1440
    unsigned int r_type)
1441
{
1442
  if (gsym->has_got_offset(got_type))
1443
    return;
1444
 
1445
  unsigned int got_offset = this->add_got_entry(Got_entry());
1446
  gsym->set_got_offset(got_type, got_offset);
1447
  rel_dyn->add_global(gsym, r_type, this, got_offset);
1448
}
1449
 
1450
template<int size, bool big_endian>
1451
void
1452
Output_data_got<size, big_endian>::add_global_with_rela(
1453
    Symbol* gsym,
1454
    unsigned int got_type,
1455
    Rela_dyn* rela_dyn,
1456
    unsigned int r_type)
1457
{
1458
  if (gsym->has_got_offset(got_type))
1459
    return;
1460
 
1461
  unsigned int got_offset = this->add_got_entry(Got_entry());
1462
  gsym->set_got_offset(got_type, got_offset);
1463
  rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1464
}
1465
 
1466
// Add a pair of entries for a global symbol to the GOT, and add
1467
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468
// If R_TYPE_2 == 0, add the second entry with no relocation.
1469
template<int size, bool big_endian>
1470
void
1471
Output_data_got<size, big_endian>::add_global_pair_with_rel(
1472
    Symbol* gsym,
1473
    unsigned int got_type,
1474
    Rel_dyn* rel_dyn,
1475
    unsigned int r_type_1,
1476
    unsigned int r_type_2)
1477
{
1478
  if (gsym->has_got_offset(got_type))
1479
    return;
1480
 
1481
  unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1482
  gsym->set_got_offset(got_type, got_offset);
1483
  rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1484
 
1485
  if (r_type_2 != 0)
1486
    rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1487
}
1488
 
1489
template<int size, bool big_endian>
1490
void
1491
Output_data_got<size, big_endian>::add_global_pair_with_rela(
1492
    Symbol* gsym,
1493
    unsigned int got_type,
1494
    Rela_dyn* rela_dyn,
1495
    unsigned int r_type_1,
1496
    unsigned int r_type_2)
1497
{
1498
  if (gsym->has_got_offset(got_type))
1499
    return;
1500
 
1501
  unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1502
  gsym->set_got_offset(got_type, got_offset);
1503
  rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1504
 
1505
  if (r_type_2 != 0)
1506
    rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1507
}
1508
 
1509
// Add an entry for a local symbol to the GOT.  This returns true if
1510
// this is a new GOT entry, false if the symbol already has a GOT
1511
// entry.
1512
 
1513
template<int size, bool big_endian>
1514
bool
1515
Output_data_got<size, big_endian>::add_local(
1516
    Sized_relobj_file<size, big_endian>* object,
1517
    unsigned int symndx,
1518
    unsigned int got_type)
1519
{
1520
  if (object->local_has_got_offset(symndx, got_type))
1521
    return false;
1522
 
1523
  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1524
                                                          false));
1525
  object->set_local_got_offset(symndx, got_type, got_offset);
1526
  return true;
1527
}
1528
 
1529
// Like add_local, but use the PLT offset.
1530
 
1531
template<int size, bool big_endian>
1532
bool
1533
Output_data_got<size, big_endian>::add_local_plt(
1534
    Sized_relobj_file<size, big_endian>* object,
1535
    unsigned int symndx,
1536
    unsigned int got_type)
1537
{
1538
  if (object->local_has_got_offset(symndx, got_type))
1539
    return false;
1540
 
1541
  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1542
                                                          true));
1543
  object->set_local_got_offset(symndx, got_type, got_offset);
1544
  return true;
1545
}
1546
 
1547
// Add an entry for a local symbol to the GOT, and add a dynamic
1548
// relocation of type R_TYPE for the GOT entry.
1549
 
1550
template<int size, bool big_endian>
1551
void
1552
Output_data_got<size, big_endian>::add_local_with_rel(
1553
    Sized_relobj_file<size, big_endian>* object,
1554
    unsigned int symndx,
1555
    unsigned int got_type,
1556
    Rel_dyn* rel_dyn,
1557
    unsigned int r_type)
1558
{
1559
  if (object->local_has_got_offset(symndx, got_type))
1560
    return;
1561
 
1562
  unsigned int got_offset = this->add_got_entry(Got_entry());
1563
  object->set_local_got_offset(symndx, got_type, got_offset);
1564
  rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1565
}
1566
 
1567
template<int size, bool big_endian>
1568
void
1569
Output_data_got<size, big_endian>::add_local_with_rela(
1570
    Sized_relobj_file<size, big_endian>* object,
1571
    unsigned int symndx,
1572
    unsigned int got_type,
1573
    Rela_dyn* rela_dyn,
1574
    unsigned int r_type)
1575
{
1576
  if (object->local_has_got_offset(symndx, got_type))
1577
    return;
1578
 
1579
  unsigned int got_offset = this->add_got_entry(Got_entry());
1580
  object->set_local_got_offset(symndx, got_type, got_offset);
1581
  rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1582
}
1583
 
1584
// Add a pair of entries for a local symbol to the GOT, and add
1585
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1586
// If R_TYPE_2 == 0, add the second entry with no relocation.
1587
template<int size, bool big_endian>
1588
void
1589
Output_data_got<size, big_endian>::add_local_pair_with_rel(
1590
    Sized_relobj_file<size, big_endian>* object,
1591
    unsigned int symndx,
1592
    unsigned int shndx,
1593
    unsigned int got_type,
1594
    Rel_dyn* rel_dyn,
1595
    unsigned int r_type_1,
1596
    unsigned int r_type_2)
1597
{
1598
  if (object->local_has_got_offset(symndx, got_type))
1599
    return;
1600
 
1601
  unsigned int got_offset =
1602
      this->add_got_entry_pair(Got_entry(),
1603
                               Got_entry(object, symndx, false));
1604
  object->set_local_got_offset(symndx, got_type, got_offset);
1605
  Output_section* os = object->output_section(shndx);
1606
  rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1607
 
1608
  if (r_type_2 != 0)
1609
    rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1610
}
1611
 
1612
template<int size, bool big_endian>
1613
void
1614
Output_data_got<size, big_endian>::add_local_pair_with_rela(
1615
    Sized_relobj_file<size, big_endian>* object,
1616
    unsigned int symndx,
1617
    unsigned int shndx,
1618
    unsigned int got_type,
1619
    Rela_dyn* rela_dyn,
1620
    unsigned int r_type_1,
1621
    unsigned int r_type_2)
1622
{
1623
  if (object->local_has_got_offset(symndx, got_type))
1624
    return;
1625
 
1626
  unsigned int got_offset =
1627
      this->add_got_entry_pair(Got_entry(),
1628
                               Got_entry(object, symndx, false));
1629
  object->set_local_got_offset(symndx, got_type, got_offset);
1630
  Output_section* os = object->output_section(shndx);
1631
  rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1632
 
1633
  if (r_type_2 != 0)
1634
    rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1635
}
1636
 
1637
// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
 
1639
template<int size, bool big_endian>
1640
void
1641
Output_data_got<size, big_endian>::reserve_local(
1642
    unsigned int i,
1643
    Sized_relobj<size, big_endian>* object,
1644
    unsigned int sym_index,
1645
    unsigned int got_type)
1646
{
1647
  this->reserve_slot(i);
1648
  object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649
}
1650
 
1651
// Reserve a slot in the GOT for a global symbol.
1652
 
1653
template<int size, bool big_endian>
1654
void
1655
Output_data_got<size, big_endian>::reserve_global(
1656
    unsigned int i,
1657
    Symbol* gsym,
1658
    unsigned int got_type)
1659
{
1660
  this->reserve_slot(i);
1661
  gsym->set_got_offset(got_type, this->got_offset(i));
1662
}
1663
 
1664
// Write out the GOT.
1665
 
1666
template<int size, bool big_endian>
1667
void
1668
Output_data_got<size, big_endian>::do_write(Output_file* of)
1669
{
1670
  const int add = size / 8;
1671
 
1672
  const off_t off = this->offset();
1673
  const off_t oview_size = this->data_size();
1674
  unsigned char* const oview = of->get_output_view(off, oview_size);
1675
 
1676
  unsigned char* pov = oview;
1677
  for (typename Got_entries::const_iterator p = this->entries_.begin();
1678
       p != this->entries_.end();
1679
       ++p)
1680
    {
1681
      p->write(pov);
1682
      pov += add;
1683
    }
1684
 
1685
  gold_assert(pov - oview == oview_size);
1686
 
1687
  of->write_output_view(off, oview_size, oview);
1688
 
1689
  // We no longer need the GOT entries.
1690
  this->entries_.clear();
1691
}
1692
 
1693
// Create a new GOT entry and return its offset.
1694
 
1695
template<int size, bool big_endian>
1696
unsigned int
1697
Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1698
{
1699
  if (!this->is_data_size_valid())
1700
    {
1701
      this->entries_.push_back(got_entry);
1702
      this->set_got_size();
1703
      return this->last_got_offset();
1704
    }
1705
  else
1706
    {
1707
      // For an incremental update, find an available slot.
1708
      off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1709
      if (got_offset == -1)
1710 148 khays
        gold_fallback(_("out of patch space (GOT);"
1711
                        " relink with --incremental-full"));
1712 27 khays
      unsigned int got_index = got_offset / (size / 8);
1713
      gold_assert(got_index < this->entries_.size());
1714
      this->entries_[got_index] = got_entry;
1715
      return static_cast<unsigned int>(got_offset);
1716
    }
1717
}
1718
 
1719
// Create a pair of new GOT entries and return the offset of the first.
1720
 
1721
template<int size, bool big_endian>
1722
unsigned int
1723
Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1724
                                                      Got_entry got_entry_2)
1725
{
1726
  if (!this->is_data_size_valid())
1727
    {
1728
      unsigned int got_offset;
1729
      this->entries_.push_back(got_entry_1);
1730
      got_offset = this->last_got_offset();
1731
      this->entries_.push_back(got_entry_2);
1732
      this->set_got_size();
1733
      return got_offset;
1734
    }
1735
  else
1736
    {
1737
      // For an incremental update, find an available pair of slots.
1738
      off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1739
      if (got_offset == -1)
1740 148 khays
        gold_fallback(_("out of patch space (GOT);"
1741
                        " relink with --incremental-full"));
1742 27 khays
      unsigned int got_index = got_offset / (size / 8);
1743
      gold_assert(got_index < this->entries_.size());
1744
      this->entries_[got_index] = got_entry_1;
1745
      this->entries_[got_index + 1] = got_entry_2;
1746
      return static_cast<unsigned int>(got_offset);
1747
    }
1748
}
1749
 
1750
// Output_data_dynamic::Dynamic_entry methods.
1751
 
1752
// Write out the entry.
1753
 
1754
template<int size, bool big_endian>
1755
void
1756
Output_data_dynamic::Dynamic_entry::write(
1757
    unsigned char* pov,
1758
    const Stringpool* pool) const
1759
{
1760
  typename elfcpp::Elf_types<size>::Elf_WXword val;
1761
  switch (this->offset_)
1762
    {
1763
    case DYNAMIC_NUMBER:
1764
      val = this->u_.val;
1765
      break;
1766
 
1767
    case DYNAMIC_SECTION_SIZE:
1768
      val = this->u_.od->data_size();
1769
      if (this->od2 != NULL)
1770
        val += this->od2->data_size();
1771
      break;
1772
 
1773
    case DYNAMIC_SYMBOL:
1774
      {
1775
        const Sized_symbol<size>* s =
1776
          static_cast<const Sized_symbol<size>*>(this->u_.sym);
1777
        val = s->value();
1778
      }
1779
      break;
1780
 
1781
    case DYNAMIC_STRING:
1782
      val = pool->get_offset(this->u_.str);
1783
      break;
1784
 
1785
    default:
1786
      val = this->u_.od->address() + this->offset_;
1787
      break;
1788
    }
1789
 
1790
  elfcpp::Dyn_write<size, big_endian> dw(pov);
1791
  dw.put_d_tag(this->tag_);
1792
  dw.put_d_val(val);
1793
}
1794
 
1795
// Output_data_dynamic methods.
1796
 
1797
// Adjust the output section to set the entry size.
1798
 
1799
void
1800
Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801
{
1802
  if (parameters->target().get_size() == 32)
1803
    os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1804
  else if (parameters->target().get_size() == 64)
1805
    os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806
  else
1807
    gold_unreachable();
1808
}
1809
 
1810
// Set the final data size.
1811
 
1812
void
1813
Output_data_dynamic::set_final_data_size()
1814
{
1815
  // Add the terminating entry if it hasn't been added.
1816
  // Because of relaxation, we can run this multiple times.
1817
  if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818
    {
1819
      int extra = parameters->options().spare_dynamic_tags();
1820
      for (int i = 0; i < extra; ++i)
1821
        this->add_constant(elfcpp::DT_NULL, 0);
1822
      this->add_constant(elfcpp::DT_NULL, 0);
1823
    }
1824
 
1825
  int dyn_size;
1826
  if (parameters->target().get_size() == 32)
1827
    dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1828
  else if (parameters->target().get_size() == 64)
1829
    dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830
  else
1831
    gold_unreachable();
1832
  this->set_data_size(this->entries_.size() * dyn_size);
1833
}
1834
 
1835
// Write out the dynamic entries.
1836
 
1837
void
1838
Output_data_dynamic::do_write(Output_file* of)
1839
{
1840
  switch (parameters->size_and_endianness())
1841
    {
1842
#ifdef HAVE_TARGET_32_LITTLE
1843
    case Parameters::TARGET_32_LITTLE:
1844
      this->sized_write<32, false>(of);
1845
      break;
1846
#endif
1847
#ifdef HAVE_TARGET_32_BIG
1848
    case Parameters::TARGET_32_BIG:
1849
      this->sized_write<32, true>(of);
1850
      break;
1851
#endif
1852
#ifdef HAVE_TARGET_64_LITTLE
1853
    case Parameters::TARGET_64_LITTLE:
1854
      this->sized_write<64, false>(of);
1855
      break;
1856
#endif
1857
#ifdef HAVE_TARGET_64_BIG
1858
    case Parameters::TARGET_64_BIG:
1859
      this->sized_write<64, true>(of);
1860
      break;
1861
#endif
1862
    default:
1863
      gold_unreachable();
1864
    }
1865
}
1866
 
1867
template<int size, bool big_endian>
1868
void
1869
Output_data_dynamic::sized_write(Output_file* of)
1870
{
1871
  const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
 
1873
  const off_t offset = this->offset();
1874
  const off_t oview_size = this->data_size();
1875
  unsigned char* const oview = of->get_output_view(offset, oview_size);
1876
 
1877
  unsigned char* pov = oview;
1878
  for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879
       p != this->entries_.end();
1880
       ++p)
1881
    {
1882
      p->write<size, big_endian>(pov, this->pool_);
1883
      pov += dyn_size;
1884
    }
1885
 
1886
  gold_assert(pov - oview == oview_size);
1887
 
1888
  of->write_output_view(offset, oview_size, oview);
1889
 
1890
  // We no longer need the dynamic entries.
1891
  this->entries_.clear();
1892
}
1893
 
1894
// Class Output_symtab_xindex.
1895
 
1896
void
1897
Output_symtab_xindex::do_write(Output_file* of)
1898
{
1899
  const off_t offset = this->offset();
1900
  const off_t oview_size = this->data_size();
1901
  unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
 
1903
  memset(oview, 0, oview_size);
1904
 
1905
  if (parameters->target().is_big_endian())
1906
    this->endian_do_write<true>(oview);
1907
  else
1908
    this->endian_do_write<false>(oview);
1909
 
1910
  of->write_output_view(offset, oview_size, oview);
1911
 
1912
  // We no longer need the data.
1913
  this->entries_.clear();
1914
}
1915
 
1916
template<bool big_endian>
1917
void
1918
Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919
{
1920
  for (Xindex_entries::const_iterator p = this->entries_.begin();
1921
       p != this->entries_.end();
1922
       ++p)
1923
    {
1924
      unsigned int symndx = p->first;
1925
      gold_assert(symndx * 4 < this->data_size());
1926
      elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927
    }
1928
}
1929
 
1930 159 khays
// Output_fill_debug_info methods.
1931
 
1932
// Return the minimum size needed for a dummy compilation unit header.
1933
 
1934
size_t
1935
Output_fill_debug_info::do_minimum_hole_size() const
1936
{
1937
  // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938
  // address_size.
1939
  const size_t len = 4 + 2 + 4 + 1;
1940
  // For type units, add type_signature, type_offset.
1941
  if (this->is_debug_types_)
1942
    return len + 8 + 4;
1943
  return len;
1944
}
1945
 
1946
// Write a dummy compilation unit header to fill a hole in the
1947
// .debug_info or .debug_types section.
1948
 
1949
void
1950
Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951
{
1952
  gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", off, len);
1953
 
1954
  gold_assert(len >= this->do_minimum_hole_size());
1955
 
1956
  unsigned char* const oview = of->get_output_view(off, len);
1957
  unsigned char* pov = oview;
1958
 
1959
  // Write header fields: unit_length, version, debug_abbrev_offset,
1960
  // address_size.
1961
  if (this->is_big_endian())
1962
    {
1963
      elfcpp::Swap<32, true>::writeval(pov, len - 4);
1964
      elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
1965
      elfcpp::Swap<32, true>::writeval(pov + 6, 0);
1966
    }
1967
  else
1968
    {
1969
      elfcpp::Swap<32, false>::writeval(pov, len - 4);
1970
      elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
1971
      elfcpp::Swap<32, false>::writeval(pov + 6, 0);
1972
    }
1973
  pov += 4 + 2 + 4;
1974
  *pov++ = 4;
1975
 
1976
  // For type units, the additional header fields -- type_signature,
1977
  // type_offset -- can be filled with zeroes.
1978
 
1979
  // Fill the remainder of the free space with zeroes.  The first
1980
  // zero should tell the consumer there are no DIEs to read in this
1981
  // compilation unit.
1982
  if (pov < oview + len)
1983
    memset(pov, 0, oview + len - pov);
1984
 
1985
  of->write_output_view(off, len, oview);
1986
}
1987
 
1988
// Output_fill_debug_line methods.
1989
 
1990
// Return the minimum size needed for a dummy line number program header.
1991
 
1992
size_t
1993
Output_fill_debug_line::do_minimum_hole_size() const
1994
{
1995
  // Line number program header fields: unit_length, version, header_length,
1996
  // minimum_instruction_length, default_is_stmt, line_base, line_range,
1997
  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1998
  const size_t len = 4 + 2 + 4 + this->header_length;
1999
  return len;
2000
}
2001
 
2002
// Write a dummy line number program header to fill a hole in the
2003
// .debug_line section.
2004
 
2005
void
2006
Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2007
{
2008
  gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", off, len);
2009
 
2010
  gold_assert(len >= this->do_minimum_hole_size());
2011
 
2012
  unsigned char* const oview = of->get_output_view(off, len);
2013
  unsigned char* pov = oview;
2014
 
2015
  // Write header fields: unit_length, version, header_length,
2016
  // minimum_instruction_length, default_is_stmt, line_base, line_range,
2017
  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2018
  // We set the header_length field to cover the entire hole, so the
2019
  // line number program is empty.
2020
  if (this->is_big_endian())
2021
    {
2022
      elfcpp::Swap<32, true>::writeval(pov, len - 4);
2023
      elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
2024
      elfcpp::Swap<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2025
    }
2026
  else
2027
    {
2028
      elfcpp::Swap<32, false>::writeval(pov, len - 4);
2029
      elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
2030
      elfcpp::Swap<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2031
    }
2032
  pov += 4 + 2 + 4;
2033
  *pov++ = 1;   // minimum_instruction_length
2034
  *pov++ = 0;    // default_is_stmt
2035
  *pov++ = 0;    // line_base
2036
  *pov++ = 5;   // line_range
2037
  *pov++ = 13;  // opcode_base
2038
  *pov++ = 0;    // standard_opcode_lengths[1]
2039
  *pov++ = 1;   // standard_opcode_lengths[2]
2040
  *pov++ = 1;   // standard_opcode_lengths[3]
2041
  *pov++ = 1;   // standard_opcode_lengths[4]
2042
  *pov++ = 1;   // standard_opcode_lengths[5]
2043
  *pov++ = 0;    // standard_opcode_lengths[6]
2044
  *pov++ = 0;    // standard_opcode_lengths[7]
2045
  *pov++ = 0;    // standard_opcode_lengths[8]
2046
  *pov++ = 1;   // standard_opcode_lengths[9]
2047
  *pov++ = 0;    // standard_opcode_lengths[10]
2048
  *pov++ = 0;    // standard_opcode_lengths[11]
2049
  *pov++ = 1;   // standard_opcode_lengths[12]
2050
  *pov++ = 0;    // include_directories (empty)
2051
  *pov++ = 0;    // filenames (empty)
2052
 
2053
  // Some consumers don't check the header_length field, and simply
2054
  // start reading the line number program immediately following the
2055
  // header.  For those consumers, we fill the remainder of the free
2056
  // space with DW_LNS_set_basic_block opcodes.  These are effectively
2057
  // no-ops: the resulting line table program will not create any rows.
2058
  if (pov < oview + len)
2059
    memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2060
 
2061
  of->write_output_view(off, len, oview);
2062
}
2063
 
2064 27 khays
// Output_section::Input_section methods.
2065
 
2066
// Return the current data size.  For an input section we store the size here.
2067
// For an Output_section_data, we have to ask it for the size.
2068
 
2069
off_t
2070
Output_section::Input_section::current_data_size() const
2071
{
2072
  if (this->is_input_section())
2073
    return this->u1_.data_size;
2074
  else
2075
    {
2076
      this->u2_.posd->pre_finalize_data_size();
2077
      return this->u2_.posd->current_data_size();
2078
    }
2079
}
2080
 
2081
// Return the data size.  For an input section we store the size here.
2082
// For an Output_section_data, we have to ask it for the size.
2083
 
2084
off_t
2085
Output_section::Input_section::data_size() const
2086
{
2087
  if (this->is_input_section())
2088
    return this->u1_.data_size;
2089
  else
2090
    return this->u2_.posd->data_size();
2091
}
2092
 
2093
// Return the object for an input section.
2094
 
2095
Relobj*
2096
Output_section::Input_section::relobj() const
2097
{
2098
  if (this->is_input_section())
2099
    return this->u2_.object;
2100
  else if (this->is_merge_section())
2101
    {
2102
      gold_assert(this->u2_.pomb->first_relobj() != NULL);
2103
      return this->u2_.pomb->first_relobj();
2104
    }
2105
  else if (this->is_relaxed_input_section())
2106
    return this->u2_.poris->relobj();
2107
  else
2108
    gold_unreachable();
2109
}
2110
 
2111
// Return the input section index for an input section.
2112
 
2113
unsigned int
2114
Output_section::Input_section::shndx() const
2115
{
2116
  if (this->is_input_section())
2117
    return this->shndx_;
2118
  else if (this->is_merge_section())
2119
    {
2120
      gold_assert(this->u2_.pomb->first_relobj() != NULL);
2121
      return this->u2_.pomb->first_shndx();
2122
    }
2123
  else if (this->is_relaxed_input_section())
2124
    return this->u2_.poris->shndx();
2125
  else
2126
    gold_unreachable();
2127
}
2128
 
2129
// Set the address and file offset.
2130
 
2131
void
2132
Output_section::Input_section::set_address_and_file_offset(
2133
    uint64_t address,
2134
    off_t file_offset,
2135
    off_t section_file_offset)
2136
{
2137
  if (this->is_input_section())
2138
    this->u2_.object->set_section_offset(this->shndx_,
2139
                                         file_offset - section_file_offset);
2140
  else
2141
    this->u2_.posd->set_address_and_file_offset(address, file_offset);
2142
}
2143
 
2144
// Reset the address and file offset.
2145
 
2146
void
2147
Output_section::Input_section::reset_address_and_file_offset()
2148
{
2149
  if (!this->is_input_section())
2150
    this->u2_.posd->reset_address_and_file_offset();
2151
}
2152
 
2153
// Finalize the data size.
2154
 
2155
void
2156
Output_section::Input_section::finalize_data_size()
2157
{
2158
  if (!this->is_input_section())
2159
    this->u2_.posd->finalize_data_size();
2160
}
2161
 
2162
// Try to turn an input offset into an output offset.  We want to
2163
// return the output offset relative to the start of this
2164
// Input_section in the output section.
2165
 
2166
inline bool
2167
Output_section::Input_section::output_offset(
2168
    const Relobj* object,
2169
    unsigned int shndx,
2170
    section_offset_type offset,
2171
    section_offset_type* poutput) const
2172
{
2173
  if (!this->is_input_section())
2174
    return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2175
  else
2176
    {
2177
      if (this->shndx_ != shndx || this->u2_.object != object)
2178
        return false;
2179
      *poutput = offset;
2180
      return true;
2181
    }
2182
}
2183
 
2184
// Return whether this is the merge section for the input section
2185
// SHNDX in OBJECT.
2186
 
2187
inline bool
2188
Output_section::Input_section::is_merge_section_for(const Relobj* object,
2189
                                                    unsigned int shndx) const
2190
{
2191
  if (this->is_input_section())
2192
    return false;
2193
  return this->u2_.posd->is_merge_section_for(object, shndx);
2194
}
2195
 
2196
// Write out the data.  We don't have to do anything for an input
2197
// section--they are handled via Object::relocate--but this is where
2198
// we write out the data for an Output_section_data.
2199
 
2200
void
2201
Output_section::Input_section::write(Output_file* of)
2202
{
2203
  if (!this->is_input_section())
2204
    this->u2_.posd->write(of);
2205
}
2206
 
2207
// Write the data to a buffer.  As for write(), we don't have to do
2208
// anything for an input section.
2209
 
2210
void
2211
Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2212
{
2213
  if (!this->is_input_section())
2214
    this->u2_.posd->write_to_buffer(buffer);
2215
}
2216
 
2217
// Print to a map file.
2218
 
2219
void
2220
Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2221
{
2222
  switch (this->shndx_)
2223
    {
2224
    case OUTPUT_SECTION_CODE:
2225
    case MERGE_DATA_SECTION_CODE:
2226
    case MERGE_STRING_SECTION_CODE:
2227
      this->u2_.posd->print_to_mapfile(mapfile);
2228
      break;
2229
 
2230
    case RELAXED_INPUT_SECTION_CODE:
2231
      {
2232
        Output_relaxed_input_section* relaxed_section =
2233
          this->relaxed_input_section();
2234
        mapfile->print_input_section(relaxed_section->relobj(),
2235
                                     relaxed_section->shndx());
2236
      }
2237
      break;
2238
    default:
2239
      mapfile->print_input_section(this->u2_.object, this->shndx_);
2240
      break;
2241
    }
2242
}
2243
 
2244
// Output_section methods.
2245
 
2246
// Construct an Output_section.  NAME will point into a Stringpool.
2247
 
2248
Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2249
                               elfcpp::Elf_Xword flags)
2250
  : name_(name),
2251
    addralign_(0),
2252
    entsize_(0),
2253
    load_address_(0),
2254
    link_section_(NULL),
2255
    link_(0),
2256
    info_section_(NULL),
2257
    info_symndx_(NULL),
2258
    info_(0),
2259
    type_(type),
2260
    flags_(flags),
2261
    order_(ORDER_INVALID),
2262
    out_shndx_(-1U),
2263
    symtab_index_(0),
2264
    dynsym_index_(0),
2265
    input_sections_(),
2266
    first_input_offset_(0),
2267
    fills_(),
2268
    postprocessing_buffer_(NULL),
2269
    needs_symtab_index_(false),
2270
    needs_dynsym_index_(false),
2271
    should_link_to_symtab_(false),
2272
    should_link_to_dynsym_(false),
2273
    after_input_sections_(false),
2274
    requires_postprocessing_(false),
2275
    found_in_sections_clause_(false),
2276
    has_load_address_(false),
2277
    info_uses_section_index_(false),
2278
    input_section_order_specified_(false),
2279
    may_sort_attached_input_sections_(false),
2280
    must_sort_attached_input_sections_(false),
2281
    attached_input_sections_are_sorted_(false),
2282
    is_relro_(false),
2283
    is_small_section_(false),
2284
    is_large_section_(false),
2285
    generate_code_fills_at_write_(false),
2286
    is_entsize_zero_(false),
2287
    section_offsets_need_adjustment_(false),
2288
    is_noload_(false),
2289
    always_keeps_input_sections_(false),
2290
    has_fixed_layout_(false),
2291 159 khays
    is_patch_space_allowed_(false),
2292 27 khays
    tls_offset_(0),
2293
    checkpoint_(NULL),
2294
    lookup_maps_(new Output_section_lookup_maps),
2295 159 khays
    free_list_(),
2296
    free_space_fill_(NULL),
2297
    patch_space_(0)
2298 27 khays
{
2299
  // An unallocated section has no address.  Forcing this means that
2300
  // we don't need special treatment for symbols defined in debug
2301
  // sections.
2302
  if ((flags & elfcpp::SHF_ALLOC) == 0)
2303
    this->set_address(0);
2304
}
2305
 
2306
Output_section::~Output_section()
2307
{
2308
  delete this->checkpoint_;
2309
}
2310
 
2311
// Set the entry size.
2312
 
2313
void
2314
Output_section::set_entsize(uint64_t v)
2315
{
2316
  if (this->is_entsize_zero_)
2317
    ;
2318
  else if (this->entsize_ == 0)
2319
    this->entsize_ = v;
2320
  else if (this->entsize_ != v)
2321
    {
2322
      this->entsize_ = 0;
2323
      this->is_entsize_zero_ = 1;
2324
    }
2325
}
2326
 
2327
// Add the input section SHNDX, with header SHDR, named SECNAME, in
2328
// OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2329
// relocation section which applies to this section, or 0 if none, or
2330
// -1U if more than one.  Return the offset of the input section
2331
// within the output section.  Return -1 if the input section will
2332
// receive special handling.  In the normal case we don't always keep
2333
// track of input sections for an Output_section.  Instead, each
2334
// Object keeps track of the Output_section for each of its input
2335
// sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2336
// track of input sections here; this is used when SECTIONS appears in
2337
// a linker script.
2338
 
2339
template<int size, bool big_endian>
2340
off_t
2341
Output_section::add_input_section(Layout* layout,
2342
                                  Sized_relobj_file<size, big_endian>* object,
2343
                                  unsigned int shndx,
2344
                                  const char* secname,
2345
                                  const elfcpp::Shdr<size, big_endian>& shdr,
2346
                                  unsigned int reloc_shndx,
2347
                                  bool have_sections_script)
2348
{
2349
  elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2350
  if ((addralign & (addralign - 1)) != 0)
2351
    {
2352
      object->error(_("invalid alignment %lu for section \"%s\""),
2353
                    static_cast<unsigned long>(addralign), secname);
2354
      addralign = 1;
2355
    }
2356
 
2357
  if (addralign > this->addralign_)
2358
    this->addralign_ = addralign;
2359
 
2360
  typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2361
  uint64_t entsize = shdr.get_sh_entsize();
2362
 
2363
  // .debug_str is a mergeable string section, but is not always so
2364
  // marked by compilers.  Mark manually here so we can optimize.
2365
  if (strcmp(secname, ".debug_str") == 0)
2366
    {
2367
      sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2368
      entsize = 1;
2369
    }
2370
 
2371
  this->update_flags_for_input_section(sh_flags);
2372
  this->set_entsize(entsize);
2373
 
2374
  // If this is a SHF_MERGE section, we pass all the input sections to
2375
  // a Output_data_merge.  We don't try to handle relocations for such
2376
  // a section.  We don't try to handle empty merge sections--they
2377
  // mess up the mappings, and are useless anyhow.
2378
  // FIXME: Need to handle merge sections during incremental update.
2379
  if ((sh_flags & elfcpp::SHF_MERGE) != 0
2380
      && reloc_shndx == 0
2381
      && shdr.get_sh_size() > 0
2382
      && !parameters->incremental())
2383
    {
2384
      // Keep information about merged input sections for rebuilding fast
2385
      // lookup maps if we have sections-script or we do relaxation.
2386
      bool keeps_input_sections = (this->always_keeps_input_sections_
2387
                                   || have_sections_script
2388
                                   || parameters->target().may_relax());
2389
 
2390
      if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2391
                                        addralign, keeps_input_sections))
2392
        {
2393
          // Tell the relocation routines that they need to call the
2394
          // output_offset method to determine the final address.
2395
          return -1;
2396
        }
2397
    }
2398
 
2399
  section_size_type input_section_size = shdr.get_sh_size();
2400
  section_size_type uncompressed_size;
2401
  if (object->section_is_compressed(shndx, &uncompressed_size))
2402
    input_section_size = uncompressed_size;
2403
 
2404
  off_t offset_in_section;
2405
  off_t aligned_offset_in_section;
2406
  if (this->has_fixed_layout())
2407
    {
2408
      // For incremental updates, find a chunk of unused space in the section.
2409
      offset_in_section = this->free_list_.allocate(input_section_size,
2410
                                                    addralign, 0);
2411
      if (offset_in_section == -1)
2412 159 khays
        gold_fallback(_("out of patch space in section %s; "
2413
                        "relink with --incremental-full"),
2414
                      this->name());
2415 27 khays
      aligned_offset_in_section = offset_in_section;
2416
    }
2417
  else
2418
    {
2419
      offset_in_section = this->current_data_size_for_child();
2420
      aligned_offset_in_section = align_address(offset_in_section,
2421
                                                addralign);
2422
      this->set_current_data_size_for_child(aligned_offset_in_section
2423
                                            + input_section_size);
2424
    }
2425
 
2426
  // Determine if we want to delay code-fill generation until the output
2427
  // section is written.  When the target is relaxing, we want to delay fill
2428
  // generating to avoid adjusting them during relaxation.  Also, if we are
2429
  // sorting input sections we must delay fill generation.
2430
  if (!this->generate_code_fills_at_write_
2431
      && !have_sections_script
2432
      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2433
      && parameters->target().has_code_fill()
2434
      && (parameters->target().may_relax()
2435 159 khays
          || layout->is_section_ordering_specified()))
2436 27 khays
    {
2437
      gold_assert(this->fills_.empty());
2438
      this->generate_code_fills_at_write_ = true;
2439
    }
2440
 
2441
  if (aligned_offset_in_section > offset_in_section
2442
      && !this->generate_code_fills_at_write_
2443
      && !have_sections_script
2444
      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2445
      && parameters->target().has_code_fill())
2446
    {
2447
      // We need to add some fill data.  Using fill_list_ when
2448
      // possible is an optimization, since we will often have fill
2449
      // sections without input sections.
2450
      off_t fill_len = aligned_offset_in_section - offset_in_section;
2451
      if (this->input_sections_.empty())
2452
        this->fills_.push_back(Fill(offset_in_section, fill_len));
2453
      else
2454
        {
2455
          std::string fill_data(parameters->target().code_fill(fill_len));
2456
          Output_data_const* odc = new Output_data_const(fill_data, 1);
2457
          this->input_sections_.push_back(Input_section(odc));
2458
        }
2459
    }
2460
 
2461
  // We need to keep track of this section if we are already keeping
2462
  // track of sections, or if we are relaxing.  Also, if this is a
2463
  // section which requires sorting, or which may require sorting in
2464
  // the future, we keep track of the sections.  If the
2465
  // --section-ordering-file option is used to specify the order of
2466
  // sections, we need to keep track of sections.
2467
  if (this->always_keeps_input_sections_
2468
      || have_sections_script
2469
      || !this->input_sections_.empty()
2470
      || this->may_sort_attached_input_sections()
2471
      || this->must_sort_attached_input_sections()
2472
      || parameters->options().user_set_Map()
2473
      || parameters->target().may_relax()
2474 159 khays
      || layout->is_section_ordering_specified())
2475 27 khays
    {
2476
      Input_section isecn(object, shndx, input_section_size, addralign);
2477 159 khays
      if (layout->is_section_ordering_specified())
2478 27 khays
        {
2479
          unsigned int section_order_index =
2480
            layout->find_section_order_index(std::string(secname));
2481
          if (section_order_index != 0)
2482
            {
2483
              isecn.set_section_order_index(section_order_index);
2484
              this->set_input_section_order_specified();
2485
            }
2486
        }
2487
      if (this->has_fixed_layout())
2488
        {
2489
          // For incremental updates, finalize the address and offset now.
2490
          uint64_t addr = this->address();
2491
          isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2492
                                            aligned_offset_in_section,
2493
                                            this->offset());
2494
        }
2495
      this->input_sections_.push_back(isecn);
2496
    }
2497
 
2498
  return aligned_offset_in_section;
2499
}
2500
 
2501
// Add arbitrary data to an output section.
2502
 
2503
void
2504
Output_section::add_output_section_data(Output_section_data* posd)
2505
{
2506
  Input_section inp(posd);
2507
  this->add_output_section_data(&inp);
2508
 
2509
  if (posd->is_data_size_valid())
2510
    {
2511
      off_t offset_in_section;
2512
      if (this->has_fixed_layout())
2513
        {
2514
          // For incremental updates, find a chunk of unused space.
2515
          offset_in_section = this->free_list_.allocate(posd->data_size(),
2516
                                                        posd->addralign(), 0);
2517
          if (offset_in_section == -1)
2518 159 khays
            gold_fallback(_("out of patch space in section %s; "
2519
                            "relink with --incremental-full"),
2520
                          this->name());
2521 27 khays
          // Finalize the address and offset now.
2522
          uint64_t addr = this->address();
2523
          off_t offset = this->offset();
2524
          posd->set_address_and_file_offset(addr + offset_in_section,
2525
                                            offset + offset_in_section);
2526
        }
2527
      else
2528
        {
2529
          offset_in_section = this->current_data_size_for_child();
2530
          off_t aligned_offset_in_section = align_address(offset_in_section,
2531
                                                          posd->addralign());
2532
          this->set_current_data_size_for_child(aligned_offset_in_section
2533
                                                + posd->data_size());
2534
        }
2535
    }
2536
  else if (this->has_fixed_layout())
2537
    {
2538
      // For incremental updates, arrange for the data to have a fixed layout.
2539
      // This will mean that additions to the data must be allocated from
2540
      // free space within the containing output section.
2541
      uint64_t addr = this->address();
2542
      posd->set_address(addr);
2543
      posd->set_file_offset(0);
2544
      // FIXME: This should eventually be unreachable.
2545
      // gold_unreachable();
2546
    }
2547
}
2548
 
2549
// Add a relaxed input section.
2550
 
2551
void
2552
Output_section::add_relaxed_input_section(Layout* layout,
2553
                                          Output_relaxed_input_section* poris,
2554
                                          const std::string& name)
2555
{
2556
  Input_section inp(poris);
2557
 
2558
  // If the --section-ordering-file option is used to specify the order of
2559
  // sections, we need to keep track of sections.
2560 159 khays
  if (layout->is_section_ordering_specified())
2561 27 khays
    {
2562
      unsigned int section_order_index =
2563
        layout->find_section_order_index(name);
2564
      if (section_order_index != 0)
2565
        {
2566
          inp.set_section_order_index(section_order_index);
2567
          this->set_input_section_order_specified();
2568
        }
2569
    }
2570
 
2571
  this->add_output_section_data(&inp);
2572
  if (this->lookup_maps_->is_valid())
2573
    this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2574
                                                  poris->shndx(), poris);
2575
 
2576
  // For a relaxed section, we use the current data size.  Linker scripts
2577
  // get all the input sections, including relaxed one from an output
2578
  // section and add them back to them same output section to compute the
2579
  // output section size.  If we do not account for sizes of relaxed input
2580
  // sections,  an output section would be incorrectly sized.
2581
  off_t offset_in_section = this->current_data_size_for_child();
2582
  off_t aligned_offset_in_section = align_address(offset_in_section,
2583
                                                  poris->addralign());
2584
  this->set_current_data_size_for_child(aligned_offset_in_section
2585
                                        + poris->current_data_size());
2586
}
2587
 
2588
// Add arbitrary data to an output section by Input_section.
2589
 
2590
void
2591
Output_section::add_output_section_data(Input_section* inp)
2592
{
2593
  if (this->input_sections_.empty())
2594
    this->first_input_offset_ = this->current_data_size_for_child();
2595
 
2596
  this->input_sections_.push_back(*inp);
2597
 
2598
  uint64_t addralign = inp->addralign();
2599
  if (addralign > this->addralign_)
2600
    this->addralign_ = addralign;
2601
 
2602
  inp->set_output_section(this);
2603
}
2604
 
2605
// Add a merge section to an output section.
2606
 
2607
void
2608
Output_section::add_output_merge_section(Output_section_data* posd,
2609
                                         bool is_string, uint64_t entsize)
2610
{
2611
  Input_section inp(posd, is_string, entsize);
2612
  this->add_output_section_data(&inp);
2613
}
2614
 
2615
// Add an input section to a SHF_MERGE section.
2616
 
2617
bool
2618
Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2619
                                        uint64_t flags, uint64_t entsize,
2620
                                        uint64_t addralign,
2621
                                        bool keeps_input_sections)
2622
{
2623
  bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2624
 
2625
  // We only merge strings if the alignment is not more than the
2626
  // character size.  This could be handled, but it's unusual.
2627
  if (is_string && addralign > entsize)
2628
    return false;
2629
 
2630
  // We cannot restore merged input section states.
2631
  gold_assert(this->checkpoint_ == NULL);
2632
 
2633
  // Look up merge sections by required properties.
2634
  // Currently, we only invalidate the lookup maps in script processing
2635
  // and relaxation.  We should not have done either when we reach here.
2636
  // So we assume that the lookup maps are valid to simply code.
2637
  gold_assert(this->lookup_maps_->is_valid());
2638
  Merge_section_properties msp(is_string, entsize, addralign);
2639
  Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2640
  bool is_new = false;
2641
  if (pomb != NULL)
2642
    {
2643
      gold_assert(pomb->is_string() == is_string
2644
                  && pomb->entsize() == entsize
2645
                  && pomb->addralign() == addralign);
2646
    }
2647
  else
2648
    {
2649
      // Create a new Output_merge_data or Output_merge_string_data.
2650
      if (!is_string)
2651
        pomb = new Output_merge_data(entsize, addralign);
2652
      else
2653
        {
2654
          switch (entsize)
2655
            {
2656
            case 1:
2657
              pomb = new Output_merge_string<char>(addralign);
2658
              break;
2659
            case 2:
2660
              pomb = new Output_merge_string<uint16_t>(addralign);
2661
              break;
2662
            case 4:
2663
              pomb = new Output_merge_string<uint32_t>(addralign);
2664
              break;
2665
            default:
2666
              return false;
2667
            }
2668
        }
2669
      // If we need to do script processing or relaxation, we need to keep
2670
      // the original input sections to rebuild the fast lookup maps.
2671
      if (keeps_input_sections)
2672
        pomb->set_keeps_input_sections();
2673
      is_new = true;
2674
    }
2675
 
2676
  if (pomb->add_input_section(object, shndx))
2677
    {
2678
      // Add new merge section to this output section and link merge
2679
      // section properties to new merge section in map.
2680
      if (is_new)
2681
        {
2682
          this->add_output_merge_section(pomb, is_string, entsize);
2683
          this->lookup_maps_->add_merge_section(msp, pomb);
2684
        }
2685
 
2686
      // Add input section to new merge section and link input section to new
2687
      // merge section in map.
2688
      this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2689
      return true;
2690
    }
2691
  else
2692
    {
2693
      // If add_input_section failed, delete new merge section to avoid
2694
      // exporting empty merge sections in Output_section::get_input_section.
2695
      if (is_new)
2696
        delete pomb;
2697
      return false;
2698
    }
2699
}
2700
 
2701
// Build a relaxation map to speed up relaxation of existing input sections.
2702
// Look up to the first LIMIT elements in INPUT_SECTIONS.
2703
 
2704
void
2705
Output_section::build_relaxation_map(
2706
  const Input_section_list& input_sections,
2707
  size_t limit,
2708
  Relaxation_map* relaxation_map) const
2709
{
2710
  for (size_t i = 0; i < limit; ++i)
2711
    {
2712
      const Input_section& is(input_sections[i]);
2713
      if (is.is_input_section() || is.is_relaxed_input_section())
2714
        {
2715
          Section_id sid(is.relobj(), is.shndx());
2716
          (*relaxation_map)[sid] = i;
2717
        }
2718
    }
2719
}
2720
 
2721
// Convert regular input sections in INPUT_SECTIONS into relaxed input
2722
// sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2723
// indices of INPUT_SECTIONS.
2724
 
2725
void
2726
Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727
  const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728
  const Relaxation_map& map,
2729
  Input_section_list* input_sections)
2730
{
2731
  for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732
    {
2733
      Output_relaxed_input_section* poris = relaxed_sections[i];
2734
      Section_id sid(poris->relobj(), poris->shndx());
2735
      Relaxation_map::const_iterator p = map.find(sid);
2736
      gold_assert(p != map.end());
2737
      gold_assert((*input_sections)[p->second].is_input_section());
2738
 
2739
      // Remember section order index of original input section
2740
      // if it is set.  Copy it to the relaxed input section.
2741
      unsigned int soi =
2742
        (*input_sections)[p->second].section_order_index();
2743
      (*input_sections)[p->second] = Input_section(poris);
2744
      (*input_sections)[p->second].set_section_order_index(soi);
2745
    }
2746
}
2747
 
2748
// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749
// is a vector of pointers to Output_relaxed_input_section or its derived
2750
// classes.  The relaxed sections must correspond to existing input sections.
2751
 
2752
void
2753
Output_section::convert_input_sections_to_relaxed_sections(
2754
  const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755
{
2756
  gold_assert(parameters->target().may_relax());
2757
 
2758
  // We want to make sure that restore_states does not undo the effect of
2759
  // this.  If there is no checkpoint active, just search the current
2760
  // input section list and replace the sections there.  If there is
2761
  // a checkpoint, also replace the sections there.
2762
 
2763
  // By default, we look at the whole list.
2764
  size_t limit = this->input_sections_.size();
2765
 
2766
  if (this->checkpoint_ != NULL)
2767
    {
2768
      // Replace input sections with relaxed input section in the saved
2769
      // copy of the input section list.
2770
      if (this->checkpoint_->input_sections_saved())
2771
        {
2772
          Relaxation_map map;
2773
          this->build_relaxation_map(
2774
                    *(this->checkpoint_->input_sections()),
2775
                    this->checkpoint_->input_sections()->size(),
2776
                    &map);
2777
          this->convert_input_sections_in_list_to_relaxed_sections(
2778
                    relaxed_sections,
2779
                    map,
2780
                    this->checkpoint_->input_sections());
2781
        }
2782
      else
2783
        {
2784
          // We have not copied the input section list yet.  Instead, just
2785
          // look at the portion that would be saved.
2786
          limit = this->checkpoint_->input_sections_size();
2787
        }
2788
    }
2789
 
2790
  // Convert input sections in input_section_list.
2791
  Relaxation_map map;
2792
  this->build_relaxation_map(this->input_sections_, limit, &map);
2793
  this->convert_input_sections_in_list_to_relaxed_sections(
2794
            relaxed_sections,
2795
            map,
2796
            &this->input_sections_);
2797
 
2798
  // Update fast look-up map.
2799
  if (this->lookup_maps_->is_valid())
2800
    for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801
      {
2802
        Output_relaxed_input_section* poris = relaxed_sections[i];
2803
        this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804
                                                      poris->shndx(), poris);
2805
      }
2806
}
2807
 
2808
// Update the output section flags based on input section flags.
2809
 
2810
void
2811
Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2812
{
2813
  // If we created the section with SHF_ALLOC clear, we set the
2814
  // address.  If we are now setting the SHF_ALLOC flag, we need to
2815
  // undo that.
2816
  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2817
      && (flags & elfcpp::SHF_ALLOC) != 0)
2818
    this->mark_address_invalid();
2819
 
2820
  this->flags_ |= (flags
2821
                   & (elfcpp::SHF_WRITE
2822
                      | elfcpp::SHF_ALLOC
2823
                      | elfcpp::SHF_EXECINSTR));
2824
 
2825
  if ((flags & elfcpp::SHF_MERGE) == 0)
2826
    this->flags_ &=~ elfcpp::SHF_MERGE;
2827
  else
2828
    {
2829
      if (this->current_data_size_for_child() == 0)
2830
        this->flags_ |= elfcpp::SHF_MERGE;
2831
    }
2832
 
2833
  if ((flags & elfcpp::SHF_STRINGS) == 0)
2834
    this->flags_ &=~ elfcpp::SHF_STRINGS;
2835
  else
2836
    {
2837
      if (this->current_data_size_for_child() == 0)
2838
        this->flags_ |= elfcpp::SHF_STRINGS;
2839
    }
2840
}
2841
 
2842
// Find the merge section into which an input section with index SHNDX in
2843
// OBJECT has been added.  Return NULL if none found.
2844
 
2845
Output_section_data*
2846
Output_section::find_merge_section(const Relobj* object,
2847
                                   unsigned int shndx) const
2848
{
2849
  if (!this->lookup_maps_->is_valid())
2850
    this->build_lookup_maps();
2851
  return this->lookup_maps_->find_merge_section(object, shndx);
2852
}
2853
 
2854
// Build the lookup maps for merge and relaxed sections.  This is needs
2855
// to be declared as a const methods so that it is callable with a const
2856
// Output_section pointer.  The method only updates states of the maps.
2857
 
2858
void
2859
Output_section::build_lookup_maps() const
2860
{
2861
  this->lookup_maps_->clear();
2862
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
2863
       p != this->input_sections_.end();
2864
       ++p)
2865
    {
2866
      if (p->is_merge_section())
2867
        {
2868
          Output_merge_base* pomb = p->output_merge_base();
2869
          Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2870
                                       pomb->addralign());
2871
          this->lookup_maps_->add_merge_section(msp, pomb);
2872
          for (Output_merge_base::Input_sections::const_iterator is =
2873
                 pomb->input_sections_begin();
2874
               is != pomb->input_sections_end();
2875
               ++is)
2876
            {
2877
              const Const_section_id& csid = *is;
2878
            this->lookup_maps_->add_merge_input_section(csid.first,
2879
                                                        csid.second, pomb);
2880
            }
2881
 
2882
        }
2883
      else if (p->is_relaxed_input_section())
2884
        {
2885
          Output_relaxed_input_section* poris = p->relaxed_input_section();
2886
          this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2887
                                                        poris->shndx(), poris);
2888
        }
2889
    }
2890
}
2891
 
2892
// Find an relaxed input section corresponding to an input section
2893
// in OBJECT with index SHNDX.
2894
 
2895
const Output_relaxed_input_section*
2896
Output_section::find_relaxed_input_section(const Relobj* object,
2897
                                           unsigned int shndx) const
2898
{
2899
  if (!this->lookup_maps_->is_valid())
2900
    this->build_lookup_maps();
2901
  return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2902
}
2903
 
2904
// Given an address OFFSET relative to the start of input section
2905
// SHNDX in OBJECT, return whether this address is being included in
2906
// the final link.  This should only be called if SHNDX in OBJECT has
2907
// a special mapping.
2908
 
2909
bool
2910
Output_section::is_input_address_mapped(const Relobj* object,
2911
                                        unsigned int shndx,
2912
                                        off_t offset) const
2913
{
2914
  // Look at the Output_section_data_maps first.
2915
  const Output_section_data* posd = this->find_merge_section(object, shndx);
2916
  if (posd == NULL)
2917
    posd = this->find_relaxed_input_section(object, shndx);
2918
 
2919
  if (posd != NULL)
2920
    {
2921
      section_offset_type output_offset;
2922
      bool found = posd->output_offset(object, shndx, offset, &output_offset);
2923
      gold_assert(found);
2924
      return output_offset != -1;
2925
    }
2926
 
2927
  // Fall back to the slow look-up.
2928
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929
       p != this->input_sections_.end();
2930
       ++p)
2931
    {
2932
      section_offset_type output_offset;
2933
      if (p->output_offset(object, shndx, offset, &output_offset))
2934
        return output_offset != -1;
2935
    }
2936
 
2937
  // By default we assume that the address is mapped.  This should
2938
  // only be called after we have passed all sections to Layout.  At
2939
  // that point we should know what we are discarding.
2940
  return true;
2941
}
2942
 
2943
// Given an address OFFSET relative to the start of input section
2944
// SHNDX in object OBJECT, return the output offset relative to the
2945
// start of the input section in the output section.  This should only
2946
// be called if SHNDX in OBJECT has a special mapping.
2947
 
2948
section_offset_type
2949
Output_section::output_offset(const Relobj* object, unsigned int shndx,
2950
                              section_offset_type offset) const
2951
{
2952
  // This can only be called meaningfully when we know the data size
2953
  // of this.
2954
  gold_assert(this->is_data_size_valid());
2955
 
2956
  // Look at the Output_section_data_maps first.
2957
  const Output_section_data* posd = this->find_merge_section(object, shndx);
2958
  if (posd == NULL)
2959
    posd = this->find_relaxed_input_section(object, shndx);
2960
  if (posd != NULL)
2961
    {
2962
      section_offset_type output_offset;
2963
      bool found = posd->output_offset(object, shndx, offset, &output_offset);
2964
      gold_assert(found);
2965
      return output_offset;
2966
    }
2967
 
2968
  // Fall back to the slow look-up.
2969
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
2970
       p != this->input_sections_.end();
2971
       ++p)
2972
    {
2973
      section_offset_type output_offset;
2974
      if (p->output_offset(object, shndx, offset, &output_offset))
2975
        return output_offset;
2976
    }
2977
  gold_unreachable();
2978
}
2979
 
2980
// Return the output virtual address of OFFSET relative to the start
2981
// of input section SHNDX in object OBJECT.
2982
 
2983
uint64_t
2984
Output_section::output_address(const Relobj* object, unsigned int shndx,
2985
                               off_t offset) const
2986
{
2987
  uint64_t addr = this->address() + this->first_input_offset_;
2988
 
2989
  // Look at the Output_section_data_maps first.
2990
  const Output_section_data* posd = this->find_merge_section(object, shndx);
2991
  if (posd == NULL)
2992
    posd = this->find_relaxed_input_section(object, shndx);
2993
  if (posd != NULL && posd->is_address_valid())
2994
    {
2995
      section_offset_type output_offset;
2996
      bool found = posd->output_offset(object, shndx, offset, &output_offset);
2997
      gold_assert(found);
2998
      return posd->address() + output_offset;
2999
    }
3000
 
3001
  // Fall back to the slow look-up.
3002
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
3003
       p != this->input_sections_.end();
3004
       ++p)
3005
    {
3006
      addr = align_address(addr, p->addralign());
3007
      section_offset_type output_offset;
3008
      if (p->output_offset(object, shndx, offset, &output_offset))
3009
        {
3010
          if (output_offset == -1)
3011
            return -1ULL;
3012
          return addr + output_offset;
3013
        }
3014
      addr += p->data_size();
3015
    }
3016
 
3017
  // If we get here, it means that we don't know the mapping for this
3018
  // input section.  This might happen in principle if
3019
  // add_input_section were called before add_output_section_data.
3020
  // But it should never actually happen.
3021
 
3022
  gold_unreachable();
3023
}
3024
 
3025
// Find the output address of the start of the merged section for
3026
// input section SHNDX in object OBJECT.
3027
 
3028
bool
3029
Output_section::find_starting_output_address(const Relobj* object,
3030
                                             unsigned int shndx,
3031
                                             uint64_t* paddr) const
3032
{
3033
  // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3034
  // Looking up the merge section map does not always work as we sometimes
3035
  // find a merge section without its address set.
3036
  uint64_t addr = this->address() + this->first_input_offset_;
3037
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
3038
       p != this->input_sections_.end();
3039
       ++p)
3040
    {
3041
      addr = align_address(addr, p->addralign());
3042
 
3043
      // It would be nice if we could use the existing output_offset
3044
      // method to get the output offset of input offset 0.
3045
      // Unfortunately we don't know for sure that input offset 0 is
3046
      // mapped at all.
3047
      if (p->is_merge_section_for(object, shndx))
3048
        {
3049
          *paddr = addr;
3050
          return true;
3051
        }
3052
 
3053
      addr += p->data_size();
3054
    }
3055
 
3056
  // We couldn't find a merge output section for this input section.
3057
  return false;
3058
}
3059
 
3060
// Update the data size of an Output_section.
3061
 
3062
void
3063
Output_section::update_data_size()
3064
{
3065
  if (this->input_sections_.empty())
3066
      return;
3067
 
3068
  if (this->must_sort_attached_input_sections()
3069
      || this->input_section_order_specified())
3070
    this->sort_attached_input_sections();
3071
 
3072
  off_t off = this->first_input_offset_;
3073
  for (Input_section_list::iterator p = this->input_sections_.begin();
3074
       p != this->input_sections_.end();
3075
       ++p)
3076
    {
3077
      off = align_address(off, p->addralign());
3078
      off += p->current_data_size();
3079
    }
3080
 
3081
  this->set_current_data_size_for_child(off);
3082
}
3083
 
3084
// Set the data size of an Output_section.  This is where we handle
3085
// setting the addresses of any Output_section_data objects.
3086
 
3087
void
3088
Output_section::set_final_data_size()
3089
{
3090 159 khays
  off_t data_size;
3091
 
3092 27 khays
  if (this->input_sections_.empty())
3093 159 khays
    data_size = this->current_data_size_for_child();
3094
  else
3095 27 khays
    {
3096 159 khays
      if (this->must_sort_attached_input_sections()
3097
          || this->input_section_order_specified())
3098
        this->sort_attached_input_sections();
3099
 
3100
      uint64_t address = this->address();
3101
      off_t startoff = this->offset();
3102
      off_t off = startoff + this->first_input_offset_;
3103
      for (Input_section_list::iterator p = this->input_sections_.begin();
3104
           p != this->input_sections_.end();
3105
           ++p)
3106
        {
3107
          off = align_address(off, p->addralign());
3108
          p->set_address_and_file_offset(address + (off - startoff), off,
3109
                                         startoff);
3110
          off += p->data_size();
3111
        }
3112
      data_size = off - startoff;
3113 27 khays
    }
3114
 
3115 159 khays
  // For full incremental links, we want to allocate some patch space
3116
  // in most sections for subsequent incremental updates.
3117
  if (this->is_patch_space_allowed_ && parameters->incremental_full())
3118 27 khays
    {
3119 159 khays
      double pct = parameters->options().incremental_patch();
3120
      size_t extra = static_cast<size_t>(data_size * pct);
3121
      if (this->free_space_fill_ != NULL
3122
          && this->free_space_fill_->minimum_hole_size() > extra)
3123
        extra = this->free_space_fill_->minimum_hole_size();
3124
      off_t new_size = align_address(data_size + extra, this->addralign());
3125
      this->patch_space_ = new_size - data_size;
3126
      gold_debug(DEBUG_INCREMENTAL,
3127
                 "set_final_data_size: %08lx + %08lx: section %s",
3128
                 static_cast<long>(data_size),
3129
                 static_cast<long>(this->patch_space_),
3130
                 this->name());
3131
      data_size = new_size;
3132 27 khays
    }
3133
 
3134 159 khays
  this->set_data_size(data_size);
3135 27 khays
}
3136
 
3137
// Reset the address and file offset.
3138
 
3139
void
3140
Output_section::do_reset_address_and_file_offset()
3141
{
3142
  // An unallocated section has no address.  Forcing this means that
3143
  // we don't need special treatment for symbols defined in debug
3144
  // sections.  We do the same in the constructor.  This does not
3145
  // apply to NOLOAD sections though.
3146
  if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3147
     this->set_address(0);
3148
 
3149
  for (Input_section_list::iterator p = this->input_sections_.begin();
3150
       p != this->input_sections_.end();
3151
       ++p)
3152
    p->reset_address_and_file_offset();
3153 159 khays
 
3154
  // Remove any patch space that was added in set_final_data_size.
3155
  if (this->patch_space_ > 0)
3156
    {
3157
      this->set_current_data_size_for_child(this->current_data_size_for_child()
3158
                                            - this->patch_space_);
3159
      this->patch_space_ = 0;
3160
    }
3161 27 khays
}
3162 159 khays
 
3163 27 khays
// Return true if address and file offset have the values after reset.
3164
 
3165
bool
3166
Output_section::do_address_and_file_offset_have_reset_values() const
3167
{
3168
  if (this->is_offset_valid())
3169
    return false;
3170
 
3171
  // An unallocated section has address 0 after its construction or a reset.
3172
  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3173
    return this->is_address_valid() && this->address() == 0;
3174
  else
3175
    return !this->is_address_valid();
3176
}
3177
 
3178
// Set the TLS offset.  Called only for SHT_TLS sections.
3179
 
3180
void
3181
Output_section::do_set_tls_offset(uint64_t tls_base)
3182
{
3183
  this->tls_offset_ = this->address() - tls_base;
3184
}
3185
 
3186
// In a few cases we need to sort the input sections attached to an
3187
// output section.  This is used to implement the type of constructor
3188
// priority ordering implemented by the GNU linker, in which the
3189
// priority becomes part of the section name and the sections are
3190
// sorted by name.  We only do this for an output section if we see an
3191 159 khays
// attached input section matching ".ctors.*", ".dtors.*",
3192 27 khays
// ".init_array.*" or ".fini_array.*".
3193
 
3194
class Output_section::Input_section_sort_entry
3195
{
3196
 public:
3197
  Input_section_sort_entry()
3198
    : input_section_(), index_(-1U), section_has_name_(false),
3199
      section_name_()
3200
  { }
3201
 
3202
  Input_section_sort_entry(const Input_section& input_section,
3203
                           unsigned int index,
3204
                           bool must_sort_attached_input_sections)
3205
    : input_section_(input_section), index_(index),
3206
      section_has_name_(input_section.is_input_section()
3207
                        || input_section.is_relaxed_input_section())
3208
  {
3209
    if (this->section_has_name_
3210
        && must_sort_attached_input_sections)
3211
      {
3212
        // This is only called single-threaded from Layout::finalize,
3213
        // so it is OK to lock.  Unfortunately we have no way to pass
3214
        // in a Task token.
3215
        const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3216
        Object* obj = (input_section.is_input_section()
3217
                       ? input_section.relobj()
3218
                       : input_section.relaxed_input_section()->relobj());
3219
        Task_lock_obj<Object> tl(dummy_task, obj);
3220
 
3221
        // This is a slow operation, which should be cached in
3222
        // Layout::layout if this becomes a speed problem.
3223
        this->section_name_ = obj->section_name(input_section.shndx());
3224
      }
3225
  }
3226
 
3227
  // Return the Input_section.
3228
  const Input_section&
3229
  input_section() const
3230
  {
3231
    gold_assert(this->index_ != -1U);
3232
    return this->input_section_;
3233
  }
3234
 
3235
  // The index of this entry in the original list.  This is used to
3236
  // make the sort stable.
3237
  unsigned int
3238
  index() const
3239
  {
3240
    gold_assert(this->index_ != -1U);
3241
    return this->index_;
3242
  }
3243
 
3244
  // Whether there is a section name.
3245
  bool
3246
  section_has_name() const
3247
  { return this->section_has_name_; }
3248
 
3249
  // The section name.
3250
  const std::string&
3251
  section_name() const
3252
  {
3253
    gold_assert(this->section_has_name_);
3254
    return this->section_name_;
3255
  }
3256
 
3257
  // Return true if the section name has a priority.  This is assumed
3258
  // to be true if it has a dot after the initial dot.
3259
  bool
3260
  has_priority() const
3261
  {
3262
    gold_assert(this->section_has_name_);
3263
    return this->section_name_.find('.', 1) != std::string::npos;
3264
  }
3265
 
3266 159 khays
  // Return the priority.  Believe it or not, gcc encodes the priority
3267
  // differently for .ctors/.dtors and .init_array/.fini_array
3268
  // sections.
3269
  unsigned int
3270
  get_priority() const
3271
  {
3272
    gold_assert(this->section_has_name_);
3273
    bool is_ctors;
3274
    if (is_prefix_of(".ctors.", this->section_name_.c_str())
3275
        || is_prefix_of(".dtors.", this->section_name_.c_str()))
3276
      is_ctors = true;
3277
    else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3278
             || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3279
      is_ctors = false;
3280
    else
3281
      return 0;
3282
    char* end;
3283
    unsigned long prio = strtoul((this->section_name_.c_str()
3284
                                  + (is_ctors ? 7 : 12)),
3285
                                 &end, 10);
3286
    if (*end != '\0')
3287
      return 0;
3288
    else if (is_ctors)
3289
      return 65535 - prio;
3290
    else
3291
      return prio;
3292
  }
3293
 
3294 27 khays
  // Return true if this an input file whose base name matches
3295
  // FILE_NAME.  The base name must have an extension of ".o", and
3296
  // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3297
  // This is to match crtbegin.o as well as crtbeginS.o without
3298
  // getting confused by other possibilities.  Overall matching the
3299
  // file name this way is a dreadful hack, but the GNU linker does it
3300
  // in order to better support gcc, and we need to be compatible.
3301
  bool
3302 159 khays
  match_file_name(const char* file_name) const
3303
  { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3304 27 khays
 
3305
  // Returns 1 if THIS should appear before S in section order, -1 if S
3306
  // appears before THIS and 0 if they are not comparable.
3307
  int
3308
  compare_section_ordering(const Input_section_sort_entry& s) const
3309
  {
3310
    unsigned int this_secn_index = this->input_section_.section_order_index();
3311
    unsigned int s_secn_index = s.input_section().section_order_index();
3312
    if (this_secn_index > 0 && s_secn_index > 0)
3313
      {
3314
        if (this_secn_index < s_secn_index)
3315
          return 1;
3316
        else if (this_secn_index > s_secn_index)
3317
          return -1;
3318
      }
3319
    return 0;
3320
  }
3321
 
3322
 private:
3323
  // The Input_section we are sorting.
3324
  Input_section input_section_;
3325
  // The index of this Input_section in the original list.
3326
  unsigned int index_;
3327
  // Whether this Input_section has a section name--it won't if this
3328
  // is some random Output_section_data.
3329
  bool section_has_name_;
3330
  // The section name if there is one.
3331
  std::string section_name_;
3332
};
3333
 
3334
// Return true if S1 should come before S2 in the output section.
3335
 
3336
bool
3337
Output_section::Input_section_sort_compare::operator()(
3338
    const Output_section::Input_section_sort_entry& s1,
3339
    const Output_section::Input_section_sort_entry& s2) const
3340
{
3341
  // crtbegin.o must come first.
3342
  bool s1_begin = s1.match_file_name("crtbegin");
3343
  bool s2_begin = s2.match_file_name("crtbegin");
3344
  if (s1_begin || s2_begin)
3345
    {
3346
      if (!s1_begin)
3347
        return false;
3348
      if (!s2_begin)
3349
        return true;
3350
      return s1.index() < s2.index();
3351
    }
3352
 
3353
  // crtend.o must come last.
3354
  bool s1_end = s1.match_file_name("crtend");
3355
  bool s2_end = s2.match_file_name("crtend");
3356
  if (s1_end || s2_end)
3357
    {
3358
      if (!s1_end)
3359
        return true;
3360
      if (!s2_end)
3361
        return false;
3362
      return s1.index() < s2.index();
3363
    }
3364
 
3365
  // We sort all the sections with no names to the end.
3366
  if (!s1.section_has_name() || !s2.section_has_name())
3367
    {
3368
      if (s1.section_has_name())
3369
        return true;
3370
      if (s2.section_has_name())
3371
        return false;
3372
      return s1.index() < s2.index();
3373
    }
3374
 
3375
  // A section with a priority follows a section without a priority.
3376
  bool s1_has_priority = s1.has_priority();
3377
  bool s2_has_priority = s2.has_priority();
3378
  if (s1_has_priority && !s2_has_priority)
3379
    return false;
3380
  if (!s1_has_priority && s2_has_priority)
3381
    return true;
3382
 
3383
  // Check if a section order exists for these sections through a section
3384
  // ordering file.  If sequence_num is 0, an order does not exist.
3385
  int sequence_num = s1.compare_section_ordering(s2);
3386
  if (sequence_num != 0)
3387
    return sequence_num == 1;
3388
 
3389
  // Otherwise we sort by name.
3390
  int compare = s1.section_name().compare(s2.section_name());
3391
  if (compare != 0)
3392
    return compare < 0;
3393
 
3394
  // Otherwise we keep the input order.
3395
  return s1.index() < s2.index();
3396
}
3397
 
3398
// Return true if S1 should come before S2 in an .init_array or .fini_array
3399
// output section.
3400
 
3401
bool
3402
Output_section::Input_section_sort_init_fini_compare::operator()(
3403
    const Output_section::Input_section_sort_entry& s1,
3404
    const Output_section::Input_section_sort_entry& s2) const
3405
{
3406
  // We sort all the sections with no names to the end.
3407
  if (!s1.section_has_name() || !s2.section_has_name())
3408
    {
3409
      if (s1.section_has_name())
3410
        return true;
3411
      if (s2.section_has_name())
3412
        return false;
3413
      return s1.index() < s2.index();
3414
    }
3415
 
3416
  // A section without a priority follows a section with a priority.
3417
  // This is the reverse of .ctors and .dtors sections.
3418
  bool s1_has_priority = s1.has_priority();
3419
  bool s2_has_priority = s2.has_priority();
3420
  if (s1_has_priority && !s2_has_priority)
3421
    return true;
3422
  if (!s1_has_priority && s2_has_priority)
3423
    return false;
3424
 
3425 159 khays
  // .ctors and .dtors sections without priority come after
3426
  // .init_array and .fini_array sections without priority.
3427
  if (!s1_has_priority
3428
      && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3429
      && s1.section_name() != s2.section_name())
3430
    return false;
3431
  if (!s2_has_priority
3432
      && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3433
      && s2.section_name() != s1.section_name())
3434
    return true;
3435
 
3436
  // Sort by priority if we can.
3437
  if (s1_has_priority)
3438
    {
3439
      unsigned int s1_prio = s1.get_priority();
3440
      unsigned int s2_prio = s2.get_priority();
3441
      if (s1_prio < s2_prio)
3442
        return true;
3443
      else if (s1_prio > s2_prio)
3444
        return false;
3445
    }
3446
 
3447 27 khays
  // Check if a section order exists for these sections through a section
3448
  // ordering file.  If sequence_num is 0, an order does not exist.
3449
  int sequence_num = s1.compare_section_ordering(s2);
3450
  if (sequence_num != 0)
3451
    return sequence_num == 1;
3452
 
3453
  // Otherwise we sort by name.
3454
  int compare = s1.section_name().compare(s2.section_name());
3455
  if (compare != 0)
3456
    return compare < 0;
3457
 
3458
  // Otherwise we keep the input order.
3459
  return s1.index() < s2.index();
3460
}
3461
 
3462
// Return true if S1 should come before S2.  Sections that do not match
3463
// any pattern in the section ordering file are placed ahead of the sections
3464
// that match some pattern.
3465
 
3466
bool
3467
Output_section::Input_section_sort_section_order_index_compare::operator()(
3468
    const Output_section::Input_section_sort_entry& s1,
3469
    const Output_section::Input_section_sort_entry& s2) const
3470
{
3471
  unsigned int s1_secn_index = s1.input_section().section_order_index();
3472
  unsigned int s2_secn_index = s2.input_section().section_order_index();
3473
 
3474
  // Keep input order if section ordering cannot determine order.
3475
  if (s1_secn_index == s2_secn_index)
3476
    return s1.index() < s2.index();
3477
 
3478
  return s1_secn_index < s2_secn_index;
3479
}
3480
 
3481 159 khays
// This updates the section order index of input sections according to the
3482
// the order specified in the mapping from Section id to order index.
3483
 
3484
void
3485
Output_section::update_section_layout(
3486
  const Section_layout_order& order_map)
3487
{
3488
  for (Input_section_list::iterator p = this->input_sections_.begin();
3489
       p != this->input_sections_.end();
3490
       ++p)
3491
    {
3492
      if (p->is_input_section()
3493
          || p->is_relaxed_input_section())
3494
        {
3495
          Object* obj = (p->is_input_section()
3496
                         ? p->relobj()
3497
                         : p->relaxed_input_section()->relobj());
3498
          unsigned int shndx = p->shndx();
3499
          Section_layout_order::const_iterator it
3500
            = order_map.find(Section_id(obj, shndx));
3501
          if (it == order_map.end())
3502
            continue;
3503
          unsigned int section_order_index = it->second;
3504
          if (section_order_index != 0)
3505
            {
3506
              p->set_section_order_index(section_order_index);
3507
              this->set_input_section_order_specified();
3508
            }
3509
        }
3510
    }
3511
}
3512
 
3513 27 khays
// Sort the input sections attached to an output section.
3514
 
3515
void
3516
Output_section::sort_attached_input_sections()
3517
{
3518
  if (this->attached_input_sections_are_sorted_)
3519
    return;
3520
 
3521
  if (this->checkpoint_ != NULL
3522
      && !this->checkpoint_->input_sections_saved())
3523
    this->checkpoint_->save_input_sections();
3524
 
3525
  // The only thing we know about an input section is the object and
3526
  // the section index.  We need the section name.  Recomputing this
3527
  // is slow but this is an unusual case.  If this becomes a speed
3528
  // problem we can cache the names as required in Layout::layout.
3529
 
3530
  // We start by building a larger vector holding a copy of each
3531
  // Input_section, plus its current index in the list and its name.
3532
  std::vector<Input_section_sort_entry> sort_list;
3533
 
3534
  unsigned int i = 0;
3535
  for (Input_section_list::iterator p = this->input_sections_.begin();
3536
       p != this->input_sections_.end();
3537
       ++p, ++i)
3538
      sort_list.push_back(Input_section_sort_entry(*p, i,
3539
                            this->must_sort_attached_input_sections()));
3540
 
3541
  // Sort the input sections.
3542
  if (this->must_sort_attached_input_sections())
3543
    {
3544
      if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3545
          || this->type() == elfcpp::SHT_INIT_ARRAY
3546
          || this->type() == elfcpp::SHT_FINI_ARRAY)
3547
        std::sort(sort_list.begin(), sort_list.end(),
3548
                  Input_section_sort_init_fini_compare());
3549
      else
3550
        std::sort(sort_list.begin(), sort_list.end(),
3551
                  Input_section_sort_compare());
3552
    }
3553
  else
3554
    {
3555 159 khays
      gold_assert(this->input_section_order_specified());
3556 27 khays
      std::sort(sort_list.begin(), sort_list.end(),
3557
                Input_section_sort_section_order_index_compare());
3558
    }
3559
 
3560
  // Copy the sorted input sections back to our list.
3561
  this->input_sections_.clear();
3562
  for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3563
       p != sort_list.end();
3564
       ++p)
3565
    this->input_sections_.push_back(p->input_section());
3566
  sort_list.clear();
3567
 
3568
  // Remember that we sorted the input sections, since we might get
3569
  // called again.
3570
  this->attached_input_sections_are_sorted_ = true;
3571
}
3572
 
3573
// Write the section header to *OSHDR.
3574
 
3575
template<int size, bool big_endian>
3576
void
3577
Output_section::write_header(const Layout* layout,
3578
                             const Stringpool* secnamepool,
3579
                             elfcpp::Shdr_write<size, big_endian>* oshdr) const
3580
{
3581
  oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3582
  oshdr->put_sh_type(this->type_);
3583
 
3584
  elfcpp::Elf_Xword flags = this->flags_;
3585
  if (this->info_section_ != NULL && this->info_uses_section_index_)
3586
    flags |= elfcpp::SHF_INFO_LINK;
3587
  oshdr->put_sh_flags(flags);
3588
 
3589
  oshdr->put_sh_addr(this->address());
3590
  oshdr->put_sh_offset(this->offset());
3591
  oshdr->put_sh_size(this->data_size());
3592
  if (this->link_section_ != NULL)
3593
    oshdr->put_sh_link(this->link_section_->out_shndx());
3594
  else if (this->should_link_to_symtab_)
3595 159 khays
    oshdr->put_sh_link(layout->symtab_section_shndx());
3596 27 khays
  else if (this->should_link_to_dynsym_)
3597
    oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3598
  else
3599
    oshdr->put_sh_link(this->link_);
3600
 
3601
  elfcpp::Elf_Word info;
3602
  if (this->info_section_ != NULL)
3603
    {
3604
      if (this->info_uses_section_index_)
3605
        info = this->info_section_->out_shndx();
3606
      else
3607
        info = this->info_section_->symtab_index();
3608
    }
3609
  else if (this->info_symndx_ != NULL)
3610
    info = this->info_symndx_->symtab_index();
3611
  else
3612
    info = this->info_;
3613
  oshdr->put_sh_info(info);
3614
 
3615
  oshdr->put_sh_addralign(this->addralign_);
3616
  oshdr->put_sh_entsize(this->entsize_);
3617
}
3618
 
3619
// Write out the data.  For input sections the data is written out by
3620
// Object::relocate, but we have to handle Output_section_data objects
3621
// here.
3622
 
3623
void
3624
Output_section::do_write(Output_file* of)
3625
{
3626
  gold_assert(!this->requires_postprocessing());
3627
 
3628
  // If the target performs relaxation, we delay filler generation until now.
3629
  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3630
 
3631
  off_t output_section_file_offset = this->offset();
3632
  for (Fill_list::iterator p = this->fills_.begin();
3633
       p != this->fills_.end();
3634
       ++p)
3635
    {
3636
      std::string fill_data(parameters->target().code_fill(p->length()));
3637
      of->write(output_section_file_offset + p->section_offset(),
3638
                fill_data.data(), fill_data.size());
3639
    }
3640
 
3641
  off_t off = this->offset() + this->first_input_offset_;
3642
  for (Input_section_list::iterator p = this->input_sections_.begin();
3643
       p != this->input_sections_.end();
3644
       ++p)
3645
    {
3646
      off_t aligned_off = align_address(off, p->addralign());
3647
      if (this->generate_code_fills_at_write_ && (off != aligned_off))
3648
        {
3649
          size_t fill_len = aligned_off - off;
3650
          std::string fill_data(parameters->target().code_fill(fill_len));
3651
          of->write(off, fill_data.data(), fill_data.size());
3652
        }
3653
 
3654
      p->write(of);
3655
      off = aligned_off + p->data_size();
3656
    }
3657 159 khays
 
3658
  // For incremental links, fill in unused chunks in debug sections
3659
  // with dummy compilation unit headers.
3660
  if (this->free_space_fill_ != NULL)
3661
    {
3662
      for (Free_list::Const_iterator p = this->free_list_.begin();
3663
           p != this->free_list_.end();
3664
           ++p)
3665
        {
3666
          off_t off = p->start_;
3667
          size_t len = p->end_ - off;
3668
          this->free_space_fill_->write(of, this->offset() + off, len);
3669
        }
3670
      if (this->patch_space_ > 0)
3671
        {
3672
          off_t off = this->current_data_size_for_child() - this->patch_space_;
3673
          this->free_space_fill_->write(of, this->offset() + off,
3674
                                        this->patch_space_);
3675
        }
3676
    }
3677 27 khays
}
3678
 
3679
// If a section requires postprocessing, create the buffer to use.
3680
 
3681
void
3682
Output_section::create_postprocessing_buffer()
3683
{
3684
  gold_assert(this->requires_postprocessing());
3685
 
3686
  if (this->postprocessing_buffer_ != NULL)
3687
    return;
3688
 
3689
  if (!this->input_sections_.empty())
3690
    {
3691
      off_t off = this->first_input_offset_;
3692
      for (Input_section_list::iterator p = this->input_sections_.begin();
3693
           p != this->input_sections_.end();
3694
           ++p)
3695
        {
3696
          off = align_address(off, p->addralign());
3697
          p->finalize_data_size();
3698
          off += p->data_size();
3699
        }
3700
      this->set_current_data_size_for_child(off);
3701
    }
3702
 
3703
  off_t buffer_size = this->current_data_size_for_child();
3704
  this->postprocessing_buffer_ = new unsigned char[buffer_size];
3705
}
3706
 
3707
// Write all the data of an Output_section into the postprocessing
3708
// buffer.  This is used for sections which require postprocessing,
3709
// such as compression.  Input sections are handled by
3710
// Object::Relocate.
3711
 
3712
void
3713
Output_section::write_to_postprocessing_buffer()
3714
{
3715
  gold_assert(this->requires_postprocessing());
3716
 
3717
  // If the target performs relaxation, we delay filler generation until now.
3718
  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3719
 
3720
  unsigned char* buffer = this->postprocessing_buffer();
3721
  for (Fill_list::iterator p = this->fills_.begin();
3722
       p != this->fills_.end();
3723
       ++p)
3724
    {
3725
      std::string fill_data(parameters->target().code_fill(p->length()));
3726
      memcpy(buffer + p->section_offset(), fill_data.data(),
3727
             fill_data.size());
3728
    }
3729
 
3730
  off_t off = this->first_input_offset_;
3731
  for (Input_section_list::iterator p = this->input_sections_.begin();
3732
       p != this->input_sections_.end();
3733
       ++p)
3734
    {
3735
      off_t aligned_off = align_address(off, p->addralign());
3736
      if (this->generate_code_fills_at_write_ && (off != aligned_off))
3737
        {
3738
          size_t fill_len = aligned_off - off;
3739
          std::string fill_data(parameters->target().code_fill(fill_len));
3740
          memcpy(buffer + off, fill_data.data(), fill_data.size());
3741
        }
3742
 
3743
      p->write_to_buffer(buffer + aligned_off);
3744
      off = aligned_off + p->data_size();
3745
    }
3746
}
3747
 
3748
// Get the input sections for linker script processing.  We leave
3749
// behind the Output_section_data entries.  Note that this may be
3750
// slightly incorrect for merge sections.  We will leave them behind,
3751
// but it is possible that the script says that they should follow
3752
// some other input sections, as in:
3753
//    .rodata { *(.rodata) *(.rodata.cst*) }
3754
// For that matter, we don't handle this correctly:
3755
//    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3756
// With luck this will never matter.
3757
 
3758
uint64_t
3759
Output_section::get_input_sections(
3760
    uint64_t address,
3761
    const std::string& fill,
3762
    std::list<Input_section>* input_sections)
3763
{
3764
  if (this->checkpoint_ != NULL
3765
      && !this->checkpoint_->input_sections_saved())
3766
    this->checkpoint_->save_input_sections();
3767
 
3768
  // Invalidate fast look-up maps.
3769
  this->lookup_maps_->invalidate();
3770
 
3771
  uint64_t orig_address = address;
3772
 
3773
  address = align_address(address, this->addralign());
3774
 
3775
  Input_section_list remaining;
3776
  for (Input_section_list::iterator p = this->input_sections_.begin();
3777
       p != this->input_sections_.end();
3778
       ++p)
3779
    {
3780
      if (p->is_input_section()
3781
          || p->is_relaxed_input_section()
3782
          || p->is_merge_section())
3783
        input_sections->push_back(*p);
3784
      else
3785
        {
3786
          uint64_t aligned_address = align_address(address, p->addralign());
3787
          if (aligned_address != address && !fill.empty())
3788
            {
3789
              section_size_type length =
3790
                convert_to_section_size_type(aligned_address - address);
3791
              std::string this_fill;
3792
              this_fill.reserve(length);
3793
              while (this_fill.length() + fill.length() <= length)
3794
                this_fill += fill;
3795
              if (this_fill.length() < length)
3796
                this_fill.append(fill, 0, length - this_fill.length());
3797
 
3798
              Output_section_data* posd = new Output_data_const(this_fill, 0);
3799
              remaining.push_back(Input_section(posd));
3800
            }
3801
          address = aligned_address;
3802
 
3803
          remaining.push_back(*p);
3804
 
3805
          p->finalize_data_size();
3806
          address += p->data_size();
3807
        }
3808
    }
3809
 
3810
  this->input_sections_.swap(remaining);
3811
  this->first_input_offset_ = 0;
3812
 
3813
  uint64_t data_size = address - orig_address;
3814
  this->set_current_data_size_for_child(data_size);
3815
  return data_size;
3816
}
3817
 
3818
// Add a script input section.  SIS is an Output_section::Input_section,
3819
// which can be either a plain input section or a special input section like
3820
// a relaxed input section.  For a special input section, its size must be
3821
// finalized.
3822
 
3823
void
3824
Output_section::add_script_input_section(const Input_section& sis)
3825
{
3826
  uint64_t data_size = sis.data_size();
3827
  uint64_t addralign = sis.addralign();
3828
  if (addralign > this->addralign_)
3829
    this->addralign_ = addralign;
3830
 
3831
  off_t offset_in_section = this->current_data_size_for_child();
3832
  off_t aligned_offset_in_section = align_address(offset_in_section,
3833
                                                  addralign);
3834
 
3835
  this->set_current_data_size_for_child(aligned_offset_in_section
3836
                                        + data_size);
3837
 
3838
  this->input_sections_.push_back(sis);
3839
 
3840
  // Update fast lookup maps if necessary. 
3841
  if (this->lookup_maps_->is_valid())
3842
    {
3843
      if (sis.is_merge_section())
3844
        {
3845
          Output_merge_base* pomb = sis.output_merge_base();
3846
          Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3847
                                       pomb->addralign());
3848
          this->lookup_maps_->add_merge_section(msp, pomb);
3849
          for (Output_merge_base::Input_sections::const_iterator p =
3850
                 pomb->input_sections_begin();
3851
               p != pomb->input_sections_end();
3852
               ++p)
3853
            this->lookup_maps_->add_merge_input_section(p->first, p->second,
3854
                                                        pomb);
3855
        }
3856
      else if (sis.is_relaxed_input_section())
3857
        {
3858
          Output_relaxed_input_section* poris = sis.relaxed_input_section();
3859
          this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3860
                                                        poris->shndx(), poris);
3861
        }
3862
    }
3863
}
3864
 
3865
// Save states for relaxation.
3866
 
3867
void
3868
Output_section::save_states()
3869
{
3870
  gold_assert(this->checkpoint_ == NULL);
3871
  Checkpoint_output_section* checkpoint =
3872
    new Checkpoint_output_section(this->addralign_, this->flags_,
3873
                                  this->input_sections_,
3874
                                  this->first_input_offset_,
3875
                                  this->attached_input_sections_are_sorted_);
3876
  this->checkpoint_ = checkpoint;
3877
  gold_assert(this->fills_.empty());
3878
}
3879
 
3880
void
3881
Output_section::discard_states()
3882
{
3883
  gold_assert(this->checkpoint_ != NULL);
3884
  delete this->checkpoint_;
3885
  this->checkpoint_ = NULL;
3886
  gold_assert(this->fills_.empty());
3887
 
3888
  // Simply invalidate the fast lookup maps since we do not keep
3889
  // track of them.
3890
  this->lookup_maps_->invalidate();
3891
}
3892
 
3893
void
3894
Output_section::restore_states()
3895
{
3896
  gold_assert(this->checkpoint_ != NULL);
3897
  Checkpoint_output_section* checkpoint = this->checkpoint_;
3898
 
3899
  this->addralign_ = checkpoint->addralign();
3900
  this->flags_ = checkpoint->flags();
3901
  this->first_input_offset_ = checkpoint->first_input_offset();
3902
 
3903
  if (!checkpoint->input_sections_saved())
3904
    {
3905
      // If we have not copied the input sections, just resize it.
3906
      size_t old_size = checkpoint->input_sections_size();
3907
      gold_assert(this->input_sections_.size() >= old_size);
3908
      this->input_sections_.resize(old_size);
3909
    }
3910
  else
3911
    {
3912
      // We need to copy the whole list.  This is not efficient for
3913
      // extremely large output with hundreads of thousands of input
3914
      // objects.  We may need to re-think how we should pass sections
3915
      // to scripts.
3916
      this->input_sections_ = *checkpoint->input_sections();
3917
    }
3918
 
3919
  this->attached_input_sections_are_sorted_ =
3920
    checkpoint->attached_input_sections_are_sorted();
3921
 
3922
  // Simply invalidate the fast lookup maps since we do not keep
3923
  // track of them.
3924
  this->lookup_maps_->invalidate();
3925
}
3926
 
3927
// Update the section offsets of input sections in this.  This is required if
3928
// relaxation causes some input sections to change sizes.
3929
 
3930
void
3931
Output_section::adjust_section_offsets()
3932
{
3933
  if (!this->section_offsets_need_adjustment_)
3934
    return;
3935
 
3936
  off_t off = 0;
3937
  for (Input_section_list::iterator p = this->input_sections_.begin();
3938
       p != this->input_sections_.end();
3939
       ++p)
3940
    {
3941
      off = align_address(off, p->addralign());
3942
      if (p->is_input_section())
3943
        p->relobj()->set_section_offset(p->shndx(), off);
3944
      off += p->data_size();
3945
    }
3946
 
3947
  this->section_offsets_need_adjustment_ = false;
3948
}
3949
 
3950
// Print to the map file.
3951
 
3952
void
3953
Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3954
{
3955
  mapfile->print_output_section(this);
3956
 
3957
  for (Input_section_list::const_iterator p = this->input_sections_.begin();
3958
       p != this->input_sections_.end();
3959
       ++p)
3960
    p->print_to_mapfile(mapfile);
3961
}
3962
 
3963
// Print stats for merge sections to stderr.
3964
 
3965
void
3966
Output_section::print_merge_stats()
3967
{
3968
  Input_section_list::iterator p;
3969
  for (p = this->input_sections_.begin();
3970
       p != this->input_sections_.end();
3971
       ++p)
3972
    p->print_merge_stats(this->name_);
3973
}
3974
 
3975
// Set a fixed layout for the section.  Used for incremental update links.
3976
 
3977
void
3978
Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3979
                                 off_t sh_size, uint64_t sh_addralign)
3980
{
3981
  this->addralign_ = sh_addralign;
3982
  this->set_current_data_size(sh_size);
3983
  if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3984
    this->set_address(sh_addr);
3985
  this->set_file_offset(sh_offset);
3986
  this->finalize_data_size();
3987
  this->free_list_.init(sh_size, false);
3988
  this->has_fixed_layout_ = true;
3989
}
3990
 
3991
// Reserve space within the fixed layout for the section.  Used for
3992
// incremental update links.
3993 148 khays
 
3994 27 khays
void
3995
Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3996
{
3997
  this->free_list_.remove(sh_offset, sh_offset + sh_size);
3998
}
3999
 
4000 148 khays
// Allocate space from the free list for the section.  Used for
4001
// incremental update links.
4002
 
4003
off_t
4004
Output_section::allocate(off_t len, uint64_t addralign)
4005
{
4006
  return this->free_list_.allocate(len, addralign, 0);
4007
}
4008
 
4009 27 khays
// Output segment methods.
4010
 
4011
Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4012
  : vaddr_(0),
4013
    paddr_(0),
4014
    memsz_(0),
4015
    max_align_(0),
4016
    min_p_align_(0),
4017
    offset_(0),
4018
    filesz_(0),
4019
    type_(type),
4020
    flags_(flags),
4021
    is_max_align_known_(false),
4022
    are_addresses_set_(false),
4023
    is_large_data_segment_(false)
4024
{
4025
  // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4026
  // the flags.
4027
  if (type == elfcpp::PT_TLS)
4028
    this->flags_ = elfcpp::PF_R;
4029
}
4030
 
4031
// Add an Output_section to a PT_LOAD Output_segment.
4032
 
4033
void
4034
Output_segment::add_output_section_to_load(Layout* layout,
4035
                                           Output_section* os,
4036
                                           elfcpp::Elf_Word seg_flags)
4037
{
4038
  gold_assert(this->type() == elfcpp::PT_LOAD);
4039
  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4040
  gold_assert(!this->is_max_align_known_);
4041
  gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4042
 
4043
  this->update_flags_for_output_section(seg_flags);
4044
 
4045
  // We don't want to change the ordering if we have a linker script
4046
  // with a SECTIONS clause.
4047
  Output_section_order order = os->order();
4048
  if (layout->script_options()->saw_sections_clause())
4049
    order = static_cast<Output_section_order>(0);
4050
  else
4051
    gold_assert(order != ORDER_INVALID);
4052
 
4053
  this->output_lists_[order].push_back(os);
4054
}
4055
 
4056
// Add an Output_section to a non-PT_LOAD Output_segment.
4057
 
4058
void
4059
Output_segment::add_output_section_to_nonload(Output_section* os,
4060
                                              elfcpp::Elf_Word seg_flags)
4061
{
4062
  gold_assert(this->type() != elfcpp::PT_LOAD);
4063
  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4064
  gold_assert(!this->is_max_align_known_);
4065
 
4066
  this->update_flags_for_output_section(seg_flags);
4067
 
4068
  this->output_lists_[0].push_back(os);
4069
}
4070
 
4071
// Remove an Output_section from this segment.  It is an error if it
4072
// is not present.
4073
 
4074
void
4075
Output_segment::remove_output_section(Output_section* os)
4076
{
4077
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4078
    {
4079
      Output_data_list* pdl = &this->output_lists_[i];
4080
      for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4081
        {
4082
          if (*p == os)
4083
            {
4084
              pdl->erase(p);
4085
              return;
4086
            }
4087
        }
4088
    }
4089
  gold_unreachable();
4090
}
4091
 
4092
// Add an Output_data (which need not be an Output_section) to the
4093
// start of a segment.
4094
 
4095
void
4096
Output_segment::add_initial_output_data(Output_data* od)
4097
{
4098
  gold_assert(!this->is_max_align_known_);
4099
  Output_data_list::iterator p = this->output_lists_[0].begin();
4100
  this->output_lists_[0].insert(p, od);
4101
}
4102
 
4103
// Return true if this segment has any sections which hold actual
4104
// data, rather than being a BSS section.
4105
 
4106
bool
4107
Output_segment::has_any_data_sections() const
4108
{
4109
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4110
    {
4111
      const Output_data_list* pdl = &this->output_lists_[i];
4112
      for (Output_data_list::const_iterator p = pdl->begin();
4113
           p != pdl->end();
4114
           ++p)
4115
        {
4116
          if (!(*p)->is_section())
4117
            return true;
4118
          if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4119
            return true;
4120
        }
4121
    }
4122
  return false;
4123
}
4124
 
4125
// Return whether the first data section (not counting TLS sections)
4126
// is a relro section.
4127
 
4128
bool
4129
Output_segment::is_first_section_relro() const
4130
{
4131
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132
    {
4133
      if (i == static_cast<int>(ORDER_TLS_DATA)
4134
          || i == static_cast<int>(ORDER_TLS_BSS))
4135
        continue;
4136
      const Output_data_list* pdl = &this->output_lists_[i];
4137
      if (!pdl->empty())
4138
        {
4139
          Output_data* p = pdl->front();
4140
          return p->is_section() && p->output_section()->is_relro();
4141
        }
4142
    }
4143
  return false;
4144
}
4145
 
4146
// Return the maximum alignment of the Output_data in Output_segment.
4147
 
4148
uint64_t
4149
Output_segment::maximum_alignment()
4150
{
4151
  if (!this->is_max_align_known_)
4152
    {
4153
      for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154
        {
4155
          const Output_data_list* pdl = &this->output_lists_[i];
4156
          uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4157
          if (addralign > this->max_align_)
4158
            this->max_align_ = addralign;
4159
        }
4160
      this->is_max_align_known_ = true;
4161
    }
4162
 
4163
  return this->max_align_;
4164
}
4165
 
4166
// Return the maximum alignment of a list of Output_data.
4167
 
4168
uint64_t
4169
Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4170
{
4171
  uint64_t ret = 0;
4172
  for (Output_data_list::const_iterator p = pdl->begin();
4173
       p != pdl->end();
4174
       ++p)
4175
    {
4176
      uint64_t addralign = (*p)->addralign();
4177
      if (addralign > ret)
4178
        ret = addralign;
4179
    }
4180
  return ret;
4181
}
4182
 
4183
// Return whether this segment has any dynamic relocs.
4184
 
4185
bool
4186
Output_segment::has_dynamic_reloc() const
4187
{
4188
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189
    if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4190
      return true;
4191
  return false;
4192
}
4193
 
4194
// Return whether this Output_data_list has any dynamic relocs.
4195
 
4196
bool
4197
Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4198
{
4199
  for (Output_data_list::const_iterator p = pdl->begin();
4200
       p != pdl->end();
4201
       ++p)
4202
    if ((*p)->has_dynamic_reloc())
4203
      return true;
4204
  return false;
4205
}
4206
 
4207
// Set the section addresses for an Output_segment.  If RESET is true,
4208
// reset the addresses first.  ADDR is the address and *POFF is the
4209
// file offset.  Set the section indexes starting with *PSHNDX.
4210
// INCREASE_RELRO is the size of the portion of the first non-relro
4211
// section that should be included in the PT_GNU_RELRO segment.
4212
// If this segment has relro sections, and has been aligned for
4213
// that purpose, set *HAS_RELRO to TRUE.  Return the address of
4214
// the immediately following segment.  Update *HAS_RELRO, *POFF,
4215
// and *PSHNDX.
4216
 
4217
uint64_t
4218
Output_segment::set_section_addresses(Layout* layout, bool reset,
4219
                                      uint64_t addr,
4220
                                      unsigned int* increase_relro,
4221
                                      bool* has_relro,
4222
                                      off_t* poff,
4223
                                      unsigned int* pshndx)
4224
{
4225
  gold_assert(this->type_ == elfcpp::PT_LOAD);
4226
 
4227
  uint64_t last_relro_pad = 0;
4228
  off_t orig_off = *poff;
4229
 
4230
  bool in_tls = false;
4231
 
4232
  // If we have relro sections, we need to pad forward now so that the
4233
  // relro sections plus INCREASE_RELRO end on a common page boundary.
4234
  if (parameters->options().relro()
4235
      && this->is_first_section_relro()
4236
      && (!this->are_addresses_set_ || reset))
4237
    {
4238
      uint64_t relro_size = 0;
4239
      off_t off = *poff;
4240
      uint64_t max_align = 0;
4241
      for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4242
        {
4243
          Output_data_list* pdl = &this->output_lists_[i];
4244
          Output_data_list::iterator p;
4245
          for (p = pdl->begin(); p != pdl->end(); ++p)
4246
            {
4247
              if (!(*p)->is_section())
4248
                break;
4249
              uint64_t align = (*p)->addralign();
4250
              if (align > max_align)
4251
                max_align = align;
4252
              if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4253
                in_tls = true;
4254
              else if (in_tls)
4255
                {
4256
                  // Align the first non-TLS section to the alignment
4257
                  // of the TLS segment.
4258
                  align = max_align;
4259
                  in_tls = false;
4260
                }
4261
              relro_size = align_address(relro_size, align);
4262
              // Ignore the size of the .tbss section.
4263
              if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4264
                  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4265
                continue;
4266
              if ((*p)->is_address_valid())
4267
                relro_size += (*p)->data_size();
4268
              else
4269
                {
4270
                  // FIXME: This could be faster.
4271
                  (*p)->set_address_and_file_offset(addr + relro_size,
4272
                                                    off + relro_size);
4273
                  relro_size += (*p)->data_size();
4274
                  (*p)->reset_address_and_file_offset();
4275
                }
4276
            }
4277
          if (p != pdl->end())
4278
            break;
4279
        }
4280
      relro_size += *increase_relro;
4281
      // Pad the total relro size to a multiple of the maximum
4282
      // section alignment seen.
4283
      uint64_t aligned_size = align_address(relro_size, max_align);
4284
      // Note the amount of padding added after the last relro section.
4285
      last_relro_pad = aligned_size - relro_size;
4286
      *has_relro = true;
4287
 
4288
      uint64_t page_align = parameters->target().common_pagesize();
4289
 
4290
      // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4291
      uint64_t desired_align = page_align - (aligned_size % page_align);
4292
      if (desired_align < *poff % page_align)
4293
        *poff += page_align - *poff % page_align;
4294
      *poff += desired_align - *poff % page_align;
4295
      addr += *poff - orig_off;
4296
      orig_off = *poff;
4297
    }
4298
 
4299
  if (!reset && this->are_addresses_set_)
4300
    {
4301
      gold_assert(this->paddr_ == addr);
4302
      addr = this->vaddr_;
4303
    }
4304
  else
4305
    {
4306
      this->vaddr_ = addr;
4307
      this->paddr_ = addr;
4308
      this->are_addresses_set_ = true;
4309
    }
4310
 
4311
  in_tls = false;
4312
 
4313
  this->offset_ = orig_off;
4314
 
4315
  off_t off = 0;
4316
  uint64_t ret;
4317
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4318
    {
4319
      if (i == static_cast<int>(ORDER_RELRO_LAST))
4320
        {
4321
          *poff += last_relro_pad;
4322
          addr += last_relro_pad;
4323
          if (this->output_lists_[i].empty())
4324
            {
4325
              // If there is nothing in the ORDER_RELRO_LAST list,
4326
              // the padding will occur at the end of the relro
4327
              // segment, and we need to add it to *INCREASE_RELRO.
4328
              *increase_relro += last_relro_pad;
4329
            }
4330
        }
4331
      addr = this->set_section_list_addresses(layout, reset,
4332
                                              &this->output_lists_[i],
4333
                                              addr, poff, pshndx, &in_tls);
4334
      if (i < static_cast<int>(ORDER_SMALL_BSS))
4335
        {
4336
          this->filesz_ = *poff - orig_off;
4337
          off = *poff;
4338
        }
4339
 
4340
      ret = addr;
4341
    }
4342
 
4343
  // If the last section was a TLS section, align upward to the
4344
  // alignment of the TLS segment, so that the overall size of the TLS
4345
  // segment is aligned.
4346
  if (in_tls)
4347
    {
4348
      uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4349
      *poff = align_address(*poff, segment_align);
4350
    }
4351
 
4352
  this->memsz_ = *poff - orig_off;
4353
 
4354
  // Ignore the file offset adjustments made by the BSS Output_data
4355
  // objects.
4356
  *poff = off;
4357
 
4358
  return ret;
4359
}
4360
 
4361
// Set the addresses and file offsets in a list of Output_data
4362
// structures.
4363
 
4364
uint64_t
4365
Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4366
                                           Output_data_list* pdl,
4367
                                           uint64_t addr, off_t* poff,
4368
                                           unsigned int* pshndx,
4369
                                           bool* in_tls)
4370
{
4371
  off_t startoff = *poff;
4372
  // For incremental updates, we may allocate non-fixed sections from
4373
  // free space in the file.  This keeps track of the high-water mark.
4374
  off_t maxoff = startoff;
4375
 
4376
  off_t off = startoff;
4377
  for (Output_data_list::iterator p = pdl->begin();
4378
       p != pdl->end();
4379
       ++p)
4380
    {
4381
      if (reset)
4382
        (*p)->reset_address_and_file_offset();
4383
 
4384
      // When doing an incremental update or when using a linker script,
4385
      // the section will most likely already have an address.
4386
      if (!(*p)->is_address_valid())
4387
        {
4388
          uint64_t align = (*p)->addralign();
4389
 
4390
          if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4391
            {
4392
              // Give the first TLS section the alignment of the
4393
              // entire TLS segment.  Otherwise the TLS segment as a
4394
              // whole may be misaligned.
4395
              if (!*in_tls)
4396
                {
4397
                  Output_segment* tls_segment = layout->tls_segment();
4398
                  gold_assert(tls_segment != NULL);
4399
                  uint64_t segment_align = tls_segment->maximum_alignment();
4400
                  gold_assert(segment_align >= align);
4401
                  align = segment_align;
4402
 
4403
                  *in_tls = true;
4404
                }
4405
            }
4406
          else
4407
            {
4408
              // If this is the first section after the TLS segment,
4409
              // align it to at least the alignment of the TLS
4410
              // segment, so that the size of the overall TLS segment
4411
              // is aligned.
4412
              if (*in_tls)
4413
                {
4414
                  uint64_t segment_align =
4415
                      layout->tls_segment()->maximum_alignment();
4416
                  if (segment_align > align)
4417
                    align = segment_align;
4418
 
4419
                  *in_tls = false;
4420
                }
4421
            }
4422
 
4423 148 khays
          if (!parameters->incremental_update())
4424 27 khays
            {
4425
              off = align_address(off, align);
4426
              (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4427
            }
4428
          else
4429
            {
4430
              // Incremental update: allocate file space from free list.
4431
              (*p)->pre_finalize_data_size();
4432
              off_t current_size = (*p)->current_data_size();
4433
              off = layout->allocate(current_size, align, startoff);
4434
              if (off == -1)
4435
                {
4436
                  gold_assert((*p)->output_section() != NULL);
4437 148 khays
                  gold_fallback(_("out of patch space for section %s; "
4438
                                  "relink with --incremental-full"),
4439
                                (*p)->output_section()->name());
4440 27 khays
                }
4441
              (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4442
              if ((*p)->data_size() > current_size)
4443
                {
4444
                  gold_assert((*p)->output_section() != NULL);
4445 148 khays
                  gold_fallback(_("%s: section changed size; "
4446
                                  "relink with --incremental-full"),
4447
                                (*p)->output_section()->name());
4448 27 khays
                }
4449
            }
4450
        }
4451
      else if (parameters->incremental_update())
4452
        {
4453
          // For incremental updates, use the fixed offset for the
4454
          // high-water mark computation.
4455
          off = (*p)->offset();
4456
        }
4457
      else
4458
        {
4459
          // The script may have inserted a skip forward, but it
4460
          // better not have moved backward.
4461
          if ((*p)->address() >= addr + (off - startoff))
4462
            off += (*p)->address() - (addr + (off - startoff));
4463
          else
4464
            {
4465
              if (!layout->script_options()->saw_sections_clause())
4466
                gold_unreachable();
4467
              else
4468
                {
4469
                  Output_section* os = (*p)->output_section();
4470
 
4471
                  // Cast to unsigned long long to avoid format warnings.
4472
                  unsigned long long previous_dot =
4473
                    static_cast<unsigned long long>(addr + (off - startoff));
4474
                  unsigned long long dot =
4475
                    static_cast<unsigned long long>((*p)->address());
4476
 
4477
                  if (os == NULL)
4478
                    gold_error(_("dot moves backward in linker script "
4479
                                 "from 0x%llx to 0x%llx"), previous_dot, dot);
4480
                  else
4481
                    gold_error(_("address of section '%s' moves backward "
4482
                                 "from 0x%llx to 0x%llx"),
4483
                               os->name(), previous_dot, dot);
4484
                }
4485
            }
4486
          (*p)->set_file_offset(off);
4487
          (*p)->finalize_data_size();
4488
        }
4489
 
4490 159 khays
      if (parameters->incremental_update())
4491
        gold_debug(DEBUG_INCREMENTAL,
4492
                   "set_section_list_addresses: %08lx %08lx %s",
4493
                   static_cast<long>(off),
4494
                   static_cast<long>((*p)->data_size()),
4495
                   ((*p)->output_section() != NULL
4496
                    ? (*p)->output_section()->name() : "(special)"));
4497 27 khays
 
4498 159 khays
      // We want to ignore the size of a SHF_TLS SHT_NOBITS
4499 27 khays
      // section.  Such a section does not affect the size of a
4500
      // PT_LOAD segment.
4501
      if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4502
          || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4503
        off += (*p)->data_size();
4504
 
4505
      if (off > maxoff)
4506
        maxoff = off;
4507
 
4508
      if ((*p)->is_section())
4509
        {
4510
          (*p)->set_out_shndx(*pshndx);
4511
          ++*pshndx;
4512
        }
4513
    }
4514
 
4515
  *poff = maxoff;
4516
  return addr + (maxoff - startoff);
4517
}
4518
 
4519
// For a non-PT_LOAD segment, set the offset from the sections, if
4520
// any.  Add INCREASE to the file size and the memory size.
4521
 
4522
void
4523
Output_segment::set_offset(unsigned int increase)
4524
{
4525
  gold_assert(this->type_ != elfcpp::PT_LOAD);
4526
 
4527
  gold_assert(!this->are_addresses_set_);
4528
 
4529
  // A non-load section only uses output_lists_[0].
4530
 
4531
  Output_data_list* pdl = &this->output_lists_[0];
4532
 
4533
  if (pdl->empty())
4534
    {
4535
      gold_assert(increase == 0);
4536
      this->vaddr_ = 0;
4537
      this->paddr_ = 0;
4538
      this->are_addresses_set_ = true;
4539
      this->memsz_ = 0;
4540
      this->min_p_align_ = 0;
4541
      this->offset_ = 0;
4542
      this->filesz_ = 0;
4543
      return;
4544
    }
4545
 
4546
  // Find the first and last section by address.
4547
  const Output_data* first = NULL;
4548
  const Output_data* last_data = NULL;
4549
  const Output_data* last_bss = NULL;
4550
  for (Output_data_list::const_iterator p = pdl->begin();
4551
       p != pdl->end();
4552
       ++p)
4553
    {
4554
      if (first == NULL
4555
          || (*p)->address() < first->address()
4556
          || ((*p)->address() == first->address()
4557
              && (*p)->data_size() < first->data_size()))
4558
        first = *p;
4559
      const Output_data** plast;
4560
      if ((*p)->is_section()
4561
          && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4562
        plast = &last_bss;
4563
      else
4564
        plast = &last_data;
4565
      if (*plast == NULL
4566
          || (*p)->address() > (*plast)->address()
4567
          || ((*p)->address() == (*plast)->address()
4568
              && (*p)->data_size() > (*plast)->data_size()))
4569
        *plast = *p;
4570
    }
4571
 
4572
  this->vaddr_ = first->address();
4573
  this->paddr_ = (first->has_load_address()
4574
                  ? first->load_address()
4575
                  : this->vaddr_);
4576
  this->are_addresses_set_ = true;
4577
  this->offset_ = first->offset();
4578
 
4579
  if (last_data == NULL)
4580
    this->filesz_ = 0;
4581
  else
4582
    this->filesz_ = (last_data->address()
4583
                     + last_data->data_size()
4584
                     - this->vaddr_);
4585
 
4586
  const Output_data* last = last_bss != NULL ? last_bss : last_data;
4587
  this->memsz_ = (last->address()
4588
                  + last->data_size()
4589
                  - this->vaddr_);
4590
 
4591
  this->filesz_ += increase;
4592
  this->memsz_ += increase;
4593
 
4594
  // If this is a RELRO segment, verify that the segment ends at a
4595
  // page boundary.
4596
  if (this->type_ == elfcpp::PT_GNU_RELRO)
4597
    {
4598
      uint64_t page_align = parameters->target().common_pagesize();
4599
      uint64_t segment_end = this->vaddr_ + this->memsz_;
4600
      if (parameters->incremental_update())
4601
        {
4602
          // The INCREASE_RELRO calculation is bypassed for an incremental
4603
          // update, so we need to adjust the segment size manually here.
4604
          segment_end = align_address(segment_end, page_align);
4605
          this->memsz_ = segment_end - this->vaddr_;
4606
        }
4607
      else
4608
        gold_assert(segment_end == align_address(segment_end, page_align));
4609
    }
4610
 
4611
  // If this is a TLS segment, align the memory size.  The code in
4612
  // set_section_list ensures that the section after the TLS segment
4613
  // is aligned to give us room.
4614
  if (this->type_ == elfcpp::PT_TLS)
4615
    {
4616
      uint64_t segment_align = this->maximum_alignment();
4617
      gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4618
      this->memsz_ = align_address(this->memsz_, segment_align);
4619
    }
4620
}
4621
 
4622
// Set the TLS offsets of the sections in the PT_TLS segment.
4623
 
4624
void
4625
Output_segment::set_tls_offsets()
4626
{
4627
  gold_assert(this->type_ == elfcpp::PT_TLS);
4628
 
4629
  for (Output_data_list::iterator p = this->output_lists_[0].begin();
4630
       p != this->output_lists_[0].end();
4631
       ++p)
4632
    (*p)->set_tls_offset(this->vaddr_);
4633
}
4634
 
4635
// Return the load address of the first section.
4636
 
4637
uint64_t
4638
Output_segment::first_section_load_address() const
4639
{
4640
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4641
    {
4642
      const Output_data_list* pdl = &this->output_lists_[i];
4643
      for (Output_data_list::const_iterator p = pdl->begin();
4644
           p != pdl->end();
4645
           ++p)
4646
        {
4647
          if ((*p)->is_section())
4648
            return ((*p)->has_load_address()
4649
                    ? (*p)->load_address()
4650
                    : (*p)->address());
4651
        }
4652
    }
4653
  gold_unreachable();
4654
}
4655
 
4656
// Return the number of Output_sections in an Output_segment.
4657
 
4658
unsigned int
4659
Output_segment::output_section_count() const
4660
{
4661
  unsigned int ret = 0;
4662
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663
    ret += this->output_section_count_list(&this->output_lists_[i]);
4664
  return ret;
4665
}
4666
 
4667
// Return the number of Output_sections in an Output_data_list.
4668
 
4669
unsigned int
4670
Output_segment::output_section_count_list(const Output_data_list* pdl) const
4671
{
4672
  unsigned int count = 0;
4673
  for (Output_data_list::const_iterator p = pdl->begin();
4674
       p != pdl->end();
4675
       ++p)
4676
    {
4677
      if ((*p)->is_section())
4678
        ++count;
4679
    }
4680
  return count;
4681
}
4682
 
4683
// Return the section attached to the list segment with the lowest
4684
// load address.  This is used when handling a PHDRS clause in a
4685
// linker script.
4686
 
4687
Output_section*
4688
Output_segment::section_with_lowest_load_address() const
4689
{
4690
  Output_section* found = NULL;
4691
  uint64_t found_lma = 0;
4692
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4693
    this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4694
                                      &found_lma);
4695
  return found;
4696
}
4697
 
4698
// Look through a list for a section with a lower load address.
4699
 
4700
void
4701
Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4702
                                            Output_section** found,
4703
                                            uint64_t* found_lma) const
4704
{
4705
  for (Output_data_list::const_iterator p = pdl->begin();
4706
       p != pdl->end();
4707
       ++p)
4708
    {
4709
      if (!(*p)->is_section())
4710
        continue;
4711
      Output_section* os = static_cast<Output_section*>(*p);
4712
      uint64_t lma = (os->has_load_address()
4713
                      ? os->load_address()
4714
                      : os->address());
4715
      if (*found == NULL || lma < *found_lma)
4716
        {
4717
          *found = os;
4718
          *found_lma = lma;
4719
        }
4720
    }
4721
}
4722
 
4723
// Write the segment data into *OPHDR.
4724
 
4725
template<int size, bool big_endian>
4726
void
4727
Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4728
{
4729
  ophdr->put_p_type(this->type_);
4730
  ophdr->put_p_offset(this->offset_);
4731
  ophdr->put_p_vaddr(this->vaddr_);
4732
  ophdr->put_p_paddr(this->paddr_);
4733
  ophdr->put_p_filesz(this->filesz_);
4734
  ophdr->put_p_memsz(this->memsz_);
4735
  ophdr->put_p_flags(this->flags_);
4736
  ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4737
}
4738
 
4739
// Write the section headers into V.
4740
 
4741
template<int size, bool big_endian>
4742
unsigned char*
4743
Output_segment::write_section_headers(const Layout* layout,
4744
                                      const Stringpool* secnamepool,
4745
                                      unsigned char* v,
4746
                                      unsigned int* pshndx) const
4747
{
4748
  // Every section that is attached to a segment must be attached to a
4749
  // PT_LOAD segment, so we only write out section headers for PT_LOAD
4750
  // segments.
4751
  if (this->type_ != elfcpp::PT_LOAD)
4752
    return v;
4753
 
4754
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4755
    {
4756
      const Output_data_list* pdl = &this->output_lists_[i];
4757
      v = this->write_section_headers_list<size, big_endian>(layout,
4758
                                                             secnamepool,
4759
                                                             pdl,
4760
                                                             v, pshndx);
4761
    }
4762
 
4763
  return v;
4764
}
4765
 
4766
template<int size, bool big_endian>
4767
unsigned char*
4768
Output_segment::write_section_headers_list(const Layout* layout,
4769
                                           const Stringpool* secnamepool,
4770
                                           const Output_data_list* pdl,
4771
                                           unsigned char* v,
4772
                                           unsigned int* pshndx) const
4773
{
4774
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4775
  for (Output_data_list::const_iterator p = pdl->begin();
4776
       p != pdl->end();
4777
       ++p)
4778
    {
4779
      if ((*p)->is_section())
4780
        {
4781
          const Output_section* ps = static_cast<const Output_section*>(*p);
4782
          gold_assert(*pshndx == ps->out_shndx());
4783
          elfcpp::Shdr_write<size, big_endian> oshdr(v);
4784
          ps->write_header(layout, secnamepool, &oshdr);
4785
          v += shdr_size;
4786
          ++*pshndx;
4787
        }
4788
    }
4789
  return v;
4790
}
4791
 
4792
// Print the output sections to the map file.
4793
 
4794
void
4795
Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4796
{
4797
  if (this->type() != elfcpp::PT_LOAD)
4798
    return;
4799
  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4800
    this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4801
}
4802
 
4803
// Print an output section list to the map file.
4804
 
4805
void
4806
Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4807
                                              const Output_data_list* pdl) const
4808
{
4809
  for (Output_data_list::const_iterator p = pdl->begin();
4810
       p != pdl->end();
4811
       ++p)
4812
    (*p)->print_to_mapfile(mapfile);
4813
}
4814
 
4815
// Output_file methods.
4816
 
4817
Output_file::Output_file(const char* name)
4818
  : name_(name),
4819
    o_(-1),
4820
    file_size_(0),
4821
    base_(NULL),
4822
    map_is_anonymous_(false),
4823
    map_is_allocated_(false),
4824
    is_temporary_(false)
4825
{
4826
}
4827
 
4828
// Try to open an existing file.  Returns false if the file doesn't
4829
// exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4830
// NULL, open that file as the base for incremental linking, and
4831
// copy its contents to the new output file.  This routine can
4832
// be called for incremental updates, in which case WRITABLE should
4833
// be true, or by the incremental-dump utility, in which case
4834
// WRITABLE should be false.
4835
 
4836
bool
4837
Output_file::open_base_file(const char* base_name, bool writable)
4838
{
4839
  // The name "-" means "stdout".
4840
  if (strcmp(this->name_, "-") == 0)
4841
    return false;
4842
 
4843
  bool use_base_file = base_name != NULL;
4844
  if (!use_base_file)
4845
    base_name = this->name_;
4846
  else if (strcmp(base_name, this->name_) == 0)
4847
    gold_fatal(_("%s: incremental base and output file name are the same"),
4848
               base_name);
4849
 
4850
  // Don't bother opening files with a size of zero.
4851
  struct stat s;
4852
  if (::stat(base_name, &s) != 0)
4853
    {
4854
      gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4855
      return false;
4856
    }
4857
  if (s.st_size == 0)
4858
    {
4859
      gold_info(_("%s: incremental base file is empty"), base_name);
4860
      return false;
4861
    }
4862
 
4863
  // If we're using a base file, we want to open it read-only.
4864
  if (use_base_file)
4865
    writable = false;
4866
 
4867
  int oflags = writable ? O_RDWR : O_RDONLY;
4868
  int o = open_descriptor(-1, base_name, oflags, 0);
4869
  if (o < 0)
4870
    {
4871
      gold_info(_("%s: open: %s"), base_name, strerror(errno));
4872
      return false;
4873
    }
4874
 
4875
  // If the base file and the output file are different, open a
4876
  // new output file and read the contents from the base file into
4877
  // the newly-mapped region.
4878
  if (use_base_file)
4879
    {
4880
      this->open(s.st_size);
4881
      ssize_t len = ::read(o, this->base_, s.st_size);
4882
      if (len < 0)
4883
        {
4884
          gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4885
          return false;
4886
        }
4887
      if (len < s.st_size)
4888
        {
4889
          gold_info(_("%s: file too short"), base_name);
4890
          return false;
4891
        }
4892
      ::close(o);
4893
      return true;
4894
    }
4895
 
4896
  this->o_ = o;
4897
  this->file_size_ = s.st_size;
4898
 
4899
  if (!this->map_no_anonymous(writable))
4900
    {
4901
      release_descriptor(o, true);
4902
      this->o_ = -1;
4903
      this->file_size_ = 0;
4904
      return false;
4905
    }
4906
 
4907
  return true;
4908
}
4909
 
4910
// Open the output file.
4911
 
4912
void
4913
Output_file::open(off_t file_size)
4914
{
4915
  this->file_size_ = file_size;
4916
 
4917
  // Unlink the file first; otherwise the open() may fail if the file
4918
  // is busy (e.g. it's an executable that's currently being executed).
4919
  //
4920
  // However, the linker may be part of a system where a zero-length
4921
  // file is created for it to write to, with tight permissions (gcc
4922
  // 2.95 did something like this).  Unlinking the file would work
4923
  // around those permission controls, so we only unlink if the file
4924
  // has a non-zero size.  We also unlink only regular files to avoid
4925
  // trouble with directories/etc.
4926
  //
4927
  // If we fail, continue; this command is merely a best-effort attempt
4928
  // to improve the odds for open().
4929
 
4930
  // We let the name "-" mean "stdout"
4931
  if (!this->is_temporary_)
4932
    {
4933
      if (strcmp(this->name_, "-") == 0)
4934
        this->o_ = STDOUT_FILENO;
4935
      else
4936
        {
4937
          struct stat s;
4938
          if (::stat(this->name_, &s) == 0
4939
              && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4940
            {
4941
              if (s.st_size != 0)
4942
                ::unlink(this->name_);
4943
              else if (!parameters->options().relocatable())
4944
                {
4945
                  // If we don't unlink the existing file, add execute
4946
                  // permission where read permissions already exist
4947
                  // and where the umask permits.
4948
                  int mask = ::umask(0);
4949
                  ::umask(mask);
4950
                  s.st_mode |= (s.st_mode & 0444) >> 2;
4951
                  ::chmod(this->name_, s.st_mode & ~mask);
4952
                }
4953
            }
4954
 
4955
          int mode = parameters->options().relocatable() ? 0666 : 0777;
4956
          int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4957
                                  mode);
4958
          if (o < 0)
4959
            gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4960
          this->o_ = o;
4961
        }
4962
    }
4963
 
4964
  this->map();
4965
}
4966
 
4967
// Resize the output file.
4968
 
4969
void
4970
Output_file::resize(off_t file_size)
4971
{
4972
  // If the mmap is mapping an anonymous memory buffer, this is easy:
4973
  // just mremap to the new size.  If it's mapping to a file, we want
4974
  // to unmap to flush to the file, then remap after growing the file.
4975
  if (this->map_is_anonymous_)
4976
    {
4977
      void* base;
4978
      if (!this->map_is_allocated_)
4979
        {
4980
          base = ::mremap(this->base_, this->file_size_, file_size,
4981
                          MREMAP_MAYMOVE);
4982
          if (base == MAP_FAILED)
4983
            gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4984
        }
4985
      else
4986
        {
4987
          base = realloc(this->base_, file_size);
4988
          if (base == NULL)
4989
            gold_nomem();
4990
          if (file_size > this->file_size_)
4991
            memset(static_cast<char*>(base) + this->file_size_, 0,
4992
                   file_size - this->file_size_);
4993
        }
4994
      this->base_ = static_cast<unsigned char*>(base);
4995
      this->file_size_ = file_size;
4996
    }
4997
  else
4998
    {
4999
      this->unmap();
5000
      this->file_size_ = file_size;
5001
      if (!this->map_no_anonymous(true))
5002
        gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5003
    }
5004
}
5005
 
5006
// Map an anonymous block of memory which will later be written to the
5007
// file.  Return whether the map succeeded.
5008
 
5009
bool
5010
Output_file::map_anonymous()
5011
{
5012
  void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5013
                      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5014
  if (base == MAP_FAILED)
5015
    {
5016
      base = malloc(this->file_size_);
5017
      if (base == NULL)
5018
        return false;
5019
      memset(base, 0, this->file_size_);
5020
      this->map_is_allocated_ = true;
5021
    }
5022
  this->base_ = static_cast<unsigned char*>(base);
5023
  this->map_is_anonymous_ = true;
5024
  return true;
5025
}
5026
 
5027
// Map the file into memory.  Return whether the mapping succeeded.
5028
// If WRITABLE is true, map with write access.
5029
 
5030
bool
5031
Output_file::map_no_anonymous(bool writable)
5032
{
5033
  const int o = this->o_;
5034
 
5035
  // If the output file is not a regular file, don't try to mmap it;
5036
  // instead, we'll mmap a block of memory (an anonymous buffer), and
5037
  // then later write the buffer to the file.
5038
  void* base;
5039
  struct stat statbuf;
5040
  if (o == STDOUT_FILENO || o == STDERR_FILENO
5041
      || ::fstat(o, &statbuf) != 0
5042
      || !S_ISREG(statbuf.st_mode)
5043
      || this->is_temporary_)
5044
    return false;
5045
 
5046
  // Ensure that we have disk space available for the file.  If we
5047
  // don't do this, it is possible that we will call munmap, close,
5048
  // and exit with dirty buffers still in the cache with no assigned
5049
  // disk blocks.  If the disk is out of space at that point, the
5050
  // output file will wind up incomplete, but we will have already
5051
  // exited.  The alternative to fallocate would be to use fdatasync,
5052
  // but that would be a more significant performance hit.
5053
  if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5054
    gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5055
 
5056
  // Map the file into memory.
5057
  int prot = PROT_READ;
5058
  if (writable)
5059
    prot |= PROT_WRITE;
5060
  base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5061
 
5062
  // The mmap call might fail because of file system issues: the file
5063
  // system might not support mmap at all, or it might not support
5064
  // mmap with PROT_WRITE.
5065
  if (base == MAP_FAILED)
5066
    return false;
5067
 
5068
  this->map_is_anonymous_ = false;
5069
  this->base_ = static_cast<unsigned char*>(base);
5070
  return true;
5071
}
5072
 
5073
// Map the file into memory.
5074
 
5075
void
5076
Output_file::map()
5077
{
5078
  if (this->map_no_anonymous(true))
5079
    return;
5080
 
5081
  // The mmap call might fail because of file system issues: the file
5082
  // system might not support mmap at all, or it might not support
5083
  // mmap with PROT_WRITE.  I'm not sure which errno values we will
5084
  // see in all cases, so if the mmap fails for any reason and we
5085
  // don't care about file contents, try for an anonymous map.
5086
  if (this->map_anonymous())
5087
    return;
5088
 
5089
  gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5090
             this->name_, static_cast<unsigned long>(this->file_size_),
5091
             strerror(errno));
5092
}
5093
 
5094
// Unmap the file from memory.
5095
 
5096
void
5097
Output_file::unmap()
5098
{
5099
  if (this->map_is_anonymous_)
5100
    {
5101
      // We've already written out the data, so there is no reason to
5102
      // waste time unmapping or freeing the memory.
5103
    }
5104
  else
5105
    {
5106
      if (::munmap(this->base_, this->file_size_) < 0)
5107
        gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5108
    }
5109
  this->base_ = NULL;
5110
}
5111
 
5112
// Close the output file.
5113
 
5114
void
5115
Output_file::close()
5116
{
5117
  // If the map isn't file-backed, we need to write it now.
5118
  if (this->map_is_anonymous_ && !this->is_temporary_)
5119
    {
5120
      size_t bytes_to_write = this->file_size_;
5121
      size_t offset = 0;
5122
      while (bytes_to_write > 0)
5123
        {
5124
          ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5125
                                          bytes_to_write);
5126
          if (bytes_written == 0)
5127
            gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5128
          else if (bytes_written < 0)
5129
            gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5130
          else
5131
            {
5132
              bytes_to_write -= bytes_written;
5133
              offset += bytes_written;
5134
            }
5135
        }
5136
    }
5137
  this->unmap();
5138
 
5139
  // We don't close stdout or stderr
5140
  if (this->o_ != STDOUT_FILENO
5141
      && this->o_ != STDERR_FILENO
5142
      && !this->is_temporary_)
5143
    if (::close(this->o_) < 0)
5144
      gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5145
  this->o_ = -1;
5146
}
5147
 
5148
// Instantiate the templates we need.  We could use the configure
5149
// script to restrict this to only the ones for implemented targets.
5150
 
5151
#ifdef HAVE_TARGET_32_LITTLE
5152
template
5153
off_t
5154
Output_section::add_input_section<32, false>(
5155
    Layout* layout,
5156
    Sized_relobj_file<32, false>* object,
5157
    unsigned int shndx,
5158
    const char* secname,
5159
    const elfcpp::Shdr<32, false>& shdr,
5160
    unsigned int reloc_shndx,
5161
    bool have_sections_script);
5162
#endif
5163
 
5164
#ifdef HAVE_TARGET_32_BIG
5165
template
5166
off_t
5167
Output_section::add_input_section<32, true>(
5168
    Layout* layout,
5169
    Sized_relobj_file<32, true>* object,
5170
    unsigned int shndx,
5171
    const char* secname,
5172
    const elfcpp::Shdr<32, true>& shdr,
5173
    unsigned int reloc_shndx,
5174
    bool have_sections_script);
5175
#endif
5176
 
5177
#ifdef HAVE_TARGET_64_LITTLE
5178
template
5179
off_t
5180
Output_section::add_input_section<64, false>(
5181
    Layout* layout,
5182
    Sized_relobj_file<64, false>* object,
5183
    unsigned int shndx,
5184
    const char* secname,
5185
    const elfcpp::Shdr<64, false>& shdr,
5186
    unsigned int reloc_shndx,
5187
    bool have_sections_script);
5188
#endif
5189
 
5190
#ifdef HAVE_TARGET_64_BIG
5191
template
5192
off_t
5193
Output_section::add_input_section<64, true>(
5194
    Layout* layout,
5195
    Sized_relobj_file<64, true>* object,
5196
    unsigned int shndx,
5197
    const char* secname,
5198
    const elfcpp::Shdr<64, true>& shdr,
5199
    unsigned int reloc_shndx,
5200
    bool have_sections_script);
5201
#endif
5202
 
5203
#ifdef HAVE_TARGET_32_LITTLE
5204
template
5205
class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5206
#endif
5207
 
5208
#ifdef HAVE_TARGET_32_BIG
5209
template
5210
class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5211
#endif
5212
 
5213
#ifdef HAVE_TARGET_64_LITTLE
5214
template
5215
class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5216
#endif
5217
 
5218
#ifdef HAVE_TARGET_64_BIG
5219
template
5220
class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5221
#endif
5222
 
5223
#ifdef HAVE_TARGET_32_LITTLE
5224
template
5225
class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5226
#endif
5227
 
5228
#ifdef HAVE_TARGET_32_BIG
5229
template
5230
class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5231
#endif
5232
 
5233
#ifdef HAVE_TARGET_64_LITTLE
5234
template
5235
class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5236
#endif
5237
 
5238
#ifdef HAVE_TARGET_64_BIG
5239
template
5240
class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5241
#endif
5242
 
5243
#ifdef HAVE_TARGET_32_LITTLE
5244
template
5245
class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5246
#endif
5247
 
5248
#ifdef HAVE_TARGET_32_BIG
5249
template
5250
class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5251
#endif
5252
 
5253
#ifdef HAVE_TARGET_64_LITTLE
5254
template
5255
class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5256
#endif
5257
 
5258
#ifdef HAVE_TARGET_64_BIG
5259
template
5260
class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5261
#endif
5262
 
5263
#ifdef HAVE_TARGET_32_LITTLE
5264
template
5265
class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5266
#endif
5267
 
5268
#ifdef HAVE_TARGET_32_BIG
5269
template
5270
class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5271
#endif
5272
 
5273
#ifdef HAVE_TARGET_64_LITTLE
5274
template
5275
class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5276
#endif
5277
 
5278
#ifdef HAVE_TARGET_64_BIG
5279
template
5280
class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5281
#endif
5282
 
5283
#ifdef HAVE_TARGET_32_LITTLE
5284
template
5285
class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5286
#endif
5287
 
5288
#ifdef HAVE_TARGET_32_BIG
5289
template
5290
class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5291
#endif
5292
 
5293
#ifdef HAVE_TARGET_64_LITTLE
5294
template
5295
class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5296
#endif
5297
 
5298
#ifdef HAVE_TARGET_64_BIG
5299
template
5300
class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5301
#endif
5302
 
5303
#ifdef HAVE_TARGET_32_LITTLE
5304
template
5305
class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5306
#endif
5307
 
5308
#ifdef HAVE_TARGET_32_BIG
5309
template
5310
class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5311
#endif
5312
 
5313
#ifdef HAVE_TARGET_64_LITTLE
5314
template
5315
class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5316
#endif
5317
 
5318
#ifdef HAVE_TARGET_64_BIG
5319
template
5320
class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5321
#endif
5322
 
5323
#ifdef HAVE_TARGET_32_LITTLE
5324
template
5325
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5326
#endif
5327
 
5328
#ifdef HAVE_TARGET_32_BIG
5329
template
5330
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5331
#endif
5332
 
5333
#ifdef HAVE_TARGET_64_LITTLE
5334
template
5335
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5336
#endif
5337
 
5338
#ifdef HAVE_TARGET_64_BIG
5339
template
5340
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5341
#endif
5342
 
5343
#ifdef HAVE_TARGET_32_LITTLE
5344
template
5345
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5346
#endif
5347
 
5348
#ifdef HAVE_TARGET_32_BIG
5349
template
5350
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5351
#endif
5352
 
5353
#ifdef HAVE_TARGET_64_LITTLE
5354
template
5355
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5356
#endif
5357
 
5358
#ifdef HAVE_TARGET_64_BIG
5359
template
5360
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5361
#endif
5362
 
5363
#ifdef HAVE_TARGET_32_LITTLE
5364
template
5365
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5366
#endif
5367
 
5368
#ifdef HAVE_TARGET_32_BIG
5369
template
5370
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5371
#endif
5372
 
5373
#ifdef HAVE_TARGET_64_LITTLE
5374
template
5375
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5376
#endif
5377
 
5378
#ifdef HAVE_TARGET_64_BIG
5379
template
5380
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5381
#endif
5382
 
5383
#ifdef HAVE_TARGET_32_LITTLE
5384
template
5385
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5386
#endif
5387
 
5388
#ifdef HAVE_TARGET_32_BIG
5389
template
5390
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5391
#endif
5392
 
5393
#ifdef HAVE_TARGET_64_LITTLE
5394
template
5395
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5396
#endif
5397
 
5398
#ifdef HAVE_TARGET_64_BIG
5399
template
5400
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5401
#endif
5402
 
5403
#ifdef HAVE_TARGET_32_LITTLE
5404
template
5405
class Output_data_group<32, false>;
5406
#endif
5407
 
5408
#ifdef HAVE_TARGET_32_BIG
5409
template
5410
class Output_data_group<32, true>;
5411
#endif
5412
 
5413
#ifdef HAVE_TARGET_64_LITTLE
5414
template
5415
class Output_data_group<64, false>;
5416
#endif
5417
 
5418
#ifdef HAVE_TARGET_64_BIG
5419
template
5420
class Output_data_group<64, true>;
5421
#endif
5422
 
5423
#ifdef HAVE_TARGET_32_LITTLE
5424
template
5425
class Output_data_got<32, false>;
5426
#endif
5427
 
5428
#ifdef HAVE_TARGET_32_BIG
5429
template
5430
class Output_data_got<32, true>;
5431
#endif
5432
 
5433
#ifdef HAVE_TARGET_64_LITTLE
5434
template
5435
class Output_data_got<64, false>;
5436
#endif
5437
 
5438
#ifdef HAVE_TARGET_64_BIG
5439
template
5440
class Output_data_got<64, true>;
5441
#endif
5442
 
5443
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.