OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [output.h] - Blame information for rev 159

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// output.h -- manage the output file for gold   -*- C++ -*-
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#ifndef GOLD_OUTPUT_H
24
#define GOLD_OUTPUT_H
25
 
26
#include <list>
27
#include <vector>
28
 
29
#include "elfcpp.h"
30
#include "mapfile.h"
31
#include "layout.h"
32
#include "reloc-types.h"
33
 
34
namespace gold
35
{
36
 
37
class General_options;
38
class Object;
39
class Symbol;
40
class Output_file;
41
class Output_merge_base;
42
class Output_section;
43
class Relocatable_relocs;
44
class Target;
45
template<int size, bool big_endian>
46
class Sized_target;
47
template<int size, bool big_endian>
48
class Sized_relobj;
49
template<int size, bool big_endian>
50
class Sized_relobj_file;
51
 
52
// An abtract class for data which has to go into the output file.
53
 
54
class Output_data
55
{
56
 public:
57
  explicit Output_data()
58
    : address_(0), data_size_(0), offset_(-1),
59
      is_address_valid_(false), is_data_size_valid_(false),
60
      is_offset_valid_(false), is_data_size_fixed_(false),
61
      has_dynamic_reloc_(false)
62
  { }
63
 
64
  virtual
65
  ~Output_data();
66
 
67
  // Return the address.  For allocated sections, this is only valid
68
  // after Layout::finalize is finished.
69
  uint64_t
70
  address() const
71
  {
72
    gold_assert(this->is_address_valid_);
73
    return this->address_;
74
  }
75
 
76
  // Return the size of the data.  For allocated sections, this must
77
  // be valid after Layout::finalize calls set_address, but need not
78
  // be valid before then.
79
  off_t
80
  data_size() const
81
  {
82
    gold_assert(this->is_data_size_valid_);
83
    return this->data_size_;
84
  }
85
 
86
  // Get the current data size.
87
  off_t
88
  current_data_size() const
89
  { return this->current_data_size_for_child(); }
90
 
91
  // Return true if data size is fixed.
92
  bool
93
  is_data_size_fixed() const
94
  { return this->is_data_size_fixed_; }
95
 
96
  // Return the file offset.  This is only valid after
97
  // Layout::finalize is finished.  For some non-allocated sections,
98
  // it may not be valid until near the end of the link.
99
  off_t
100
  offset() const
101
  {
102
    gold_assert(this->is_offset_valid_);
103
    return this->offset_;
104
  }
105
 
106
  // Reset the address and file offset.  This essentially disables the
107
  // sanity testing about duplicate and unknown settings.
108
  void
109
  reset_address_and_file_offset()
110
  {
111
    this->is_address_valid_ = false;
112
    this->is_offset_valid_ = false;
113
    if (!this->is_data_size_fixed_)
114
      this->is_data_size_valid_ = false;
115
    this->do_reset_address_and_file_offset();
116
  }
117
 
118
  // Return true if address and file offset already have reset values. In
119
  // other words, calling reset_address_and_file_offset will not change them.
120
  bool
121
  address_and_file_offset_have_reset_values() const
122
  { return this->do_address_and_file_offset_have_reset_values(); }
123
 
124
  // Return the required alignment.
125
  uint64_t
126
  addralign() const
127
  { return this->do_addralign(); }
128
 
129
  // Return whether this has a load address.
130
  bool
131
  has_load_address() const
132
  { return this->do_has_load_address(); }
133
 
134
  // Return the load address.
135
  uint64_t
136
  load_address() const
137
  { return this->do_load_address(); }
138
 
139
  // Return whether this is an Output_section.
140
  bool
141
  is_section() const
142
  { return this->do_is_section(); }
143
 
144
  // Return whether this is an Output_section of the specified type.
145
  bool
146
  is_section_type(elfcpp::Elf_Word stt) const
147
  { return this->do_is_section_type(stt); }
148
 
149
  // Return whether this is an Output_section with the specified flag
150
  // set.
151
  bool
152
  is_section_flag_set(elfcpp::Elf_Xword shf) const
153
  { return this->do_is_section_flag_set(shf); }
154
 
155
  // Return the output section that this goes in, if there is one.
156
  Output_section*
157
  output_section()
158
  { return this->do_output_section(); }
159
 
160
  const Output_section*
161
  output_section() const
162
  { return this->do_output_section(); }
163
 
164
  // Return the output section index, if there is an output section.
165
  unsigned int
166
  out_shndx() const
167
  { return this->do_out_shndx(); }
168
 
169
  // Set the output section index, if this is an output section.
170
  void
171
  set_out_shndx(unsigned int shndx)
172
  { this->do_set_out_shndx(shndx); }
173
 
174
  // Set the address and file offset of this data, and finalize the
175
  // size of the data.  This is called during Layout::finalize for
176
  // allocated sections.
177
  void
178
  set_address_and_file_offset(uint64_t addr, off_t off)
179
  {
180
    this->set_address(addr);
181
    this->set_file_offset(off);
182
    this->finalize_data_size();
183
  }
184
 
185
  // Set the address.
186
  void
187
  set_address(uint64_t addr)
188
  {
189
    gold_assert(!this->is_address_valid_);
190
    this->address_ = addr;
191
    this->is_address_valid_ = true;
192
  }
193
 
194
  // Set the file offset.
195
  void
196
  set_file_offset(off_t off)
197
  {
198
    gold_assert(!this->is_offset_valid_);
199
    this->offset_ = off;
200
    this->is_offset_valid_ = true;
201
  }
202
 
203
  // Update the data size without finalizing it.
204
  void
205
  pre_finalize_data_size()
206
  {
207
    if (!this->is_data_size_valid_)
208
      {
209
        // Tell the child class to update the data size.
210
        this->update_data_size();
211
      }
212
  }
213
 
214
  // Finalize the data size.
215
  void
216
  finalize_data_size()
217
  {
218
    if (!this->is_data_size_valid_)
219
      {
220
        // Tell the child class to set the data size.
221
        this->set_final_data_size();
222
        gold_assert(this->is_data_size_valid_);
223
      }
224
  }
225
 
226
  // Set the TLS offset.  Called only for SHT_TLS sections.
227
  void
228
  set_tls_offset(uint64_t tls_base)
229
  { this->do_set_tls_offset(tls_base); }
230
 
231
  // Return the TLS offset, relative to the base of the TLS segment.
232
  // Valid only for SHT_TLS sections.
233
  uint64_t
234
  tls_offset() const
235
  { return this->do_tls_offset(); }
236
 
237
  // Write the data to the output file.  This is called after
238
  // Layout::finalize is complete.
239
  void
240
  write(Output_file* file)
241
  { this->do_write(file); }
242
 
243
  // This is called by Layout::finalize to note that the sizes of
244
  // allocated sections must now be fixed.
245
  static void
246
  layout_complete()
247
  { Output_data::allocated_sizes_are_fixed = true; }
248
 
249
  // Used to check that layout has been done.
250
  static bool
251
  is_layout_complete()
252
  { return Output_data::allocated_sizes_are_fixed; }
253
 
254
  // Note that a dynamic reloc has been applied to this data.
255
  void
256
  add_dynamic_reloc()
257
  { this->has_dynamic_reloc_ = true; }
258
 
259
  // Return whether a dynamic reloc has been applied.
260
  bool
261
  has_dynamic_reloc() const
262
  { return this->has_dynamic_reloc_; }
263
 
264
  // Whether the address is valid.
265
  bool
266
  is_address_valid() const
267
  { return this->is_address_valid_; }
268
 
269
  // Whether the file offset is valid.
270
  bool
271
  is_offset_valid() const
272
  { return this->is_offset_valid_; }
273
 
274
  // Whether the data size is valid.
275
  bool
276
  is_data_size_valid() const
277
  { return this->is_data_size_valid_; }
278
 
279
  // Print information to the map file.
280
  void
281
  print_to_mapfile(Mapfile* mapfile) const
282
  { return this->do_print_to_mapfile(mapfile); }
283
 
284
 protected:
285
  // Functions that child classes may or in some cases must implement.
286
 
287
  // Write the data to the output file.
288
  virtual void
289
  do_write(Output_file*) = 0;
290
 
291
  // Return the required alignment.
292
  virtual uint64_t
293
  do_addralign() const = 0;
294
 
295
  // Return whether this has a load address.
296
  virtual bool
297
  do_has_load_address() const
298
  { return false; }
299
 
300
  // Return the load address.
301
  virtual uint64_t
302
  do_load_address() const
303
  { gold_unreachable(); }
304
 
305
  // Return whether this is an Output_section.
306
  virtual bool
307
  do_is_section() const
308
  { return false; }
309
 
310
  // Return whether this is an Output_section of the specified type.
311
  // This only needs to be implement by Output_section.
312
  virtual bool
313
  do_is_section_type(elfcpp::Elf_Word) const
314
  { return false; }
315
 
316
  // Return whether this is an Output_section with the specific flag
317
  // set.  This only needs to be implemented by Output_section.
318
  virtual bool
319
  do_is_section_flag_set(elfcpp::Elf_Xword) const
320
  { return false; }
321
 
322
  // Return the output section, if there is one.
323
  virtual Output_section*
324
  do_output_section()
325
  { return NULL; }
326
 
327
  virtual const Output_section*
328
  do_output_section() const
329
  { return NULL; }
330
 
331
  // Return the output section index, if there is an output section.
332
  virtual unsigned int
333
  do_out_shndx() const
334
  { gold_unreachable(); }
335
 
336
  // Set the output section index, if this is an output section.
337
  virtual void
338
  do_set_out_shndx(unsigned int)
339
  { gold_unreachable(); }
340
 
341
  // This is a hook for derived classes to set the preliminary data size.
342
  // This is called by pre_finalize_data_size, normally called during
343
  // Layout::finalize, before the section address is set, and is used
344
  // during an incremental update, when we need to know the size of a
345
  // section before allocating space in the output file.  For classes
346
  // where the current data size is up to date, this default version of
347
  // the method can be inherited.
348
  virtual void
349
  update_data_size()
350
  { }
351
 
352
  // This is a hook for derived classes to set the data size.  This is
353
  // called by finalize_data_size, normally called during
354
  // Layout::finalize, when the section address is set.
355
  virtual void
356
  set_final_data_size()
357
  { gold_unreachable(); }
358
 
359
  // A hook for resetting the address and file offset.
360
  virtual void
361
  do_reset_address_and_file_offset()
362
  { }
363
 
364
  // Return true if address and file offset already have reset values. In
365
  // other words, calling reset_address_and_file_offset will not change them.
366
  // A child class overriding do_reset_address_and_file_offset may need to
367
  // also override this.
368
  virtual bool
369
  do_address_and_file_offset_have_reset_values() const
370
  { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
 
372
  // Set the TLS offset.  Called only for SHT_TLS sections.
373
  virtual void
374
  do_set_tls_offset(uint64_t)
375
  { gold_unreachable(); }
376
 
377
  // Return the TLS offset, relative to the base of the TLS segment.
378
  // Valid only for SHT_TLS sections.
379
  virtual uint64_t
380
  do_tls_offset() const
381
  { gold_unreachable(); }
382
 
383
  // Print to the map file.  This only needs to be implemented by
384
  // classes which may appear in a PT_LOAD segment.
385
  virtual void
386
  do_print_to_mapfile(Mapfile*) const
387
  { gold_unreachable(); }
388
 
389
  // Functions that child classes may call.
390
 
391
  // Reset the address.  The Output_section class needs this when an
392
  // SHF_ALLOC input section is added to an output section which was
393
  // formerly not SHF_ALLOC.
394
  void
395
  mark_address_invalid()
396
  { this->is_address_valid_ = false; }
397
 
398
  // Set the size of the data.
399
  void
400
  set_data_size(off_t data_size)
401
  {
402
    gold_assert(!this->is_data_size_valid_
403
                && !this->is_data_size_fixed_);
404
    this->data_size_ = data_size;
405
    this->is_data_size_valid_ = true;
406
  }
407
 
408
  // Fix the data size.  Once it is fixed, it cannot be changed
409
  // and the data size remains always valid. 
410
  void
411
  fix_data_size()
412
  {
413
    gold_assert(this->is_data_size_valid_);
414
    this->is_data_size_fixed_ = true;
415
  }
416
 
417
  // Get the current data size--this is for the convenience of
418
  // sections which build up their size over time.
419
  off_t
420
  current_data_size_for_child() const
421
  { return this->data_size_; }
422
 
423
  // Set the current data size--this is for the convenience of
424
  // sections which build up their size over time.
425
  void
426
  set_current_data_size_for_child(off_t data_size)
427
  {
428
    gold_assert(!this->is_data_size_valid_);
429
    this->data_size_ = data_size;
430
  }
431
 
432
  // Return default alignment for the target size.
433
  static uint64_t
434
  default_alignment();
435
 
436
  // Return default alignment for a specified size--32 or 64.
437
  static uint64_t
438
  default_alignment_for_size(int size);
439
 
440
 private:
441
  Output_data(const Output_data&);
442
  Output_data& operator=(const Output_data&);
443
 
444
  // This is used for verification, to make sure that we don't try to
445
  // change any sizes of allocated sections after we set the section
446
  // addresses.
447
  static bool allocated_sizes_are_fixed;
448
 
449
  // Memory address in output file.
450
  uint64_t address_;
451
  // Size of data in output file.
452
  off_t data_size_;
453
  // File offset of contents in output file.
454
  off_t offset_;
455
  // Whether address_ is valid.
456
  bool is_address_valid_ : 1;
457
  // Whether data_size_ is valid.
458
  bool is_data_size_valid_ : 1;
459
  // Whether offset_ is valid.
460
  bool is_offset_valid_ : 1;
461
  // Whether data size is fixed.
462
  bool is_data_size_fixed_ : 1;
463
  // Whether any dynamic relocs have been applied to this section.
464
  bool has_dynamic_reloc_ : 1;
465
};
466
 
467
// Output the section headers.
468
 
469
class Output_section_headers : public Output_data
470
{
471
 public:
472
  Output_section_headers(const Layout*,
473
                         const Layout::Segment_list*,
474
                         const Layout::Section_list*,
475
                         const Layout::Section_list*,
476
                         const Stringpool*,
477
                         const Output_section*);
478
 
479
 protected:
480
  // Write the data to the file.
481
  void
482
  do_write(Output_file*);
483
 
484
  // Return the required alignment.
485
  uint64_t
486
  do_addralign() const
487
  { return Output_data::default_alignment(); }
488
 
489
  // Write to a map file.
490
  void
491
  do_print_to_mapfile(Mapfile* mapfile) const
492
  { mapfile->print_output_data(this, _("** section headers")); }
493
 
494
  // Update the data size.
495
  void
496
  update_data_size()
497
  { this->set_data_size(this->do_size()); }
498
 
499
  // Set final data size.
500
  void
501
  set_final_data_size()
502
  { this->set_data_size(this->do_size()); }
503
 
504
 private:
505
  // Write the data to the file with the right size and endianness.
506
  template<int size, bool big_endian>
507
  void
508
  do_sized_write(Output_file*);
509
 
510
  // Compute data size.
511
  off_t
512
  do_size() const;
513
 
514
  const Layout* layout_;
515
  const Layout::Segment_list* segment_list_;
516
  const Layout::Section_list* section_list_;
517
  const Layout::Section_list* unattached_section_list_;
518
  const Stringpool* secnamepool_;
519
  const Output_section* shstrtab_section_;
520
};
521
 
522
// Output the segment headers.
523
 
524
class Output_segment_headers : public Output_data
525
{
526
 public:
527
  Output_segment_headers(const Layout::Segment_list& segment_list);
528
 
529
 protected:
530
  // Write the data to the file.
531
  void
532
  do_write(Output_file*);
533
 
534
  // Return the required alignment.
535
  uint64_t
536
  do_addralign() const
537
  { return Output_data::default_alignment(); }
538
 
539
  // Write to a map file.
540
  void
541
  do_print_to_mapfile(Mapfile* mapfile) const
542
  { mapfile->print_output_data(this, _("** segment headers")); }
543
 
544
  // Set final data size.
545
  void
546
  set_final_data_size()
547
  { this->set_data_size(this->do_size()); }
548
 
549
 private:
550
  // Write the data to the file with the right size and endianness.
551
  template<int size, bool big_endian>
552
  void
553
  do_sized_write(Output_file*);
554
 
555
  // Compute the current size.
556
  off_t
557
  do_size() const;
558
 
559
  const Layout::Segment_list& segment_list_;
560
};
561
 
562
// Output the ELF file header.
563
 
564
class Output_file_header : public Output_data
565
{
566
 public:
567
  Output_file_header(const Target*,
568
                     const Symbol_table*,
569
                     const Output_segment_headers*);
570
 
571
  // Add information about the section headers.  We lay out the ELF
572
  // file header before we create the section headers.
573
  void set_section_info(const Output_section_headers*,
574
                        const Output_section* shstrtab);
575
 
576
 protected:
577
  // Write the data to the file.
578
  void
579
  do_write(Output_file*);
580
 
581
  // Return the required alignment.
582
  uint64_t
583
  do_addralign() const
584
  { return Output_data::default_alignment(); }
585
 
586
  // Write to a map file.
587
  void
588
  do_print_to_mapfile(Mapfile* mapfile) const
589
  { mapfile->print_output_data(this, _("** file header")); }
590
 
591
  // Set final data size.
592
  void
593
  set_final_data_size(void)
594
  { this->set_data_size(this->do_size()); }
595
 
596
 private:
597
  // Write the data to the file with the right size and endianness.
598
  template<int size, bool big_endian>
599
  void
600
  do_sized_write(Output_file*);
601
 
602
  // Return the value to use for the entry address.
603
  template<int size>
604
  typename elfcpp::Elf_types<size>::Elf_Addr
605
  entry();
606
 
607
  // Compute the current data size.
608
  off_t
609
  do_size() const;
610
 
611
  const Target* target_;
612
  const Symbol_table* symtab_;
613
  const Output_segment_headers* segment_header_;
614
  const Output_section_headers* section_header_;
615
  const Output_section* shstrtab_;
616
};
617
 
618
// Output sections are mainly comprised of input sections.  However,
619
// there are cases where we have data to write out which is not in an
620
// input section.  Output_section_data is used in such cases.  This is
621
// an abstract base class.
622
 
623
class Output_section_data : public Output_data
624
{
625
 public:
626
  Output_section_data(off_t data_size, uint64_t addralign,
627
                      bool is_data_size_fixed)
628
    : Output_data(), output_section_(NULL), addralign_(addralign)
629
  {
630
    this->set_data_size(data_size);
631
    if (is_data_size_fixed)
632
      this->fix_data_size();
633
  }
634
 
635
  Output_section_data(uint64_t addralign)
636
    : Output_data(), output_section_(NULL), addralign_(addralign)
637
  { }
638
 
639
  // Return the output section.
640
  Output_section*
641
  output_section()
642
  { return this->output_section_; }
643
 
644
  const Output_section*
645
  output_section() const
646
  { return this->output_section_; }
647
 
648
  // Record the output section.
649
  void
650
  set_output_section(Output_section* os);
651
 
652
  // Add an input section, for SHF_MERGE sections.  This returns true
653
  // if the section was handled.
654
  bool
655
  add_input_section(Relobj* object, unsigned int shndx)
656
  { return this->do_add_input_section(object, shndx); }
657
 
658
  // Given an input OBJECT, an input section index SHNDX within that
659
  // object, and an OFFSET relative to the start of that input
660
  // section, return whether or not the corresponding offset within
661
  // the output section is known.  If this function returns true, it
662
  // sets *POUTPUT to the output offset.  The value -1 indicates that
663
  // this input offset is being discarded.
664
  bool
665
  output_offset(const Relobj* object, unsigned int shndx,
666
                section_offset_type offset,
667
                section_offset_type* poutput) const
668
  { return this->do_output_offset(object, shndx, offset, poutput); }
669
 
670
  // Return whether this is the merge section for the input section
671
  // SHNDX in OBJECT.  This should return true when output_offset
672
  // would return true for some values of OFFSET.
673
  bool
674
  is_merge_section_for(const Relobj* object, unsigned int shndx) const
675
  { return this->do_is_merge_section_for(object, shndx); }
676
 
677
  // Write the contents to a buffer.  This is used for sections which
678
  // require postprocessing, such as compression.
679
  void
680
  write_to_buffer(unsigned char* buffer)
681
  { this->do_write_to_buffer(buffer); }
682
 
683
  // Print merge stats to stderr.  This should only be called for
684
  // SHF_MERGE sections.
685
  void
686
  print_merge_stats(const char* section_name)
687
  { this->do_print_merge_stats(section_name); }
688
 
689
 protected:
690
  // The child class must implement do_write.
691
 
692
  // The child class may implement specific adjustments to the output
693
  // section.
694
  virtual void
695
  do_adjust_output_section(Output_section*)
696
  { }
697
 
698
  // May be implemented by child class.  Return true if the section
699
  // was handled.
700
  virtual bool
701
  do_add_input_section(Relobj*, unsigned int)
702
  { gold_unreachable(); }
703
 
704
  // The child class may implement output_offset.
705
  virtual bool
706
  do_output_offset(const Relobj*, unsigned int, section_offset_type,
707
                   section_offset_type*) const
708
  { return false; }
709
 
710
  // The child class may implement is_merge_section_for.
711
  virtual bool
712
  do_is_merge_section_for(const Relobj*, unsigned int) const
713
  { return false; }
714
 
715
  // The child class may implement write_to_buffer.  Most child
716
  // classes can not appear in a compressed section, and they do not
717
  // implement this.
718
  virtual void
719
  do_write_to_buffer(unsigned char*)
720
  { gold_unreachable(); }
721
 
722
  // Print merge statistics.
723
  virtual void
724
  do_print_merge_stats(const char*)
725
  { gold_unreachable(); }
726
 
727
  // Return the required alignment.
728
  uint64_t
729
  do_addralign() const
730
  { return this->addralign_; }
731
 
732
  // Return the output section.
733
  Output_section*
734
  do_output_section()
735
  { return this->output_section_; }
736
 
737
  const Output_section*
738
  do_output_section() const
739
  { return this->output_section_; }
740
 
741
  // Return the section index of the output section.
742
  unsigned int
743
  do_out_shndx() const;
744
 
745
  // Set the alignment.
746
  void
747
  set_addralign(uint64_t addralign);
748
 
749
 private:
750
  // The output section for this section.
751
  Output_section* output_section_;
752
  // The required alignment.
753
  uint64_t addralign_;
754
};
755
 
756
// Some Output_section_data classes build up their data step by step,
757
// rather than all at once.  This class provides an interface for
758
// them.
759
 
760
class Output_section_data_build : public Output_section_data
761
{
762
 public:
763
  Output_section_data_build(uint64_t addralign)
764
    : Output_section_data(addralign)
765
  { }
766
 
767
  Output_section_data_build(off_t data_size, uint64_t addralign)
768
    : Output_section_data(data_size, addralign, false)
769
  { }
770
 
771
  // Set the current data size.
772
  void
773
  set_current_data_size(off_t data_size)
774
  { this->set_current_data_size_for_child(data_size); }
775
 
776
 protected:
777
  // Set the final data size.
778
  virtual void
779
  set_final_data_size()
780
  { this->set_data_size(this->current_data_size_for_child()); }
781
};
782
 
783
// A simple case of Output_data in which we have constant data to
784
// output.
785
 
786
class Output_data_const : public Output_section_data
787
{
788
 public:
789
  Output_data_const(const std::string& data, uint64_t addralign)
790
    : Output_section_data(data.size(), addralign, true), data_(data)
791
  { }
792
 
793
  Output_data_const(const char* p, off_t len, uint64_t addralign)
794
    : Output_section_data(len, addralign, true), data_(p, len)
795
  { }
796
 
797
  Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798
    : Output_section_data(len, addralign, true),
799
      data_(reinterpret_cast<const char*>(p), len)
800
  { }
801
 
802
 protected:
803
  // Write the data to the output file.
804
  void
805
  do_write(Output_file*);
806
 
807
  // Write the data to a buffer.
808
  void
809
  do_write_to_buffer(unsigned char* buffer)
810
  { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
 
812
  // Write to a map file.
813
  void
814
  do_print_to_mapfile(Mapfile* mapfile) const
815
  { mapfile->print_output_data(this, _("** fill")); }
816
 
817
 private:
818
  std::string data_;
819
};
820
 
821
// Another version of Output_data with constant data, in which the
822
// buffer is allocated by the caller.
823
 
824
class Output_data_const_buffer : public Output_section_data
825
{
826
 public:
827
  Output_data_const_buffer(const unsigned char* p, off_t len,
828
                           uint64_t addralign, const char* map_name)
829
    : Output_section_data(len, addralign, true),
830
      p_(p), map_name_(map_name)
831
  { }
832
 
833
 protected:
834
  // Write the data the output file.
835
  void
836
  do_write(Output_file*);
837
 
838
  // Write the data to a buffer.
839
  void
840
  do_write_to_buffer(unsigned char* buffer)
841
  { memcpy(buffer, this->p_, this->data_size()); }
842
 
843
  // Write to a map file.
844
  void
845
  do_print_to_mapfile(Mapfile* mapfile) const
846
  { mapfile->print_output_data(this, _(this->map_name_)); }
847
 
848
 private:
849
  // The data to output.
850
  const unsigned char* p_;
851
  // Name to use in a map file.  Maps are a rarely used feature, but
852
  // the space usage is minor as aren't very many of these objects.
853
  const char* map_name_;
854
};
855
 
856
// A place holder for a fixed amount of data written out via some
857
// other mechanism.
858
 
859
class Output_data_fixed_space : public Output_section_data
860
{
861
 public:
862
  Output_data_fixed_space(off_t data_size, uint64_t addralign,
863
                          const char* map_name)
864
    : Output_section_data(data_size, addralign, true),
865
      map_name_(map_name)
866
  { }
867
 
868
 protected:
869
  // Write out the data--the actual data must be written out
870
  // elsewhere.
871
  void
872
  do_write(Output_file*)
873
  { }
874
 
875
  // Write to a map file.
876
  void
877
  do_print_to_mapfile(Mapfile* mapfile) const
878
  { mapfile->print_output_data(this, _(this->map_name_)); }
879
 
880
 private:
881
  // Name to use in a map file.  Maps are a rarely used feature, but
882
  // the space usage is minor as aren't very many of these objects.
883
  const char* map_name_;
884
};
885
 
886
// A place holder for variable sized data written out via some other
887
// mechanism.
888
 
889
class Output_data_space : public Output_section_data_build
890
{
891
 public:
892
  explicit Output_data_space(uint64_t addralign, const char* map_name)
893
    : Output_section_data_build(addralign),
894
      map_name_(map_name)
895
  { }
896
 
897
  explicit Output_data_space(off_t data_size, uint64_t addralign,
898
                             const char* map_name)
899
    : Output_section_data_build(data_size, addralign),
900
      map_name_(map_name)
901
  { }
902
 
903
  // Set the alignment.
904
  void
905
  set_space_alignment(uint64_t align)
906
  { this->set_addralign(align); }
907
 
908
 protected:
909
  // Write out the data--the actual data must be written out
910
  // elsewhere.
911
  void
912
  do_write(Output_file*)
913
  { }
914
 
915
  // Write to a map file.
916
  void
917
  do_print_to_mapfile(Mapfile* mapfile) const
918
  { mapfile->print_output_data(this, _(this->map_name_)); }
919
 
920
 private:
921
  // Name to use in a map file.  Maps are a rarely used feature, but
922
  // the space usage is minor as aren't very many of these objects.
923
  const char* map_name_;
924
};
925
 
926
// Fill fixed space with zeroes.  This is just like
927
// Output_data_fixed_space, except that the map name is known.
928
 
929
class Output_data_zero_fill : public Output_section_data
930
{
931
 public:
932
  Output_data_zero_fill(off_t data_size, uint64_t addralign)
933
    : Output_section_data(data_size, addralign, true)
934
  { }
935
 
936
 protected:
937
  // There is no data to write out.
938
  void
939
  do_write(Output_file*)
940
  { }
941
 
942
  // Write to a map file.
943
  void
944
  do_print_to_mapfile(Mapfile* mapfile) const
945
  { mapfile->print_output_data(this, "** zero fill"); }
946
};
947
 
948
// A string table which goes into an output section.
949
 
950
class Output_data_strtab : public Output_section_data
951
{
952
 public:
953
  Output_data_strtab(Stringpool* strtab)
954
    : Output_section_data(1), strtab_(strtab)
955
  { }
956
 
957
 protected:
958
  // This is called to update the section size prior to assigning
959
  // the address and file offset.
960
  void
961
  update_data_size()
962
  { this->set_final_data_size(); }
963
 
964
  // This is called to set the address and file offset.  Here we make
965
  // sure that the Stringpool is finalized.
966
  void
967
  set_final_data_size();
968
 
969
  // Write out the data.
970
  void
971
  do_write(Output_file*);
972
 
973
  // Write the data to a buffer.
974
  void
975
  do_write_to_buffer(unsigned char* buffer)
976
  { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
 
978
  // Write to a map file.
979
  void
980
  do_print_to_mapfile(Mapfile* mapfile) const
981
  { mapfile->print_output_data(this, _("** string table")); }
982
 
983
 private:
984
  Stringpool* strtab_;
985
};
986
 
987
// This POD class is used to represent a single reloc in the output
988
// file.  This could be a private class within Output_data_reloc, but
989
// the templatization is complex enough that I broke it out into a
990
// separate class.  The class is templatized on either elfcpp::SHT_REL
991
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
992
// relocation or an ordinary relocation.
993
 
994
// A relocation can be against a global symbol, a local symbol, a
995
// local section symbol, an output section, or the undefined symbol at
996
// index 0.  We represent the latter by using a NULL global symbol.
997
 
998
template<int sh_type, bool dynamic, int size, bool big_endian>
999
class Output_reloc;
1000
 
1001
template<bool dynamic, int size, bool big_endian>
1002
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003
{
1004
 public:
1005
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
 
1008
  static const Address invalid_address = static_cast<Address>(0) - 1;
1009
 
1010
  // An uninitialized entry.  We need this because we want to put
1011
  // instances of this class into an STL container.
1012
  Output_reloc()
1013
    : local_sym_index_(INVALID_CODE)
1014
  { }
1015
 
1016
  // We have a bunch of different constructors.  They come in pairs
1017
  // depending on how the address of the relocation is specified.  It
1018
  // can either be an offset in an Output_data or an offset in an
1019
  // input section.
1020
 
1021
  // A reloc against a global symbol.
1022
 
1023
  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024
               Address address, bool is_relative, bool is_symbolless);
1025
 
1026
  Output_reloc(Symbol* gsym, unsigned int type,
1027
               Sized_relobj<size, big_endian>* relobj,
1028
               unsigned int shndx, Address address, bool is_relative,
1029
               bool is_symbolless);
1030
 
1031
  // A reloc against a local symbol or local section symbol.
1032
 
1033
  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034
               unsigned int local_sym_index, unsigned int type,
1035
               Output_data* od, Address address, bool is_relative,
1036
               bool is_symbolless, bool is_section_symbol);
1037
 
1038
  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1039
               unsigned int local_sym_index, unsigned int type,
1040
               unsigned int shndx, Address address, bool is_relative,
1041
               bool is_symbolless, bool is_section_symbol);
1042
 
1043
  // A reloc against the STT_SECTION symbol of an output section.
1044
 
1045
  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1046
               Address address);
1047
 
1048
  Output_reloc(Output_section* os, unsigned int type,
1049
               Sized_relobj<size, big_endian>* relobj,
1050
               unsigned int shndx, Address address);
1051
 
1052
  // An absolute relocation with no symbol.
1053
 
1054
  Output_reloc(unsigned int type, Output_data* od, Address address);
1055
 
1056
  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1057
               unsigned int shndx, Address address);
1058
 
1059
  // A target specific relocation.  The target will be called to get
1060
  // the symbol index, passing ARG.  The type and offset will be set
1061
  // as for other relocation types.
1062
 
1063
  Output_reloc(unsigned int type, void* arg, Output_data* od,
1064
               Address address);
1065
 
1066
  Output_reloc(unsigned int type, void* arg,
1067
               Sized_relobj<size, big_endian>* relobj,
1068
               unsigned int shndx, Address address);
1069
 
1070
  // Return the reloc type.
1071
  unsigned int
1072
  type() const
1073
  { return this->type_; }
1074
 
1075
  // Return whether this is a RELATIVE relocation.
1076
  bool
1077
  is_relative() const
1078
  { return this->is_relative_; }
1079
 
1080
  // Return whether this is a relocation which should not use
1081
  // a symbol, but which obtains its addend from a symbol.
1082
  bool
1083
  is_symbolless() const
1084
  { return this->is_symbolless_; }
1085
 
1086
  // Return whether this is against a local section symbol.
1087
  bool
1088
  is_local_section_symbol() const
1089
  {
1090
    return (this->local_sym_index_ != GSYM_CODE
1091
            && this->local_sym_index_ != SECTION_CODE
1092
            && this->local_sym_index_ != INVALID_CODE
1093
            && this->local_sym_index_ != TARGET_CODE
1094
            && this->is_section_symbol_);
1095
  }
1096
 
1097
  // Return whether this is a target specific relocation.
1098
  bool
1099
  is_target_specific() const
1100
  { return this->local_sym_index_ == TARGET_CODE; }
1101
 
1102
  // Return the argument to pass to the target for a target specific
1103
  // relocation.
1104
  void*
1105
  target_arg() const
1106
  {
1107
    gold_assert(this->local_sym_index_ == TARGET_CODE);
1108
    return this->u1_.arg;
1109
  }
1110
 
1111
  // For a local section symbol, return the offset of the input
1112
  // section within the output section.  ADDEND is the addend being
1113
  // applied to the input section.
1114
  Address
1115
  local_section_offset(Addend addend) const;
1116
 
1117
  // Get the value of the symbol referred to by a Rel relocation when
1118
  // we are adding the given ADDEND.
1119
  Address
1120
  symbol_value(Addend addend) const;
1121
 
1122
  // If this relocation is against an input section, return the
1123
  // relocatable object containing the input section.
1124
  Sized_relobj<size, big_endian>*
1125
  get_relobj() const
1126
  {
1127
    if (this->shndx_ == INVALID_CODE)
1128
      return NULL;
1129
    return this->u2_.relobj;
1130
  }
1131
 
1132
  // Write the reloc entry to an output view.
1133
  void
1134
  write(unsigned char* pov) const;
1135
 
1136
  // Write the offset and info fields to Write_rel.
1137
  template<typename Write_rel>
1138
  void write_rel(Write_rel*) const;
1139
 
1140
  // This is used when sorting dynamic relocs.  Return -1 to sort this
1141
  // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1142
  int
1143
  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1144
    const;
1145
 
1146
  // Return whether this reloc should be sorted before the argument
1147
  // when sorting dynamic relocs.
1148
  bool
1149
  sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1150
              r2) const
1151
  { return this->compare(r2) < 0; }
1152
 
1153
 private:
1154
  // Record that we need a dynamic symbol index.
1155
  void
1156
  set_needs_dynsym_index();
1157
 
1158
  // Return the symbol index.
1159
  unsigned int
1160
  get_symbol_index() const;
1161
 
1162
  // Return the output address.
1163
  Address
1164
  get_address() const;
1165
 
1166
  // Codes for local_sym_index_.
1167
  enum
1168
  {
1169
    // Global symbol.
1170
    GSYM_CODE = -1U,
1171
    // Output section.
1172
    SECTION_CODE = -2U,
1173
    // Target specific.
1174
    TARGET_CODE = -3U,
1175
    // Invalid uninitialized entry.
1176
    INVALID_CODE = -4U
1177
  };
1178
 
1179
  union
1180
  {
1181
    // For a local symbol or local section symbol
1182
    // (this->local_sym_index_ >= 0), the object.  We will never
1183
    // generate a relocation against a local symbol in a dynamic
1184
    // object; that doesn't make sense.  And our callers will always
1185
    // be templatized, so we use Sized_relobj here.
1186
    Sized_relobj<size, big_endian>* relobj;
1187
    // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1188
    // symbol.  If this is NULL, it indicates a relocation against the
1189
    // undefined 0 symbol.
1190
    Symbol* gsym;
1191
    // For a relocation against an output section
1192
    // (this->local_sym_index_ == SECTION_CODE), the output section.
1193
    Output_section* os;
1194
    // For a target specific relocation, an argument to pass to the
1195
    // target.
1196
    void* arg;
1197
  } u1_;
1198
  union
1199
  {
1200
    // If this->shndx_ is not INVALID CODE, the object which holds the
1201
    // input section being used to specify the reloc address.
1202
    Sized_relobj<size, big_endian>* relobj;
1203
    // If this->shndx_ is INVALID_CODE, the output data being used to
1204
    // specify the reloc address.  This may be NULL if the reloc
1205
    // address is absolute.
1206
    Output_data* od;
1207
  } u2_;
1208
  // The address offset within the input section or the Output_data.
1209
  Address address_;
1210
  // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1211
  // relocation against an output section, or TARGET_CODE for a target
1212
  // specific relocation, or INVALID_CODE for an uninitialized value.
1213
  // Otherwise, for a local symbol (this->is_section_symbol_ is
1214
  // false), the local symbol index.  For a local section symbol
1215
  // (this->is_section_symbol_ is true), the section index in the
1216
  // input file.
1217
  unsigned int local_sym_index_;
1218
  // The reloc type--a processor specific code.
1219
  unsigned int type_ : 29;
1220
  // True if the relocation is a RELATIVE relocation.
1221
  bool is_relative_ : 1;
1222
  // True if the relocation is one which should not use
1223
  // a symbol, but which obtains its addend from a symbol.
1224
  bool is_symbolless_ : 1;
1225
  // True if the relocation is against a section symbol.
1226
  bool is_section_symbol_ : 1;
1227
  // If the reloc address is an input section in an object, the
1228
  // section index.  This is INVALID_CODE if the reloc address is
1229
  // specified in some other way.
1230
  unsigned int shndx_;
1231
};
1232
 
1233
// The SHT_RELA version of Output_reloc<>.  This is just derived from
1234
// the SHT_REL version of Output_reloc, but it adds an addend.
1235
 
1236
template<bool dynamic, int size, bool big_endian>
1237
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1238
{
1239
 public:
1240
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1241
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1242
 
1243
  // An uninitialized entry.
1244
  Output_reloc()
1245
    : rel_()
1246
  { }
1247
 
1248
  // A reloc against a global symbol.
1249
 
1250
  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1251
               Address address, Addend addend, bool is_relative,
1252
               bool is_symbolless)
1253
    : rel_(gsym, type, od, address, is_relative, is_symbolless),
1254
      addend_(addend)
1255
  { }
1256
 
1257
  Output_reloc(Symbol* gsym, unsigned int type,
1258
               Sized_relobj<size, big_endian>* relobj,
1259
               unsigned int shndx, Address address, Addend addend,
1260
               bool is_relative, bool is_symbolless)
1261
    : rel_(gsym, type, relobj, shndx, address, is_relative,
1262
           is_symbolless), addend_(addend)
1263
  { }
1264
 
1265
  // A reloc against a local symbol.
1266
 
1267
  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1268
               unsigned int local_sym_index, unsigned int type,
1269
               Output_data* od, Address address,
1270
               Addend addend, bool is_relative,
1271
               bool is_symbolless, bool is_section_symbol)
1272
    : rel_(relobj, local_sym_index, type, od, address, is_relative,
1273
           is_symbolless, is_section_symbol),
1274
      addend_(addend)
1275
  { }
1276
 
1277
  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1278
               unsigned int local_sym_index, unsigned int type,
1279
               unsigned int shndx, Address address,
1280
               Addend addend, bool is_relative,
1281
               bool is_symbolless, bool is_section_symbol)
1282
    : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1283
           is_symbolless, is_section_symbol),
1284
      addend_(addend)
1285
  { }
1286
 
1287
  // A reloc against the STT_SECTION symbol of an output section.
1288
 
1289
  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1290
               Address address, Addend addend)
1291
    : rel_(os, type, od, address), addend_(addend)
1292
  { }
1293
 
1294
  Output_reloc(Output_section* os, unsigned int type,
1295
               Sized_relobj<size, big_endian>* relobj,
1296
               unsigned int shndx, Address address, Addend addend)
1297
    : rel_(os, type, relobj, shndx, address), addend_(addend)
1298
  { }
1299
 
1300
  // An absolute relocation with no symbol.
1301
 
1302
  Output_reloc(unsigned int type, Output_data* od, Address address,
1303
               Addend addend)
1304
    : rel_(type, od, address), addend_(addend)
1305
  { }
1306
 
1307
  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1308
               unsigned int shndx, Address address, Addend addend)
1309
    : rel_(type, relobj, shndx, address), addend_(addend)
1310
  { }
1311
 
1312
  // A target specific relocation.  The target will be called to get
1313
  // the symbol index and the addend, passing ARG.  The type and
1314
  // offset will be set as for other relocation types.
1315
 
1316
  Output_reloc(unsigned int type, void* arg, Output_data* od,
1317
               Address address, Addend addend)
1318
    : rel_(type, arg, od, address), addend_(addend)
1319
  { }
1320
 
1321
  Output_reloc(unsigned int type, void* arg,
1322
               Sized_relobj<size, big_endian>* relobj,
1323
               unsigned int shndx, Address address, Addend addend)
1324
    : rel_(type, arg, relobj, shndx, address), addend_(addend)
1325
  { }
1326
 
1327
  // Return whether this is a RELATIVE relocation.
1328
  bool
1329
  is_relative() const
1330
  { return this->rel_.is_relative(); }
1331
 
1332
  // Return whether this is a relocation which should not use
1333
  // a symbol, but which obtains its addend from a symbol.
1334
  bool
1335
  is_symbolless() const
1336
  { return this->rel_.is_symbolless(); }
1337
 
1338
  // If this relocation is against an input section, return the
1339
  // relocatable object containing the input section.
1340
  Sized_relobj<size, big_endian>*
1341
  get_relobj() const
1342
  { return this->rel_.get_relobj(); }
1343
 
1344
  // Write the reloc entry to an output view.
1345
  void
1346
  write(unsigned char* pov) const;
1347
 
1348
  // Return whether this reloc should be sorted before the argument
1349
  // when sorting dynamic relocs.
1350
  bool
1351
  sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1352
              r2) const
1353
  {
1354
    int i = this->rel_.compare(r2.rel_);
1355
    if (i < 0)
1356
      return true;
1357
    else if (i > 0)
1358
      return false;
1359
    else
1360
      return this->addend_ < r2.addend_;
1361
  }
1362
 
1363
 private:
1364
  // The basic reloc.
1365
  Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1366
  // The addend.
1367
  Addend addend_;
1368
};
1369
 
1370
// Output_data_reloc_generic is a non-template base class for
1371
// Output_data_reloc_base.  This gives the generic code a way to hold
1372
// a pointer to a reloc section.
1373
 
1374
class Output_data_reloc_generic : public Output_section_data_build
1375
{
1376
 public:
1377
  Output_data_reloc_generic(int size, bool sort_relocs)
1378
    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1379
      relative_reloc_count_(0), sort_relocs_(sort_relocs)
1380
  { }
1381
 
1382
  // Return the number of relative relocs in this section.
1383
  size_t
1384
  relative_reloc_count() const
1385
  { return this->relative_reloc_count_; }
1386
 
1387
  // Whether we should sort the relocs.
1388
  bool
1389
  sort_relocs() const
1390
  { return this->sort_relocs_; }
1391
 
1392
 protected:
1393
  // Note that we've added another relative reloc.
1394
  void
1395
  bump_relative_reloc_count()
1396
  { ++this->relative_reloc_count_; }
1397
 
1398
 private:
1399
  // The number of relative relocs added to this section.  This is to
1400
  // support DT_RELCOUNT.
1401
  size_t relative_reloc_count_;
1402
  // Whether to sort the relocations when writing them out, to make
1403
  // the dynamic linker more efficient.
1404
  bool sort_relocs_;
1405
};
1406
 
1407
// Output_data_reloc is used to manage a section containing relocs.
1408
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
1409
// indicates whether this is a dynamic relocation or a normal
1410
// relocation.  Output_data_reloc_base is a base class.
1411
// Output_data_reloc is the real class, which we specialize based on
1412
// the reloc type.
1413
 
1414
template<int sh_type, bool dynamic, int size, bool big_endian>
1415
class Output_data_reloc_base : public Output_data_reloc_generic
1416
{
1417
 public:
1418
  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1419
  typedef typename Output_reloc_type::Address Address;
1420
  static const int reloc_size =
1421
    Reloc_types<sh_type, size, big_endian>::reloc_size;
1422
 
1423
  // Construct the section.
1424
  Output_data_reloc_base(bool sort_relocs)
1425
    : Output_data_reloc_generic(size, sort_relocs)
1426
  { }
1427
 
1428
 protected:
1429
  // Write out the data.
1430
  void
1431
  do_write(Output_file*);
1432
 
1433
  // Set the entry size and the link.
1434
  void
1435
  do_adjust_output_section(Output_section* os);
1436
 
1437
  // Write to a map file.
1438
  void
1439
  do_print_to_mapfile(Mapfile* mapfile) const
1440
  {
1441
    mapfile->print_output_data(this,
1442
                               (dynamic
1443
                                ? _("** dynamic relocs")
1444
                                : _("** relocs")));
1445
  }
1446
 
1447
  // Add a relocation entry.
1448
  void
1449
  add(Output_data* od, const Output_reloc_type& reloc)
1450
  {
1451
    this->relocs_.push_back(reloc);
1452
    this->set_current_data_size(this->relocs_.size() * reloc_size);
1453
    od->add_dynamic_reloc();
1454
    if (reloc.is_relative())
1455
      this->bump_relative_reloc_count();
1456
    Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1457
    if (relobj != NULL)
1458
      relobj->add_dyn_reloc(this->relocs_.size() - 1);
1459
  }
1460
 
1461
 private:
1462
  typedef std::vector<Output_reloc_type> Relocs;
1463
 
1464
  // The class used to sort the relocations.
1465
  struct Sort_relocs_comparison
1466
  {
1467
    bool
1468
    operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1469
    { return r1.sort_before(r2); }
1470
  };
1471
 
1472
  // The relocations in this section.
1473
  Relocs relocs_;
1474
};
1475
 
1476
// The class which callers actually create.
1477
 
1478
template<int sh_type, bool dynamic, int size, bool big_endian>
1479
class Output_data_reloc;
1480
 
1481
// The SHT_REL version of Output_data_reloc.
1482
 
1483
template<bool dynamic, int size, bool big_endian>
1484
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1485
  : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1486
{
1487
 private:
1488
  typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1489
                                 big_endian> Base;
1490
 
1491
 public:
1492
  typedef typename Base::Output_reloc_type Output_reloc_type;
1493
  typedef typename Output_reloc_type::Address Address;
1494
 
1495
  Output_data_reloc(bool sr)
1496
    : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1497
  { }
1498
 
1499
  // Add a reloc against a global symbol.
1500
 
1501
  void
1502
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1503
  { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1504
 
1505
  void
1506
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1507
             Sized_relobj<size, big_endian>* relobj,
1508
             unsigned int shndx, Address address)
1509
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1510
                                    false, false)); }
1511
 
1512
  // These are to simplify the Copy_relocs class.
1513
 
1514
  void
1515
  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1516
             Address addend)
1517
  {
1518
    gold_assert(addend == 0);
1519
    this->add_global(gsym, type, od, address);
1520
  }
1521
 
1522
  void
1523
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1524
             Sized_relobj<size, big_endian>* relobj,
1525
             unsigned int shndx, Address address, Address addend)
1526
  {
1527
    gold_assert(addend == 0);
1528
    this->add_global(gsym, type, od, relobj, shndx, address);
1529
  }
1530
 
1531
  // Add a RELATIVE reloc against a global symbol.  The final relocation
1532
  // will not reference the symbol.
1533
 
1534
  void
1535
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1536
                      Address address)
1537
  { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1538
 
1539
  void
1540
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1541
                      Sized_relobj<size, big_endian>* relobj,
1542
                      unsigned int shndx, Address address)
1543
  {
1544
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1545
                                    true, true));
1546
  }
1547
 
1548
  // Add a global relocation which does not use a symbol for the relocation,
1549
  // but which gets its addend from a symbol.
1550
 
1551
  void
1552
  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1553
                               Output_data* od, Address address)
1554
  { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1555
 
1556
  void
1557
  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1558
                               Output_data* od,
1559
                               Sized_relobj<size, big_endian>* relobj,
1560
                               unsigned int shndx, Address address)
1561
  {
1562
    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1563
                                    false, true));
1564
  }
1565
 
1566
  // Add a reloc against a local symbol.
1567
 
1568
  void
1569
  add_local(Sized_relobj<size, big_endian>* relobj,
1570
            unsigned int local_sym_index, unsigned int type,
1571
            Output_data* od, Address address)
1572
  {
1573
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1574
                                    address, false, false, false));
1575
  }
1576
 
1577
  void
1578
  add_local(Sized_relobj<size, big_endian>* relobj,
1579
            unsigned int local_sym_index, unsigned int type,
1580
            Output_data* od, unsigned int shndx, Address address)
1581
  {
1582
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1583
                                    address, false, false, false));
1584
  }
1585
 
1586
  // Add a RELATIVE reloc against a local symbol.
1587
 
1588
  void
1589
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1590
                     unsigned int local_sym_index, unsigned int type,
1591
                     Output_data* od, Address address)
1592
  {
1593
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1594
                                    address, true, true, false));
1595
  }
1596
 
1597
  void
1598
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1599
                     unsigned int local_sym_index, unsigned int type,
1600
                     Output_data* od, unsigned int shndx, Address address)
1601
  {
1602
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1603
                                    address, true, true, false));
1604
  }
1605
 
1606
  // Add a local relocation which does not use a symbol for the relocation,
1607
  // but which gets its addend from a symbol.
1608
 
1609
  void
1610
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1611
                              unsigned int local_sym_index, unsigned int type,
1612
                              Output_data* od, Address address)
1613
  {
1614
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1615
                                    address, false, true, false));
1616
  }
1617
 
1618
  void
1619
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1620
                              unsigned int local_sym_index, unsigned int type,
1621
                              Output_data* od, unsigned int shndx,
1622
                              Address address)
1623
  {
1624
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1625
                                    address, false, true, false));
1626
  }
1627
 
1628
  // Add a reloc against a local section symbol.  This will be
1629
  // converted into a reloc against the STT_SECTION symbol of the
1630
  // output section.
1631
 
1632
  void
1633
  add_local_section(Sized_relobj<size, big_endian>* relobj,
1634
                    unsigned int input_shndx, unsigned int type,
1635
                    Output_data* od, Address address)
1636
  {
1637
    this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1638
                                    address, false, false, true));
1639
  }
1640
 
1641
  void
1642
  add_local_section(Sized_relobj<size, big_endian>* relobj,
1643
                    unsigned int input_shndx, unsigned int type,
1644
                    Output_data* od, unsigned int shndx, Address address)
1645
  {
1646
    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1647
                                    address, false, false, true));
1648
  }
1649
 
1650
  // A reloc against the STT_SECTION symbol of an output section.
1651
  // OS is the Output_section that the relocation refers to; OD is
1652
  // the Output_data object being relocated.
1653
 
1654
  void
1655
  add_output_section(Output_section* os, unsigned int type,
1656
                     Output_data* od, Address address)
1657
  { this->add(od, Output_reloc_type(os, type, od, address)); }
1658
 
1659
  void
1660
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1661
                     Sized_relobj<size, big_endian>* relobj,
1662
                     unsigned int shndx, Address address)
1663
  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1664
 
1665
  // Add an absolute relocation.
1666
 
1667
  void
1668
  add_absolute(unsigned int type, Output_data* od, Address address)
1669
  { this->add(od, Output_reloc_type(type, od, address)); }
1670
 
1671
  void
1672
  add_absolute(unsigned int type, Output_data* od,
1673
               Sized_relobj<size, big_endian>* relobj,
1674
               unsigned int shndx, Address address)
1675
  { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1676
 
1677
  // Add a target specific relocation.  A target which calls this must
1678
  // define the reloc_symbol_index and reloc_addend virtual functions.
1679
 
1680
  void
1681
  add_target_specific(unsigned int type, void* arg, Output_data* od,
1682
                      Address address)
1683
  { this->add(od, Output_reloc_type(type, arg, od, address)); }
1684
 
1685
  void
1686
  add_target_specific(unsigned int type, void* arg, Output_data* od,
1687
                      Sized_relobj<size, big_endian>* relobj,
1688
                      unsigned int shndx, Address address)
1689
  { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1690
};
1691
 
1692
// The SHT_RELA version of Output_data_reloc.
1693
 
1694
template<bool dynamic, int size, bool big_endian>
1695
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1696
  : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1697
{
1698
 private:
1699
  typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1700
                                 big_endian> Base;
1701
 
1702
 public:
1703
  typedef typename Base::Output_reloc_type Output_reloc_type;
1704
  typedef typename Output_reloc_type::Address Address;
1705
  typedef typename Output_reloc_type::Addend Addend;
1706
 
1707
  Output_data_reloc(bool sr)
1708
    : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1709
  { }
1710
 
1711
  // Add a reloc against a global symbol.
1712
 
1713
  void
1714
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1715
             Address address, Addend addend)
1716
  { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1717
                                    false, false)); }
1718
 
1719
  void
1720
  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1721
             Sized_relobj<size, big_endian>* relobj,
1722
             unsigned int shndx, Address address,
1723
             Addend addend)
1724
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1725
                                    addend, false, false)); }
1726
 
1727
  // Add a RELATIVE reloc against a global symbol.  The final output
1728
  // relocation will not reference the symbol, but we must keep the symbol
1729
  // information long enough to set the addend of the relocation correctly
1730
  // when it is written.
1731
 
1732
  void
1733
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1734
                      Address address, Addend addend)
1735
  { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1736
                                    true)); }
1737
 
1738
  void
1739
  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1740
                      Sized_relobj<size, big_endian>* relobj,
1741
                      unsigned int shndx, Address address, Addend addend)
1742
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1743
                                    addend, true, true)); }
1744
 
1745
  // Add a global relocation which does not use a symbol for the relocation,
1746
  // but which gets its addend from a symbol.
1747
 
1748
  void
1749
  add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1750
                               Address address, Addend addend)
1751
  { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1752
                                    false, true)); }
1753
 
1754
  void
1755
  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1756
                               Output_data* od,
1757
                               Sized_relobj<size, big_endian>* relobj,
1758
                               unsigned int shndx, Address address, Addend addend)
1759
  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1760
                                    addend, false, true)); }
1761
 
1762
  // Add a reloc against a local symbol.
1763
 
1764
  void
1765
  add_local(Sized_relobj<size, big_endian>* relobj,
1766
            unsigned int local_sym_index, unsigned int type,
1767
            Output_data* od, Address address, Addend addend)
1768
  {
1769
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1770
                                    addend, false, false, false));
1771
  }
1772
 
1773
  void
1774
  add_local(Sized_relobj<size, big_endian>* relobj,
1775
            unsigned int local_sym_index, unsigned int type,
1776
            Output_data* od, unsigned int shndx, Address address,
1777
            Addend addend)
1778
  {
1779
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1780
                                    address, addend, false, false, false));
1781
  }
1782
 
1783
  // Add a RELATIVE reloc against a local symbol.
1784
 
1785
  void
1786
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1787
                     unsigned int local_sym_index, unsigned int type,
1788
                     Output_data* od, Address address, Addend addend)
1789
  {
1790
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1791
                                    addend, true, true, false));
1792
  }
1793
 
1794
  void
1795
  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1796
                     unsigned int local_sym_index, unsigned int type,
1797
                     Output_data* od, unsigned int shndx, Address address,
1798
                     Addend addend)
1799
  {
1800
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1801
                                    address, addend, true, true, false));
1802
  }
1803
 
1804
  // Add a local relocation which does not use a symbol for the relocation,
1805
  // but which gets it's addend from a symbol.
1806
 
1807
  void
1808
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1809
                              unsigned int local_sym_index, unsigned int type,
1810
                              Output_data* od, Address address, Addend addend)
1811
  {
1812
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1813
                                    addend, false, true, false));
1814
  }
1815
 
1816
  void
1817
  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1818
                              unsigned int local_sym_index, unsigned int type,
1819
                              Output_data* od, unsigned int shndx,
1820
                              Address address, Addend addend)
1821
  {
1822
    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1823
                                    address, addend, false, true, false));
1824
  }
1825
 
1826
  // Add a reloc against a local section symbol.  This will be
1827
  // converted into a reloc against the STT_SECTION symbol of the
1828
  // output section.
1829
 
1830
  void
1831
  add_local_section(Sized_relobj<size, big_endian>* relobj,
1832
                    unsigned int input_shndx, unsigned int type,
1833
                    Output_data* od, Address address, Addend addend)
1834
  {
1835
    this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1836
                                    addend, false, false, true));
1837
  }
1838
 
1839
  void
1840
  add_local_section(Sized_relobj<size, big_endian>* relobj,
1841
                    unsigned int input_shndx, unsigned int type,
1842
                    Output_data* od, unsigned int shndx, Address address,
1843
                    Addend addend)
1844
  {
1845
    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1846
                                    address, addend, false, false, true));
1847
  }
1848
 
1849
  // A reloc against the STT_SECTION symbol of an output section.
1850
 
1851
  void
1852
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1853
                     Address address, Addend addend)
1854
  { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1855
 
1856
  void
1857
  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1858
                     Sized_relobj<size, big_endian>* relobj,
1859
                     unsigned int shndx, Address address, Addend addend)
1860
  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1861
                                    addend)); }
1862
 
1863
  // Add an absolute relocation.
1864
 
1865
  void
1866
  add_absolute(unsigned int type, Output_data* od, Address address,
1867
               Addend addend)
1868
  { this->add(od, Output_reloc_type(type, od, address, addend)); }
1869
 
1870
  void
1871
  add_absolute(unsigned int type, Output_data* od,
1872
               Sized_relobj<size, big_endian>* relobj,
1873
               unsigned int shndx, Address address, Addend addend)
1874
  { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1875
 
1876
  // Add a target specific relocation.  A target which calls this must
1877
  // define the reloc_symbol_index and reloc_addend virtual functions.
1878
 
1879
  void
1880
  add_target_specific(unsigned int type, void* arg, Output_data* od,
1881
                      Address address, Addend addend)
1882
  { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1883
 
1884
  void
1885
  add_target_specific(unsigned int type, void* arg, Output_data* od,
1886
                      Sized_relobj<size, big_endian>* relobj,
1887
                      unsigned int shndx, Address address, Addend addend)
1888
  {
1889
    this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1890
                                    addend));
1891
  }
1892
};
1893
 
1894
// Output_relocatable_relocs represents a relocation section in a
1895
// relocatable link.  The actual data is written out in the target
1896
// hook relocate_for_relocatable.  This just saves space for it.
1897
 
1898
template<int sh_type, int size, bool big_endian>
1899
class Output_relocatable_relocs : public Output_section_data
1900
{
1901
 public:
1902
  Output_relocatable_relocs(Relocatable_relocs* rr)
1903
    : Output_section_data(Output_data::default_alignment_for_size(size)),
1904
      rr_(rr)
1905
  { }
1906
 
1907
  void
1908
  set_final_data_size();
1909
 
1910
  // Write out the data.  There is nothing to do here.
1911
  void
1912
  do_write(Output_file*)
1913
  { }
1914
 
1915
  // Write to a map file.
1916
  void
1917
  do_print_to_mapfile(Mapfile* mapfile) const
1918
  { mapfile->print_output_data(this, _("** relocs")); }
1919
 
1920
 private:
1921
  // The relocs associated with this input section.
1922
  Relocatable_relocs* rr_;
1923
};
1924
 
1925
// Handle a GROUP section.
1926
 
1927
template<int size, bool big_endian>
1928
class Output_data_group : public Output_section_data
1929
{
1930
 public:
1931
  // The constructor clears *INPUT_SHNDXES.
1932
  Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
1933
                    section_size_type entry_count,
1934
                    elfcpp::Elf_Word flags,
1935
                    std::vector<unsigned int>* input_shndxes);
1936
 
1937
  void
1938
  do_write(Output_file*);
1939
 
1940
  // Write to a map file.
1941
  void
1942
  do_print_to_mapfile(Mapfile* mapfile) const
1943
  { mapfile->print_output_data(this, _("** group")); }
1944
 
1945
  // Set final data size.
1946
  void
1947
  set_final_data_size()
1948
  { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1949
 
1950
 private:
1951
  // The input object.
1952
  Sized_relobj_file<size, big_endian>* relobj_;
1953
  // The group flag word.
1954
  elfcpp::Elf_Word flags_;
1955
  // The section indexes of the input sections in this group.
1956
  std::vector<unsigned int> input_shndxes_;
1957
};
1958
 
1959
// Output_data_got is used to manage a GOT.  Each entry in the GOT is
1960
// for one symbol--either a global symbol or a local symbol in an
1961
// object.  The target specific code adds entries to the GOT as
1962
// needed.
1963
 
1964
template<int size, bool big_endian>
1965
class Output_data_got : public Output_section_data_build
1966
{
1967
 public:
1968
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1969
  typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1970
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1971
 
1972
  Output_data_got()
1973
    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1974
      entries_(), free_list_()
1975
  { }
1976
 
1977
  Output_data_got(off_t data_size)
1978
    : Output_section_data_build(data_size,
1979
                                Output_data::default_alignment_for_size(size)),
1980
      entries_(), free_list_()
1981
  {
1982
    // For an incremental update, we have an existing GOT section.
1983
    // Initialize the list of entries and the free list.
1984
    this->entries_.resize(data_size / (size / 8));
1985
    this->free_list_.init(data_size, false);
1986
  }
1987
 
1988
  // Add an entry for a global symbol to the GOT.  Return true if this
1989
  // is a new GOT entry, false if the symbol was already in the GOT.
1990
  bool
1991
  add_global(Symbol* gsym, unsigned int got_type);
1992
 
1993
  // Like add_global, but use the PLT offset of the global symbol if
1994
  // it has one.
1995
  bool
1996
  add_global_plt(Symbol* gsym, unsigned int got_type);
1997
 
1998
  // Add an entry for a global symbol to the GOT, and add a dynamic
1999
  // relocation of type R_TYPE for the GOT entry.
2000
  void
2001
  add_global_with_rel(Symbol* gsym, unsigned int got_type,
2002
                      Rel_dyn* rel_dyn, unsigned int r_type);
2003
 
2004
  void
2005
  add_global_with_rela(Symbol* gsym, unsigned int got_type,
2006
                       Rela_dyn* rela_dyn, unsigned int r_type);
2007
 
2008
  // Add a pair of entries for a global symbol to the GOT, and add
2009
  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2010
  void
2011
  add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2012
                           Rel_dyn* rel_dyn, unsigned int r_type_1,
2013
                           unsigned int r_type_2);
2014
 
2015
  void
2016
  add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
2017
                            Rela_dyn* rela_dyn, unsigned int r_type_1,
2018
                            unsigned int r_type_2);
2019
 
2020
  // Add an entry for a local symbol to the GOT.  This returns true if
2021
  // this is a new GOT entry, false if the symbol already has a GOT
2022
  // entry.
2023
  bool
2024
  add_local(Sized_relobj_file<size, big_endian>* object, unsigned int sym_index,
2025
            unsigned int got_type);
2026
 
2027
  // Like add_local, but use the PLT offset of the local symbol if it
2028
  // has one.
2029
  bool
2030
  add_local_plt(Sized_relobj_file<size, big_endian>* object,
2031
                unsigned int sym_index,
2032
                unsigned int got_type);
2033
 
2034
  // Add an entry for a local symbol to the GOT, and add a dynamic
2035
  // relocation of type R_TYPE for the GOT entry.
2036
  void
2037
  add_local_with_rel(Sized_relobj_file<size, big_endian>* object,
2038
                     unsigned int sym_index, unsigned int got_type,
2039
                     Rel_dyn* rel_dyn, unsigned int r_type);
2040
 
2041
  void
2042
  add_local_with_rela(Sized_relobj_file<size, big_endian>* object,
2043
                      unsigned int sym_index, unsigned int got_type,
2044
                      Rela_dyn* rela_dyn, unsigned int r_type);
2045
 
2046
  // Add a pair of entries for a local symbol to the GOT, and add
2047
  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2048
  void
2049
  add_local_pair_with_rel(Sized_relobj_file<size, big_endian>* object,
2050
                          unsigned int sym_index, unsigned int shndx,
2051
                          unsigned int got_type, Rel_dyn* rel_dyn,
2052
                          unsigned int r_type_1, unsigned int r_type_2);
2053
 
2054
  void
2055
  add_local_pair_with_rela(Sized_relobj_file<size, big_endian>* object,
2056
                          unsigned int sym_index, unsigned int shndx,
2057
                          unsigned int got_type, Rela_dyn* rela_dyn,
2058
                          unsigned int r_type_1, unsigned int r_type_2);
2059
 
2060
  // Add a constant to the GOT.  This returns the offset of the new
2061
  // entry from the start of the GOT.
2062
  unsigned int
2063
  add_constant(Valtype constant)
2064
  {
2065
    unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2066
    return got_offset;
2067
  }
2068
 
2069
  // Reserve a slot in the GOT.
2070
  void
2071
  reserve_slot(unsigned int i)
2072
  { this->free_list_.remove(i * size / 8, (i + 1) * size / 8); }
2073
 
2074
  // Reserve a slot in the GOT for a local symbol.
2075
  void
2076
  reserve_local(unsigned int i, Sized_relobj<size, big_endian>* object,
2077
                unsigned int sym_index, unsigned int got_type);
2078
 
2079
  // Reserve a slot in the GOT for a global symbol.
2080
  void
2081
  reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2082
 
2083
 protected:
2084
  // Write out the GOT table.
2085
  void
2086
  do_write(Output_file*);
2087
 
2088
  // Write to a map file.
2089
  void
2090
  do_print_to_mapfile(Mapfile* mapfile) const
2091
  { mapfile->print_output_data(this, _("** GOT")); }
2092
 
2093
 private:
2094
  // This POD class holds a single GOT entry.
2095
  class Got_entry
2096
  {
2097
   public:
2098
    // Create a zero entry.
2099
    Got_entry()
2100
      : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2101
    { this->u_.constant = 0; }
2102
 
2103
    // Create a global symbol entry.
2104
    Got_entry(Symbol* gsym, bool use_plt_offset)
2105
      : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2106
    { this->u_.gsym = gsym; }
2107
 
2108
    // Create a local symbol entry.
2109
    Got_entry(Sized_relobj_file<size, big_endian>* object,
2110
              unsigned int local_sym_index, bool use_plt_offset)
2111
      : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2112
    {
2113
      gold_assert(local_sym_index != GSYM_CODE
2114
                  && local_sym_index != CONSTANT_CODE
2115
                  && local_sym_index != RESERVED_CODE
2116
                  && local_sym_index == this->local_sym_index_);
2117
      this->u_.object = object;
2118
    }
2119
 
2120
    // Create a constant entry.  The constant is a host value--it will
2121
    // be swapped, if necessary, when it is written out.
2122
    explicit Got_entry(Valtype constant)
2123
      : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2124
    { this->u_.constant = constant; }
2125
 
2126
    // Write the GOT entry to an output view.
2127
    void
2128
    write(unsigned char* pov) const;
2129
 
2130
   private:
2131
    enum
2132
    {
2133
      GSYM_CODE = 0x7fffffff,
2134
      CONSTANT_CODE = 0x7ffffffe,
2135
      RESERVED_CODE = 0x7ffffffd
2136
    };
2137
 
2138
    union
2139
    {
2140
      // For a local symbol, the object.
2141
      Sized_relobj_file<size, big_endian>* object;
2142
      // For a global symbol, the symbol.
2143
      Symbol* gsym;
2144
      // For a constant, the constant.
2145
      Valtype constant;
2146
    } u_;
2147
    // For a local symbol, the local symbol index.  This is GSYM_CODE
2148
    // for a global symbol, or CONSTANT_CODE for a constant.
2149
    unsigned int local_sym_index_ : 31;
2150
    // Whether to use the PLT offset of the symbol if it has one.
2151
    bool use_plt_offset_ : 1;
2152
  };
2153
 
2154
  typedef std::vector<Got_entry> Got_entries;
2155
 
2156
  // Create a new GOT entry and return its offset.
2157
  unsigned int
2158
  add_got_entry(Got_entry got_entry);
2159
 
2160
  // Create a pair of new GOT entries and return the offset of the first.
2161
  unsigned int
2162
  add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2163
 
2164
  // Return the offset into the GOT of GOT entry I.
2165
  unsigned int
2166
  got_offset(unsigned int i) const
2167
  { return i * (size / 8); }
2168
 
2169
  // Return the offset into the GOT of the last entry added.
2170
  unsigned int
2171
  last_got_offset() const
2172
  { return this->got_offset(this->entries_.size() - 1); }
2173
 
2174
  // Set the size of the section.
2175
  void
2176
  set_got_size()
2177
  { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2178
 
2179
  // The list of GOT entries.
2180
  Got_entries entries_;
2181
 
2182
  // List of available regions within the section, for incremental
2183
  // update links.
2184
  Free_list free_list_;
2185
};
2186
 
2187
// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2188
// section.
2189
 
2190
class Output_data_dynamic : public Output_section_data
2191
{
2192
 public:
2193
  Output_data_dynamic(Stringpool* pool)
2194
    : Output_section_data(Output_data::default_alignment()),
2195
      entries_(), pool_(pool)
2196
  { }
2197
 
2198
  // Add a new dynamic entry with a fixed numeric value.
2199
  void
2200
  add_constant(elfcpp::DT tag, unsigned int val)
2201
  { this->add_entry(Dynamic_entry(tag, val)); }
2202
 
2203
  // Add a new dynamic entry with the address of output data.
2204
  void
2205
  add_section_address(elfcpp::DT tag, const Output_data* od)
2206
  { this->add_entry(Dynamic_entry(tag, od, false)); }
2207
 
2208
  // Add a new dynamic entry with the address of output data
2209
  // plus a constant offset.
2210
  void
2211
  add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2212
                          unsigned int offset)
2213
  { this->add_entry(Dynamic_entry(tag, od, offset)); }
2214
 
2215
  // Add a new dynamic entry with the size of output data.
2216
  void
2217
  add_section_size(elfcpp::DT tag, const Output_data* od)
2218
  { this->add_entry(Dynamic_entry(tag, od, true)); }
2219
 
2220
  // Add a new dynamic entry with the total size of two output datas.
2221
  void
2222
  add_section_size(elfcpp::DT tag, const Output_data* od,
2223
                   const Output_data* od2)
2224
  { this->add_entry(Dynamic_entry(tag, od, od2)); }
2225
 
2226
  // Add a new dynamic entry with the address of a symbol.
2227
  void
2228
  add_symbol(elfcpp::DT tag, const Symbol* sym)
2229
  { this->add_entry(Dynamic_entry(tag, sym)); }
2230
 
2231
  // Add a new dynamic entry with a string.
2232
  void
2233
  add_string(elfcpp::DT tag, const char* str)
2234
  { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2235
 
2236
  void
2237
  add_string(elfcpp::DT tag, const std::string& str)
2238
  { this->add_string(tag, str.c_str()); }
2239
 
2240
 protected:
2241
  // Adjust the output section to set the entry size.
2242
  void
2243
  do_adjust_output_section(Output_section*);
2244
 
2245
  // Set the final data size.
2246
  void
2247
  set_final_data_size();
2248
 
2249
  // Write out the dynamic entries.
2250
  void
2251
  do_write(Output_file*);
2252
 
2253
  // Write to a map file.
2254
  void
2255
  do_print_to_mapfile(Mapfile* mapfile) const
2256
  { mapfile->print_output_data(this, _("** dynamic")); }
2257
 
2258
 private:
2259
  // This POD class holds a single dynamic entry.
2260
  class Dynamic_entry
2261
  {
2262
   public:
2263
    // Create an entry with a fixed numeric value.
2264
    Dynamic_entry(elfcpp::DT tag, unsigned int val)
2265
      : tag_(tag), offset_(DYNAMIC_NUMBER)
2266
    { this->u_.val = val; }
2267
 
2268
    // Create an entry with the size or address of a section.
2269
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2270
      : tag_(tag),
2271
        offset_(section_size
2272
                ? DYNAMIC_SECTION_SIZE
2273
                : DYNAMIC_SECTION_ADDRESS)
2274
    {
2275
      this->u_.od = od;
2276
      this->od2 = NULL;
2277
    }
2278
 
2279
    // Create an entry with the size of two sections.
2280
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2281
      : tag_(tag),
2282
        offset_(DYNAMIC_SECTION_SIZE)
2283
    {
2284
      this->u_.od = od;
2285
      this->od2 = od2;
2286
    }
2287
 
2288
    // Create an entry with the address of a section plus a constant offset.
2289
    Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2290
      : tag_(tag),
2291
        offset_(offset)
2292
    { this->u_.od = od; }
2293
 
2294
    // Create an entry with the address of a symbol.
2295
    Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2296
      : tag_(tag), offset_(DYNAMIC_SYMBOL)
2297
    { this->u_.sym = sym; }
2298
 
2299
    // Create an entry with a string.
2300
    Dynamic_entry(elfcpp::DT tag, const char* str)
2301
      : tag_(tag), offset_(DYNAMIC_STRING)
2302
    { this->u_.str = str; }
2303
 
2304
    // Return the tag of this entry.
2305
    elfcpp::DT
2306
    tag() const
2307
    { return this->tag_; }
2308
 
2309
    // Write the dynamic entry to an output view.
2310
    template<int size, bool big_endian>
2311
    void
2312
    write(unsigned char* pov, const Stringpool*) const;
2313
 
2314
   private:
2315
    // Classification is encoded in the OFFSET field.
2316
    enum Classification
2317
    {
2318
      // Section address.
2319
      DYNAMIC_SECTION_ADDRESS = 0,
2320
      // Number.
2321
      DYNAMIC_NUMBER = -1U,
2322
      // Section size.
2323
      DYNAMIC_SECTION_SIZE = -2U,
2324
      // Symbol adress.
2325
      DYNAMIC_SYMBOL = -3U,
2326
      // String.
2327
      DYNAMIC_STRING = -4U
2328
      // Any other value indicates a section address plus OFFSET.
2329
    };
2330
 
2331
    union
2332
    {
2333
      // For DYNAMIC_NUMBER.
2334
      unsigned int val;
2335
      // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2336
      const Output_data* od;
2337
      // For DYNAMIC_SYMBOL.
2338
      const Symbol* sym;
2339
      // For DYNAMIC_STRING.
2340
      const char* str;
2341
    } u_;
2342
    // For DYNAMIC_SYMBOL with two sections.
2343
    const Output_data* od2;
2344
    // The dynamic tag.
2345
    elfcpp::DT tag_;
2346
    // The type of entry (Classification) or offset within a section.
2347
    unsigned int offset_;
2348
  };
2349
 
2350
  // Add an entry to the list.
2351
  void
2352
  add_entry(const Dynamic_entry& entry)
2353
  { this->entries_.push_back(entry); }
2354
 
2355
  // Sized version of write function.
2356
  template<int size, bool big_endian>
2357
  void
2358
  sized_write(Output_file* of);
2359
 
2360
  // The type of the list of entries.
2361
  typedef std::vector<Dynamic_entry> Dynamic_entries;
2362
 
2363
  // The entries.
2364
  Dynamic_entries entries_;
2365
  // The pool used for strings.
2366
  Stringpool* pool_;
2367
};
2368
 
2369
// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2370
// which may be required if the object file has more than
2371
// SHN_LORESERVE sections.
2372
 
2373
class Output_symtab_xindex : public Output_section_data
2374
{
2375
 public:
2376
  Output_symtab_xindex(size_t symcount)
2377
    : Output_section_data(symcount * 4, 4, true),
2378
      entries_()
2379
  { }
2380
 
2381
  // Add an entry: symbol number SYMNDX has section SHNDX.
2382
  void
2383
  add(unsigned int symndx, unsigned int shndx)
2384
  { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2385
 
2386
 protected:
2387
  void
2388
  do_write(Output_file*);
2389
 
2390
  // Write to a map file.
2391
  void
2392
  do_print_to_mapfile(Mapfile* mapfile) const
2393
  { mapfile->print_output_data(this, _("** symtab xindex")); }
2394
 
2395
 private:
2396
  template<bool big_endian>
2397
  void
2398
  endian_do_write(unsigned char*);
2399
 
2400
  // It is likely that most symbols will not require entries.  Rather
2401
  // than keep a vector for all symbols, we keep pairs of symbol index
2402
  // and section index.
2403
  typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2404
 
2405
  // The entries we need.
2406
  Xindex_entries entries_;
2407
};
2408
 
2409
// A relaxed input section.
2410
class Output_relaxed_input_section : public Output_section_data_build
2411
{
2412
 public:
2413
  // We would like to call relobj->section_addralign(shndx) to get the
2414
  // alignment but we do not want the constructor to fail.  So callers
2415
  // are repsonsible for ensuring that.
2416
  Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2417
                               uint64_t addralign)
2418
    : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2419
  { }
2420
 
2421
  // Return the Relobj of this relaxed input section.
2422
  Relobj*
2423
  relobj() const
2424
  { return this->relobj_; }
2425
 
2426
  // Return the section index of this relaxed input section.
2427
  unsigned int
2428
  shndx() const
2429
  { return this->shndx_; }
2430
 
2431
 private:
2432
  Relobj* relobj_;
2433
  unsigned int shndx_;
2434
};
2435
 
2436
// This class describes properties of merge data sections.  It is used
2437
// as a key type for maps.
2438
class Merge_section_properties
2439
{
2440
 public:
2441
  Merge_section_properties(bool is_string, uint64_t entsize,
2442
                             uint64_t addralign)
2443
    : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2444
  { }
2445
 
2446
  // Whether this equals to another Merge_section_properties MSP.
2447
  bool
2448
  eq(const Merge_section_properties& msp) const
2449
  {
2450
    return ((this->is_string_ == msp.is_string_)
2451
            && (this->entsize_ == msp.entsize_)
2452
            && (this->addralign_ == msp.addralign_));
2453
  }
2454
 
2455
  // Compute a hash value for this using 64-bit FNV-1a hash.
2456
  size_t
2457
  hash_value() const
2458
  {
2459
    uint64_t h = 14695981039346656037ULL;       // FNV offset basis.
2460
    uint64_t prime = 1099511628211ULL;
2461
    h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2462
    h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2463
    h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2464
    return h;
2465
  }
2466
 
2467
  // Functors for associative containers.
2468
  struct equal_to
2469
  {
2470
    bool
2471
    operator()(const Merge_section_properties& msp1,
2472
               const Merge_section_properties& msp2) const
2473
    { return msp1.eq(msp2); }
2474
  };
2475
 
2476
  struct hash
2477
  {
2478
    size_t
2479
    operator()(const Merge_section_properties& msp) const
2480
    { return msp.hash_value(); }
2481
  };
2482
 
2483
 private:
2484
  // Whether this merge data section is for strings.
2485
  bool is_string_;
2486
  // Entsize of this merge data section.
2487
  uint64_t entsize_;
2488
  // Address alignment.
2489
  uint64_t addralign_;
2490
};
2491
 
2492
// This class is used to speed up look up of special input sections in an
2493
// Output_section.
2494
 
2495
class Output_section_lookup_maps
2496
{
2497
 public:
2498
  Output_section_lookup_maps()
2499
    : is_valid_(true), merge_sections_by_properties_(),
2500
      merge_sections_by_id_(), relaxed_input_sections_by_id_()
2501
  { }
2502
 
2503
  // Whether the maps are valid.
2504
  bool
2505
  is_valid() const
2506
  { return this->is_valid_; }
2507
 
2508
  // Invalidate the maps.
2509
  void
2510
  invalidate()
2511
  { this->is_valid_ = false; }
2512
 
2513
  // Clear the maps.
2514
  void
2515
  clear()
2516
  {
2517
    this->merge_sections_by_properties_.clear();
2518
    this->merge_sections_by_id_.clear();
2519
    this->relaxed_input_sections_by_id_.clear();
2520
    // A cleared map is valid.
2521
    this->is_valid_ = true;
2522
  }
2523
 
2524
  // Find a merge section by merge section properties.  Return NULL if none
2525
  // is found.
2526
  Output_merge_base*
2527
  find_merge_section(const Merge_section_properties& msp) const
2528
  {
2529
    gold_assert(this->is_valid_);
2530
    Merge_sections_by_properties::const_iterator p =
2531
      this->merge_sections_by_properties_.find(msp);
2532
    return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2533
  }
2534
 
2535
  // Find a merge section by section ID of a merge input section.  Return NULL
2536
  // if none is found.
2537
  Output_merge_base*
2538
  find_merge_section(const Object* object, unsigned int shndx) const
2539
  {
2540
    gold_assert(this->is_valid_);
2541
    Merge_sections_by_id::const_iterator p =
2542
      this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2543
    return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2544
  }
2545
 
2546
  // Add a merge section pointed by POMB with properties MSP.
2547
  void
2548
  add_merge_section(const Merge_section_properties& msp,
2549
                    Output_merge_base* pomb)
2550
  {
2551
    std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2552
    std::pair<Merge_sections_by_properties::iterator, bool> result =
2553
      this->merge_sections_by_properties_.insert(value);
2554
    gold_assert(result.second);
2555
  }
2556
 
2557
  // Add a mapping from a merged input section in OBJECT with index SHNDX
2558
  // to a merge output section pointed by POMB.
2559
  void
2560
  add_merge_input_section(const Object* object, unsigned int shndx,
2561
                          Output_merge_base* pomb)
2562
  {
2563
    Const_section_id csid(object, shndx);
2564
    std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2565
    std::pair<Merge_sections_by_id::iterator, bool> result =
2566
      this->merge_sections_by_id_.insert(value);
2567
    gold_assert(result.second);
2568
  }
2569
 
2570
  // Find a relaxed input section of OBJECT with index SHNDX.
2571
  Output_relaxed_input_section*
2572
  find_relaxed_input_section(const Object* object, unsigned int shndx) const
2573
  {
2574
    gold_assert(this->is_valid_);
2575
    Relaxed_input_sections_by_id::const_iterator p =
2576
      this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2577
    return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2578
  }
2579
 
2580
  // Add a relaxed input section pointed by POMB and whose original input
2581
  // section is in OBJECT with index SHNDX.
2582
  void
2583
  add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2584
                            Output_relaxed_input_section* poris)
2585
  {
2586
    Const_section_id csid(relobj, shndx);
2587
    std::pair<Const_section_id, Output_relaxed_input_section*>
2588
      value(csid, poris);
2589
    std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2590
      this->relaxed_input_sections_by_id_.insert(value);
2591
    gold_assert(result.second);
2592
  }
2593
 
2594
 private:
2595
  typedef Unordered_map<Const_section_id, Output_merge_base*,
2596
                        Const_section_id_hash>
2597
    Merge_sections_by_id;
2598
 
2599
  typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2600
                        Merge_section_properties::hash,
2601
                        Merge_section_properties::equal_to>
2602
    Merge_sections_by_properties;
2603
 
2604
  typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2605
                        Const_section_id_hash>
2606
    Relaxed_input_sections_by_id;
2607
 
2608
  // Whether this is valid
2609
  bool is_valid_;
2610
  // Merge sections by merge section properties.
2611
  Merge_sections_by_properties merge_sections_by_properties_;
2612
  // Merge sections by section IDs.
2613
  Merge_sections_by_id merge_sections_by_id_;
2614
  // Relaxed sections by section IDs.
2615
  Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2616
};
2617
 
2618 159 khays
// This abstract base class defines the interface for the
2619
// types of methods used to fill free space left in an output
2620
// section during an incremental link.  These methods are used
2621
// to insert dummy compilation units into debug info so that
2622
// debug info consumers can scan the debug info serially.
2623
 
2624
class Output_fill
2625
{
2626
 public:
2627
  Output_fill()
2628
    : is_big_endian_(parameters->target().is_big_endian())
2629
  { }
2630
 
2631
  // Return the smallest size chunk of free space that can be
2632
  // filled with a dummy compilation unit.
2633
  size_t
2634
  minimum_hole_size() const
2635
  { return this->do_minimum_hole_size(); }
2636
 
2637
  // Write a fill pattern of length LEN at offset OFF in the file.
2638
  void
2639
  write(Output_file* of, off_t off, size_t len) const
2640
  { this->do_write(of, off, len); }
2641
 
2642
 protected:
2643
  virtual size_t
2644
  do_minimum_hole_size() const = 0;
2645
 
2646
  virtual void
2647
  do_write(Output_file* of, off_t off, size_t len) const = 0;
2648
 
2649
  bool
2650
  is_big_endian() const
2651
  { return this->is_big_endian_; }
2652
 
2653
 private:
2654
  bool is_big_endian_;
2655
};
2656
 
2657
// Fill method that introduces a dummy compilation unit in
2658
// a .debug_info or .debug_types section.
2659
 
2660
class Output_fill_debug_info : public Output_fill
2661
{
2662
 public:
2663
  Output_fill_debug_info(bool is_debug_types)
2664
    : is_debug_types_(is_debug_types)
2665
  { }
2666
 
2667
 protected:
2668
  virtual size_t
2669
  do_minimum_hole_size() const;
2670
 
2671
  virtual void
2672
  do_write(Output_file* of, off_t off, size_t len) const;
2673
 
2674
 private:
2675
  // Version of the header.
2676
  static const int version = 4;
2677
  // True if this is a .debug_types section.
2678
  bool is_debug_types_;
2679
};
2680
 
2681
// Fill method that introduces a dummy compilation unit in
2682
// a .debug_line section.
2683
 
2684
class Output_fill_debug_line : public Output_fill
2685
{
2686
 public:
2687
  Output_fill_debug_line()
2688
  { }
2689
 
2690
 protected:
2691
  virtual size_t
2692
  do_minimum_hole_size() const;
2693
 
2694
  virtual void
2695
  do_write(Output_file* of, off_t off, size_t len) const;
2696
 
2697
 private:
2698
  // Version of the header.  We write a DWARF-3 header because it's smaller
2699
  // and many tools have not yet been updated to understand the DWARF-4 header.
2700
  static const int version = 3;
2701
  // Length of the portion of the header that follows the header_length
2702
  // field.  This includes the following fields:
2703
  // minimum_instruction_length, default_is_stmt, line_base, line_range,
2704
  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2705
  // The standard_opcode_lengths array is 12 bytes long, and the
2706
  // include_directories and filenames fields each contain only a single
2707
  // null byte.
2708
  static const size_t header_length = 19;
2709
};
2710
 
2711 27 khays
// An output section.  We don't expect to have too many output
2712
// sections, so we don't bother to do a template on the size.
2713
 
2714
class Output_section : public Output_data
2715
{
2716
 public:
2717
  // Create an output section, giving the name, type, and flags.
2718
  Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2719
  virtual ~Output_section();
2720
 
2721
  // Add a new input section SHNDX, named NAME, with header SHDR, from
2722
  // object OBJECT.  RELOC_SHNDX is the index of a relocation section
2723
  // which applies to this section, or 0 if none, or -1 if more than
2724
  // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2725
  // in a linker script; in that case we need to keep track of input
2726
  // sections associated with an output section.  Return the offset
2727
  // within the output section.
2728
  template<int size, bool big_endian>
2729
  off_t
2730
  add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2731
                    unsigned int shndx, const char* name,
2732
                    const elfcpp::Shdr<size, big_endian>& shdr,
2733
                    unsigned int reloc_shndx, bool have_sections_script);
2734
 
2735
  // Add generated data POSD to this output section.
2736
  void
2737
  add_output_section_data(Output_section_data* posd);
2738
 
2739
  // Add a relaxed input section PORIS called NAME to this output section
2740
  // with LAYOUT.
2741
  void
2742
  add_relaxed_input_section(Layout* layout,
2743
                            Output_relaxed_input_section* poris,
2744
                            const std::string& name);
2745
 
2746
  // Return the section name.
2747
  const char*
2748
  name() const
2749
  { return this->name_; }
2750
 
2751
  // Return the section type.
2752
  elfcpp::Elf_Word
2753
  type() const
2754
  { return this->type_; }
2755
 
2756
  // Return the section flags.
2757
  elfcpp::Elf_Xword
2758
  flags() const
2759
  { return this->flags_; }
2760
 
2761 159 khays
  typedef std::map<Section_id, unsigned int> Section_layout_order;
2762
 
2763
  void
2764
  update_section_layout(const Section_layout_order& order_map);
2765
 
2766 27 khays
  // Update the output section flags based on input section flags.
2767
  void
2768
  update_flags_for_input_section(elfcpp::Elf_Xword flags);
2769
 
2770
  // Return the entsize field.
2771
  uint64_t
2772
  entsize() const
2773
  { return this->entsize_; }
2774
 
2775
  // Set the entsize field.
2776
  void
2777
  set_entsize(uint64_t v);
2778
 
2779
  // Set the load address.
2780
  void
2781
  set_load_address(uint64_t load_address)
2782
  {
2783
    this->load_address_ = load_address;
2784
    this->has_load_address_ = true;
2785
  }
2786
 
2787
  // Set the link field to the output section index of a section.
2788
  void
2789
  set_link_section(const Output_data* od)
2790
  {
2791
    gold_assert(this->link_ == 0
2792
                && !this->should_link_to_symtab_
2793
                && !this->should_link_to_dynsym_);
2794
    this->link_section_ = od;
2795
  }
2796
 
2797
  // Set the link field to a constant.
2798
  void
2799
  set_link(unsigned int v)
2800
  {
2801
    gold_assert(this->link_section_ == NULL
2802
                && !this->should_link_to_symtab_
2803
                && !this->should_link_to_dynsym_);
2804
    this->link_ = v;
2805
  }
2806
 
2807
  // Record that this section should link to the normal symbol table.
2808
  void
2809
  set_should_link_to_symtab()
2810
  {
2811
    gold_assert(this->link_section_ == NULL
2812
                && this->link_ == 0
2813
                && !this->should_link_to_dynsym_);
2814
    this->should_link_to_symtab_ = true;
2815
  }
2816
 
2817
  // Record that this section should link to the dynamic symbol table.
2818
  void
2819
  set_should_link_to_dynsym()
2820
  {
2821
    gold_assert(this->link_section_ == NULL
2822
                && this->link_ == 0
2823
                && !this->should_link_to_symtab_);
2824
    this->should_link_to_dynsym_ = true;
2825
  }
2826
 
2827
  // Return the info field.
2828
  unsigned int
2829
  info() const
2830
  {
2831
    gold_assert(this->info_section_ == NULL
2832
                && this->info_symndx_ == NULL);
2833
    return this->info_;
2834
  }
2835
 
2836
  // Set the info field to the output section index of a section.
2837
  void
2838
  set_info_section(const Output_section* os)
2839
  {
2840
    gold_assert((this->info_section_ == NULL
2841
                 || (this->info_section_ == os
2842
                     && this->info_uses_section_index_))
2843
                && this->info_symndx_ == NULL
2844
                && this->info_ == 0);
2845
    this->info_section_ = os;
2846
    this->info_uses_section_index_= true;
2847
  }
2848
 
2849
  // Set the info field to the symbol table index of a symbol.
2850
  void
2851
  set_info_symndx(const Symbol* sym)
2852
  {
2853
    gold_assert(this->info_section_ == NULL
2854
                && (this->info_symndx_ == NULL
2855
                    || this->info_symndx_ == sym)
2856
                && this->info_ == 0);
2857
    this->info_symndx_ = sym;
2858
  }
2859
 
2860
  // Set the info field to the symbol table index of a section symbol.
2861
  void
2862
  set_info_section_symndx(const Output_section* os)
2863
  {
2864
    gold_assert((this->info_section_ == NULL
2865
                 || (this->info_section_ == os
2866
                     && !this->info_uses_section_index_))
2867
                && this->info_symndx_ == NULL
2868
                && this->info_ == 0);
2869
    this->info_section_ = os;
2870
    this->info_uses_section_index_ = false;
2871
  }
2872
 
2873
  // Set the info field to a constant.
2874
  void
2875
  set_info(unsigned int v)
2876
  {
2877
    gold_assert(this->info_section_ == NULL
2878
                && this->info_symndx_ == NULL
2879
                && (this->info_ == 0
2880
                    || this->info_ == v));
2881
    this->info_ = v;
2882
  }
2883
 
2884
  // Set the addralign field.
2885
  void
2886
  set_addralign(uint64_t v)
2887
  { this->addralign_ = v; }
2888
 
2889
  // Whether the output section index has been set.
2890
  bool
2891
  has_out_shndx() const
2892
  { return this->out_shndx_ != -1U; }
2893
 
2894
  // Indicate that we need a symtab index.
2895
  void
2896
  set_needs_symtab_index()
2897
  { this->needs_symtab_index_ = true; }
2898
 
2899
  // Return whether we need a symtab index.
2900
  bool
2901
  needs_symtab_index() const
2902
  { return this->needs_symtab_index_; }
2903
 
2904
  // Get the symtab index.
2905
  unsigned int
2906
  symtab_index() const
2907
  {
2908
    gold_assert(this->symtab_index_ != 0);
2909
    return this->symtab_index_;
2910
  }
2911
 
2912
  // Set the symtab index.
2913
  void
2914
  set_symtab_index(unsigned int index)
2915
  {
2916
    gold_assert(index != 0);
2917
    this->symtab_index_ = index;
2918
  }
2919
 
2920
  // Indicate that we need a dynsym index.
2921
  void
2922
  set_needs_dynsym_index()
2923
  { this->needs_dynsym_index_ = true; }
2924
 
2925
  // Return whether we need a dynsym index.
2926
  bool
2927
  needs_dynsym_index() const
2928
  { return this->needs_dynsym_index_; }
2929
 
2930
  // Get the dynsym index.
2931
  unsigned int
2932
  dynsym_index() const
2933
  {
2934
    gold_assert(this->dynsym_index_ != 0);
2935
    return this->dynsym_index_;
2936
  }
2937
 
2938
  // Set the dynsym index.
2939
  void
2940
  set_dynsym_index(unsigned int index)
2941
  {
2942
    gold_assert(index != 0);
2943
    this->dynsym_index_ = index;
2944
  }
2945
 
2946
  // Return whether the input sections sections attachd to this output
2947
  // section may require sorting.  This is used to handle constructor
2948
  // priorities compatibly with GNU ld.
2949
  bool
2950
  may_sort_attached_input_sections() const
2951
  { return this->may_sort_attached_input_sections_; }
2952
 
2953
  // Record that the input sections attached to this output section
2954
  // may require sorting.
2955
  void
2956
  set_may_sort_attached_input_sections()
2957
  { this->may_sort_attached_input_sections_ = true; }
2958
 
2959
   // Returns true if input sections must be sorted according to the
2960
  // order in which their name appear in the --section-ordering-file.
2961
  bool
2962
  input_section_order_specified()
2963
  { return this->input_section_order_specified_; }
2964
 
2965
  // Record that input sections must be sorted as some of their names
2966
  // match the patterns specified through --section-ordering-file.
2967
  void
2968
  set_input_section_order_specified()
2969
  { this->input_section_order_specified_ = true; }
2970
 
2971
  // Return whether the input sections attached to this output section
2972
  // require sorting.  This is used to handle constructor priorities
2973
  // compatibly with GNU ld.
2974
  bool
2975
  must_sort_attached_input_sections() const
2976
  { return this->must_sort_attached_input_sections_; }
2977
 
2978
  // Record that the input sections attached to this output section
2979
  // require sorting.
2980
  void
2981
  set_must_sort_attached_input_sections()
2982
  { this->must_sort_attached_input_sections_ = true; }
2983
 
2984
  // Get the order in which this section appears in the PT_LOAD output
2985
  // segment.
2986
  Output_section_order
2987
  order() const
2988
  { return this->order_; }
2989
 
2990
  // Set the order for this section.
2991
  void
2992
  set_order(Output_section_order order)
2993
  { this->order_ = order; }
2994
 
2995
  // Return whether this section holds relro data--data which has
2996
  // dynamic relocations but which may be marked read-only after the
2997
  // dynamic relocations have been completed.
2998
  bool
2999
  is_relro() const
3000
  { return this->is_relro_; }
3001
 
3002
  // Record that this section holds relro data.
3003
  void
3004
  set_is_relro()
3005
  { this->is_relro_ = true; }
3006
 
3007
  // Record that this section does not hold relro data.
3008
  void
3009
  clear_is_relro()
3010
  { this->is_relro_ = false; }
3011
 
3012
  // True if this is a small section: a section which holds small
3013
  // variables.
3014
  bool
3015
  is_small_section() const
3016
  { return this->is_small_section_; }
3017
 
3018
  // Record that this is a small section.
3019
  void
3020
  set_is_small_section()
3021
  { this->is_small_section_ = true; }
3022
 
3023
  // True if this is a large section: a section which holds large
3024
  // variables.
3025
  bool
3026
  is_large_section() const
3027
  { return this->is_large_section_; }
3028
 
3029
  // Record that this is a large section.
3030
  void
3031
  set_is_large_section()
3032
  { this->is_large_section_ = true; }
3033
 
3034
  // True if this is a large data (not BSS) section.
3035
  bool
3036
  is_large_data_section()
3037
  { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3038
 
3039
  // Return whether this section should be written after all the input
3040
  // sections are complete.
3041
  bool
3042
  after_input_sections() const
3043
  { return this->after_input_sections_; }
3044
 
3045
  // Record that this section should be written after all the input
3046
  // sections are complete.
3047
  void
3048
  set_after_input_sections()
3049
  { this->after_input_sections_ = true; }
3050
 
3051
  // Return whether this section requires postprocessing after all
3052
  // relocations have been applied.
3053
  bool
3054
  requires_postprocessing() const
3055
  { return this->requires_postprocessing_; }
3056
 
3057
  // If a section requires postprocessing, return the buffer to use.
3058
  unsigned char*
3059
  postprocessing_buffer() const
3060
  {
3061
    gold_assert(this->postprocessing_buffer_ != NULL);
3062
    return this->postprocessing_buffer_;
3063
  }
3064
 
3065
  // If a section requires postprocessing, create the buffer to use.
3066
  void
3067
  create_postprocessing_buffer();
3068
 
3069
  // If a section requires postprocessing, this is the size of the
3070
  // buffer to which relocations should be applied.
3071
  off_t
3072
  postprocessing_buffer_size() const
3073
  { return this->current_data_size_for_child(); }
3074
 
3075
  // Modify the section name.  This is only permitted for an
3076
  // unallocated section, and only before the size has been finalized.
3077
  // Otherwise the name will not get into Layout::namepool_.
3078
  void
3079
  set_name(const char* newname)
3080
  {
3081
    gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3082
    gold_assert(!this->is_data_size_valid());
3083
    this->name_ = newname;
3084
  }
3085
 
3086
  // Return whether the offset OFFSET in the input section SHNDX in
3087
  // object OBJECT is being included in the link.
3088
  bool
3089
  is_input_address_mapped(const Relobj* object, unsigned int shndx,
3090
                          off_t offset) const;
3091
 
3092
  // Return the offset within the output section of OFFSET relative to
3093
  // the start of input section SHNDX in object OBJECT.
3094
  section_offset_type
3095
  output_offset(const Relobj* object, unsigned int shndx,
3096
                section_offset_type offset) const;
3097
 
3098
  // Return the output virtual address of OFFSET relative to the start
3099
  // of input section SHNDX in object OBJECT.
3100
  uint64_t
3101
  output_address(const Relobj* object, unsigned int shndx,
3102
                 off_t offset) const;
3103
 
3104
  // Look for the merged section for input section SHNDX in object
3105
  // OBJECT.  If found, return true, and set *ADDR to the address of
3106
  // the start of the merged section.  This is not necessary the
3107
  // output offset corresponding to input offset 0 in the section,
3108
  // since the section may be mapped arbitrarily.
3109
  bool
3110
  find_starting_output_address(const Relobj* object, unsigned int shndx,
3111
                               uint64_t* addr) const;
3112
 
3113
  // Record that this output section was found in the SECTIONS clause
3114
  // of a linker script.
3115
  void
3116
  set_found_in_sections_clause()
3117
  { this->found_in_sections_clause_ = true; }
3118
 
3119
  // Return whether this output section was found in the SECTIONS
3120
  // clause of a linker script.
3121
  bool
3122
  found_in_sections_clause() const
3123
  { return this->found_in_sections_clause_; }
3124
 
3125
  // Write the section header into *OPHDR.
3126
  template<int size, bool big_endian>
3127
  void
3128
  write_header(const Layout*, const Stringpool*,
3129
               elfcpp::Shdr_write<size, big_endian>*) const;
3130
 
3131
  // The next few calls are for linker script support.
3132
 
3133
  // In some cases we need to keep a list of the input sections
3134
  // associated with this output section.  We only need the list if we
3135
  // might have to change the offsets of the input section within the
3136
  // output section after we add the input section.  The ordinary
3137
  // input sections will be written out when we process the object
3138
  // file, and as such we don't need to track them here.  We do need
3139
  // to track Output_section_data objects here.  We store instances of
3140
  // this structure in a std::vector, so it must be a POD.  There can
3141
  // be many instances of this structure, so we use a union to save
3142
  // some space.
3143
  class Input_section
3144
  {
3145
   public:
3146
    Input_section()
3147
      : shndx_(0), p2align_(0)
3148
    {
3149
      this->u1_.data_size = 0;
3150
      this->u2_.object = NULL;
3151
    }
3152
 
3153
    // For an ordinary input section.
3154
    Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3155
                  uint64_t addralign)
3156
      : shndx_(shndx),
3157
        p2align_(ffsll(static_cast<long long>(addralign))),
3158
        section_order_index_(0)
3159
    {
3160
      gold_assert(shndx != OUTPUT_SECTION_CODE
3161
                  && shndx != MERGE_DATA_SECTION_CODE
3162
                  && shndx != MERGE_STRING_SECTION_CODE
3163
                  && shndx != RELAXED_INPUT_SECTION_CODE);
3164
      this->u1_.data_size = data_size;
3165
      this->u2_.object = object;
3166
    }
3167
 
3168
    // For a non-merge output section.
3169
    Input_section(Output_section_data* posd)
3170
      : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3171
        section_order_index_(0)
3172
    {
3173
      this->u1_.data_size = 0;
3174
      this->u2_.posd = posd;
3175
    }
3176
 
3177
    // For a merge section.
3178
    Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3179
      : shndx_(is_string
3180
               ? MERGE_STRING_SECTION_CODE
3181
               : MERGE_DATA_SECTION_CODE),
3182
        p2align_(0),
3183
        section_order_index_(0)
3184
    {
3185
      this->u1_.entsize = entsize;
3186
      this->u2_.posd = posd;
3187
    }
3188
 
3189
    // For a relaxed input section.
3190
    Input_section(Output_relaxed_input_section* psection)
3191
      : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3192
        section_order_index_(0)
3193
    {
3194
      this->u1_.data_size = 0;
3195
      this->u2_.poris = psection;
3196
    }
3197
 
3198
    unsigned int
3199
    section_order_index() const
3200
    {
3201
      return this->section_order_index_;
3202
    }
3203
 
3204
    void
3205
    set_section_order_index(unsigned int number)
3206
    {
3207
      this->section_order_index_ = number;
3208
    }
3209
 
3210
    // The required alignment.
3211
    uint64_t
3212
    addralign() const
3213
    {
3214
      if (this->p2align_ != 0)
3215
        return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3216
      else if (!this->is_input_section())
3217
        return this->u2_.posd->addralign();
3218
      else
3219
        return 0;
3220
    }
3221
 
3222
    // Set the required alignment, which must be either 0 or a power of 2.
3223
    // For input sections that are sub-classes of Output_section_data, a
3224
    // alignment of zero means asking the underlying object for alignment.
3225
    void
3226
    set_addralign(uint64_t addralign)
3227
    {
3228
      if (addralign == 0)
3229
        this->p2align_ = 0;
3230
      else
3231
        {
3232
          gold_assert((addralign & (addralign - 1)) == 0);
3233
          this->p2align_ = ffsll(static_cast<long long>(addralign));
3234
        }
3235
    }
3236
 
3237
    // Return the current required size, without finalization.
3238
    off_t
3239
    current_data_size() const;
3240
 
3241
    // Return the required size.
3242
    off_t
3243
    data_size() const;
3244
 
3245
    // Whether this is an input section.
3246
    bool
3247
    is_input_section() const
3248
    {
3249
      return (this->shndx_ != OUTPUT_SECTION_CODE
3250
              && this->shndx_ != MERGE_DATA_SECTION_CODE
3251
              && this->shndx_ != MERGE_STRING_SECTION_CODE
3252
              && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3253
    }
3254
 
3255
    // Return whether this is a merge section which matches the
3256
    // parameters.
3257
    bool
3258
    is_merge_section(bool is_string, uint64_t entsize,
3259
                     uint64_t addralign) const
3260
    {
3261
      return (this->shndx_ == (is_string
3262
                               ? MERGE_STRING_SECTION_CODE
3263
                               : MERGE_DATA_SECTION_CODE)
3264
              && this->u1_.entsize == entsize
3265
              && this->addralign() == addralign);
3266
    }
3267
 
3268
    // Return whether this is a merge section for some input section.
3269
    bool
3270
    is_merge_section() const
3271
    {
3272
      return (this->shndx_ == MERGE_DATA_SECTION_CODE
3273
              || this->shndx_ == MERGE_STRING_SECTION_CODE);
3274
    }
3275
 
3276
    // Return whether this is a relaxed input section.
3277
    bool
3278
    is_relaxed_input_section() const
3279
    { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3280
 
3281
    // Return whether this is a generic Output_section_data.
3282
    bool
3283
    is_output_section_data() const
3284
    {
3285
      return this->shndx_ == OUTPUT_SECTION_CODE;
3286
    }
3287
 
3288
    // Return the object for an input section.
3289
    Relobj*
3290
    relobj() const;
3291
 
3292
    // Return the input section index for an input section.
3293
    unsigned int
3294
    shndx() const;
3295
 
3296
    // For non-input-sections, return the associated Output_section_data
3297
    // object.
3298
    Output_section_data*
3299
    output_section_data() const
3300
    {
3301
      gold_assert(!this->is_input_section());
3302
      return this->u2_.posd;
3303
    }
3304
 
3305
    // For a merge section, return the Output_merge_base pointer.
3306
    Output_merge_base*
3307
    output_merge_base() const
3308
    {
3309
      gold_assert(this->is_merge_section());
3310
      return this->u2_.pomb;
3311
    }
3312
 
3313
    // Return the Output_relaxed_input_section object.
3314
    Output_relaxed_input_section*
3315
    relaxed_input_section() const
3316
    {
3317
      gold_assert(this->is_relaxed_input_section());
3318
      return this->u2_.poris;
3319
    }
3320
 
3321
    // Set the output section.
3322
    void
3323
    set_output_section(Output_section* os)
3324
    {
3325
      gold_assert(!this->is_input_section());
3326
      Output_section_data* posd =
3327
        this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3328
      posd->set_output_section(os);
3329
    }
3330
 
3331
    // Set the address and file offset.  This is called during
3332
    // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
3333
    // the enclosing section.
3334
    void
3335
    set_address_and_file_offset(uint64_t address, off_t file_offset,
3336
                                off_t section_file_offset);
3337
 
3338
    // Reset the address and file offset.
3339
    void
3340
    reset_address_and_file_offset();
3341
 
3342
    // Finalize the data size.
3343
    void
3344
    finalize_data_size();
3345
 
3346
    // Add an input section, for SHF_MERGE sections.
3347
    bool
3348
    add_input_section(Relobj* object, unsigned int shndx)
3349
    {
3350
      gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3351
                  || this->shndx_ == MERGE_STRING_SECTION_CODE);
3352
      return this->u2_.posd->add_input_section(object, shndx);
3353
    }
3354
 
3355
    // Given an input OBJECT, an input section index SHNDX within that
3356
    // object, and an OFFSET relative to the start of that input
3357
    // section, return whether or not the output offset is known.  If
3358
    // this function returns true, it sets *POUTPUT to the offset in
3359
    // the output section, relative to the start of the input section
3360
    // in the output section.  *POUTPUT may be different from OFFSET
3361
    // for a merged section.
3362
    bool
3363
    output_offset(const Relobj* object, unsigned int shndx,
3364
                  section_offset_type offset,
3365
                  section_offset_type* poutput) const;
3366
 
3367
    // Return whether this is the merge section for the input section
3368
    // SHNDX in OBJECT.
3369
    bool
3370
    is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3371
 
3372
    // Write out the data.  This does nothing for an input section.
3373
    void
3374
    write(Output_file*);
3375
 
3376
    // Write the data to a buffer.  This does nothing for an input
3377
    // section.
3378
    void
3379
    write_to_buffer(unsigned char*);
3380
 
3381
    // Print to a map file.
3382
    void
3383
    print_to_mapfile(Mapfile*) const;
3384
 
3385
    // Print statistics about merge sections to stderr.
3386
    void
3387
    print_merge_stats(const char* section_name)
3388
    {
3389
      if (this->shndx_ == MERGE_DATA_SECTION_CODE
3390
          || this->shndx_ == MERGE_STRING_SECTION_CODE)
3391
        this->u2_.posd->print_merge_stats(section_name);
3392
    }
3393
 
3394
   private:
3395
    // Code values which appear in shndx_.  If the value is not one of
3396
    // these codes, it is the input section index in the object file.
3397
    enum
3398
    {
3399
      // An Output_section_data.
3400
      OUTPUT_SECTION_CODE = -1U,
3401
      // An Output_section_data for an SHF_MERGE section with
3402
      // SHF_STRINGS not set.
3403
      MERGE_DATA_SECTION_CODE = -2U,
3404
      // An Output_section_data for an SHF_MERGE section with
3405
      // SHF_STRINGS set.
3406
      MERGE_STRING_SECTION_CODE = -3U,
3407
      // An Output_section_data for a relaxed input section.
3408
      RELAXED_INPUT_SECTION_CODE = -4U
3409
    };
3410
 
3411
    // For an ordinary input section, this is the section index in the
3412
    // input file.  For an Output_section_data, this is
3413
    // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3414
    // MERGE_STRING_SECTION_CODE.
3415
    unsigned int shndx_;
3416
    // The required alignment, stored as a power of 2.
3417
    unsigned int p2align_;
3418
    union
3419
    {
3420
      // For an ordinary input section, the section size.
3421
      off_t data_size;
3422
      // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3423
      // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3424
      // entity size.
3425
      uint64_t entsize;
3426
    } u1_;
3427
    union
3428
    {
3429
      // For an ordinary input section, the object which holds the
3430
      // input section.
3431
      Relobj* object;
3432
      // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3433
      // MERGE_STRING_SECTION_CODE, the data.
3434
      Output_section_data* posd;
3435
      Output_merge_base* pomb;
3436
      // For RELAXED_INPUT_SECTION_CODE, the data.
3437
      Output_relaxed_input_section* poris;
3438
    } u2_;
3439
    // The line number of the pattern it matches in the --section-ordering-file
3440
    // file.  It is 0 if does not match any pattern.
3441
    unsigned int section_order_index_;
3442
  };
3443
 
3444
  // Store the list of input sections for this Output_section into the
3445
  // list passed in.  This removes the input sections, leaving only
3446
  // any Output_section_data elements.  This returns the size of those
3447
  // Output_section_data elements.  ADDRESS is the address of this
3448
  // output section.  FILL is the fill value to use, in case there are
3449
  // any spaces between the remaining Output_section_data elements.
3450
  uint64_t
3451
  get_input_sections(uint64_t address, const std::string& fill,
3452
                     std::list<Input_section>*);
3453
 
3454
  // Add a script input section.  A script input section can either be
3455
  // a plain input section or a sub-class of Output_section_data.
3456
  void
3457
  add_script_input_section(const Input_section& input_section);
3458
 
3459
  // Set the current size of the output section.
3460
  void
3461
  set_current_data_size(off_t size)
3462
  { this->set_current_data_size_for_child(size); }
3463
 
3464
  // End of linker script support.
3465
 
3466
  // Save states before doing section layout.
3467
  // This is used for relaxation.
3468
  void
3469
  save_states();
3470
 
3471
  // Restore states prior to section layout.
3472
  void
3473
  restore_states();
3474
 
3475
  // Discard states.
3476
  void
3477
  discard_states();
3478
 
3479
  // Convert existing input sections to relaxed input sections.
3480
  void
3481
  convert_input_sections_to_relaxed_sections(
3482
      const std::vector<Output_relaxed_input_section*>& sections);
3483
 
3484
  // Find a relaxed input section to an input section in OBJECT
3485
  // with index SHNDX.  Return NULL if none is found.
3486
  const Output_relaxed_input_section*
3487
  find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3488
 
3489
  // Whether section offsets need adjustment due to relaxation.
3490
  bool
3491
  section_offsets_need_adjustment() const
3492
  { return this->section_offsets_need_adjustment_; }
3493
 
3494
  // Set section_offsets_need_adjustment to be true.
3495
  void
3496
  set_section_offsets_need_adjustment()
3497
  { this->section_offsets_need_adjustment_ = true; }
3498
 
3499
  // Adjust section offsets of input sections in this.  This is
3500
  // requires if relaxation caused some input sections to change sizes.
3501
  void
3502
  adjust_section_offsets();
3503
 
3504
  // Whether this is a NOLOAD section.
3505
  bool
3506
  is_noload() const
3507
  { return this->is_noload_; }
3508
 
3509
  // Set NOLOAD flag.
3510
  void
3511
  set_is_noload()
3512
  { this->is_noload_ = true; }
3513
 
3514
  // Print merge statistics to stderr.
3515
  void
3516
  print_merge_stats();
3517
 
3518
  // Set a fixed layout for the section.  Used for incremental update links.
3519
  void
3520
  set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3521
                   uint64_t sh_addralign);
3522
 
3523
  // Return TRUE if the section has a fixed layout.
3524
  bool
3525
  has_fixed_layout() const
3526
  { return this->has_fixed_layout_; }
3527
 
3528 159 khays
  // Set flag to allow patch space for this section.  Used for full
3529
  // incremental links.
3530
  void
3531
  set_is_patch_space_allowed()
3532
  { this->is_patch_space_allowed_ = true; }
3533
 
3534
  // Set a fill method to use for free space left in the output section
3535
  // during incremental links.
3536
  void
3537
  set_free_space_fill(Output_fill* free_space_fill)
3538
  {
3539
    this->free_space_fill_ = free_space_fill;
3540
    this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3541
  }
3542
 
3543 27 khays
  // Reserve space within the fixed layout for the section.  Used for
3544
  // incremental update links.
3545
  void
3546
  reserve(uint64_t sh_offset, uint64_t sh_size);
3547
 
3548 148 khays
  // Allocate space from the free list for the section.  Used for
3549
  // incremental update links.
3550
  off_t
3551
  allocate(off_t len, uint64_t addralign);
3552
 
3553 27 khays
 protected:
3554
  // Return the output section--i.e., the object itself.
3555
  Output_section*
3556
  do_output_section()
3557
  { return this; }
3558
 
3559
  const Output_section*
3560
  do_output_section() const
3561
  { return this; }
3562
 
3563
  // Return the section index in the output file.
3564
  unsigned int
3565
  do_out_shndx() const
3566
  {
3567
    gold_assert(this->out_shndx_ != -1U);
3568
    return this->out_shndx_;
3569
  }
3570
 
3571
  // Set the output section index.
3572
  void
3573
  do_set_out_shndx(unsigned int shndx)
3574
  {
3575
    gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3576
    this->out_shndx_ = shndx;
3577
  }
3578
 
3579
  // Update the data size of the Output_section.  For a typical
3580
  // Output_section, there is nothing to do, but if there are any
3581
  // Output_section_data objects we need to do a trial layout
3582
  // here.
3583
  virtual void
3584
  update_data_size();
3585
 
3586
  // Set the final data size of the Output_section.  For a typical
3587
  // Output_section, there is nothing to do, but if there are any
3588
  // Output_section_data objects we need to set their final addresses
3589
  // here.
3590
  virtual void
3591
  set_final_data_size();
3592
 
3593
  // Reset the address and file offset.
3594
  void
3595
  do_reset_address_and_file_offset();
3596
 
3597
  // Return true if address and file offset already have reset values. In
3598
  // other words, calling reset_address_and_file_offset will not change them.
3599
  bool
3600
  do_address_and_file_offset_have_reset_values() const;
3601
 
3602
  // Write the data to the file.  For a typical Output_section, this
3603
  // does nothing: the data is written out by calling Object::Relocate
3604
  // on each input object.  But if there are any Output_section_data
3605
  // objects we do need to write them out here.
3606
  virtual void
3607
  do_write(Output_file*);
3608
 
3609
  // Return the address alignment--function required by parent class.
3610
  uint64_t
3611
  do_addralign() const
3612
  { return this->addralign_; }
3613
 
3614
  // Return whether there is a load address.
3615
  bool
3616
  do_has_load_address() const
3617
  { return this->has_load_address_; }
3618
 
3619
  // Return the load address.
3620
  uint64_t
3621
  do_load_address() const
3622
  {
3623
    gold_assert(this->has_load_address_);
3624
    return this->load_address_;
3625
  }
3626
 
3627
  // Return whether this is an Output_section.
3628
  bool
3629
  do_is_section() const
3630
  { return true; }
3631
 
3632
  // Return whether this is a section of the specified type.
3633
  bool
3634
  do_is_section_type(elfcpp::Elf_Word type) const
3635
  { return this->type_ == type; }
3636
 
3637
  // Return whether the specified section flag is set.
3638
  bool
3639
  do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3640
  { return (this->flags_ & flag) != 0; }
3641
 
3642
  // Set the TLS offset.  Called only for SHT_TLS sections.
3643
  void
3644
  do_set_tls_offset(uint64_t tls_base);
3645
 
3646
  // Return the TLS offset, relative to the base of the TLS segment.
3647
  // Valid only for SHT_TLS sections.
3648
  uint64_t
3649
  do_tls_offset() const
3650
  { return this->tls_offset_; }
3651
 
3652
  // This may be implemented by a child class.
3653
  virtual void
3654
  do_finalize_name(Layout*)
3655
  { }
3656
 
3657
  // Print to the map file.
3658
  virtual void
3659
  do_print_to_mapfile(Mapfile*) const;
3660
 
3661
  // Record that this section requires postprocessing after all
3662
  // relocations have been applied.  This is called by a child class.
3663
  void
3664
  set_requires_postprocessing()
3665
  {
3666
    this->requires_postprocessing_ = true;
3667
    this->after_input_sections_ = true;
3668
  }
3669
 
3670
  // Write all the data of an Output_section into the postprocessing
3671
  // buffer.
3672
  void
3673
  write_to_postprocessing_buffer();
3674
 
3675
  typedef std::vector<Input_section> Input_section_list;
3676
 
3677
  // Allow a child class to access the input sections.
3678
  const Input_section_list&
3679
  input_sections() const
3680
  { return this->input_sections_; }
3681
 
3682
  // Whether this always keeps an input section list
3683
  bool
3684
  always_keeps_input_sections() const
3685
  { return this->always_keeps_input_sections_; }
3686
 
3687
  // Always keep an input section list.
3688
  void
3689
  set_always_keeps_input_sections()
3690
  {
3691
    gold_assert(this->current_data_size_for_child() == 0);
3692
    this->always_keeps_input_sections_ = true;
3693
  }
3694
 
3695
 private:
3696
  // We only save enough information to undo the effects of section layout.
3697
  class Checkpoint_output_section
3698
  {
3699
   public:
3700
    Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3701
                              const Input_section_list& input_sections,
3702
                              off_t first_input_offset,
3703
                              bool attached_input_sections_are_sorted)
3704
      : addralign_(addralign), flags_(flags),
3705
        input_sections_(input_sections),
3706
        input_sections_size_(input_sections_.size()),
3707
        input_sections_copy_(), first_input_offset_(first_input_offset),
3708
        attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3709
    { }
3710
 
3711
    virtual
3712
    ~Checkpoint_output_section()
3713
    { }
3714
 
3715
    // Return the address alignment.
3716
    uint64_t
3717
    addralign() const
3718
    { return this->addralign_; }
3719
 
3720
    // Return the section flags.
3721
    elfcpp::Elf_Xword
3722
    flags() const
3723
    { return this->flags_; }
3724
 
3725
    // Return a reference to the input section list copy.
3726
    Input_section_list*
3727
    input_sections()
3728
    { return &this->input_sections_copy_; }
3729
 
3730
    // Return the size of input_sections at the time when checkpoint is
3731
    // taken.
3732
    size_t
3733
    input_sections_size() const
3734
    { return this->input_sections_size_; }
3735
 
3736
    // Whether input sections are copied.
3737
    bool
3738
    input_sections_saved() const
3739
    { return this->input_sections_copy_.size() == this->input_sections_size_; }
3740
 
3741
    off_t
3742
    first_input_offset() const
3743
    { return this->first_input_offset_; }
3744
 
3745
    bool
3746
    attached_input_sections_are_sorted() const
3747
    { return this->attached_input_sections_are_sorted_; }
3748
 
3749
    // Save input sections.
3750
    void
3751
    save_input_sections()
3752
    {
3753
      this->input_sections_copy_.reserve(this->input_sections_size_);
3754
      this->input_sections_copy_.clear();
3755
      Input_section_list::const_iterator p = this->input_sections_.begin();
3756
      gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3757
      for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3758
        this->input_sections_copy_.push_back(*p);
3759
    }
3760
 
3761
   private:
3762
    // The section alignment.
3763
    uint64_t addralign_;
3764
    // The section flags.
3765
    elfcpp::Elf_Xword flags_;
3766
    // Reference to the input sections to be checkpointed.
3767
    const Input_section_list& input_sections_;
3768
    // Size of the checkpointed portion of input_sections_;
3769
    size_t input_sections_size_;
3770
    // Copy of input sections.
3771
    Input_section_list input_sections_copy_;
3772
    // The offset of the first entry in input_sections_.
3773
    off_t first_input_offset_;
3774
    // True if the input sections attached to this output section have
3775
    // already been sorted.
3776
    bool attached_input_sections_are_sorted_;
3777
  };
3778
 
3779
  // This class is used to sort the input sections.
3780
  class Input_section_sort_entry;
3781
 
3782
  // This is the sort comparison function for ctors and dtors.
3783
  struct Input_section_sort_compare
3784
  {
3785
    bool
3786
    operator()(const Input_section_sort_entry&,
3787
               const Input_section_sort_entry&) const;
3788
  };
3789
 
3790
  // This is the sort comparison function for .init_array and .fini_array.
3791
  struct Input_section_sort_init_fini_compare
3792
  {
3793
    bool
3794
    operator()(const Input_section_sort_entry&,
3795
               const Input_section_sort_entry&) const;
3796
  };
3797
 
3798
  // This is the sort comparison function when a section order is specified
3799
  // from an input file.
3800
  struct Input_section_sort_section_order_index_compare
3801
  {
3802
    bool
3803
    operator()(const Input_section_sort_entry&,
3804
               const Input_section_sort_entry&) const;
3805
  };
3806
 
3807
  // Fill data.  This is used to fill in data between input sections.
3808
  // It is also used for data statements (BYTE, WORD, etc.) in linker
3809
  // scripts.  When we have to keep track of the input sections, we
3810
  // can use an Output_data_const, but we don't want to have to keep
3811
  // track of input sections just to implement fills.
3812
  class Fill
3813
  {
3814
   public:
3815
    Fill(off_t section_offset, off_t length)
3816
      : section_offset_(section_offset),
3817
        length_(convert_to_section_size_type(length))
3818
    { }
3819
 
3820
    // Return section offset.
3821
    off_t
3822
    section_offset() const
3823
    { return this->section_offset_; }
3824
 
3825
    // Return fill length.
3826
    section_size_type
3827
    length() const
3828
    { return this->length_; }
3829
 
3830
   private:
3831
    // The offset within the output section.
3832
    off_t section_offset_;
3833
    // The length of the space to fill.
3834
    section_size_type length_;
3835
  };
3836
 
3837
  typedef std::vector<Fill> Fill_list;
3838
 
3839
  // Map used during relaxation of existing sections.  This map
3840
  // a section id an input section list index.  We assume that
3841
  // Input_section_list is a vector.
3842
  typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3843
 
3844
  // Add a new output section by Input_section.
3845
  void
3846
  add_output_section_data(Input_section*);
3847
 
3848
  // Add an SHF_MERGE input section.  Returns true if the section was
3849
  // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
3850
  // stores information about the merged input sections.
3851
  bool
3852
  add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3853
                          uint64_t entsize, uint64_t addralign,
3854
                          bool keeps_input_sections);
3855
 
3856
  // Add an output SHF_MERGE section POSD to this output section.
3857
  // IS_STRING indicates whether it is a SHF_STRINGS section, and
3858
  // ENTSIZE is the entity size.  This returns the entry added to
3859
  // input_sections_.
3860
  void
3861
  add_output_merge_section(Output_section_data* posd, bool is_string,
3862
                           uint64_t entsize);
3863
 
3864
  // Sort the attached input sections.
3865
  void
3866
  sort_attached_input_sections();
3867
 
3868
  // Find the merge section into which an input section with index SHNDX in
3869
  // OBJECT has been added.  Return NULL if none found.
3870
  Output_section_data*
3871
  find_merge_section(const Relobj* object, unsigned int shndx) const;
3872
 
3873
  // Build a relaxation map.
3874
  void
3875
  build_relaxation_map(
3876
      const Input_section_list& input_sections,
3877
      size_t limit,
3878
      Relaxation_map* map) const;
3879
 
3880
  // Convert input sections in an input section list into relaxed sections.
3881
  void
3882
  convert_input_sections_in_list_to_relaxed_sections(
3883
      const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3884
      const Relaxation_map& map,
3885
      Input_section_list* input_sections);
3886
 
3887
  // Build the lookup maps for merge and relaxed input sections.
3888
  void
3889
  build_lookup_maps() const;
3890
 
3891
  // Most of these fields are only valid after layout.
3892
 
3893
  // The name of the section.  This will point into a Stringpool.
3894
  const char* name_;
3895
  // The section address is in the parent class.
3896
  // The section alignment.
3897
  uint64_t addralign_;
3898
  // The section entry size.
3899
  uint64_t entsize_;
3900
  // The load address.  This is only used when using a linker script
3901
  // with a SECTIONS clause.  The has_load_address_ field indicates
3902
  // whether this field is valid.
3903
  uint64_t load_address_;
3904
  // The file offset is in the parent class.
3905
  // Set the section link field to the index of this section.
3906
  const Output_data* link_section_;
3907
  // If link_section_ is NULL, this is the link field.
3908
  unsigned int link_;
3909
  // Set the section info field to the index of this section.
3910
  const Output_section* info_section_;
3911
  // If info_section_ is NULL, set the info field to the symbol table
3912
  // index of this symbol.
3913
  const Symbol* info_symndx_;
3914
  // If info_section_ and info_symndx_ are NULL, this is the section
3915
  // info field.
3916
  unsigned int info_;
3917
  // The section type.
3918
  const elfcpp::Elf_Word type_;
3919
  // The section flags.
3920
  elfcpp::Elf_Xword flags_;
3921
  // The order of this section in the output segment.
3922
  Output_section_order order_;
3923
  // The section index.
3924
  unsigned int out_shndx_;
3925
  // If there is a STT_SECTION for this output section in the normal
3926
  // symbol table, this is the symbol index.  This starts out as zero.
3927
  // It is initialized in Layout::finalize() to be the index, or -1U
3928
  // if there isn't one.
3929
  unsigned int symtab_index_;
3930
  // If there is a STT_SECTION for this output section in the dynamic
3931
  // symbol table, this is the symbol index.  This starts out as zero.
3932
  // It is initialized in Layout::finalize() to be the index, or -1U
3933
  // if there isn't one.
3934
  unsigned int dynsym_index_;
3935
  // The input sections.  This will be empty in cases where we don't
3936
  // need to keep track of them.
3937
  Input_section_list input_sections_;
3938
  // The offset of the first entry in input_sections_.
3939
  off_t first_input_offset_;
3940
  // The fill data.  This is separate from input_sections_ because we
3941
  // often will need fill sections without needing to keep track of
3942
  // input sections.
3943
  Fill_list fills_;
3944
  // If the section requires postprocessing, this buffer holds the
3945
  // section contents during relocation.
3946
  unsigned char* postprocessing_buffer_;
3947
  // Whether this output section needs a STT_SECTION symbol in the
3948
  // normal symbol table.  This will be true if there is a relocation
3949
  // which needs it.
3950
  bool needs_symtab_index_ : 1;
3951
  // Whether this output section needs a STT_SECTION symbol in the
3952
  // dynamic symbol table.  This will be true if there is a dynamic
3953
  // relocation which needs it.
3954
  bool needs_dynsym_index_ : 1;
3955
  // Whether the link field of this output section should point to the
3956
  // normal symbol table.
3957
  bool should_link_to_symtab_ : 1;
3958
  // Whether the link field of this output section should point to the
3959
  // dynamic symbol table.
3960
  bool should_link_to_dynsym_ : 1;
3961
  // Whether this section should be written after all the input
3962
  // sections are complete.
3963
  bool after_input_sections_ : 1;
3964
  // Whether this section requires post processing after all
3965
  // relocations have been applied.
3966
  bool requires_postprocessing_ : 1;
3967
  // Whether an input section was mapped to this output section
3968
  // because of a SECTIONS clause in a linker script.
3969
  bool found_in_sections_clause_ : 1;
3970
  // Whether this section has an explicitly specified load address.
3971
  bool has_load_address_ : 1;
3972
  // True if the info_section_ field means the section index of the
3973
  // section, false if it means the symbol index of the corresponding
3974
  // section symbol.
3975
  bool info_uses_section_index_ : 1;
3976
  // True if input sections attached to this output section have to be
3977
  // sorted according to a specified order.
3978
  bool input_section_order_specified_ : 1;
3979
  // True if the input sections attached to this output section may
3980
  // need sorting.
3981
  bool may_sort_attached_input_sections_ : 1;
3982
  // True if the input sections attached to this output section must
3983
  // be sorted.
3984
  bool must_sort_attached_input_sections_ : 1;
3985
  // True if the input sections attached to this output section have
3986
  // already been sorted.
3987
  bool attached_input_sections_are_sorted_ : 1;
3988
  // True if this section holds relro data.
3989
  bool is_relro_ : 1;
3990
  // True if this is a small section.
3991
  bool is_small_section_ : 1;
3992
  // True if this is a large section.
3993
  bool is_large_section_ : 1;
3994
  // Whether code-fills are generated at write.
3995
  bool generate_code_fills_at_write_ : 1;
3996
  // Whether the entry size field should be zero.
3997
  bool is_entsize_zero_ : 1;
3998
  // Whether section offsets need adjustment due to relaxation.
3999
  bool section_offsets_need_adjustment_ : 1;
4000
  // Whether this is a NOLOAD section.
4001
  bool is_noload_ : 1;
4002
  // Whether this always keeps input section.
4003
  bool always_keeps_input_sections_ : 1;
4004
  // Whether this section has a fixed layout, for incremental update links.
4005
  bool has_fixed_layout_ : 1;
4006 159 khays
  // True if we can add patch space to this section.
4007
  bool is_patch_space_allowed_ : 1;
4008 27 khays
  // For SHT_TLS sections, the offset of this section relative to the base
4009
  // of the TLS segment.
4010
  uint64_t tls_offset_;
4011
  // Saved checkpoint.
4012
  Checkpoint_output_section* checkpoint_;
4013
  // Fast lookup maps for merged and relaxed input sections.
4014
  Output_section_lookup_maps* lookup_maps_;
4015
  // List of available regions within the section, for incremental
4016
  // update links.
4017
  Free_list free_list_;
4018 159 khays
  // Method for filling chunks of free space.
4019
  Output_fill* free_space_fill_;
4020
  // Amount added as patch space for incremental linking.
4021
  off_t patch_space_;
4022 27 khays
};
4023
 
4024
// An output segment.  PT_LOAD segments are built from collections of
4025
// output sections.  Other segments typically point within PT_LOAD
4026
// segments, and are built directly as needed.
4027
//
4028
// NOTE: We want to use the copy constructor for this class.  During
4029
// relaxation, we may try built the segments multiple times.  We do
4030
// that by copying the original segment list before lay-out, doing
4031
// a trial lay-out and roll-back to the saved copied if we need to
4032
// to the lay-out again.
4033
 
4034
class Output_segment
4035
{
4036
 public:
4037
  // Create an output segment, specifying the type and flags.
4038
  Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4039
 
4040
  // Return the virtual address.
4041
  uint64_t
4042
  vaddr() const
4043
  { return this->vaddr_; }
4044
 
4045
  // Return the physical address.
4046
  uint64_t
4047
  paddr() const
4048
  { return this->paddr_; }
4049
 
4050
  // Return the segment type.
4051
  elfcpp::Elf_Word
4052
  type() const
4053
  { return this->type_; }
4054
 
4055
  // Return the segment flags.
4056
  elfcpp::Elf_Word
4057
  flags() const
4058
  { return this->flags_; }
4059
 
4060
  // Return the memory size.
4061
  uint64_t
4062
  memsz() const
4063
  { return this->memsz_; }
4064
 
4065
  // Return the file size.
4066
  off_t
4067
  filesz() const
4068
  { return this->filesz_; }
4069
 
4070
  // Return the file offset.
4071
  off_t
4072
  offset() const
4073
  { return this->offset_; }
4074
 
4075
  // Whether this is a segment created to hold large data sections.
4076
  bool
4077
  is_large_data_segment() const
4078
  { return this->is_large_data_segment_; }
4079
 
4080
  // Record that this is a segment created to hold large data
4081
  // sections.
4082
  void
4083
  set_is_large_data_segment()
4084
  { this->is_large_data_segment_ = true; }
4085
 
4086
  // Return the maximum alignment of the Output_data.
4087
  uint64_t
4088
  maximum_alignment();
4089
 
4090
  // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
4091
  // the segment flags to use.
4092
  void
4093
  add_output_section_to_load(Layout* layout, Output_section* os,
4094
                             elfcpp::Elf_Word seg_flags);
4095
 
4096
  // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
4097
  // is the segment flags to use.
4098
  void
4099
  add_output_section_to_nonload(Output_section* os,
4100
                                elfcpp::Elf_Word seg_flags);
4101
 
4102
  // Remove an Output_section from this segment.  It is an error if it
4103
  // is not present.
4104
  void
4105
  remove_output_section(Output_section* os);
4106
 
4107
  // Add an Output_data (which need not be an Output_section) to the
4108
  // start of this segment.
4109
  void
4110
  add_initial_output_data(Output_data*);
4111
 
4112
  // Return true if this segment has any sections which hold actual
4113
  // data, rather than being a BSS section.
4114
  bool
4115
  has_any_data_sections() const;
4116
 
4117
  // Whether this segment has a dynamic relocs.
4118
  bool
4119
  has_dynamic_reloc() const;
4120
 
4121
  // Return the address of the first section.
4122
  uint64_t
4123
  first_section_load_address() const;
4124
 
4125
  // Return whether the addresses have been set already.
4126
  bool
4127
  are_addresses_set() const
4128
  { return this->are_addresses_set_; }
4129
 
4130
  // Set the addresses.
4131
  void
4132
  set_addresses(uint64_t vaddr, uint64_t paddr)
4133
  {
4134
    this->vaddr_ = vaddr;
4135
    this->paddr_ = paddr;
4136
    this->are_addresses_set_ = true;
4137
  }
4138
 
4139
  // Update the flags for the flags of an output section added to this
4140
  // segment.
4141
  void
4142
  update_flags_for_output_section(elfcpp::Elf_Xword flags)
4143
  {
4144
    // The ELF ABI specifies that a PT_TLS segment should always have
4145
    // PF_R as the flags.
4146
    if (this->type() != elfcpp::PT_TLS)
4147
      this->flags_ |= flags;
4148
  }
4149
 
4150
  // Set the segment flags.  This is only used if we have a PHDRS
4151
  // clause which explicitly specifies the flags.
4152
  void
4153
  set_flags(elfcpp::Elf_Word flags)
4154
  { this->flags_ = flags; }
4155
 
4156
  // Set the address of the segment to ADDR and the offset to *POFF
4157
  // and set the addresses and offsets of all contained output
4158
  // sections accordingly.  Set the section indexes of all contained
4159
  // output sections starting with *PSHNDX.  If RESET is true, first
4160
  // reset the addresses of the contained sections.  Return the
4161
  // address of the immediately following segment.  Update *POFF and
4162
  // *PSHNDX.  This should only be called for a PT_LOAD segment.
4163
  uint64_t
4164
  set_section_addresses(Layout*, bool reset, uint64_t addr,
4165
                        unsigned int* increase_relro, bool* has_relro,
4166
                        off_t* poff, unsigned int* pshndx);
4167
 
4168
  // Set the minimum alignment of this segment.  This may be adjusted
4169
  // upward based on the section alignments.
4170
  void
4171
  set_minimum_p_align(uint64_t align)
4172
  {
4173
    if (align > this->min_p_align_)
4174
      this->min_p_align_ = align;
4175
  }
4176
 
4177
  // Set the offset of this segment based on the section.  This should
4178
  // only be called for a non-PT_LOAD segment.
4179
  void
4180
  set_offset(unsigned int increase);
4181
 
4182
  // Set the TLS offsets of the sections contained in the PT_TLS segment.
4183
  void
4184
  set_tls_offsets();
4185
 
4186
  // Return the number of output sections.
4187
  unsigned int
4188
  output_section_count() const;
4189
 
4190
  // Return the section attached to the list segment with the lowest
4191
  // load address.  This is used when handling a PHDRS clause in a
4192
  // linker script.
4193
  Output_section*
4194
  section_with_lowest_load_address() const;
4195
 
4196
  // Write the segment header into *OPHDR.
4197
  template<int size, bool big_endian>
4198
  void
4199
  write_header(elfcpp::Phdr_write<size, big_endian>*);
4200
 
4201
  // Write the section headers of associated sections into V.
4202
  template<int size, bool big_endian>
4203
  unsigned char*
4204
  write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4205
                        unsigned int* pshndx) const;
4206
 
4207
  // Print the output sections in the map file.
4208
  void
4209
  print_sections_to_mapfile(Mapfile*) const;
4210
 
4211
 private:
4212
  typedef std::vector<Output_data*> Output_data_list;
4213
 
4214
  // Find the maximum alignment in an Output_data_list.
4215
  static uint64_t
4216
  maximum_alignment_list(const Output_data_list*);
4217
 
4218
  // Return whether the first data section is a relro section.
4219
  bool
4220
  is_first_section_relro() const;
4221
 
4222
  // Set the section addresses in an Output_data_list.
4223
  uint64_t
4224
  set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4225
                             uint64_t addr, off_t* poff, unsigned int* pshndx,
4226
                             bool* in_tls);
4227
 
4228
  // Return the number of Output_sections in an Output_data_list.
4229
  unsigned int
4230
  output_section_count_list(const Output_data_list*) const;
4231
 
4232
  // Return whether an Output_data_list has a dynamic reloc.
4233
  bool
4234
  has_dynamic_reloc_list(const Output_data_list*) const;
4235
 
4236
  // Find the section with the lowest load address in an
4237
  // Output_data_list.
4238
  void
4239
  lowest_load_address_in_list(const Output_data_list* pdl,
4240
                              Output_section** found,
4241
                              uint64_t* found_lma) const;
4242
 
4243
  // Find the first and last entries by address.
4244
  void
4245
  find_first_and_last_list(const Output_data_list* pdl,
4246
                           const Output_data** pfirst,
4247
                           const Output_data** plast) const;
4248
 
4249
  // Write the section headers in the list into V.
4250
  template<int size, bool big_endian>
4251
  unsigned char*
4252
  write_section_headers_list(const Layout*, const Stringpool*,
4253
                             const Output_data_list*, unsigned char* v,
4254
                             unsigned int* pshdx) const;
4255
 
4256
  // Print a section list to the mapfile.
4257
  void
4258
  print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4259
 
4260
  // NOTE: We want to use the copy constructor.  Currently, shallow copy
4261
  // works for us so we do not need to write our own copy constructor.
4262
 
4263
  // The list of output data attached to this segment.
4264
  Output_data_list output_lists_[ORDER_MAX];
4265
  // The segment virtual address.
4266
  uint64_t vaddr_;
4267
  // The segment physical address.
4268
  uint64_t paddr_;
4269
  // The size of the segment in memory.
4270
  uint64_t memsz_;
4271
  // The maximum section alignment.  The is_max_align_known_ field
4272
  // indicates whether this has been finalized.
4273
  uint64_t max_align_;
4274
  // The required minimum value for the p_align field.  This is used
4275
  // for PT_LOAD segments.  Note that this does not mean that
4276
  // addresses should be aligned to this value; it means the p_paddr
4277
  // and p_vaddr fields must be congruent modulo this value.  For
4278
  // non-PT_LOAD segments, the dynamic linker works more efficiently
4279
  // if the p_align field has the more conventional value, although it
4280
  // can align as needed.
4281
  uint64_t min_p_align_;
4282
  // The offset of the segment data within the file.
4283
  off_t offset_;
4284
  // The size of the segment data in the file.
4285
  off_t filesz_;
4286
  // The segment type;
4287
  elfcpp::Elf_Word type_;
4288
  // The segment flags.
4289
  elfcpp::Elf_Word flags_;
4290
  // Whether we have finalized max_align_.
4291
  bool is_max_align_known_ : 1;
4292
  // Whether vaddr and paddr were set by a linker script.
4293
  bool are_addresses_set_ : 1;
4294
  // Whether this segment holds large data sections.
4295
  bool is_large_data_segment_ : 1;
4296
};
4297
 
4298
// This class represents the output file.
4299
 
4300
class Output_file
4301
{
4302
 public:
4303
  Output_file(const char* name);
4304
 
4305
  // Indicate that this is a temporary file which should not be
4306
  // output.
4307
  void
4308
  set_is_temporary()
4309
  { this->is_temporary_ = true; }
4310
 
4311
  // Try to open an existing file. Returns false if the file doesn't
4312
  // exist, has a size of 0 or can't be mmaped.  This method is
4313
  // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
4314
  // that file as the base for incremental linking.
4315
  bool
4316
  open_base_file(const char* base_name, bool writable);
4317
 
4318
  // Open the output file.  FILE_SIZE is the final size of the file.
4319
  // If the file already exists, it is deleted/truncated.  This method
4320
  // is thread-unsafe.
4321
  void
4322
  open(off_t file_size);
4323
 
4324
  // Resize the output file.  This method is thread-unsafe.
4325
  void
4326
  resize(off_t file_size);
4327
 
4328
  // Close the output file (flushing all buffered data) and make sure
4329
  // there are no errors.  This method is thread-unsafe.
4330
  void
4331
  close();
4332
 
4333
  // Return the size of this file.
4334
  off_t
4335
  filesize()
4336
  { return this->file_size_; }
4337
 
4338
  // Return the name of this file.
4339
  const char*
4340
  filename()
4341
  { return this->name_; }
4342
 
4343
  // We currently always use mmap which makes the view handling quite
4344
  // simple.  In the future we may support other approaches.
4345
 
4346
  // Write data to the output file.
4347
  void
4348
  write(off_t offset, const void* data, size_t len)
4349
  { memcpy(this->base_ + offset, data, len); }
4350
 
4351
  // Get a buffer to use to write to the file, given the offset into
4352
  // the file and the size.
4353
  unsigned char*
4354
  get_output_view(off_t start, size_t size)
4355
  {
4356
    gold_assert(start >= 0
4357
                && start + static_cast<off_t>(size) <= this->file_size_);
4358
    return this->base_ + start;
4359
  }
4360
 
4361
  // VIEW must have been returned by get_output_view.  Write the
4362
  // buffer to the file, passing in the offset and the size.
4363
  void
4364
  write_output_view(off_t, size_t, unsigned char*)
4365
  { }
4366
 
4367
  // Get a read/write buffer.  This is used when we want to write part
4368
  // of the file, read it in, and write it again.
4369
  unsigned char*
4370
  get_input_output_view(off_t start, size_t size)
4371
  { return this->get_output_view(start, size); }
4372
 
4373
  // Write a read/write buffer back to the file.
4374
  void
4375
  write_input_output_view(off_t, size_t, unsigned char*)
4376
  { }
4377
 
4378
  // Get a read buffer.  This is used when we just want to read part
4379
  // of the file back it in.
4380
  const unsigned char*
4381
  get_input_view(off_t start, size_t size)
4382
  { return this->get_output_view(start, size); }
4383
 
4384
  // Release a read bfufer.
4385
  void
4386
  free_input_view(off_t, size_t, const unsigned char*)
4387
  { }
4388
 
4389
 private:
4390
  // Map the file into memory or, if that fails, allocate anonymous
4391
  // memory.
4392
  void
4393
  map();
4394
 
4395
  // Allocate anonymous memory for the file.
4396
  bool
4397
  map_anonymous();
4398
 
4399
  // Map the file into memory.
4400
  bool
4401
  map_no_anonymous(bool);
4402
 
4403
  // Unmap the file from memory (and flush to disk buffers).
4404
  void
4405
  unmap();
4406
 
4407
  // File name.
4408
  const char* name_;
4409
  // File descriptor.
4410
  int o_;
4411
  // File size.
4412
  off_t file_size_;
4413
  // Base of file mapped into memory.
4414
  unsigned char* base_;
4415
  // True iff base_ points to a memory buffer rather than an output file.
4416
  bool map_is_anonymous_;
4417
  // True if base_ was allocated using new rather than mmap.
4418
  bool map_is_allocated_;
4419
  // True if this is a temporary file which should not be output.
4420
  bool is_temporary_;
4421
};
4422
 
4423
} // End namespace gold.
4424
 
4425
#endif // !defined(GOLD_OUTPUT_H)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.