OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [symtab.cc] - Blame information for rev 143

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// symtab.cc -- the gold symbol table
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstring>
26
#include <stdint.h>
27
#include <algorithm>
28
#include <set>
29
#include <string>
30
#include <utility>
31
#include "demangle.h"
32
 
33
#include "gc.h"
34
#include "object.h"
35
#include "dwarf_reader.h"
36
#include "dynobj.h"
37
#include "output.h"
38
#include "target.h"
39
#include "workqueue.h"
40
#include "symtab.h"
41
#include "script.h"
42
#include "plugin.h"
43
#include "incremental.h"
44
 
45
namespace gold
46
{
47
 
48
// Class Symbol.
49
 
50
// Initialize fields in Symbol.  This initializes everything except u_
51
// and source_.
52
 
53
void
54
Symbol::init_fields(const char* name, const char* version,
55
                    elfcpp::STT type, elfcpp::STB binding,
56
                    elfcpp::STV visibility, unsigned char nonvis)
57
{
58
  this->name_ = name;
59
  this->version_ = version;
60
  this->symtab_index_ = 0;
61
  this->dynsym_index_ = 0;
62
  this->got_offsets_.init();
63
  this->plt_offset_ = -1U;
64
  this->type_ = type;
65
  this->binding_ = binding;
66
  this->visibility_ = visibility;
67
  this->nonvis_ = nonvis;
68
  this->is_def_ = false;
69
  this->is_forwarder_ = false;
70
  this->has_alias_ = false;
71
  this->needs_dynsym_entry_ = false;
72
  this->in_reg_ = false;
73
  this->in_dyn_ = false;
74
  this->has_warning_ = false;
75
  this->is_copied_from_dynobj_ = false;
76
  this->is_forced_local_ = false;
77
  this->is_ordinary_shndx_ = false;
78
  this->in_real_elf_ = false;
79
  this->is_defined_in_discarded_section_ = false;
80
  this->undef_binding_set_ = false;
81
  this->undef_binding_weak_ = false;
82
}
83
 
84
// Return the demangled version of the symbol's name, but only
85
// if the --demangle flag was set.
86
 
87
static std::string
88
demangle(const char* name)
89
{
90
  if (!parameters->options().do_demangle())
91
    return name;
92
 
93
  // cplus_demangle allocates memory for the result it returns,
94
  // and returns NULL if the name is already demangled.
95
  char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
96
  if (demangled_name == NULL)
97
    return name;
98
 
99
  std::string retval(demangled_name);
100
  free(demangled_name);
101
  return retval;
102
}
103
 
104
std::string
105
Symbol::demangled_name() const
106
{
107
  return demangle(this->name());
108
}
109
 
110
// Initialize the fields in the base class Symbol for SYM in OBJECT.
111
 
112
template<int size, bool big_endian>
113
void
114
Symbol::init_base_object(const char* name, const char* version, Object* object,
115
                         const elfcpp::Sym<size, big_endian>& sym,
116
                         unsigned int st_shndx, bool is_ordinary)
117
{
118
  this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
119
                    sym.get_st_visibility(), sym.get_st_nonvis());
120
  this->u_.from_object.object = object;
121
  this->u_.from_object.shndx = st_shndx;
122
  this->is_ordinary_shndx_ = is_ordinary;
123
  this->source_ = FROM_OBJECT;
124
  this->in_reg_ = !object->is_dynamic();
125
  this->in_dyn_ = object->is_dynamic();
126
  this->in_real_elf_ = object->pluginobj() == NULL;
127
}
128
 
129
// Initialize the fields in the base class Symbol for a symbol defined
130
// in an Output_data.
131
 
132
void
133
Symbol::init_base_output_data(const char* name, const char* version,
134
                              Output_data* od, elfcpp::STT type,
135
                              elfcpp::STB binding, elfcpp::STV visibility,
136
                              unsigned char nonvis, bool offset_is_from_end)
137
{
138
  this->init_fields(name, version, type, binding, visibility, nonvis);
139
  this->u_.in_output_data.output_data = od;
140
  this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
141
  this->source_ = IN_OUTPUT_DATA;
142
  this->in_reg_ = true;
143
  this->in_real_elf_ = true;
144
}
145
 
146
// Initialize the fields in the base class Symbol for a symbol defined
147
// in an Output_segment.
148
 
149
void
150
Symbol::init_base_output_segment(const char* name, const char* version,
151
                                 Output_segment* os, elfcpp::STT type,
152
                                 elfcpp::STB binding, elfcpp::STV visibility,
153
                                 unsigned char nonvis,
154
                                 Segment_offset_base offset_base)
155
{
156
  this->init_fields(name, version, type, binding, visibility, nonvis);
157
  this->u_.in_output_segment.output_segment = os;
158
  this->u_.in_output_segment.offset_base = offset_base;
159
  this->source_ = IN_OUTPUT_SEGMENT;
160
  this->in_reg_ = true;
161
  this->in_real_elf_ = true;
162
}
163
 
164
// Initialize the fields in the base class Symbol for a symbol defined
165
// as a constant.
166
 
167
void
168
Symbol::init_base_constant(const char* name, const char* version,
169
                           elfcpp::STT type, elfcpp::STB binding,
170
                           elfcpp::STV visibility, unsigned char nonvis)
171
{
172
  this->init_fields(name, version, type, binding, visibility, nonvis);
173
  this->source_ = IS_CONSTANT;
174
  this->in_reg_ = true;
175
  this->in_real_elf_ = true;
176
}
177
 
178
// Initialize the fields in the base class Symbol for an undefined
179
// symbol.
180
 
181
void
182
Symbol::init_base_undefined(const char* name, const char* version,
183
                            elfcpp::STT type, elfcpp::STB binding,
184
                            elfcpp::STV visibility, unsigned char nonvis)
185
{
186
  this->init_fields(name, version, type, binding, visibility, nonvis);
187
  this->dynsym_index_ = -1U;
188
  this->source_ = IS_UNDEFINED;
189
  this->in_reg_ = true;
190
  this->in_real_elf_ = true;
191
}
192
 
193
// Allocate a common symbol in the base.
194
 
195
void
196
Symbol::allocate_base_common(Output_data* od)
197
{
198
  gold_assert(this->is_common());
199
  this->source_ = IN_OUTPUT_DATA;
200
  this->u_.in_output_data.output_data = od;
201
  this->u_.in_output_data.offset_is_from_end = false;
202
}
203
 
204
// Initialize the fields in Sized_symbol for SYM in OBJECT.
205
 
206
template<int size>
207
template<bool big_endian>
208
void
209
Sized_symbol<size>::init_object(const char* name, const char* version,
210
                                Object* object,
211
                                const elfcpp::Sym<size, big_endian>& sym,
212
                                unsigned int st_shndx, bool is_ordinary)
213
{
214
  this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
215
  this->value_ = sym.get_st_value();
216
  this->symsize_ = sym.get_st_size();
217
}
218
 
219
// Initialize the fields in Sized_symbol for a symbol defined in an
220
// Output_data.
221
 
222
template<int size>
223
void
224
Sized_symbol<size>::init_output_data(const char* name, const char* version,
225
                                     Output_data* od, Value_type value,
226
                                     Size_type symsize, elfcpp::STT type,
227
                                     elfcpp::STB binding,
228
                                     elfcpp::STV visibility,
229
                                     unsigned char nonvis,
230
                                     bool offset_is_from_end)
231
{
232
  this->init_base_output_data(name, version, od, type, binding, visibility,
233
                              nonvis, offset_is_from_end);
234
  this->value_ = value;
235
  this->symsize_ = symsize;
236
}
237
 
238
// Initialize the fields in Sized_symbol for a symbol defined in an
239
// Output_segment.
240
 
241
template<int size>
242
void
243
Sized_symbol<size>::init_output_segment(const char* name, const char* version,
244
                                        Output_segment* os, Value_type value,
245
                                        Size_type symsize, elfcpp::STT type,
246
                                        elfcpp::STB binding,
247
                                        elfcpp::STV visibility,
248
                                        unsigned char nonvis,
249
                                        Segment_offset_base offset_base)
250
{
251
  this->init_base_output_segment(name, version, os, type, binding, visibility,
252
                                 nonvis, offset_base);
253
  this->value_ = value;
254
  this->symsize_ = symsize;
255
}
256
 
257
// Initialize the fields in Sized_symbol for a symbol defined as a
258
// constant.
259
 
260
template<int size>
261
void
262
Sized_symbol<size>::init_constant(const char* name, const char* version,
263
                                  Value_type value, Size_type symsize,
264
                                  elfcpp::STT type, elfcpp::STB binding,
265
                                  elfcpp::STV visibility, unsigned char nonvis)
266
{
267
  this->init_base_constant(name, version, type, binding, visibility, nonvis);
268
  this->value_ = value;
269
  this->symsize_ = symsize;
270
}
271
 
272
// Initialize the fields in Sized_symbol for an undefined symbol.
273
 
274
template<int size>
275
void
276
Sized_symbol<size>::init_undefined(const char* name, const char* version,
277
                                   elfcpp::STT type, elfcpp::STB binding,
278
                                   elfcpp::STV visibility, unsigned char nonvis)
279
{
280
  this->init_base_undefined(name, version, type, binding, visibility, nonvis);
281
  this->value_ = 0;
282
  this->symsize_ = 0;
283
}
284
 
285
// Return true if SHNDX represents a common symbol.
286
 
287
bool
288
Symbol::is_common_shndx(unsigned int shndx)
289
{
290
  return (shndx == elfcpp::SHN_COMMON
291
          || shndx == parameters->target().small_common_shndx()
292
          || shndx == parameters->target().large_common_shndx());
293
}
294
 
295
// Allocate a common symbol.
296
 
297
template<int size>
298
void
299
Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
300
{
301
  this->allocate_base_common(od);
302
  this->value_ = value;
303
}
304
 
305
// The ""'s around str ensure str is a string literal, so sizeof works.
306
#define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
307
 
308
// Return true if this symbol should be added to the dynamic symbol
309
// table.
310
 
311
inline bool
312
Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
313
{
314
  // If the symbol is only present on plugin files, the plugin decided we
315
  // don't need it.
316
  if (!this->in_real_elf())
317
    return false;
318
 
319
  // If the symbol is used by a dynamic relocation, we need to add it.
320
  if (this->needs_dynsym_entry())
321
    return true;
322
 
323
  // If this symbol's section is not added, the symbol need not be added. 
324
  // The section may have been GCed.  Note that export_dynamic is being 
325
  // overridden here.  This should not be done for shared objects.
326
  if (parameters->options().gc_sections()
327
      && !parameters->options().shared()
328
      && this->source() == Symbol::FROM_OBJECT
329
      && !this->object()->is_dynamic())
330
    {
331
      Relobj* relobj = static_cast<Relobj*>(this->object());
332
      bool is_ordinary;
333
      unsigned int shndx = this->shndx(&is_ordinary);
334
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF
335
          && !relobj->is_section_included(shndx)
336
          && !symtab->is_section_folded(relobj, shndx))
337
        return false;
338
    }
339
 
340
  // If the symbol was forced local in a version script, do not add it.
341
  if (this->is_forced_local())
342
    return false;
343
 
344
  // If the symbol was forced dynamic in a --dynamic-list file, add it.
345
  if (parameters->options().in_dynamic_list(this->name()))
346
    return true;
347
 
348
  // If dynamic-list-data was specified, add any STT_OBJECT.
349
  if (parameters->options().dynamic_list_data()
350
      && !this->is_from_dynobj()
351
      && this->type() == elfcpp::STT_OBJECT)
352
    return true;
353
 
354
  // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
355
  // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
356
  if ((parameters->options().dynamic_list_cpp_new()
357
       || parameters->options().dynamic_list_cpp_typeinfo())
358
      && !this->is_from_dynobj())
359
    {
360
      // TODO(csilvers): We could probably figure out if we're an operator
361
      //                 new/delete or typeinfo without the need to demangle.
362
      char* demangled_name = cplus_demangle(this->name(),
363
                                            DMGL_ANSI | DMGL_PARAMS);
364
      if (demangled_name == NULL)
365
        {
366
          // Not a C++ symbol, so it can't satisfy these flags
367
        }
368
      else if (parameters->options().dynamic_list_cpp_new()
369
               && (strprefix(demangled_name, "operator new")
370
                   || strprefix(demangled_name, "operator delete")))
371
        {
372
          free(demangled_name);
373
          return true;
374
        }
375
      else if (parameters->options().dynamic_list_cpp_typeinfo()
376
               && (strprefix(demangled_name, "typeinfo name for")
377
                   || strprefix(demangled_name, "typeinfo for")))
378
        {
379
          free(demangled_name);
380
          return true;
381
        }
382
      else
383
        free(demangled_name);
384
    }
385
 
386
  // If exporting all symbols or building a shared library,
387
  // and the symbol is defined in a regular object and is
388
  // externally visible, we need to add it.
389
  if ((parameters->options().export_dynamic() || parameters->options().shared())
390
      && !this->is_from_dynobj()
391
      && this->is_externally_visible())
392
    return true;
393
 
394
  return false;
395
}
396
 
397
// Return true if the final value of this symbol is known at link
398
// time.
399
 
400
bool
401
Symbol::final_value_is_known() const
402
{
403
  // If we are not generating an executable, then no final values are
404
  // known, since they will change at runtime.
405
  if (parameters->options().output_is_position_independent()
406
      || parameters->options().relocatable())
407
    return false;
408
 
409
  // If the symbol is not from an object file, and is not undefined,
410
  // then it is defined, and known.
411
  if (this->source_ != FROM_OBJECT)
412
    {
413
      if (this->source_ != IS_UNDEFINED)
414
        return true;
415
    }
416
  else
417
    {
418
      // If the symbol is from a dynamic object, then the final value
419
      // is not known.
420
      if (this->object()->is_dynamic())
421
        return false;
422
 
423
      // If the symbol is not undefined (it is defined or common),
424
      // then the final value is known.
425
      if (!this->is_undefined())
426
        return true;
427
    }
428
 
429
  // If the symbol is undefined, then whether the final value is known
430
  // depends on whether we are doing a static link.  If we are doing a
431
  // dynamic link, then the final value could be filled in at runtime.
432
  // This could reasonably be the case for a weak undefined symbol.
433
  return parameters->doing_static_link();
434
}
435
 
436
// Return the output section where this symbol is defined.
437
 
438
Output_section*
439
Symbol::output_section() const
440
{
441
  switch (this->source_)
442
    {
443
    case FROM_OBJECT:
444
      {
445
        unsigned int shndx = this->u_.from_object.shndx;
446
        if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
447
          {
448
            gold_assert(!this->u_.from_object.object->is_dynamic());
449
            gold_assert(this->u_.from_object.object->pluginobj() == NULL);
450
            Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
451
            return relobj->output_section(shndx);
452
          }
453
        return NULL;
454
      }
455
 
456
    case IN_OUTPUT_DATA:
457
      return this->u_.in_output_data.output_data->output_section();
458
 
459
    case IN_OUTPUT_SEGMENT:
460
    case IS_CONSTANT:
461
    case IS_UNDEFINED:
462
      return NULL;
463
 
464
    default:
465
      gold_unreachable();
466
    }
467
}
468
 
469
// Set the symbol's output section.  This is used for symbols defined
470
// in scripts.  This should only be called after the symbol table has
471
// been finalized.
472
 
473
void
474
Symbol::set_output_section(Output_section* os)
475
{
476
  switch (this->source_)
477
    {
478
    case FROM_OBJECT:
479
    case IN_OUTPUT_DATA:
480
      gold_assert(this->output_section() == os);
481
      break;
482
    case IS_CONSTANT:
483
      this->source_ = IN_OUTPUT_DATA;
484
      this->u_.in_output_data.output_data = os;
485
      this->u_.in_output_data.offset_is_from_end = false;
486
      break;
487
    case IN_OUTPUT_SEGMENT:
488
    case IS_UNDEFINED:
489
    default:
490
      gold_unreachable();
491
    }
492
}
493
 
494
// Class Symbol_table.
495
 
496
Symbol_table::Symbol_table(unsigned int count,
497
                           const Version_script_info& version_script)
498
  : saw_undefined_(0), offset_(0), table_(count), namepool_(),
499
    forwarders_(), commons_(), tls_commons_(), small_commons_(),
500
    large_commons_(), forced_locals_(), warnings_(),
501
    version_script_(version_script), gc_(NULL), icf_(NULL)
502
{
503
  namepool_.reserve(count);
504
}
505
 
506
Symbol_table::~Symbol_table()
507
{
508
}
509
 
510
// The symbol table key equality function.  This is called with
511
// Stringpool keys.
512
 
513
inline bool
514
Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
515
                                          const Symbol_table_key& k2) const
516
{
517
  return k1.first == k2.first && k1.second == k2.second;
518
}
519
 
520
bool
521
Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
522
{
523
  return (parameters->options().icf_enabled()
524
          && this->icf_->is_section_folded(obj, shndx));
525
}
526
 
527
// For symbols that have been listed with -u option, add them to the
528
// work list to avoid gc'ing them.
529
 
530
void
531
Symbol_table::gc_mark_undef_symbols(Layout* layout)
532
{
533
  for (options::String_set::const_iterator p =
534
         parameters->options().undefined_begin();
535
       p != parameters->options().undefined_end();
536
       ++p)
537
    {
538
      const char* name = p->c_str();
539
      Symbol* sym = this->lookup(name);
540
      gold_assert(sym != NULL);
541
      if (sym->source() == Symbol::FROM_OBJECT
542
          && !sym->object()->is_dynamic())
543
        {
544
          Relobj* obj = static_cast<Relobj*>(sym->object());
545
          bool is_ordinary;
546
          unsigned int shndx = sym->shndx(&is_ordinary);
547
          if (is_ordinary)
548
            {
549
              gold_assert(this->gc_ != NULL);
550
              this->gc_->worklist().push(Section_id(obj, shndx));
551
            }
552
        }
553
    }
554
 
555
  for (Script_options::referenced_const_iterator p =
556
         layout->script_options()->referenced_begin();
557
       p != layout->script_options()->referenced_end();
558
       ++p)
559
    {
560
      Symbol* sym = this->lookup(p->c_str());
561
      gold_assert(sym != NULL);
562
      if (sym->source() == Symbol::FROM_OBJECT
563
          && !sym->object()->is_dynamic())
564
        {
565
          Relobj* obj = static_cast<Relobj*>(sym->object());
566
          bool is_ordinary;
567
          unsigned int shndx = sym->shndx(&is_ordinary);
568
          if (is_ordinary)
569
            {
570
              gold_assert(this->gc_ != NULL);
571
              this->gc_->worklist().push(Section_id(obj, shndx));
572
            }
573
        }
574
    }
575
}
576
 
577
void
578
Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
579
{
580
  if (!sym->is_from_dynobj()
581
      && sym->is_externally_visible())
582
    {
583
      //Add the object and section to the work list.
584
      Relobj* obj = static_cast<Relobj*>(sym->object());
585
      bool is_ordinary;
586
      unsigned int shndx = sym->shndx(&is_ordinary);
587
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
588
        {
589
          gold_assert(this->gc_!= NULL);
590
          this->gc_->worklist().push(Section_id(obj, shndx));
591
        }
592
    }
593
}
594
 
595
// When doing garbage collection, keep symbols that have been seen in
596
// dynamic objects.
597
inline void
598
Symbol_table::gc_mark_dyn_syms(Symbol* sym)
599
{
600
  if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
601
      && !sym->object()->is_dynamic())
602
    {
603
      Relobj* obj = static_cast<Relobj*>(sym->object());
604
      bool is_ordinary;
605
      unsigned int shndx = sym->shndx(&is_ordinary);
606
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
607
        {
608
          gold_assert(this->gc_ != NULL);
609
          this->gc_->worklist().push(Section_id(obj, shndx));
610
        }
611
    }
612
}
613
 
614
// Make TO a symbol which forwards to FROM.
615
 
616
void
617
Symbol_table::make_forwarder(Symbol* from, Symbol* to)
618
{
619
  gold_assert(from != to);
620
  gold_assert(!from->is_forwarder() && !to->is_forwarder());
621
  this->forwarders_[from] = to;
622
  from->set_forwarder();
623
}
624
 
625
// Resolve the forwards from FROM, returning the real symbol.
626
 
627
Symbol*
628
Symbol_table::resolve_forwards(const Symbol* from) const
629
{
630
  gold_assert(from->is_forwarder());
631
  Unordered_map<const Symbol*, Symbol*>::const_iterator p =
632
    this->forwarders_.find(from);
633
  gold_assert(p != this->forwarders_.end());
634
  return p->second;
635
}
636
 
637
// Look up a symbol by name.
638
 
639
Symbol*
640
Symbol_table::lookup(const char* name, const char* version) const
641
{
642
  Stringpool::Key name_key;
643
  name = this->namepool_.find(name, &name_key);
644
  if (name == NULL)
645
    return NULL;
646
 
647
  Stringpool::Key version_key = 0;
648
  if (version != NULL)
649
    {
650
      version = this->namepool_.find(version, &version_key);
651
      if (version == NULL)
652
        return NULL;
653
    }
654
 
655
  Symbol_table_key key(name_key, version_key);
656
  Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
657
  if (p == this->table_.end())
658
    return NULL;
659
  return p->second;
660
}
661
 
662
// Resolve a Symbol with another Symbol.  This is only used in the
663
// unusual case where there are references to both an unversioned
664
// symbol and a symbol with a version, and we then discover that that
665
// version is the default version.  Because this is unusual, we do
666
// this the slow way, by converting back to an ELF symbol.
667
 
668
template<int size, bool big_endian>
669
void
670
Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
671
{
672
  unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
673
  elfcpp::Sym_write<size, big_endian> esym(buf);
674
  // We don't bother to set the st_name or the st_shndx field.
675
  esym.put_st_value(from->value());
676
  esym.put_st_size(from->symsize());
677
  esym.put_st_info(from->binding(), from->type());
678
  esym.put_st_other(from->visibility(), from->nonvis());
679
  bool is_ordinary;
680
  unsigned int shndx = from->shndx(&is_ordinary);
681
  this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
682
                from->version());
683
  if (from->in_reg())
684
    to->set_in_reg();
685
  if (from->in_dyn())
686
    to->set_in_dyn();
687
  if (parameters->options().gc_sections())
688
    this->gc_mark_dyn_syms(to);
689
}
690
 
691
// Record that a symbol is forced to be local by a version script or
692
// by visibility.
693
 
694
void
695
Symbol_table::force_local(Symbol* sym)
696
{
697
  if (!sym->is_defined() && !sym->is_common())
698
    return;
699
  if (sym->is_forced_local())
700
    {
701
      // We already got this one.
702
      return;
703
    }
704
  sym->set_is_forced_local();
705
  this->forced_locals_.push_back(sym);
706
}
707
 
708
// Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
709
// is only called for undefined symbols, when at least one --wrap
710
// option was used.
711
 
712
const char*
713
Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
714
{
715
  // For some targets, we need to ignore a specific character when
716
  // wrapping, and add it back later.
717
  char prefix = '\0';
718
  if (name[0] == parameters->target().wrap_char())
719
    {
720
      prefix = name[0];
721
      ++name;
722
    }
723
 
724
  if (parameters->options().is_wrap(name))
725
    {
726
      // Turn NAME into __wrap_NAME.
727
      std::string s;
728
      if (prefix != '\0')
729
        s += prefix;
730
      s += "__wrap_";
731
      s += name;
732
 
733
      // This will give us both the old and new name in NAMEPOOL_, but
734
      // that is OK.  Only the versions we need will wind up in the
735
      // real string table in the output file.
736
      return this->namepool_.add(s.c_str(), true, name_key);
737
    }
738
 
739
  const char* const real_prefix = "__real_";
740
  const size_t real_prefix_length = strlen(real_prefix);
741
  if (strncmp(name, real_prefix, real_prefix_length) == 0
742
      && parameters->options().is_wrap(name + real_prefix_length))
743
    {
744
      // Turn __real_NAME into NAME.
745
      std::string s;
746
      if (prefix != '\0')
747
        s += prefix;
748
      s += name + real_prefix_length;
749
      return this->namepool_.add(s.c_str(), true, name_key);
750
    }
751
 
752
  return name;
753
}
754
 
755
// This is called when we see a symbol NAME/VERSION, and the symbol
756
// already exists in the symbol table, and VERSION is marked as being
757
// the default version.  SYM is the NAME/VERSION symbol we just added.
758
// DEFAULT_IS_NEW is true if this is the first time we have seen the
759
// symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
760
 
761
template<int size, bool big_endian>
762
void
763
Symbol_table::define_default_version(Sized_symbol<size>* sym,
764
                                     bool default_is_new,
765
                                     Symbol_table_type::iterator pdef)
766
{
767
  if (default_is_new)
768
    {
769
      // This is the first time we have seen NAME/NULL.  Make
770
      // NAME/NULL point to NAME/VERSION, and mark SYM as the default
771
      // version.
772
      pdef->second = sym;
773
      sym->set_is_default();
774
    }
775
  else if (pdef->second == sym)
776
    {
777
      // NAME/NULL already points to NAME/VERSION.  Don't mark the
778
      // symbol as the default if it is not already the default.
779
    }
780
  else
781
    {
782
      // This is the unfortunate case where we already have entries
783
      // for both NAME/VERSION and NAME/NULL.  We now see a symbol
784
      // NAME/VERSION where VERSION is the default version.  We have
785
      // already resolved this new symbol with the existing
786
      // NAME/VERSION symbol.
787
 
788
      // It's possible that NAME/NULL and NAME/VERSION are both
789
      // defined in regular objects.  This can only happen if one
790
      // object file defines foo and another defines foo@@ver.  This
791
      // is somewhat obscure, but we call it a multiple definition
792
      // error.
793
 
794
      // It's possible that NAME/NULL actually has a version, in which
795
      // case it won't be the same as VERSION.  This happens with
796
      // ver_test_7.so in the testsuite for the symbol t2_2.  We see
797
      // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
798
      // then see an unadorned t2_2 in an object file and give it
799
      // version VER1 from the version script.  This looks like a
800
      // default definition for VER1, so it looks like we should merge
801
      // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
802
      // not obvious that this is an error, either.  So we just punt.
803
 
804
      // If one of the symbols has non-default visibility, and the
805
      // other is defined in a shared object, then they are different
806
      // symbols.
807
 
808
      // Otherwise, we just resolve the symbols as though they were
809
      // the same.
810
 
811
      if (pdef->second->version() != NULL)
812
        gold_assert(pdef->second->version() != sym->version());
813
      else if (sym->visibility() != elfcpp::STV_DEFAULT
814
               && pdef->second->is_from_dynobj())
815
        ;
816
      else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
817
               && sym->is_from_dynobj())
818
        ;
819
      else
820
        {
821
          const Sized_symbol<size>* symdef;
822
          symdef = this->get_sized_symbol<size>(pdef->second);
823
          Symbol_table::resolve<size, big_endian>(sym, symdef);
824
          this->make_forwarder(pdef->second, sym);
825
          pdef->second = sym;
826
          sym->set_is_default();
827
        }
828
    }
829
}
830
 
831
// Add one symbol from OBJECT to the symbol table.  NAME is symbol
832
// name and VERSION is the version; both are canonicalized.  DEF is
833
// whether this is the default version.  ST_SHNDX is the symbol's
834
// section index; IS_ORDINARY is whether this is a normal section
835
// rather than a special code.
836
 
837
// If IS_DEFAULT_VERSION is true, then this is the definition of a
838
// default version of a symbol.  That means that any lookup of
839
// NAME/NULL and any lookup of NAME/VERSION should always return the
840
// same symbol.  This is obvious for references, but in particular we
841
// want to do this for definitions: overriding NAME/NULL should also
842
// override NAME/VERSION.  If we don't do that, it would be very hard
843
// to override functions in a shared library which uses versioning.
844
 
845
// We implement this by simply making both entries in the hash table
846
// point to the same Symbol structure.  That is easy enough if this is
847
// the first time we see NAME/NULL or NAME/VERSION, but it is possible
848
// that we have seen both already, in which case they will both have
849
// independent entries in the symbol table.  We can't simply change
850
// the symbol table entry, because we have pointers to the entries
851
// attached to the object files.  So we mark the entry attached to the
852
// object file as a forwarder, and record it in the forwarders_ map.
853
// Note that entries in the hash table will never be marked as
854
// forwarders.
855
//
856
// ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
857
// ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
858
// for a special section code.  ST_SHNDX may be modified if the symbol
859
// is defined in a section being discarded.
860
 
861
template<int size, bool big_endian>
862
Sized_symbol<size>*
863
Symbol_table::add_from_object(Object* object,
864
                              const char* name,
865
                              Stringpool::Key name_key,
866
                              const char* version,
867
                              Stringpool::Key version_key,
868
                              bool is_default_version,
869
                              const elfcpp::Sym<size, big_endian>& sym,
870
                              unsigned int st_shndx,
871
                              bool is_ordinary,
872
                              unsigned int orig_st_shndx)
873
{
874
  // Print a message if this symbol is being traced.
875
  if (parameters->options().is_trace_symbol(name))
876
    {
877
      if (orig_st_shndx == elfcpp::SHN_UNDEF)
878
        gold_info(_("%s: reference to %s"), object->name().c_str(), name);
879
      else
880
        gold_info(_("%s: definition of %s"), object->name().c_str(), name);
881
    }
882
 
883
  // For an undefined symbol, we may need to adjust the name using
884
  // --wrap.
885
  if (orig_st_shndx == elfcpp::SHN_UNDEF
886
      && parameters->options().any_wrap())
887
    {
888
      const char* wrap_name = this->wrap_symbol(name, &name_key);
889
      if (wrap_name != name)
890
        {
891
          // If we see a reference to malloc with version GLIBC_2.0,
892
          // and we turn it into a reference to __wrap_malloc, then we
893
          // discard the version number.  Otherwise the user would be
894
          // required to specify the correct version for
895
          // __wrap_malloc.
896
          version = NULL;
897
          version_key = 0;
898
          name = wrap_name;
899
        }
900
    }
901
 
902
  Symbol* const snull = NULL;
903
  std::pair<typename Symbol_table_type::iterator, bool> ins =
904
    this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
905
                                       snull));
906
 
907
  std::pair<typename Symbol_table_type::iterator, bool> insdefault =
908
    std::make_pair(this->table_.end(), false);
909
  if (is_default_version)
910
    {
911
      const Stringpool::Key vnull_key = 0;
912
      insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
913
                                                                     vnull_key),
914
                                                      snull));
915
    }
916
 
917
  // ins.first: an iterator, which is a pointer to a pair.
918
  // ins.first->first: the key (a pair of name and version).
919
  // ins.first->second: the value (Symbol*).
920
  // ins.second: true if new entry was inserted, false if not.
921
 
922
  Sized_symbol<size>* ret;
923
  bool was_undefined;
924
  bool was_common;
925
  if (!ins.second)
926
    {
927
      // We already have an entry for NAME/VERSION.
928
      ret = this->get_sized_symbol<size>(ins.first->second);
929
      gold_assert(ret != NULL);
930
 
931
      was_undefined = ret->is_undefined();
932
      was_common = ret->is_common();
933
 
934
      this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
935
                    version);
936
      if (parameters->options().gc_sections())
937
        this->gc_mark_dyn_syms(ret);
938
 
939
      if (is_default_version)
940
        this->define_default_version<size, big_endian>(ret, insdefault.second,
941
                                                       insdefault.first);
942
    }
943
  else
944
    {
945
      // This is the first time we have seen NAME/VERSION.
946
      gold_assert(ins.first->second == NULL);
947
 
948
      if (is_default_version && !insdefault.second)
949
        {
950
          // We already have an entry for NAME/NULL.  If we override
951
          // it, then change it to NAME/VERSION.
952
          ret = this->get_sized_symbol<size>(insdefault.first->second);
953
 
954
          was_undefined = ret->is_undefined();
955
          was_common = ret->is_common();
956
 
957
          this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
958
                        version);
959
          if (parameters->options().gc_sections())
960
            this->gc_mark_dyn_syms(ret);
961
          ins.first->second = ret;
962
        }
963
      else
964
        {
965
          was_undefined = false;
966
          was_common = false;
967
 
968
          Sized_target<size, big_endian>* target =
969
            parameters->sized_target<size, big_endian>();
970
          if (!target->has_make_symbol())
971
            ret = new Sized_symbol<size>();
972
          else
973
            {
974
              ret = target->make_symbol();
975
              if (ret == NULL)
976
                {
977
                  // This means that we don't want a symbol table
978
                  // entry after all.
979
                  if (!is_default_version)
980
                    this->table_.erase(ins.first);
981
                  else
982
                    {
983
                      this->table_.erase(insdefault.first);
984
                      // Inserting INSDEFAULT invalidated INS.
985
                      this->table_.erase(std::make_pair(name_key,
986
                                                        version_key));
987
                    }
988
                  return NULL;
989
                }
990
            }
991
 
992
          ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
993
 
994
          ins.first->second = ret;
995
          if (is_default_version)
996
            {
997
              // This is the first time we have seen NAME/NULL.  Point
998
              // it at the new entry for NAME/VERSION.
999
              gold_assert(insdefault.second);
1000
              insdefault.first->second = ret;
1001
            }
1002
        }
1003
 
1004
      if (is_default_version)
1005
        ret->set_is_default();
1006
    }
1007
 
1008
  // Record every time we see a new undefined symbol, to speed up
1009
  // archive groups.
1010
  if (!was_undefined && ret->is_undefined())
1011
    {
1012
      ++this->saw_undefined_;
1013
      if (parameters->options().has_plugins())
1014
        parameters->options().plugins()->new_undefined_symbol(ret);
1015
    }
1016
 
1017
  // Keep track of common symbols, to speed up common symbol
1018
  // allocation.
1019
  if (!was_common && ret->is_common())
1020
    {
1021
      if (ret->type() == elfcpp::STT_TLS)
1022
        this->tls_commons_.push_back(ret);
1023
      else if (!is_ordinary
1024
               && st_shndx == parameters->target().small_common_shndx())
1025
        this->small_commons_.push_back(ret);
1026
      else if (!is_ordinary
1027
               && st_shndx == parameters->target().large_common_shndx())
1028
        this->large_commons_.push_back(ret);
1029
      else
1030
        this->commons_.push_back(ret);
1031
    }
1032
 
1033
  // If we're not doing a relocatable link, then any symbol with
1034
  // hidden or internal visibility is local.
1035
  if ((ret->visibility() == elfcpp::STV_HIDDEN
1036
       || ret->visibility() == elfcpp::STV_INTERNAL)
1037
      && (ret->binding() == elfcpp::STB_GLOBAL
1038
          || ret->binding() == elfcpp::STB_GNU_UNIQUE
1039
          || ret->binding() == elfcpp::STB_WEAK)
1040
      && !parameters->options().relocatable())
1041
    this->force_local(ret);
1042
 
1043
  return ret;
1044
}
1045
 
1046
// Add all the symbols in a relocatable object to the hash table.
1047
 
1048
template<int size, bool big_endian>
1049
void
1050
Symbol_table::add_from_relobj(
1051
    Sized_relobj_file<size, big_endian>* relobj,
1052
    const unsigned char* syms,
1053
    size_t count,
1054
    size_t symndx_offset,
1055
    const char* sym_names,
1056
    size_t sym_name_size,
1057
    typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1058
    size_t* defined)
1059
{
1060
  *defined = 0;
1061
 
1062
  gold_assert(size == parameters->target().get_size());
1063
 
1064
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1065
 
1066
  const bool just_symbols = relobj->just_symbols();
1067
 
1068
  const unsigned char* p = syms;
1069
  for (size_t i = 0; i < count; ++i, p += sym_size)
1070
    {
1071
      (*sympointers)[i] = NULL;
1072
 
1073
      elfcpp::Sym<size, big_endian> sym(p);
1074
 
1075
      unsigned int st_name = sym.get_st_name();
1076
      if (st_name >= sym_name_size)
1077
        {
1078
          relobj->error(_("bad global symbol name offset %u at %zu"),
1079
                        st_name, i);
1080
          continue;
1081
        }
1082
 
1083
      const char* name = sym_names + st_name;
1084
 
1085
      bool is_ordinary;
1086
      unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1087
                                                       sym.get_st_shndx(),
1088
                                                       &is_ordinary);
1089
      unsigned int orig_st_shndx = st_shndx;
1090
      if (!is_ordinary)
1091
        orig_st_shndx = elfcpp::SHN_UNDEF;
1092
 
1093
      if (st_shndx != elfcpp::SHN_UNDEF)
1094
        ++*defined;
1095
 
1096
      // A symbol defined in a section which we are not including must
1097
      // be treated as an undefined symbol.
1098
      bool is_defined_in_discarded_section = false;
1099
      if (st_shndx != elfcpp::SHN_UNDEF
1100
          && is_ordinary
1101
          && !relobj->is_section_included(st_shndx)
1102
          && !this->is_section_folded(relobj, st_shndx))
1103
        {
1104
          st_shndx = elfcpp::SHN_UNDEF;
1105
          is_defined_in_discarded_section = true;
1106
        }
1107
 
1108
      // In an object file, an '@' in the name separates the symbol
1109
      // name from the version name.  If there are two '@' characters,
1110
      // this is the default version.
1111
      const char* ver = strchr(name, '@');
1112
      Stringpool::Key ver_key = 0;
1113
      int namelen = 0;
1114
      // IS_DEFAULT_VERSION: is the version default?
1115
      // IS_FORCED_LOCAL: is the symbol forced local?
1116
      bool is_default_version = false;
1117
      bool is_forced_local = false;
1118
 
1119
      if (ver != NULL)
1120
        {
1121
          // The symbol name is of the form foo@VERSION or foo@@VERSION
1122
          namelen = ver - name;
1123
          ++ver;
1124
          if (*ver == '@')
1125
            {
1126
              is_default_version = true;
1127
              ++ver;
1128
            }
1129
          ver = this->namepool_.add(ver, true, &ver_key);
1130
        }
1131
      // We don't want to assign a version to an undefined symbol,
1132
      // even if it is listed in the version script.  FIXME: What
1133
      // about a common symbol?
1134
      else
1135
        {
1136
          namelen = strlen(name);
1137
          if (!this->version_script_.empty()
1138
              && st_shndx != elfcpp::SHN_UNDEF)
1139
            {
1140
              // The symbol name did not have a version, but the
1141
              // version script may assign a version anyway.
1142
              std::string version;
1143
              bool is_global;
1144
              if (this->version_script_.get_symbol_version(name, &version,
1145
                                                           &is_global))
1146
                {
1147
                  if (!is_global)
1148
                    is_forced_local = true;
1149
                  else if (!version.empty())
1150
                    {
1151
                      ver = this->namepool_.add_with_length(version.c_str(),
1152
                                                            version.length(),
1153
                                                            true,
1154
                                                            &ver_key);
1155
                      is_default_version = true;
1156
                    }
1157
                }
1158
            }
1159
        }
1160
 
1161
      elfcpp::Sym<size, big_endian>* psym = &sym;
1162
      unsigned char symbuf[sym_size];
1163
      elfcpp::Sym<size, big_endian> sym2(symbuf);
1164
      if (just_symbols)
1165
        {
1166
          memcpy(symbuf, p, sym_size);
1167
          elfcpp::Sym_write<size, big_endian> sw(symbuf);
1168
          if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1169
            {
1170
              // Symbol values in object files are section relative.
1171
              // This is normally what we want, but since here we are
1172
              // converting the symbol to absolute we need to add the
1173
              // section address.  The section address in an object
1174
              // file is normally zero, but people can use a linker
1175
              // script to change it.
1176
              sw.put_st_value(sym.get_st_value()
1177
                              + relobj->section_address(orig_st_shndx));
1178
            }
1179
          st_shndx = elfcpp::SHN_ABS;
1180
          is_ordinary = false;
1181
          psym = &sym2;
1182
        }
1183
 
1184
      // Fix up visibility if object has no-export set.
1185
      if (relobj->no_export()
1186
          && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1187
        {
1188
          // We may have copied symbol already above.
1189
          if (psym != &sym2)
1190
            {
1191
              memcpy(symbuf, p, sym_size);
1192
              psym = &sym2;
1193
            }
1194
 
1195
          elfcpp::STV visibility = sym2.get_st_visibility();
1196
          if (visibility == elfcpp::STV_DEFAULT
1197
              || visibility == elfcpp::STV_PROTECTED)
1198
            {
1199
              elfcpp::Sym_write<size, big_endian> sw(symbuf);
1200
              unsigned char nonvis = sym2.get_st_nonvis();
1201
              sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1202
            }
1203
        }
1204
 
1205
      Stringpool::Key name_key;
1206
      name = this->namepool_.add_with_length(name, namelen, true,
1207
                                             &name_key);
1208
 
1209
      Sized_symbol<size>* res;
1210
      res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1211
                                  is_default_version, *psym, st_shndx,
1212
                                  is_ordinary, orig_st_shndx);
1213
 
1214
      // If building a shared library using garbage collection, do not 
1215
      // treat externally visible symbols as garbage.
1216
      if (parameters->options().gc_sections()
1217
          && parameters->options().shared())
1218
        this->gc_mark_symbol_for_shlib(res);
1219
 
1220
      if (is_forced_local)
1221
        this->force_local(res);
1222
 
1223
      if (is_defined_in_discarded_section)
1224
        res->set_is_defined_in_discarded_section();
1225
 
1226
      (*sympointers)[i] = res;
1227
    }
1228
}
1229
 
1230
// Add a symbol from a plugin-claimed file.
1231
 
1232
template<int size, bool big_endian>
1233
Symbol*
1234
Symbol_table::add_from_pluginobj(
1235
    Sized_pluginobj<size, big_endian>* obj,
1236
    const char* name,
1237
    const char* ver,
1238
    elfcpp::Sym<size, big_endian>* sym)
1239
{
1240
  unsigned int st_shndx = sym->get_st_shndx();
1241
  bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1242
 
1243
  Stringpool::Key ver_key = 0;
1244
  bool is_default_version = false;
1245
  bool is_forced_local = false;
1246
 
1247
  if (ver != NULL)
1248
    {
1249
      ver = this->namepool_.add(ver, true, &ver_key);
1250
    }
1251
  // We don't want to assign a version to an undefined symbol,
1252
  // even if it is listed in the version script.  FIXME: What
1253
  // about a common symbol?
1254
  else
1255
    {
1256
      if (!this->version_script_.empty()
1257
          && st_shndx != elfcpp::SHN_UNDEF)
1258
        {
1259
          // The symbol name did not have a version, but the
1260
          // version script may assign a version anyway.
1261
          std::string version;
1262
          bool is_global;
1263
          if (this->version_script_.get_symbol_version(name, &version,
1264
                                                       &is_global))
1265
            {
1266
              if (!is_global)
1267
                is_forced_local = true;
1268
              else if (!version.empty())
1269
                {
1270
                  ver = this->namepool_.add_with_length(version.c_str(),
1271
                                                        version.length(),
1272
                                                        true,
1273
                                                        &ver_key);
1274
                  is_default_version = true;
1275
                }
1276
            }
1277
        }
1278
    }
1279
 
1280
  Stringpool::Key name_key;
1281
  name = this->namepool_.add(name, true, &name_key);
1282
 
1283
  Sized_symbol<size>* res;
1284
  res = this->add_from_object(obj, name, name_key, ver, ver_key,
1285
                              is_default_version, *sym, st_shndx,
1286
                              is_ordinary, st_shndx);
1287
 
1288
  if (is_forced_local)
1289
    this->force_local(res);
1290
 
1291
  return res;
1292
}
1293
 
1294
// Add all the symbols in a dynamic object to the hash table.
1295
 
1296
template<int size, bool big_endian>
1297
void
1298
Symbol_table::add_from_dynobj(
1299
    Sized_dynobj<size, big_endian>* dynobj,
1300
    const unsigned char* syms,
1301
    size_t count,
1302
    const char* sym_names,
1303
    size_t sym_name_size,
1304
    const unsigned char* versym,
1305
    size_t versym_size,
1306
    const std::vector<const char*>* version_map,
1307
    typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1308
    size_t* defined)
1309
{
1310
  *defined = 0;
1311
 
1312
  gold_assert(size == parameters->target().get_size());
1313
 
1314
  if (dynobj->just_symbols())
1315
    {
1316
      gold_error(_("--just-symbols does not make sense with a shared object"));
1317
      return;
1318
    }
1319
 
1320
  if (versym != NULL && versym_size / 2 < count)
1321
    {
1322
      dynobj->error(_("too few symbol versions"));
1323
      return;
1324
    }
1325
 
1326
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1327
 
1328
  // We keep a list of all STT_OBJECT symbols, so that we can resolve
1329
  // weak aliases.  This is necessary because if the dynamic object
1330
  // provides the same variable under two names, one of which is a
1331
  // weak definition, and the regular object refers to the weak
1332
  // definition, we have to put both the weak definition and the
1333
  // strong definition into the dynamic symbol table.  Given a weak
1334
  // definition, the only way that we can find the corresponding
1335
  // strong definition, if any, is to search the symbol table.
1336
  std::vector<Sized_symbol<size>*> object_symbols;
1337
 
1338
  const unsigned char* p = syms;
1339
  const unsigned char* vs = versym;
1340
  for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1341
    {
1342
      elfcpp::Sym<size, big_endian> sym(p);
1343
 
1344
      if (sympointers != NULL)
1345
        (*sympointers)[i] = NULL;
1346
 
1347
      // Ignore symbols with local binding or that have
1348
      // internal or hidden visibility.
1349
      if (sym.get_st_bind() == elfcpp::STB_LOCAL
1350
          || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1351
          || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1352
        continue;
1353
 
1354
      // A protected symbol in a shared library must be treated as a
1355
      // normal symbol when viewed from outside the shared library.
1356
      // Implement this by overriding the visibility here.
1357
      elfcpp::Sym<size, big_endian>* psym = &sym;
1358
      unsigned char symbuf[sym_size];
1359
      elfcpp::Sym<size, big_endian> sym2(symbuf);
1360
      if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1361
        {
1362
          memcpy(symbuf, p, sym_size);
1363
          elfcpp::Sym_write<size, big_endian> sw(symbuf);
1364
          sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1365
          psym = &sym2;
1366
        }
1367
 
1368
      unsigned int st_name = psym->get_st_name();
1369
      if (st_name >= sym_name_size)
1370
        {
1371
          dynobj->error(_("bad symbol name offset %u at %zu"),
1372
                        st_name, i);
1373
          continue;
1374
        }
1375
 
1376
      const char* name = sym_names + st_name;
1377
 
1378
      bool is_ordinary;
1379
      unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1380
                                                       &is_ordinary);
1381
 
1382
      if (st_shndx != elfcpp::SHN_UNDEF)
1383
        ++*defined;
1384
 
1385
      Sized_symbol<size>* res;
1386
 
1387
      if (versym == NULL)
1388
        {
1389
          Stringpool::Key name_key;
1390
          name = this->namepool_.add(name, true, &name_key);
1391
          res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1392
                                      false, *psym, st_shndx, is_ordinary,
1393
                                      st_shndx);
1394
        }
1395
      else
1396
        {
1397
          // Read the version information.
1398
 
1399
          unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1400
 
1401
          bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1402
          v &= elfcpp::VERSYM_VERSION;
1403
 
1404
          // The Sun documentation says that V can be VER_NDX_LOCAL,
1405
          // or VER_NDX_GLOBAL, or a version index.  The meaning of
1406
          // VER_NDX_LOCAL is defined as "Symbol has local scope."
1407
          // The old GNU linker will happily generate VER_NDX_LOCAL
1408
          // for an undefined symbol.  I don't know what the Sun
1409
          // linker will generate.
1410
 
1411
          if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1412
              && st_shndx != elfcpp::SHN_UNDEF)
1413
            {
1414
              // This symbol should not be visible outside the object.
1415
              continue;
1416
            }
1417
 
1418
          // At this point we are definitely going to add this symbol.
1419
          Stringpool::Key name_key;
1420
          name = this->namepool_.add(name, true, &name_key);
1421
 
1422
          if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1423
              || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1424
            {
1425
              // This symbol does not have a version.
1426
              res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1427
                                          false, *psym, st_shndx, is_ordinary,
1428
                                          st_shndx);
1429
            }
1430
          else
1431
            {
1432
              if (v >= version_map->size())
1433
                {
1434
                  dynobj->error(_("versym for symbol %zu out of range: %u"),
1435
                                i, v);
1436
                  continue;
1437
                }
1438
 
1439
              const char* version = (*version_map)[v];
1440
              if (version == NULL)
1441
                {
1442
                  dynobj->error(_("versym for symbol %zu has no name: %u"),
1443
                                i, v);
1444
                  continue;
1445
                }
1446
 
1447
              Stringpool::Key version_key;
1448
              version = this->namepool_.add(version, true, &version_key);
1449
 
1450
              // If this is an absolute symbol, and the version name
1451
              // and symbol name are the same, then this is the
1452
              // version definition symbol.  These symbols exist to
1453
              // support using -u to pull in particular versions.  We
1454
              // do not want to record a version for them.
1455
              if (st_shndx == elfcpp::SHN_ABS
1456
                  && !is_ordinary
1457
                  && name_key == version_key)
1458
                res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1459
                                            false, *psym, st_shndx, is_ordinary,
1460
                                            st_shndx);
1461
              else
1462
                {
1463
                  const bool is_default_version =
1464
                    !hidden && st_shndx != elfcpp::SHN_UNDEF;
1465
                  res = this->add_from_object(dynobj, name, name_key, version,
1466
                                              version_key, is_default_version,
1467
                                              *psym, st_shndx,
1468
                                              is_ordinary, st_shndx);
1469
                }
1470
            }
1471
        }
1472
 
1473
      // Note that it is possible that RES was overridden by an
1474
      // earlier object, in which case it can't be aliased here.
1475
      if (st_shndx != elfcpp::SHN_UNDEF
1476
          && is_ordinary
1477
          && psym->get_st_type() == elfcpp::STT_OBJECT
1478
          && res->source() == Symbol::FROM_OBJECT
1479
          && res->object() == dynobj)
1480
        object_symbols.push_back(res);
1481
 
1482
      if (sympointers != NULL)
1483
        (*sympointers)[i] = res;
1484
    }
1485
 
1486
  this->record_weak_aliases(&object_symbols);
1487
}
1488
 
1489
// Add a symbol from a incremental object file.
1490
 
1491
template<int size, bool big_endian>
1492
Symbol*
1493
Symbol_table::add_from_incrobj(
1494
    Object* obj,
1495
    const char* name,
1496
    const char* ver,
1497
    elfcpp::Sym<size, big_endian>* sym)
1498
{
1499
  unsigned int st_shndx = sym->get_st_shndx();
1500
  bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1501
 
1502
  Stringpool::Key ver_key = 0;
1503
  bool is_default_version = false;
1504
  bool is_forced_local = false;
1505
 
1506
  Stringpool::Key name_key;
1507
  name = this->namepool_.add(name, true, &name_key);
1508
 
1509
  Sized_symbol<size>* res;
1510
  res = this->add_from_object(obj, name, name_key, ver, ver_key,
1511
                              is_default_version, *sym, st_shndx,
1512
                              is_ordinary, st_shndx);
1513
 
1514
  if (is_forced_local)
1515
    this->force_local(res);
1516
 
1517
  return res;
1518
}
1519
 
1520
// This is used to sort weak aliases.  We sort them first by section
1521
// index, then by offset, then by weak ahead of strong.
1522
 
1523
template<int size>
1524
class Weak_alias_sorter
1525
{
1526
 public:
1527
  bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1528
};
1529
 
1530
template<int size>
1531
bool
1532
Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1533
                                    const Sized_symbol<size>* s2) const
1534
{
1535
  bool is_ordinary;
1536
  unsigned int s1_shndx = s1->shndx(&is_ordinary);
1537
  gold_assert(is_ordinary);
1538
  unsigned int s2_shndx = s2->shndx(&is_ordinary);
1539
  gold_assert(is_ordinary);
1540
  if (s1_shndx != s2_shndx)
1541
    return s1_shndx < s2_shndx;
1542
 
1543
  if (s1->value() != s2->value())
1544
    return s1->value() < s2->value();
1545
  if (s1->binding() != s2->binding())
1546
    {
1547
      if (s1->binding() == elfcpp::STB_WEAK)
1548
        return true;
1549
      if (s2->binding() == elfcpp::STB_WEAK)
1550
        return false;
1551
    }
1552
  return std::string(s1->name()) < std::string(s2->name());
1553
}
1554
 
1555
// SYMBOLS is a list of object symbols from a dynamic object.  Look
1556
// for any weak aliases, and record them so that if we add the weak
1557
// alias to the dynamic symbol table, we also add the corresponding
1558
// strong symbol.
1559
 
1560
template<int size>
1561
void
1562
Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1563
{
1564
  // Sort the vector by section index, then by offset, then by weak
1565
  // ahead of strong.
1566
  std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1567
 
1568
  // Walk through the vector.  For each weak definition, record
1569
  // aliases.
1570
  for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1571
         symbols->begin();
1572
       p != symbols->end();
1573
       ++p)
1574
    {
1575
      if ((*p)->binding() != elfcpp::STB_WEAK)
1576
        continue;
1577
 
1578
      // Build a circular list of weak aliases.  Each symbol points to
1579
      // the next one in the circular list.
1580
 
1581
      Sized_symbol<size>* from_sym = *p;
1582
      typename std::vector<Sized_symbol<size>*>::const_iterator q;
1583
      for (q = p + 1; q != symbols->end(); ++q)
1584
        {
1585
          bool dummy;
1586
          if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1587
              || (*q)->value() != from_sym->value())
1588
            break;
1589
 
1590
          this->weak_aliases_[from_sym] = *q;
1591
          from_sym->set_has_alias();
1592
          from_sym = *q;
1593
        }
1594
 
1595
      if (from_sym != *p)
1596
        {
1597
          this->weak_aliases_[from_sym] = *p;
1598
          from_sym->set_has_alias();
1599
        }
1600
 
1601
      p = q - 1;
1602
    }
1603
}
1604
 
1605
// Create and return a specially defined symbol.  If ONLY_IF_REF is
1606
// true, then only create the symbol if there is a reference to it.
1607
// If this does not return NULL, it sets *POLDSYM to the existing
1608
// symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1609
// resolve the newly created symbol to the old one.  This
1610
// canonicalizes *PNAME and *PVERSION.
1611
 
1612
template<int size, bool big_endian>
1613
Sized_symbol<size>*
1614
Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1615
                                    bool only_if_ref,
1616
                                    Sized_symbol<size>** poldsym,
1617
                                    bool* resolve_oldsym)
1618
{
1619
  *resolve_oldsym = false;
1620
 
1621
  // If the caller didn't give us a version, see if we get one from
1622
  // the version script.
1623
  std::string v;
1624
  bool is_default_version = false;
1625
  if (*pversion == NULL)
1626
    {
1627
      bool is_global;
1628
      if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1629
        {
1630
          if (is_global && !v.empty())
1631
            {
1632
              *pversion = v.c_str();
1633
              // If we get the version from a version script, then we
1634
              // are also the default version.
1635
              is_default_version = true;
1636
            }
1637
        }
1638
    }
1639
 
1640
  Symbol* oldsym;
1641
  Sized_symbol<size>* sym;
1642
 
1643
  bool add_to_table = false;
1644
  typename Symbol_table_type::iterator add_loc = this->table_.end();
1645
  bool add_def_to_table = false;
1646
  typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1647
 
1648
  if (only_if_ref)
1649
    {
1650
      oldsym = this->lookup(*pname, *pversion);
1651
      if (oldsym == NULL && is_default_version)
1652
        oldsym = this->lookup(*pname, NULL);
1653
      if (oldsym == NULL || !oldsym->is_undefined())
1654
        return NULL;
1655
 
1656
      *pname = oldsym->name();
1657
      if (!is_default_version)
1658
        *pversion = oldsym->version();
1659
    }
1660
  else
1661
    {
1662
      // Canonicalize NAME and VERSION.
1663
      Stringpool::Key name_key;
1664
      *pname = this->namepool_.add(*pname, true, &name_key);
1665
 
1666
      Stringpool::Key version_key = 0;
1667
      if (*pversion != NULL)
1668
        *pversion = this->namepool_.add(*pversion, true, &version_key);
1669
 
1670
      Symbol* const snull = NULL;
1671
      std::pair<typename Symbol_table_type::iterator, bool> ins =
1672
        this->table_.insert(std::make_pair(std::make_pair(name_key,
1673
                                                          version_key),
1674
                                           snull));
1675
 
1676
      std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1677
        std::make_pair(this->table_.end(), false);
1678
      if (is_default_version)
1679
        {
1680
          const Stringpool::Key vnull = 0;
1681
          insdefault =
1682
            this->table_.insert(std::make_pair(std::make_pair(name_key,
1683
                                                              vnull),
1684
                                               snull));
1685
        }
1686
 
1687
      if (!ins.second)
1688
        {
1689
          // We already have a symbol table entry for NAME/VERSION.
1690
          oldsym = ins.first->second;
1691
          gold_assert(oldsym != NULL);
1692
 
1693
          if (is_default_version)
1694
            {
1695
              Sized_symbol<size>* soldsym =
1696
                this->get_sized_symbol<size>(oldsym);
1697
              this->define_default_version<size, big_endian>(soldsym,
1698
                                                             insdefault.second,
1699
                                                             insdefault.first);
1700
            }
1701
        }
1702
      else
1703
        {
1704
          // We haven't seen this symbol before.
1705
          gold_assert(ins.first->second == NULL);
1706
 
1707
          add_to_table = true;
1708
          add_loc = ins.first;
1709
 
1710
          if (is_default_version && !insdefault.second)
1711
            {
1712
              // We are adding NAME/VERSION, and it is the default
1713
              // version.  We already have an entry for NAME/NULL.
1714
              oldsym = insdefault.first->second;
1715
              *resolve_oldsym = true;
1716
            }
1717
          else
1718
            {
1719
              oldsym = NULL;
1720
 
1721
              if (is_default_version)
1722
                {
1723
                  add_def_to_table = true;
1724
                  add_def_loc = insdefault.first;
1725
                }
1726
            }
1727
        }
1728
    }
1729
 
1730
  const Target& target = parameters->target();
1731
  if (!target.has_make_symbol())
1732
    sym = new Sized_symbol<size>();
1733
  else
1734
    {
1735
      Sized_target<size, big_endian>* sized_target =
1736
        parameters->sized_target<size, big_endian>();
1737
      sym = sized_target->make_symbol();
1738
      if (sym == NULL)
1739
        return NULL;
1740
    }
1741
 
1742
  if (add_to_table)
1743
    add_loc->second = sym;
1744
  else
1745
    gold_assert(oldsym != NULL);
1746
 
1747
  if (add_def_to_table)
1748
    add_def_loc->second = sym;
1749
 
1750
  *poldsym = this->get_sized_symbol<size>(oldsym);
1751
 
1752
  return sym;
1753
}
1754
 
1755
// Define a symbol based on an Output_data.
1756
 
1757
Symbol*
1758
Symbol_table::define_in_output_data(const char* name,
1759
                                    const char* version,
1760
                                    Defined defined,
1761
                                    Output_data* od,
1762
                                    uint64_t value,
1763
                                    uint64_t symsize,
1764
                                    elfcpp::STT type,
1765
                                    elfcpp::STB binding,
1766
                                    elfcpp::STV visibility,
1767
                                    unsigned char nonvis,
1768
                                    bool offset_is_from_end,
1769
                                    bool only_if_ref)
1770
{
1771
  if (parameters->target().get_size() == 32)
1772
    {
1773
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1774
      return this->do_define_in_output_data<32>(name, version, defined, od,
1775
                                                value, symsize, type, binding,
1776
                                                visibility, nonvis,
1777
                                                offset_is_from_end,
1778
                                                only_if_ref);
1779
#else
1780
      gold_unreachable();
1781
#endif
1782
    }
1783
  else if (parameters->target().get_size() == 64)
1784
    {
1785
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1786
      return this->do_define_in_output_data<64>(name, version, defined, od,
1787
                                                value, symsize, type, binding,
1788
                                                visibility, nonvis,
1789
                                                offset_is_from_end,
1790
                                                only_if_ref);
1791
#else
1792
      gold_unreachable();
1793
#endif
1794
    }
1795
  else
1796
    gold_unreachable();
1797
}
1798
 
1799
// Define a symbol in an Output_data, sized version.
1800
 
1801
template<int size>
1802
Sized_symbol<size>*
1803
Symbol_table::do_define_in_output_data(
1804
    const char* name,
1805
    const char* version,
1806
    Defined defined,
1807
    Output_data* od,
1808
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1809
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1810
    elfcpp::STT type,
1811
    elfcpp::STB binding,
1812
    elfcpp::STV visibility,
1813
    unsigned char nonvis,
1814
    bool offset_is_from_end,
1815
    bool only_if_ref)
1816
{
1817
  Sized_symbol<size>* sym;
1818
  Sized_symbol<size>* oldsym;
1819
  bool resolve_oldsym;
1820
 
1821
  if (parameters->target().is_big_endian())
1822
    {
1823
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1824
      sym = this->define_special_symbol<size, true>(&name, &version,
1825
                                                    only_if_ref, &oldsym,
1826
                                                    &resolve_oldsym);
1827
#else
1828
      gold_unreachable();
1829
#endif
1830
    }
1831
  else
1832
    {
1833
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1834
      sym = this->define_special_symbol<size, false>(&name, &version,
1835
                                                     only_if_ref, &oldsym,
1836
                                                     &resolve_oldsym);
1837
#else
1838
      gold_unreachable();
1839
#endif
1840
    }
1841
 
1842
  if (sym == NULL)
1843
    return NULL;
1844
 
1845
  sym->init_output_data(name, version, od, value, symsize, type, binding,
1846
                        visibility, nonvis, offset_is_from_end);
1847
 
1848
  if (oldsym == NULL)
1849
    {
1850
      if (binding == elfcpp::STB_LOCAL
1851
          || this->version_script_.symbol_is_local(name))
1852
        this->force_local(sym);
1853
      else if (version != NULL)
1854
        sym->set_is_default();
1855
      return sym;
1856
    }
1857
 
1858
  if (Symbol_table::should_override_with_special(oldsym, defined))
1859
    this->override_with_special(oldsym, sym);
1860
 
1861
  if (resolve_oldsym)
1862
    return sym;
1863
  else
1864
    {
1865
      delete sym;
1866
      return oldsym;
1867
    }
1868
}
1869
 
1870
// Define a symbol based on an Output_segment.
1871
 
1872
Symbol*
1873
Symbol_table::define_in_output_segment(const char* name,
1874
                                       const char* version,
1875
                                       Defined defined,
1876
                                       Output_segment* os,
1877
                                       uint64_t value,
1878
                                       uint64_t symsize,
1879
                                       elfcpp::STT type,
1880
                                       elfcpp::STB binding,
1881
                                       elfcpp::STV visibility,
1882
                                       unsigned char nonvis,
1883
                                       Symbol::Segment_offset_base offset_base,
1884
                                       bool only_if_ref)
1885
{
1886
  if (parameters->target().get_size() == 32)
1887
    {
1888
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1889
      return this->do_define_in_output_segment<32>(name, version, defined, os,
1890
                                                   value, symsize, type,
1891
                                                   binding, visibility, nonvis,
1892
                                                   offset_base, only_if_ref);
1893
#else
1894
      gold_unreachable();
1895
#endif
1896
    }
1897
  else if (parameters->target().get_size() == 64)
1898
    {
1899
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1900
      return this->do_define_in_output_segment<64>(name, version, defined, os,
1901
                                                   value, symsize, type,
1902
                                                   binding, visibility, nonvis,
1903
                                                   offset_base, only_if_ref);
1904
#else
1905
      gold_unreachable();
1906
#endif
1907
    }
1908
  else
1909
    gold_unreachable();
1910
}
1911
 
1912
// Define a symbol in an Output_segment, sized version.
1913
 
1914
template<int size>
1915
Sized_symbol<size>*
1916
Symbol_table::do_define_in_output_segment(
1917
    const char* name,
1918
    const char* version,
1919
    Defined defined,
1920
    Output_segment* os,
1921
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1922
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1923
    elfcpp::STT type,
1924
    elfcpp::STB binding,
1925
    elfcpp::STV visibility,
1926
    unsigned char nonvis,
1927
    Symbol::Segment_offset_base offset_base,
1928
    bool only_if_ref)
1929
{
1930
  Sized_symbol<size>* sym;
1931
  Sized_symbol<size>* oldsym;
1932
  bool resolve_oldsym;
1933
 
1934
  if (parameters->target().is_big_endian())
1935
    {
1936
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1937
      sym = this->define_special_symbol<size, true>(&name, &version,
1938
                                                    only_if_ref, &oldsym,
1939
                                                    &resolve_oldsym);
1940
#else
1941
      gold_unreachable();
1942
#endif
1943
    }
1944
  else
1945
    {
1946
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1947
      sym = this->define_special_symbol<size, false>(&name, &version,
1948
                                                     only_if_ref, &oldsym,
1949
                                                     &resolve_oldsym);
1950
#else
1951
      gold_unreachable();
1952
#endif
1953
    }
1954
 
1955
  if (sym == NULL)
1956
    return NULL;
1957
 
1958
  sym->init_output_segment(name, version, os, value, symsize, type, binding,
1959
                           visibility, nonvis, offset_base);
1960
 
1961
  if (oldsym == NULL)
1962
    {
1963
      if (binding == elfcpp::STB_LOCAL
1964
          || this->version_script_.symbol_is_local(name))
1965
        this->force_local(sym);
1966
      else if (version != NULL)
1967
        sym->set_is_default();
1968
      return sym;
1969
    }
1970
 
1971
  if (Symbol_table::should_override_with_special(oldsym, defined))
1972
    this->override_with_special(oldsym, sym);
1973
 
1974
  if (resolve_oldsym)
1975
    return sym;
1976
  else
1977
    {
1978
      delete sym;
1979
      return oldsym;
1980
    }
1981
}
1982
 
1983
// Define a special symbol with a constant value.  It is a multiple
1984
// definition error if this symbol is already defined.
1985
 
1986
Symbol*
1987
Symbol_table::define_as_constant(const char* name,
1988
                                 const char* version,
1989
                                 Defined defined,
1990
                                 uint64_t value,
1991
                                 uint64_t symsize,
1992
                                 elfcpp::STT type,
1993
                                 elfcpp::STB binding,
1994
                                 elfcpp::STV visibility,
1995
                                 unsigned char nonvis,
1996
                                 bool only_if_ref,
1997
                                 bool force_override)
1998
{
1999
  if (parameters->target().get_size() == 32)
2000
    {
2001
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2002
      return this->do_define_as_constant<32>(name, version, defined, value,
2003
                                             symsize, type, binding,
2004
                                             visibility, nonvis, only_if_ref,
2005
                                             force_override);
2006
#else
2007
      gold_unreachable();
2008
#endif
2009
    }
2010
  else if (parameters->target().get_size() == 64)
2011
    {
2012
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2013
      return this->do_define_as_constant<64>(name, version, defined, value,
2014
                                             symsize, type, binding,
2015
                                             visibility, nonvis, only_if_ref,
2016
                                             force_override);
2017
#else
2018
      gold_unreachable();
2019
#endif
2020
    }
2021
  else
2022
    gold_unreachable();
2023
}
2024
 
2025
// Define a symbol as a constant, sized version.
2026
 
2027
template<int size>
2028
Sized_symbol<size>*
2029
Symbol_table::do_define_as_constant(
2030
    const char* name,
2031
    const char* version,
2032
    Defined defined,
2033
    typename elfcpp::Elf_types<size>::Elf_Addr value,
2034
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2035
    elfcpp::STT type,
2036
    elfcpp::STB binding,
2037
    elfcpp::STV visibility,
2038
    unsigned char nonvis,
2039
    bool only_if_ref,
2040
    bool force_override)
2041
{
2042
  Sized_symbol<size>* sym;
2043
  Sized_symbol<size>* oldsym;
2044
  bool resolve_oldsym;
2045
 
2046
  if (parameters->target().is_big_endian())
2047
    {
2048
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2049
      sym = this->define_special_symbol<size, true>(&name, &version,
2050
                                                    only_if_ref, &oldsym,
2051
                                                    &resolve_oldsym);
2052
#else
2053
      gold_unreachable();
2054
#endif
2055
    }
2056
  else
2057
    {
2058
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2059
      sym = this->define_special_symbol<size, false>(&name, &version,
2060
                                                     only_if_ref, &oldsym,
2061
                                                     &resolve_oldsym);
2062
#else
2063
      gold_unreachable();
2064
#endif
2065
    }
2066
 
2067
  if (sym == NULL)
2068
    return NULL;
2069
 
2070
  sym->init_constant(name, version, value, symsize, type, binding, visibility,
2071
                     nonvis);
2072
 
2073
  if (oldsym == NULL)
2074
    {
2075
      // Version symbols are absolute symbols with name == version.
2076
      // We don't want to force them to be local.
2077
      if ((version == NULL
2078
           || name != version
2079
           || value != 0)
2080
          && (binding == elfcpp::STB_LOCAL
2081
              || this->version_script_.symbol_is_local(name)))
2082
        this->force_local(sym);
2083
      else if (version != NULL
2084
               && (name != version || value != 0))
2085
        sym->set_is_default();
2086
      return sym;
2087
    }
2088
 
2089
  if (force_override
2090
      || Symbol_table::should_override_with_special(oldsym, defined))
2091
    this->override_with_special(oldsym, sym);
2092
 
2093
  if (resolve_oldsym)
2094
    return sym;
2095
  else
2096
    {
2097
      delete sym;
2098
      return oldsym;
2099
    }
2100
}
2101
 
2102
// Define a set of symbols in output sections.
2103
 
2104
void
2105
Symbol_table::define_symbols(const Layout* layout, int count,
2106
                             const Define_symbol_in_section* p,
2107
                             bool only_if_ref)
2108
{
2109
  for (int i = 0; i < count; ++i, ++p)
2110
    {
2111
      Output_section* os = layout->find_output_section(p->output_section);
2112
      if (os != NULL)
2113
        this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2114
                                    p->size, p->type, p->binding,
2115
                                    p->visibility, p->nonvis,
2116
                                    p->offset_is_from_end,
2117
                                    only_if_ref || p->only_if_ref);
2118
      else
2119
        this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2120
                                 p->type, p->binding, p->visibility, p->nonvis,
2121
                                 only_if_ref || p->only_if_ref,
2122
                                 false);
2123
    }
2124
}
2125
 
2126
// Define a set of symbols in output segments.
2127
 
2128
void
2129
Symbol_table::define_symbols(const Layout* layout, int count,
2130
                             const Define_symbol_in_segment* p,
2131
                             bool only_if_ref)
2132
{
2133
  for (int i = 0; i < count; ++i, ++p)
2134
    {
2135
      Output_segment* os = layout->find_output_segment(p->segment_type,
2136
                                                       p->segment_flags_set,
2137
                                                       p->segment_flags_clear);
2138
      if (os != NULL)
2139
        this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2140
                                       p->size, p->type, p->binding,
2141
                                       p->visibility, p->nonvis,
2142
                                       p->offset_base,
2143
                                       only_if_ref || p->only_if_ref);
2144
      else
2145
        this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2146
                                 p->type, p->binding, p->visibility, p->nonvis,
2147
                                 only_if_ref || p->only_if_ref,
2148
                                 false);
2149
    }
2150
}
2151
 
2152
// Define CSYM using a COPY reloc.  POSD is the Output_data where the
2153
// symbol should be defined--typically a .dyn.bss section.  VALUE is
2154
// the offset within POSD.
2155
 
2156
template<int size>
2157
void
2158
Symbol_table::define_with_copy_reloc(
2159
    Sized_symbol<size>* csym,
2160
    Output_data* posd,
2161
    typename elfcpp::Elf_types<size>::Elf_Addr value)
2162
{
2163
  gold_assert(csym->is_from_dynobj());
2164
  gold_assert(!csym->is_copied_from_dynobj());
2165
  Object* object = csym->object();
2166
  gold_assert(object->is_dynamic());
2167
  Dynobj* dynobj = static_cast<Dynobj*>(object);
2168
 
2169
  // Our copied variable has to override any variable in a shared
2170
  // library.
2171
  elfcpp::STB binding = csym->binding();
2172
  if (binding == elfcpp::STB_WEAK)
2173
    binding = elfcpp::STB_GLOBAL;
2174
 
2175
  this->define_in_output_data(csym->name(), csym->version(), COPY,
2176
                              posd, value, csym->symsize(),
2177
                              csym->type(), binding,
2178
                              csym->visibility(), csym->nonvis(),
2179
                              false, false);
2180
 
2181
  csym->set_is_copied_from_dynobj();
2182
  csym->set_needs_dynsym_entry();
2183
 
2184
  this->copied_symbol_dynobjs_[csym] = dynobj;
2185
 
2186
  // We have now defined all aliases, but we have not entered them all
2187
  // in the copied_symbol_dynobjs_ map.
2188
  if (csym->has_alias())
2189
    {
2190
      Symbol* sym = csym;
2191
      while (true)
2192
        {
2193
          sym = this->weak_aliases_[sym];
2194
          if (sym == csym)
2195
            break;
2196
          gold_assert(sym->output_data() == posd);
2197
 
2198
          sym->set_is_copied_from_dynobj();
2199
          this->copied_symbol_dynobjs_[sym] = dynobj;
2200
        }
2201
    }
2202
}
2203
 
2204
// SYM is defined using a COPY reloc.  Return the dynamic object where
2205
// the original definition was found.
2206
 
2207
Dynobj*
2208
Symbol_table::get_copy_source(const Symbol* sym) const
2209
{
2210
  gold_assert(sym->is_copied_from_dynobj());
2211
  Copied_symbol_dynobjs::const_iterator p =
2212
    this->copied_symbol_dynobjs_.find(sym);
2213
  gold_assert(p != this->copied_symbol_dynobjs_.end());
2214
  return p->second;
2215
}
2216
 
2217
// Add any undefined symbols named on the command line.
2218
 
2219
void
2220
Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2221
{
2222
  if (parameters->options().any_undefined()
2223
      || layout->script_options()->any_unreferenced())
2224
    {
2225
      if (parameters->target().get_size() == 32)
2226
        {
2227
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2228
          this->do_add_undefined_symbols_from_command_line<32>(layout);
2229
#else
2230
          gold_unreachable();
2231
#endif
2232
        }
2233
      else if (parameters->target().get_size() == 64)
2234
        {
2235
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2236
          this->do_add_undefined_symbols_from_command_line<64>(layout);
2237
#else
2238
          gold_unreachable();
2239
#endif
2240
        }
2241
      else
2242
        gold_unreachable();
2243
    }
2244
}
2245
 
2246
template<int size>
2247
void
2248
Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2249
{
2250
  for (options::String_set::const_iterator p =
2251
         parameters->options().undefined_begin();
2252
       p != parameters->options().undefined_end();
2253
       ++p)
2254
    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2255
 
2256
  for (Script_options::referenced_const_iterator p =
2257
         layout->script_options()->referenced_begin();
2258
       p != layout->script_options()->referenced_end();
2259
       ++p)
2260
    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2261
}
2262
 
2263
template<int size>
2264
void
2265
Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2266
{
2267
  if (this->lookup(name) != NULL)
2268
    return;
2269
 
2270
  const char* version = NULL;
2271
 
2272
  Sized_symbol<size>* sym;
2273
  Sized_symbol<size>* oldsym;
2274
  bool resolve_oldsym;
2275
  if (parameters->target().is_big_endian())
2276
    {
2277
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2278
      sym = this->define_special_symbol<size, true>(&name, &version,
2279
                                                    false, &oldsym,
2280
                                                    &resolve_oldsym);
2281
#else
2282
      gold_unreachable();
2283
#endif
2284
    }
2285
  else
2286
    {
2287
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2288
      sym = this->define_special_symbol<size, false>(&name, &version,
2289
                                                     false, &oldsym,
2290
                                                     &resolve_oldsym);
2291
#else
2292
      gold_unreachable();
2293
#endif
2294
    }
2295
 
2296
  gold_assert(oldsym == NULL);
2297
 
2298
  sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2299
                      elfcpp::STV_DEFAULT, 0);
2300
  ++this->saw_undefined_;
2301
}
2302
 
2303
// Set the dynamic symbol indexes.  INDEX is the index of the first
2304
// global dynamic symbol.  Pointers to the symbols are stored into the
2305
// vector SYMS.  The names are added to DYNPOOL.  This returns an
2306
// updated dynamic symbol index.
2307
 
2308
unsigned int
2309
Symbol_table::set_dynsym_indexes(unsigned int index,
2310
                                 std::vector<Symbol*>* syms,
2311
                                 Stringpool* dynpool,
2312
                                 Versions* versions)
2313
{
2314
  for (Symbol_table_type::iterator p = this->table_.begin();
2315
       p != this->table_.end();
2316
       ++p)
2317
    {
2318
      Symbol* sym = p->second;
2319
 
2320
      // Note that SYM may already have a dynamic symbol index, since
2321
      // some symbols appear more than once in the symbol table, with
2322
      // and without a version.
2323
 
2324
      if (!sym->should_add_dynsym_entry(this))
2325
        sym->set_dynsym_index(-1U);
2326
      else if (!sym->has_dynsym_index())
2327
        {
2328
          sym->set_dynsym_index(index);
2329
          ++index;
2330
          syms->push_back(sym);
2331
          dynpool->add(sym->name(), false, NULL);
2332
 
2333
          // Record any version information.
2334
          if (sym->version() != NULL)
2335
            versions->record_version(this, dynpool, sym);
2336
 
2337
          // If the symbol is defined in a dynamic object and is
2338
          // referenced in a regular object, then mark the dynamic
2339
          // object as needed.  This is used to implement --as-needed.
2340
          if (sym->is_from_dynobj() && sym->in_reg())
2341
            sym->object()->set_is_needed();
2342
        }
2343
    }
2344
 
2345
  // Finish up the versions.  In some cases this may add new dynamic
2346
  // symbols.
2347
  index = versions->finalize(this, index, syms);
2348
 
2349
  return index;
2350
}
2351
 
2352
// Set the final values for all the symbols.  The index of the first
2353
// global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2354
// file offset OFF.  Add their names to POOL.  Return the new file
2355
// offset.  Update *PLOCAL_SYMCOUNT if necessary.
2356
 
2357
off_t
2358
Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2359
                       size_t dyncount, Stringpool* pool,
2360
                       unsigned int* plocal_symcount)
2361
{
2362
  off_t ret;
2363
 
2364
  gold_assert(*plocal_symcount != 0);
2365
  this->first_global_index_ = *plocal_symcount;
2366
 
2367
  this->dynamic_offset_ = dynoff;
2368
  this->first_dynamic_global_index_ = dyn_global_index;
2369
  this->dynamic_count_ = dyncount;
2370
 
2371
  if (parameters->target().get_size() == 32)
2372
    {
2373
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2374
      ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2375
#else
2376
      gold_unreachable();
2377
#endif
2378
    }
2379
  else if (parameters->target().get_size() == 64)
2380
    {
2381
#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2382
      ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2383
#else
2384
      gold_unreachable();
2385
#endif
2386
    }
2387
  else
2388
    gold_unreachable();
2389
 
2390
  // Now that we have the final symbol table, we can reliably note
2391
  // which symbols should get warnings.
2392
  this->warnings_.note_warnings(this);
2393
 
2394
  return ret;
2395
}
2396
 
2397
// SYM is going into the symbol table at *PINDEX.  Add the name to
2398
// POOL, update *PINDEX and *POFF.
2399
 
2400
template<int size>
2401
void
2402
Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2403
                                  unsigned int* pindex, off_t* poff)
2404
{
2405
  sym->set_symtab_index(*pindex);
2406
  pool->add(sym->name(), false, NULL);
2407
  ++*pindex;
2408
  *poff += elfcpp::Elf_sizes<size>::sym_size;
2409
}
2410
 
2411
// Set the final value for all the symbols.  This is called after
2412
// Layout::finalize, so all the output sections have their final
2413
// address.
2414
 
2415
template<int size>
2416
off_t
2417
Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2418
                             unsigned int* plocal_symcount)
2419
{
2420
  off = align_address(off, size >> 3);
2421
  this->offset_ = off;
2422
 
2423
  unsigned int index = *plocal_symcount;
2424
  const unsigned int orig_index = index;
2425
 
2426
  // First do all the symbols which have been forced to be local, as
2427
  // they must appear before all global symbols.
2428
  for (Forced_locals::iterator p = this->forced_locals_.begin();
2429
       p != this->forced_locals_.end();
2430
       ++p)
2431
    {
2432
      Symbol* sym = *p;
2433
      gold_assert(sym->is_forced_local());
2434
      if (this->sized_finalize_symbol<size>(sym))
2435
        {
2436
          this->add_to_final_symtab<size>(sym, pool, &index, &off);
2437
          ++*plocal_symcount;
2438
        }
2439
    }
2440
 
2441
  // Now do all the remaining symbols.
2442
  for (Symbol_table_type::iterator p = this->table_.begin();
2443
       p != this->table_.end();
2444
       ++p)
2445
    {
2446
      Symbol* sym = p->second;
2447
      if (this->sized_finalize_symbol<size>(sym))
2448
        this->add_to_final_symtab<size>(sym, pool, &index, &off);
2449
    }
2450
 
2451
  this->output_count_ = index - orig_index;
2452
 
2453
  return off;
2454
}
2455
 
2456
// Compute the final value of SYM and store status in location PSTATUS.
2457
// During relaxation, this may be called multiple times for a symbol to
2458
// compute its would-be final value in each relaxation pass.
2459
 
2460
template<int size>
2461
typename Sized_symbol<size>::Value_type
2462
Symbol_table::compute_final_value(
2463
    const Sized_symbol<size>* sym,
2464
    Compute_final_value_status* pstatus) const
2465
{
2466
  typedef typename Sized_symbol<size>::Value_type Value_type;
2467
  Value_type value;
2468
 
2469
  switch (sym->source())
2470
    {
2471
    case Symbol::FROM_OBJECT:
2472
      {
2473
        bool is_ordinary;
2474
        unsigned int shndx = sym->shndx(&is_ordinary);
2475
 
2476
        if (!is_ordinary
2477
            && shndx != elfcpp::SHN_ABS
2478
            && !Symbol::is_common_shndx(shndx))
2479
          {
2480
            *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2481
            return 0;
2482
          }
2483
 
2484
        Object* symobj = sym->object();
2485
        if (symobj->is_dynamic())
2486
          {
2487
            value = 0;
2488
            shndx = elfcpp::SHN_UNDEF;
2489
          }
2490
        else if (symobj->pluginobj() != NULL)
2491
          {
2492
            value = 0;
2493
            shndx = elfcpp::SHN_UNDEF;
2494
          }
2495
        else if (shndx == elfcpp::SHN_UNDEF)
2496
          value = 0;
2497
        else if (!is_ordinary
2498
                 && (shndx == elfcpp::SHN_ABS
2499
                     || Symbol::is_common_shndx(shndx)))
2500
          value = sym->value();
2501
        else
2502
          {
2503
            Relobj* relobj = static_cast<Relobj*>(symobj);
2504
            Output_section* os = relobj->output_section(shndx);
2505
 
2506
            if (this->is_section_folded(relobj, shndx))
2507
              {
2508
                gold_assert(os == NULL);
2509
                // Get the os of the section it is folded onto.
2510
                Section_id folded = this->icf_->get_folded_section(relobj,
2511
                                                                   shndx);
2512
                gold_assert(folded.first != NULL);
2513
                Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2514
                unsigned folded_shndx = folded.second;
2515
 
2516
                os = folded_obj->output_section(folded_shndx);
2517
                gold_assert(os != NULL);
2518
 
2519
                // Replace (relobj, shndx) with canonical ICF input section.
2520
                shndx = folded_shndx;
2521
                relobj = folded_obj;
2522
              }
2523
 
2524
            uint64_t secoff64 = relobj->output_section_offset(shndx);
2525
            if (os == NULL)
2526
              {
2527
                bool static_or_reloc = (parameters->doing_static_link() ||
2528
                                        parameters->options().relocatable());
2529
                gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2530
 
2531
                *pstatus = CFVS_NO_OUTPUT_SECTION;
2532
                return 0;
2533
              }
2534
 
2535
            if (secoff64 == -1ULL)
2536
              {
2537
                // The section needs special handling (e.g., a merge section).
2538
 
2539
                value = os->output_address(relobj, shndx, sym->value());
2540
              }
2541
            else
2542
              {
2543
                Value_type secoff =
2544
                  convert_types<Value_type, uint64_t>(secoff64);
2545
                if (sym->type() == elfcpp::STT_TLS)
2546
                  value = sym->value() + os->tls_offset() + secoff;
2547
                else
2548
                  value = sym->value() + os->address() + secoff;
2549
              }
2550
          }
2551
      }
2552
      break;
2553
 
2554
    case Symbol::IN_OUTPUT_DATA:
2555
      {
2556
        Output_data* od = sym->output_data();
2557
        value = sym->value();
2558
        if (sym->type() != elfcpp::STT_TLS)
2559
          value += od->address();
2560
        else
2561
          {
2562
            Output_section* os = od->output_section();
2563
            gold_assert(os != NULL);
2564
            value += os->tls_offset() + (od->address() - os->address());
2565
          }
2566
        if (sym->offset_is_from_end())
2567
          value += od->data_size();
2568
      }
2569
      break;
2570
 
2571
    case Symbol::IN_OUTPUT_SEGMENT:
2572
      {
2573
        Output_segment* os = sym->output_segment();
2574
        value = sym->value();
2575
        if (sym->type() != elfcpp::STT_TLS)
2576
          value += os->vaddr();
2577
        switch (sym->offset_base())
2578
          {
2579
          case Symbol::SEGMENT_START:
2580
            break;
2581
          case Symbol::SEGMENT_END:
2582
            value += os->memsz();
2583
            break;
2584
          case Symbol::SEGMENT_BSS:
2585
            value += os->filesz();
2586
            break;
2587
          default:
2588
            gold_unreachable();
2589
          }
2590
      }
2591
      break;
2592
 
2593
    case Symbol::IS_CONSTANT:
2594
      value = sym->value();
2595
      break;
2596
 
2597
    case Symbol::IS_UNDEFINED:
2598
      value = 0;
2599
      break;
2600
 
2601
    default:
2602
      gold_unreachable();
2603
    }
2604
 
2605
  *pstatus = CFVS_OK;
2606
  return value;
2607
}
2608
 
2609
// Finalize the symbol SYM.  This returns true if the symbol should be
2610
// added to the symbol table, false otherwise.
2611
 
2612
template<int size>
2613
bool
2614
Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2615
{
2616
  typedef typename Sized_symbol<size>::Value_type Value_type;
2617
 
2618
  Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2619
 
2620
  // The default version of a symbol may appear twice in the symbol
2621
  // table.  We only need to finalize it once.
2622
  if (sym->has_symtab_index())
2623
    return false;
2624
 
2625
  if (!sym->in_reg())
2626
    {
2627
      gold_assert(!sym->has_symtab_index());
2628
      sym->set_symtab_index(-1U);
2629
      gold_assert(sym->dynsym_index() == -1U);
2630
      return false;
2631
    }
2632
 
2633
  // If the symbol is only present on plugin files, the plugin decided we
2634
  // don't need it.
2635
  if (!sym->in_real_elf())
2636
    {
2637
      gold_assert(!sym->has_symtab_index());
2638
      sym->set_symtab_index(-1U);
2639
      return false;
2640
    }
2641
 
2642
  // Compute final symbol value.
2643
  Compute_final_value_status status;
2644
  Value_type value = this->compute_final_value(sym, &status);
2645
 
2646
  switch (status)
2647
    {
2648
    case CFVS_OK:
2649
      break;
2650
    case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2651
      {
2652
        bool is_ordinary;
2653
        unsigned int shndx = sym->shndx(&is_ordinary);
2654
        gold_error(_("%s: unsupported symbol section 0x%x"),
2655
                   sym->demangled_name().c_str(), shndx);
2656
      }
2657
      break;
2658
    case CFVS_NO_OUTPUT_SECTION:
2659
      sym->set_symtab_index(-1U);
2660
      return false;
2661
    default:
2662
      gold_unreachable();
2663
    }
2664
 
2665
  sym->set_value(value);
2666
 
2667
  if (parameters->options().strip_all()
2668
      || !parameters->options().should_retain_symbol(sym->name()))
2669
    {
2670
      sym->set_symtab_index(-1U);
2671
      return false;
2672
    }
2673
 
2674
  return true;
2675
}
2676
 
2677
// Write out the global symbols.
2678
 
2679
void
2680
Symbol_table::write_globals(const Stringpool* sympool,
2681
                            const Stringpool* dynpool,
2682
                            Output_symtab_xindex* symtab_xindex,
2683
                            Output_symtab_xindex* dynsym_xindex,
2684
                            Output_file* of) const
2685
{
2686
  switch (parameters->size_and_endianness())
2687
    {
2688
#ifdef HAVE_TARGET_32_LITTLE
2689
    case Parameters::TARGET_32_LITTLE:
2690
      this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2691
                                           dynsym_xindex, of);
2692
      break;
2693
#endif
2694
#ifdef HAVE_TARGET_32_BIG
2695
    case Parameters::TARGET_32_BIG:
2696
      this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2697
                                          dynsym_xindex, of);
2698
      break;
2699
#endif
2700
#ifdef HAVE_TARGET_64_LITTLE
2701
    case Parameters::TARGET_64_LITTLE:
2702
      this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2703
                                           dynsym_xindex, of);
2704
      break;
2705
#endif
2706
#ifdef HAVE_TARGET_64_BIG
2707
    case Parameters::TARGET_64_BIG:
2708
      this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2709
                                          dynsym_xindex, of);
2710
      break;
2711
#endif
2712
    default:
2713
      gold_unreachable();
2714
    }
2715
}
2716
 
2717
// Write out the global symbols.
2718
 
2719
template<int size, bool big_endian>
2720
void
2721
Symbol_table::sized_write_globals(const Stringpool* sympool,
2722
                                  const Stringpool* dynpool,
2723
                                  Output_symtab_xindex* symtab_xindex,
2724
                                  Output_symtab_xindex* dynsym_xindex,
2725
                                  Output_file* of) const
2726
{
2727
  const Target& target = parameters->target();
2728
 
2729
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2730
 
2731
  const unsigned int output_count = this->output_count_;
2732
  const section_size_type oview_size = output_count * sym_size;
2733
  const unsigned int first_global_index = this->first_global_index_;
2734
  unsigned char* psyms;
2735
  if (this->offset_ == 0 || output_count == 0)
2736
    psyms = NULL;
2737
  else
2738
    psyms = of->get_output_view(this->offset_, oview_size);
2739
 
2740
  const unsigned int dynamic_count = this->dynamic_count_;
2741
  const section_size_type dynamic_size = dynamic_count * sym_size;
2742
  const unsigned int first_dynamic_global_index =
2743
    this->first_dynamic_global_index_;
2744
  unsigned char* dynamic_view;
2745
  if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2746
    dynamic_view = NULL;
2747
  else
2748
    dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2749
 
2750
  for (Symbol_table_type::const_iterator p = this->table_.begin();
2751
       p != this->table_.end();
2752
       ++p)
2753
    {
2754
      Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2755
 
2756
      // Possibly warn about unresolved symbols in shared libraries.
2757
      this->warn_about_undefined_dynobj_symbol(sym);
2758
 
2759
      unsigned int sym_index = sym->symtab_index();
2760
      unsigned int dynsym_index;
2761
      if (dynamic_view == NULL)
2762
        dynsym_index = -1U;
2763
      else
2764
        dynsym_index = sym->dynsym_index();
2765
 
2766
      if (sym_index == -1U && dynsym_index == -1U)
2767
        {
2768
          // This symbol is not included in the output file.
2769
          continue;
2770
        }
2771
 
2772
      unsigned int shndx;
2773
      typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2774
      typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2775
      elfcpp::STB binding = sym->binding();
2776
      switch (sym->source())
2777
        {
2778
        case Symbol::FROM_OBJECT:
2779
          {
2780
            bool is_ordinary;
2781
            unsigned int in_shndx = sym->shndx(&is_ordinary);
2782
 
2783
            if (!is_ordinary
2784
                && in_shndx != elfcpp::SHN_ABS
2785
                && !Symbol::is_common_shndx(in_shndx))
2786
              {
2787
                gold_error(_("%s: unsupported symbol section 0x%x"),
2788
                           sym->demangled_name().c_str(), in_shndx);
2789
                shndx = in_shndx;
2790
              }
2791
            else
2792
              {
2793
                Object* symobj = sym->object();
2794
                if (symobj->is_dynamic())
2795
                  {
2796
                    if (sym->needs_dynsym_value())
2797
                      dynsym_value = target.dynsym_value(sym);
2798
                    shndx = elfcpp::SHN_UNDEF;
2799
                    if (sym->is_undef_binding_weak())
2800
                      binding = elfcpp::STB_WEAK;
2801
                    else
2802
                      binding = elfcpp::STB_GLOBAL;
2803
                  }
2804
                else if (symobj->pluginobj() != NULL)
2805
                  shndx = elfcpp::SHN_UNDEF;
2806
                else if (in_shndx == elfcpp::SHN_UNDEF
2807
                         || (!is_ordinary
2808
                             && (in_shndx == elfcpp::SHN_ABS
2809
                                 || Symbol::is_common_shndx(in_shndx))))
2810
                  shndx = in_shndx;
2811
                else
2812
                  {
2813
                    Relobj* relobj = static_cast<Relobj*>(symobj);
2814
                    Output_section* os = relobj->output_section(in_shndx);
2815
                    if (this->is_section_folded(relobj, in_shndx))
2816
                      {
2817
                        // This global symbol must be written out even though
2818
                        // it is folded.
2819
                        // Get the os of the section it is folded onto.
2820
                        Section_id folded =
2821
                             this->icf_->get_folded_section(relobj, in_shndx);
2822
                        gold_assert(folded.first !=NULL);
2823
                        Relobj* folded_obj =
2824
                          reinterpret_cast<Relobj*>(folded.first);
2825
                        os = folded_obj->output_section(folded.second);
2826
                        gold_assert(os != NULL);
2827
                      }
2828
                    gold_assert(os != NULL);
2829
                    shndx = os->out_shndx();
2830
 
2831
                    if (shndx >= elfcpp::SHN_LORESERVE)
2832
                      {
2833
                        if (sym_index != -1U)
2834
                          symtab_xindex->add(sym_index, shndx);
2835
                        if (dynsym_index != -1U)
2836
                          dynsym_xindex->add(dynsym_index, shndx);
2837
                        shndx = elfcpp::SHN_XINDEX;
2838
                      }
2839
 
2840
                    // In object files symbol values are section
2841
                    // relative.
2842
                    if (parameters->options().relocatable())
2843
                      sym_value -= os->address();
2844
                  }
2845
              }
2846
          }
2847
          break;
2848
 
2849
        case Symbol::IN_OUTPUT_DATA:
2850
          shndx = sym->output_data()->out_shndx();
2851
          if (shndx >= elfcpp::SHN_LORESERVE)
2852
            {
2853
              if (sym_index != -1U)
2854
                symtab_xindex->add(sym_index, shndx);
2855
              if (dynsym_index != -1U)
2856
                dynsym_xindex->add(dynsym_index, shndx);
2857
              shndx = elfcpp::SHN_XINDEX;
2858
            }
2859
          break;
2860
 
2861
        case Symbol::IN_OUTPUT_SEGMENT:
2862
          shndx = elfcpp::SHN_ABS;
2863
          break;
2864
 
2865
        case Symbol::IS_CONSTANT:
2866
          shndx = elfcpp::SHN_ABS;
2867
          break;
2868
 
2869
        case Symbol::IS_UNDEFINED:
2870
          shndx = elfcpp::SHN_UNDEF;
2871
          break;
2872
 
2873
        default:
2874
          gold_unreachable();
2875
        }
2876
 
2877
      if (sym_index != -1U)
2878
        {
2879
          sym_index -= first_global_index;
2880
          gold_assert(sym_index < output_count);
2881
          unsigned char* ps = psyms + (sym_index * sym_size);
2882
          this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2883
                                                     binding, sympool, ps);
2884
        }
2885
 
2886
      if (dynsym_index != -1U)
2887
        {
2888
          dynsym_index -= first_dynamic_global_index;
2889
          gold_assert(dynsym_index < dynamic_count);
2890
          unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2891
          this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2892
                                                     binding, dynpool, pd);
2893
        }
2894
    }
2895
 
2896
  of->write_output_view(this->offset_, oview_size, psyms);
2897
  if (dynamic_view != NULL)
2898
    of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2899
}
2900
 
2901
// Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2902
// strtab holding the name.
2903
 
2904
template<int size, bool big_endian>
2905
void
2906
Symbol_table::sized_write_symbol(
2907
    Sized_symbol<size>* sym,
2908
    typename elfcpp::Elf_types<size>::Elf_Addr value,
2909
    unsigned int shndx,
2910
    elfcpp::STB binding,
2911
    const Stringpool* pool,
2912
    unsigned char* p) const
2913
{
2914
  elfcpp::Sym_write<size, big_endian> osym(p);
2915
  osym.put_st_name(pool->get_offset(sym->name()));
2916
  osym.put_st_value(value);
2917
  // Use a symbol size of zero for undefined symbols from shared libraries.
2918
  if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2919
    osym.put_st_size(0);
2920
  else
2921
    osym.put_st_size(sym->symsize());
2922
  elfcpp::STT type = sym->type();
2923
  // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2924
  if (type == elfcpp::STT_GNU_IFUNC
2925
      && sym->is_from_dynobj())
2926
    type = elfcpp::STT_FUNC;
2927
  // A version script may have overridden the default binding.
2928
  if (sym->is_forced_local())
2929
    osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2930
  else
2931
    osym.put_st_info(elfcpp::elf_st_info(binding, type));
2932
  osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2933
  osym.put_st_shndx(shndx);
2934
}
2935
 
2936
// Check for unresolved symbols in shared libraries.  This is
2937
// controlled by the --allow-shlib-undefined option.
2938
 
2939
// We only warn about libraries for which we have seen all the
2940
// DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2941
// which were not seen in this link.  If we didn't see a DT_NEEDED
2942
// entry, we aren't going to be able to reliably report whether the
2943
// symbol is undefined.
2944
 
2945
// We also don't warn about libraries found in a system library
2946
// directory (e.g., /lib or /usr/lib); we assume that those libraries
2947
// are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2948
// can have undefined references satisfied by ld-linux.so.
2949
 
2950
inline void
2951
Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2952
{
2953
  bool dummy;
2954
  if (sym->source() == Symbol::FROM_OBJECT
2955
      && sym->object()->is_dynamic()
2956
      && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2957
      && sym->binding() != elfcpp::STB_WEAK
2958
      && !parameters->options().allow_shlib_undefined()
2959
      && !parameters->target().is_defined_by_abi(sym)
2960
      && !sym->object()->is_in_system_directory())
2961
    {
2962
      // A very ugly cast.
2963
      Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2964
      if (!dynobj->has_unknown_needed_entries())
2965
        gold_undefined_symbol(sym);
2966
    }
2967
}
2968
 
2969
// Write out a section symbol.  Return the update offset.
2970
 
2971
void
2972
Symbol_table::write_section_symbol(const Output_section* os,
2973
                                   Output_symtab_xindex* symtab_xindex,
2974
                                   Output_file* of,
2975
                                   off_t offset) const
2976
{
2977
  switch (parameters->size_and_endianness())
2978
    {
2979
#ifdef HAVE_TARGET_32_LITTLE
2980
    case Parameters::TARGET_32_LITTLE:
2981
      this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2982
                                                  offset);
2983
      break;
2984
#endif
2985
#ifdef HAVE_TARGET_32_BIG
2986
    case Parameters::TARGET_32_BIG:
2987
      this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2988
                                                 offset);
2989
      break;
2990
#endif
2991
#ifdef HAVE_TARGET_64_LITTLE
2992
    case Parameters::TARGET_64_LITTLE:
2993
      this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2994
                                                  offset);
2995
      break;
2996
#endif
2997
#ifdef HAVE_TARGET_64_BIG
2998
    case Parameters::TARGET_64_BIG:
2999
      this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3000
                                                 offset);
3001
      break;
3002
#endif
3003
    default:
3004
      gold_unreachable();
3005
    }
3006
}
3007
 
3008
// Write out a section symbol, specialized for size and endianness.
3009
 
3010
template<int size, bool big_endian>
3011
void
3012
Symbol_table::sized_write_section_symbol(const Output_section* os,
3013
                                         Output_symtab_xindex* symtab_xindex,
3014
                                         Output_file* of,
3015
                                         off_t offset) const
3016
{
3017
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3018
 
3019
  unsigned char* pov = of->get_output_view(offset, sym_size);
3020
 
3021
  elfcpp::Sym_write<size, big_endian> osym(pov);
3022
  osym.put_st_name(0);
3023
  if (parameters->options().relocatable())
3024
    osym.put_st_value(0);
3025
  else
3026
    osym.put_st_value(os->address());
3027
  osym.put_st_size(0);
3028
  osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3029
                                       elfcpp::STT_SECTION));
3030
  osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3031
 
3032
  unsigned int shndx = os->out_shndx();
3033
  if (shndx >= elfcpp::SHN_LORESERVE)
3034
    {
3035
      symtab_xindex->add(os->symtab_index(), shndx);
3036
      shndx = elfcpp::SHN_XINDEX;
3037
    }
3038
  osym.put_st_shndx(shndx);
3039
 
3040
  of->write_output_view(offset, sym_size, pov);
3041
}
3042
 
3043
// Print statistical information to stderr.  This is used for --stats.
3044
 
3045
void
3046
Symbol_table::print_stats() const
3047
{
3048
#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3049
  fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3050
          program_name, this->table_.size(), this->table_.bucket_count());
3051
#else
3052
  fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3053
          program_name, this->table_.size());
3054
#endif
3055
  this->namepool_.print_stats("symbol table stringpool");
3056
}
3057
 
3058
// We check for ODR violations by looking for symbols with the same
3059
// name for which the debugging information reports that they were
3060
// defined in disjoint source locations.  When comparing the source
3061
// location, we consider instances with the same base filename to be
3062
// the same.  This is because different object files/shared libraries
3063
// can include the same header file using different paths, and
3064
// different optimization settings can make the line number appear to
3065
// be a couple lines off, and we don't want to report an ODR violation
3066
// in those cases.
3067
 
3068
// This struct is used to compare line information, as returned by
3069
// Dwarf_line_info::one_addr2line.  It implements a < comparison
3070
// operator used with std::sort.
3071
 
3072
struct Odr_violation_compare
3073
{
3074
  bool
3075
  operator()(const std::string& s1, const std::string& s2) const
3076
  {
3077
    // Inputs should be of the form "dirname/filename:linenum" where
3078
    // "dirname/" is optional.  We want to compare just the filename:linenum.
3079
 
3080
    // Find the last '/' in each string.
3081
    std::string::size_type s1begin = s1.rfind('/');
3082
    std::string::size_type s2begin = s2.rfind('/');
3083
    // If there was no '/' in a string, start at the beginning.
3084
    if (s1begin == std::string::npos)
3085
      s1begin = 0;
3086
    if (s2begin == std::string::npos)
3087
      s2begin = 0;
3088
    return s1.compare(s1begin, std::string::npos,
3089
                      s2, s2begin, std::string::npos) < 0;
3090
  }
3091
};
3092
 
3093
// Returns all of the lines attached to LOC, not just the one the
3094
// instruction actually came from.
3095
std::vector<std::string>
3096
Symbol_table::linenos_from_loc(const Task* task,
3097
                               const Symbol_location& loc)
3098
{
3099
  // We need to lock the object in order to read it.  This
3100
  // means that we have to run in a singleton Task.  If we
3101
  // want to run this in a general Task for better
3102
  // performance, we will need one Task for object, plus
3103
  // appropriate locking to ensure that we don't conflict with
3104
  // other uses of the object.  Also note, one_addr2line is not
3105
  // currently thread-safe.
3106
  Task_lock_obj<Object> tl(task, loc.object);
3107
 
3108
  std::vector<std::string> result;
3109
  // 16 is the size of the object-cache that one_addr2line should use.
3110
  std::string canonical_result = Dwarf_line_info::one_addr2line(
3111
      loc.object, loc.shndx, loc.offset, 16, &result);
3112
  if (!canonical_result.empty())
3113
    result.push_back(canonical_result);
3114
  return result;
3115
}
3116
 
3117
// OutputIterator that records if it was ever assigned to.  This
3118
// allows it to be used with std::set_intersection() to check for
3119
// intersection rather than computing the intersection.
3120
struct Check_intersection
3121
{
3122
  Check_intersection()
3123
    : value_(false)
3124
  {}
3125
 
3126
  bool had_intersection() const
3127
  { return this->value_; }
3128
 
3129
  Check_intersection& operator++()
3130
  { return *this; }
3131
 
3132
  Check_intersection& operator*()
3133
  { return *this; }
3134
 
3135
  template<typename T>
3136
  Check_intersection& operator=(const T&)
3137
  {
3138
    this->value_ = true;
3139
    return *this;
3140
  }
3141
 
3142
 private:
3143
  bool value_;
3144
};
3145
 
3146
// Check candidate_odr_violations_ to find symbols with the same name
3147
// but apparently different definitions (different source-file/line-no
3148
// for each line assigned to the first instruction).
3149
 
3150
void
3151
Symbol_table::detect_odr_violations(const Task* task,
3152
                                    const char* output_file_name) const
3153
{
3154
  for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3155
       it != candidate_odr_violations_.end();
3156
       ++it)
3157
    {
3158
      const char* const symbol_name = it->first;
3159
 
3160
      std::string first_object_name;
3161
      std::vector<std::string> first_object_linenos;
3162
 
3163
      Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3164
          locs = it->second.begin();
3165
      const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3166
          locs_end = it->second.end();
3167
      for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3168
        {
3169
          // Save the line numbers from the first definition to
3170
          // compare to the other definitions.  Ideally, we'd compare
3171
          // every definition to every other, but we don't want to
3172
          // take O(N^2) time to do this.  This shortcut may cause
3173
          // false negatives that appear or disappear depending on the
3174
          // link order, but it won't cause false positives.
3175
          first_object_name = locs->object->name();
3176
          first_object_linenos = this->linenos_from_loc(task, *locs);
3177
        }
3178
 
3179
      // Sort by Odr_violation_compare to make std::set_intersection work.
3180
      std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3181
                Odr_violation_compare());
3182
 
3183
      for (; locs != locs_end; ++locs)
3184
        {
3185
          std::vector<std::string> linenos =
3186
              this->linenos_from_loc(task, *locs);
3187
          // linenos will be empty if we couldn't parse the debug info.
3188
          if (linenos.empty())
3189
            continue;
3190
          // Sort by Odr_violation_compare to make std::set_intersection work.
3191
          std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3192
 
3193
          Check_intersection intersection_result =
3194
              std::set_intersection(first_object_linenos.begin(),
3195
                                    first_object_linenos.end(),
3196
                                    linenos.begin(),
3197
                                    linenos.end(),
3198
                                    Check_intersection(),
3199
                                    Odr_violation_compare());
3200
          if (!intersection_result.had_intersection())
3201
            {
3202
              gold_warning(_("while linking %s: symbol '%s' defined in "
3203
                             "multiple places (possible ODR violation):"),
3204
                           output_file_name, demangle(symbol_name).c_str());
3205
              // This only prints one location from each definition,
3206
              // which may not be the location we expect to intersect
3207
              // with another definition.  We could print the whole
3208
              // set of locations, but that seems too verbose.
3209
              gold_assert(!first_object_linenos.empty());
3210
              gold_assert(!linenos.empty());
3211
              fprintf(stderr, _("  %s from %s\n"),
3212
                      first_object_linenos[0].c_str(),
3213
                      first_object_name.c_str());
3214
              fprintf(stderr, _("  %s from %s\n"),
3215
                      linenos[0].c_str(),
3216
                      locs->object->name().c_str());
3217
              // Only print one broken pair, to avoid needing to
3218
              // compare against a list of the disjoint definition
3219
              // locations we've found so far.  (If we kept comparing
3220
              // against just the first one, we'd get a lot of
3221
              // redundant complaints about the second definition
3222
              // location.)
3223
              break;
3224
            }
3225
        }
3226
    }
3227
  // We only call one_addr2line() in this function, so we can clear its cache.
3228
  Dwarf_line_info::clear_addr2line_cache();
3229
}
3230
 
3231
// Warnings functions.
3232
 
3233
// Add a new warning.
3234
 
3235
void
3236
Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3237
                      const std::string& warning)
3238
{
3239
  name = symtab->canonicalize_name(name);
3240
  this->warnings_[name].set(obj, warning);
3241
}
3242
 
3243
// Look through the warnings and mark the symbols for which we should
3244
// warn.  This is called during Layout::finalize when we know the
3245
// sources for all the symbols.
3246
 
3247
void
3248
Warnings::note_warnings(Symbol_table* symtab)
3249
{
3250
  for (Warning_table::iterator p = this->warnings_.begin();
3251
       p != this->warnings_.end();
3252
       ++p)
3253
    {
3254
      Symbol* sym = symtab->lookup(p->first, NULL);
3255
      if (sym != NULL
3256
          && sym->source() == Symbol::FROM_OBJECT
3257
          && sym->object() == p->second.object)
3258
        sym->set_has_warning();
3259
    }
3260
}
3261
 
3262
// Issue a warning.  This is called when we see a relocation against a
3263
// symbol for which has a warning.
3264
 
3265
template<int size, bool big_endian>
3266
void
3267
Warnings::issue_warning(const Symbol* sym,
3268
                        const Relocate_info<size, big_endian>* relinfo,
3269
                        size_t relnum, off_t reloffset) const
3270
{
3271
  gold_assert(sym->has_warning());
3272
  Warning_table::const_iterator p = this->warnings_.find(sym->name());
3273
  gold_assert(p != this->warnings_.end());
3274
  gold_warning_at_location(relinfo, relnum, reloffset,
3275
                           "%s", p->second.text.c_str());
3276
}
3277
 
3278
// Instantiate the templates we need.  We could use the configure
3279
// script to restrict this to only the ones needed for implemented
3280
// targets.
3281
 
3282
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3283
template
3284
void
3285
Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3286
#endif
3287
 
3288
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3289
template
3290
void
3291
Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3292
#endif
3293
 
3294
#ifdef HAVE_TARGET_32_LITTLE
3295
template
3296
void
3297
Symbol_table::add_from_relobj<32, false>(
3298
    Sized_relobj_file<32, false>* relobj,
3299
    const unsigned char* syms,
3300
    size_t count,
3301
    size_t symndx_offset,
3302
    const char* sym_names,
3303
    size_t sym_name_size,
3304
    Sized_relobj_file<32, false>::Symbols* sympointers,
3305
    size_t* defined);
3306
#endif
3307
 
3308
#ifdef HAVE_TARGET_32_BIG
3309
template
3310
void
3311
Symbol_table::add_from_relobj<32, true>(
3312
    Sized_relobj_file<32, true>* relobj,
3313
    const unsigned char* syms,
3314
    size_t count,
3315
    size_t symndx_offset,
3316
    const char* sym_names,
3317
    size_t sym_name_size,
3318
    Sized_relobj_file<32, true>::Symbols* sympointers,
3319
    size_t* defined);
3320
#endif
3321
 
3322
#ifdef HAVE_TARGET_64_LITTLE
3323
template
3324
void
3325
Symbol_table::add_from_relobj<64, false>(
3326
    Sized_relobj_file<64, false>* relobj,
3327
    const unsigned char* syms,
3328
    size_t count,
3329
    size_t symndx_offset,
3330
    const char* sym_names,
3331
    size_t sym_name_size,
3332
    Sized_relobj_file<64, false>::Symbols* sympointers,
3333
    size_t* defined);
3334
#endif
3335
 
3336
#ifdef HAVE_TARGET_64_BIG
3337
template
3338
void
3339
Symbol_table::add_from_relobj<64, true>(
3340
    Sized_relobj_file<64, true>* relobj,
3341
    const unsigned char* syms,
3342
    size_t count,
3343
    size_t symndx_offset,
3344
    const char* sym_names,
3345
    size_t sym_name_size,
3346
    Sized_relobj_file<64, true>::Symbols* sympointers,
3347
    size_t* defined);
3348
#endif
3349
 
3350
#ifdef HAVE_TARGET_32_LITTLE
3351
template
3352
Symbol*
3353
Symbol_table::add_from_pluginobj<32, false>(
3354
    Sized_pluginobj<32, false>* obj,
3355
    const char* name,
3356
    const char* ver,
3357
    elfcpp::Sym<32, false>* sym);
3358
#endif
3359
 
3360
#ifdef HAVE_TARGET_32_BIG
3361
template
3362
Symbol*
3363
Symbol_table::add_from_pluginobj<32, true>(
3364
    Sized_pluginobj<32, true>* obj,
3365
    const char* name,
3366
    const char* ver,
3367
    elfcpp::Sym<32, true>* sym);
3368
#endif
3369
 
3370
#ifdef HAVE_TARGET_64_LITTLE
3371
template
3372
Symbol*
3373
Symbol_table::add_from_pluginobj<64, false>(
3374
    Sized_pluginobj<64, false>* obj,
3375
    const char* name,
3376
    const char* ver,
3377
    elfcpp::Sym<64, false>* sym);
3378
#endif
3379
 
3380
#ifdef HAVE_TARGET_64_BIG
3381
template
3382
Symbol*
3383
Symbol_table::add_from_pluginobj<64, true>(
3384
    Sized_pluginobj<64, true>* obj,
3385
    const char* name,
3386
    const char* ver,
3387
    elfcpp::Sym<64, true>* sym);
3388
#endif
3389
 
3390
#ifdef HAVE_TARGET_32_LITTLE
3391
template
3392
void
3393
Symbol_table::add_from_dynobj<32, false>(
3394
    Sized_dynobj<32, false>* dynobj,
3395
    const unsigned char* syms,
3396
    size_t count,
3397
    const char* sym_names,
3398
    size_t sym_name_size,
3399
    const unsigned char* versym,
3400
    size_t versym_size,
3401
    const std::vector<const char*>* version_map,
3402
    Sized_relobj_file<32, false>::Symbols* sympointers,
3403
    size_t* defined);
3404
#endif
3405
 
3406
#ifdef HAVE_TARGET_32_BIG
3407
template
3408
void
3409
Symbol_table::add_from_dynobj<32, true>(
3410
    Sized_dynobj<32, true>* dynobj,
3411
    const unsigned char* syms,
3412
    size_t count,
3413
    const char* sym_names,
3414
    size_t sym_name_size,
3415
    const unsigned char* versym,
3416
    size_t versym_size,
3417
    const std::vector<const char*>* version_map,
3418
    Sized_relobj_file<32, true>::Symbols* sympointers,
3419
    size_t* defined);
3420
#endif
3421
 
3422
#ifdef HAVE_TARGET_64_LITTLE
3423
template
3424
void
3425
Symbol_table::add_from_dynobj<64, false>(
3426
    Sized_dynobj<64, false>* dynobj,
3427
    const unsigned char* syms,
3428
    size_t count,
3429
    const char* sym_names,
3430
    size_t sym_name_size,
3431
    const unsigned char* versym,
3432
    size_t versym_size,
3433
    const std::vector<const char*>* version_map,
3434
    Sized_relobj_file<64, false>::Symbols* sympointers,
3435
    size_t* defined);
3436
#endif
3437
 
3438
#ifdef HAVE_TARGET_64_BIG
3439
template
3440
void
3441
Symbol_table::add_from_dynobj<64, true>(
3442
    Sized_dynobj<64, true>* dynobj,
3443
    const unsigned char* syms,
3444
    size_t count,
3445
    const char* sym_names,
3446
    size_t sym_name_size,
3447
    const unsigned char* versym,
3448
    size_t versym_size,
3449
    const std::vector<const char*>* version_map,
3450
    Sized_relobj_file<64, true>::Symbols* sympointers,
3451
    size_t* defined);
3452
#endif
3453
 
3454
#ifdef HAVE_TARGET_32_LITTLE
3455
template
3456
Symbol*
3457
Symbol_table::add_from_incrobj(
3458
    Object* obj,
3459
    const char* name,
3460
    const char* ver,
3461
    elfcpp::Sym<32, false>* sym);
3462
#endif
3463
 
3464
#ifdef HAVE_TARGET_32_BIG
3465
template
3466
Symbol*
3467
Symbol_table::add_from_incrobj(
3468
    Object* obj,
3469
    const char* name,
3470
    const char* ver,
3471
    elfcpp::Sym<32, true>* sym);
3472
#endif
3473
 
3474
#ifdef HAVE_TARGET_64_LITTLE
3475
template
3476
Symbol*
3477
Symbol_table::add_from_incrobj(
3478
    Object* obj,
3479
    const char* name,
3480
    const char* ver,
3481
    elfcpp::Sym<64, false>* sym);
3482
#endif
3483
 
3484
#ifdef HAVE_TARGET_64_BIG
3485
template
3486
Symbol*
3487
Symbol_table::add_from_incrobj(
3488
    Object* obj,
3489
    const char* name,
3490
    const char* ver,
3491
    elfcpp::Sym<64, true>* sym);
3492
#endif
3493
 
3494
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3495
template
3496
void
3497
Symbol_table::define_with_copy_reloc<32>(
3498
    Sized_symbol<32>* sym,
3499
    Output_data* posd,
3500
    elfcpp::Elf_types<32>::Elf_Addr value);
3501
#endif
3502
 
3503
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3504
template
3505
void
3506
Symbol_table::define_with_copy_reloc<64>(
3507
    Sized_symbol<64>* sym,
3508
    Output_data* posd,
3509
    elfcpp::Elf_types<64>::Elf_Addr value);
3510
#endif
3511
 
3512
#ifdef HAVE_TARGET_32_LITTLE
3513
template
3514
void
3515
Warnings::issue_warning<32, false>(const Symbol* sym,
3516
                                   const Relocate_info<32, false>* relinfo,
3517
                                   size_t relnum, off_t reloffset) const;
3518
#endif
3519
 
3520
#ifdef HAVE_TARGET_32_BIG
3521
template
3522
void
3523
Warnings::issue_warning<32, true>(const Symbol* sym,
3524
                                  const Relocate_info<32, true>* relinfo,
3525
                                  size_t relnum, off_t reloffset) const;
3526
#endif
3527
 
3528
#ifdef HAVE_TARGET_64_LITTLE
3529
template
3530
void
3531
Warnings::issue_warning<64, false>(const Symbol* sym,
3532
                                   const Relocate_info<64, false>* relinfo,
3533
                                   size_t relnum, off_t reloffset) const;
3534
#endif
3535
 
3536
#ifdef HAVE_TARGET_64_BIG
3537
template
3538
void
3539
Warnings::issue_warning<64, true>(const Symbol* sym,
3540
                                  const Relocate_info<64, true>* relinfo,
3541
                                  size_t relnum, off_t reloffset) const;
3542
#endif
3543
 
3544
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.