OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [symtab.cc] - Blame information for rev 160

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// symtab.cc -- the gold symbol table
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstring>
26
#include <stdint.h>
27
#include <algorithm>
28
#include <set>
29
#include <string>
30
#include <utility>
31
#include "demangle.h"
32
 
33
#include "gc.h"
34
#include "object.h"
35
#include "dwarf_reader.h"
36
#include "dynobj.h"
37
#include "output.h"
38
#include "target.h"
39
#include "workqueue.h"
40
#include "symtab.h"
41
#include "script.h"
42
#include "plugin.h"
43
#include "incremental.h"
44
 
45
namespace gold
46
{
47
 
48
// Class Symbol.
49
 
50
// Initialize fields in Symbol.  This initializes everything except u_
51
// and source_.
52
 
53
void
54
Symbol::init_fields(const char* name, const char* version,
55
                    elfcpp::STT type, elfcpp::STB binding,
56
                    elfcpp::STV visibility, unsigned char nonvis)
57
{
58
  this->name_ = name;
59
  this->version_ = version;
60
  this->symtab_index_ = 0;
61
  this->dynsym_index_ = 0;
62
  this->got_offsets_.init();
63
  this->plt_offset_ = -1U;
64
  this->type_ = type;
65
  this->binding_ = binding;
66
  this->visibility_ = visibility;
67
  this->nonvis_ = nonvis;
68
  this->is_def_ = false;
69
  this->is_forwarder_ = false;
70
  this->has_alias_ = false;
71
  this->needs_dynsym_entry_ = false;
72
  this->in_reg_ = false;
73
  this->in_dyn_ = false;
74
  this->has_warning_ = false;
75
  this->is_copied_from_dynobj_ = false;
76
  this->is_forced_local_ = false;
77
  this->is_ordinary_shndx_ = false;
78
  this->in_real_elf_ = false;
79
  this->is_defined_in_discarded_section_ = false;
80
  this->undef_binding_set_ = false;
81
  this->undef_binding_weak_ = false;
82 148 khays
  this->is_predefined_ = false;
83 27 khays
}
84
 
85
// Return the demangled version of the symbol's name, but only
86
// if the --demangle flag was set.
87
 
88
static std::string
89
demangle(const char* name)
90
{
91
  if (!parameters->options().do_demangle())
92
    return name;
93
 
94
  // cplus_demangle allocates memory for the result it returns,
95
  // and returns NULL if the name is already demangled.
96
  char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97
  if (demangled_name == NULL)
98
    return name;
99
 
100
  std::string retval(demangled_name);
101
  free(demangled_name);
102
  return retval;
103
}
104
 
105
std::string
106
Symbol::demangled_name() const
107
{
108
  return demangle(this->name());
109
}
110
 
111
// Initialize the fields in the base class Symbol for SYM in OBJECT.
112
 
113
template<int size, bool big_endian>
114
void
115
Symbol::init_base_object(const char* name, const char* version, Object* object,
116
                         const elfcpp::Sym<size, big_endian>& sym,
117
                         unsigned int st_shndx, bool is_ordinary)
118
{
119
  this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120
                    sym.get_st_visibility(), sym.get_st_nonvis());
121
  this->u_.from_object.object = object;
122
  this->u_.from_object.shndx = st_shndx;
123
  this->is_ordinary_shndx_ = is_ordinary;
124
  this->source_ = FROM_OBJECT;
125
  this->in_reg_ = !object->is_dynamic();
126
  this->in_dyn_ = object->is_dynamic();
127
  this->in_real_elf_ = object->pluginobj() == NULL;
128
}
129
 
130
// Initialize the fields in the base class Symbol for a symbol defined
131
// in an Output_data.
132
 
133
void
134
Symbol::init_base_output_data(const char* name, const char* version,
135
                              Output_data* od, elfcpp::STT type,
136
                              elfcpp::STB binding, elfcpp::STV visibility,
137 148 khays
                              unsigned char nonvis, bool offset_is_from_end,
138
                              bool is_predefined)
139 27 khays
{
140
  this->init_fields(name, version, type, binding, visibility, nonvis);
141
  this->u_.in_output_data.output_data = od;
142
  this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143
  this->source_ = IN_OUTPUT_DATA;
144
  this->in_reg_ = true;
145
  this->in_real_elf_ = true;
146 148 khays
  this->is_predefined_ = is_predefined;
147 27 khays
}
148
 
149
// Initialize the fields in the base class Symbol for a symbol defined
150
// in an Output_segment.
151
 
152
void
153
Symbol::init_base_output_segment(const char* name, const char* version,
154
                                 Output_segment* os, elfcpp::STT type,
155
                                 elfcpp::STB binding, elfcpp::STV visibility,
156
                                 unsigned char nonvis,
157 148 khays
                                 Segment_offset_base offset_base,
158
                                 bool is_predefined)
159 27 khays
{
160
  this->init_fields(name, version, type, binding, visibility, nonvis);
161
  this->u_.in_output_segment.output_segment = os;
162
  this->u_.in_output_segment.offset_base = offset_base;
163
  this->source_ = IN_OUTPUT_SEGMENT;
164
  this->in_reg_ = true;
165
  this->in_real_elf_ = true;
166 148 khays
  this->is_predefined_ = is_predefined;
167 27 khays
}
168
 
169
// Initialize the fields in the base class Symbol for a symbol defined
170
// as a constant.
171
 
172
void
173
Symbol::init_base_constant(const char* name, const char* version,
174
                           elfcpp::STT type, elfcpp::STB binding,
175 148 khays
                           elfcpp::STV visibility, unsigned char nonvis,
176
                           bool is_predefined)
177 27 khays
{
178
  this->init_fields(name, version, type, binding, visibility, nonvis);
179
  this->source_ = IS_CONSTANT;
180
  this->in_reg_ = true;
181
  this->in_real_elf_ = true;
182 148 khays
  this->is_predefined_ = is_predefined;
183 27 khays
}
184
 
185
// Initialize the fields in the base class Symbol for an undefined
186
// symbol.
187
 
188
void
189
Symbol::init_base_undefined(const char* name, const char* version,
190
                            elfcpp::STT type, elfcpp::STB binding,
191
                            elfcpp::STV visibility, unsigned char nonvis)
192
{
193
  this->init_fields(name, version, type, binding, visibility, nonvis);
194
  this->dynsym_index_ = -1U;
195
  this->source_ = IS_UNDEFINED;
196
  this->in_reg_ = true;
197
  this->in_real_elf_ = true;
198
}
199
 
200
// Allocate a common symbol in the base.
201
 
202
void
203
Symbol::allocate_base_common(Output_data* od)
204
{
205
  gold_assert(this->is_common());
206
  this->source_ = IN_OUTPUT_DATA;
207
  this->u_.in_output_data.output_data = od;
208
  this->u_.in_output_data.offset_is_from_end = false;
209
}
210
 
211
// Initialize the fields in Sized_symbol for SYM in OBJECT.
212
 
213
template<int size>
214
template<bool big_endian>
215
void
216
Sized_symbol<size>::init_object(const char* name, const char* version,
217
                                Object* object,
218
                                const elfcpp::Sym<size, big_endian>& sym,
219
                                unsigned int st_shndx, bool is_ordinary)
220
{
221
  this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222
  this->value_ = sym.get_st_value();
223
  this->symsize_ = sym.get_st_size();
224
}
225
 
226
// Initialize the fields in Sized_symbol for a symbol defined in an
227
// Output_data.
228
 
229
template<int size>
230
void
231
Sized_symbol<size>::init_output_data(const char* name, const char* version,
232
                                     Output_data* od, Value_type value,
233
                                     Size_type symsize, elfcpp::STT type,
234
                                     elfcpp::STB binding,
235
                                     elfcpp::STV visibility,
236
                                     unsigned char nonvis,
237 148 khays
                                     bool offset_is_from_end,
238
                                     bool is_predefined)
239 27 khays
{
240
  this->init_base_output_data(name, version, od, type, binding, visibility,
241 148 khays
                              nonvis, offset_is_from_end, is_predefined);
242 27 khays
  this->value_ = value;
243
  this->symsize_ = symsize;
244
}
245
 
246
// Initialize the fields in Sized_symbol for a symbol defined in an
247
// Output_segment.
248
 
249
template<int size>
250
void
251
Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252
                                        Output_segment* os, Value_type value,
253
                                        Size_type symsize, elfcpp::STT type,
254
                                        elfcpp::STB binding,
255
                                        elfcpp::STV visibility,
256
                                        unsigned char nonvis,
257 148 khays
                                        Segment_offset_base offset_base,
258
                                        bool is_predefined)
259 27 khays
{
260
  this->init_base_output_segment(name, version, os, type, binding, visibility,
261 148 khays
                                 nonvis, offset_base, is_predefined);
262 27 khays
  this->value_ = value;
263
  this->symsize_ = symsize;
264
}
265
 
266
// Initialize the fields in Sized_symbol for a symbol defined as a
267
// constant.
268
 
269
template<int size>
270
void
271
Sized_symbol<size>::init_constant(const char* name, const char* version,
272
                                  Value_type value, Size_type symsize,
273
                                  elfcpp::STT type, elfcpp::STB binding,
274 148 khays
                                  elfcpp::STV visibility, unsigned char nonvis,
275
                                  bool is_predefined)
276 27 khays
{
277 148 khays
  this->init_base_constant(name, version, type, binding, visibility, nonvis,
278
                           is_predefined);
279 27 khays
  this->value_ = value;
280
  this->symsize_ = symsize;
281
}
282
 
283
// Initialize the fields in Sized_symbol for an undefined symbol.
284
 
285
template<int size>
286
void
287
Sized_symbol<size>::init_undefined(const char* name, const char* version,
288
                                   elfcpp::STT type, elfcpp::STB binding,
289
                                   elfcpp::STV visibility, unsigned char nonvis)
290
{
291
  this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292
  this->value_ = 0;
293
  this->symsize_ = 0;
294
}
295
 
296 159 khays
// Return an allocated string holding the symbol's name as
297
// name@version.  This is used for relocatable links.
298
 
299
std::string
300
Symbol::versioned_name() const
301
{
302
  gold_assert(this->version_ != NULL);
303
  std::string ret = this->name_;
304
  ret.push_back('@');
305
  if (this->is_def_)
306
    ret.push_back('@');
307
  ret += this->version_;
308
  return ret;
309
}
310
 
311 27 khays
// Return true if SHNDX represents a common symbol.
312
 
313
bool
314
Symbol::is_common_shndx(unsigned int shndx)
315
{
316
  return (shndx == elfcpp::SHN_COMMON
317
          || shndx == parameters->target().small_common_shndx()
318
          || shndx == parameters->target().large_common_shndx());
319
}
320
 
321
// Allocate a common symbol.
322
 
323
template<int size>
324
void
325
Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326
{
327
  this->allocate_base_common(od);
328
  this->value_ = value;
329
}
330
 
331
// The ""'s around str ensure str is a string literal, so sizeof works.
332
#define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
 
334
// Return true if this symbol should be added to the dynamic symbol
335
// table.
336
 
337
inline bool
338
Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339
{
340
  // If the symbol is only present on plugin files, the plugin decided we
341
  // don't need it.
342
  if (!this->in_real_elf())
343
    return false;
344
 
345
  // If the symbol is used by a dynamic relocation, we need to add it.
346
  if (this->needs_dynsym_entry())
347
    return true;
348
 
349
  // If this symbol's section is not added, the symbol need not be added. 
350
  // The section may have been GCed.  Note that export_dynamic is being 
351
  // overridden here.  This should not be done for shared objects.
352
  if (parameters->options().gc_sections()
353
      && !parameters->options().shared()
354
      && this->source() == Symbol::FROM_OBJECT
355
      && !this->object()->is_dynamic())
356
    {
357
      Relobj* relobj = static_cast<Relobj*>(this->object());
358
      bool is_ordinary;
359
      unsigned int shndx = this->shndx(&is_ordinary);
360
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361
          && !relobj->is_section_included(shndx)
362
          && !symtab->is_section_folded(relobj, shndx))
363
        return false;
364
    }
365
 
366
  // If the symbol was forced local in a version script, do not add it.
367
  if (this->is_forced_local())
368
    return false;
369
 
370
  // If the symbol was forced dynamic in a --dynamic-list file, add it.
371
  if (parameters->options().in_dynamic_list(this->name()))
372
    return true;
373
 
374
  // If dynamic-list-data was specified, add any STT_OBJECT.
375
  if (parameters->options().dynamic_list_data()
376
      && !this->is_from_dynobj()
377
      && this->type() == elfcpp::STT_OBJECT)
378
    return true;
379
 
380
  // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381
  // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382
  if ((parameters->options().dynamic_list_cpp_new()
383
       || parameters->options().dynamic_list_cpp_typeinfo())
384
      && !this->is_from_dynobj())
385
    {
386
      // TODO(csilvers): We could probably figure out if we're an operator
387
      //                 new/delete or typeinfo without the need to demangle.
388
      char* demangled_name = cplus_demangle(this->name(),
389
                                            DMGL_ANSI | DMGL_PARAMS);
390
      if (demangled_name == NULL)
391
        {
392
          // Not a C++ symbol, so it can't satisfy these flags
393
        }
394
      else if (parameters->options().dynamic_list_cpp_new()
395
               && (strprefix(demangled_name, "operator new")
396
                   || strprefix(demangled_name, "operator delete")))
397
        {
398
          free(demangled_name);
399
          return true;
400
        }
401
      else if (parameters->options().dynamic_list_cpp_typeinfo()
402
               && (strprefix(demangled_name, "typeinfo name for")
403
                   || strprefix(demangled_name, "typeinfo for")))
404
        {
405
          free(demangled_name);
406
          return true;
407
        }
408
      else
409
        free(demangled_name);
410
    }
411
 
412
  // If exporting all symbols or building a shared library,
413
  // and the symbol is defined in a regular object and is
414
  // externally visible, we need to add it.
415
  if ((parameters->options().export_dynamic() || parameters->options().shared())
416
      && !this->is_from_dynobj()
417 159 khays
      && !this->is_undefined()
418 27 khays
      && this->is_externally_visible())
419
    return true;
420
 
421
  return false;
422
}
423
 
424
// Return true if the final value of this symbol is known at link
425
// time.
426
 
427
bool
428
Symbol::final_value_is_known() const
429
{
430
  // If we are not generating an executable, then no final values are
431
  // known, since they will change at runtime.
432
  if (parameters->options().output_is_position_independent()
433
      || parameters->options().relocatable())
434
    return false;
435
 
436
  // If the symbol is not from an object file, and is not undefined,
437
  // then it is defined, and known.
438
  if (this->source_ != FROM_OBJECT)
439
    {
440
      if (this->source_ != IS_UNDEFINED)
441
        return true;
442
    }
443
  else
444
    {
445
      // If the symbol is from a dynamic object, then the final value
446
      // is not known.
447
      if (this->object()->is_dynamic())
448
        return false;
449
 
450
      // If the symbol is not undefined (it is defined or common),
451
      // then the final value is known.
452
      if (!this->is_undefined())
453
        return true;
454
    }
455
 
456
  // If the symbol is undefined, then whether the final value is known
457
  // depends on whether we are doing a static link.  If we are doing a
458
  // dynamic link, then the final value could be filled in at runtime.
459
  // This could reasonably be the case for a weak undefined symbol.
460
  return parameters->doing_static_link();
461
}
462
 
463
// Return the output section where this symbol is defined.
464
 
465
Output_section*
466
Symbol::output_section() const
467
{
468
  switch (this->source_)
469
    {
470
    case FROM_OBJECT:
471
      {
472
        unsigned int shndx = this->u_.from_object.shndx;
473
        if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474
          {
475
            gold_assert(!this->u_.from_object.object->is_dynamic());
476
            gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477
            Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478
            return relobj->output_section(shndx);
479
          }
480
        return NULL;
481
      }
482
 
483
    case IN_OUTPUT_DATA:
484
      return this->u_.in_output_data.output_data->output_section();
485
 
486
    case IN_OUTPUT_SEGMENT:
487
    case IS_CONSTANT:
488
    case IS_UNDEFINED:
489
      return NULL;
490
 
491
    default:
492
      gold_unreachable();
493
    }
494
}
495
 
496
// Set the symbol's output section.  This is used for symbols defined
497
// in scripts.  This should only be called after the symbol table has
498
// been finalized.
499
 
500
void
501
Symbol::set_output_section(Output_section* os)
502
{
503
  switch (this->source_)
504
    {
505
    case FROM_OBJECT:
506
    case IN_OUTPUT_DATA:
507
      gold_assert(this->output_section() == os);
508
      break;
509
    case IS_CONSTANT:
510
      this->source_ = IN_OUTPUT_DATA;
511
      this->u_.in_output_data.output_data = os;
512
      this->u_.in_output_data.offset_is_from_end = false;
513
      break;
514
    case IN_OUTPUT_SEGMENT:
515
    case IS_UNDEFINED:
516
    default:
517
      gold_unreachable();
518
    }
519
}
520
 
521
// Class Symbol_table.
522
 
523
Symbol_table::Symbol_table(unsigned int count,
524
                           const Version_script_info& version_script)
525
  : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526
    forwarders_(), commons_(), tls_commons_(), small_commons_(),
527
    large_commons_(), forced_locals_(), warnings_(),
528
    version_script_(version_script), gc_(NULL), icf_(NULL)
529
{
530
  namepool_.reserve(count);
531
}
532
 
533
Symbol_table::~Symbol_table()
534
{
535
}
536
 
537
// The symbol table key equality function.  This is called with
538
// Stringpool keys.
539
 
540
inline bool
541
Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542
                                          const Symbol_table_key& k2) const
543
{
544
  return k1.first == k2.first && k1.second == k2.second;
545
}
546
 
547
bool
548
Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549
{
550
  return (parameters->options().icf_enabled()
551
          && this->icf_->is_section_folded(obj, shndx));
552
}
553
 
554
// For symbols that have been listed with -u option, add them to the
555
// work list to avoid gc'ing them.
556
 
557
void
558
Symbol_table::gc_mark_undef_symbols(Layout* layout)
559
{
560
  for (options::String_set::const_iterator p =
561
         parameters->options().undefined_begin();
562
       p != parameters->options().undefined_end();
563
       ++p)
564
    {
565
      const char* name = p->c_str();
566
      Symbol* sym = this->lookup(name);
567
      gold_assert(sym != NULL);
568
      if (sym->source() == Symbol::FROM_OBJECT
569
          && !sym->object()->is_dynamic())
570
        {
571
          Relobj* obj = static_cast<Relobj*>(sym->object());
572
          bool is_ordinary;
573
          unsigned int shndx = sym->shndx(&is_ordinary);
574
          if (is_ordinary)
575
            {
576
              gold_assert(this->gc_ != NULL);
577
              this->gc_->worklist().push(Section_id(obj, shndx));
578
            }
579
        }
580
    }
581
 
582
  for (Script_options::referenced_const_iterator p =
583
         layout->script_options()->referenced_begin();
584
       p != layout->script_options()->referenced_end();
585
       ++p)
586
    {
587
      Symbol* sym = this->lookup(p->c_str());
588
      gold_assert(sym != NULL);
589
      if (sym->source() == Symbol::FROM_OBJECT
590
          && !sym->object()->is_dynamic())
591
        {
592
          Relobj* obj = static_cast<Relobj*>(sym->object());
593
          bool is_ordinary;
594
          unsigned int shndx = sym->shndx(&is_ordinary);
595
          if (is_ordinary)
596
            {
597
              gold_assert(this->gc_ != NULL);
598
              this->gc_->worklist().push(Section_id(obj, shndx));
599
            }
600
        }
601
    }
602
}
603
 
604
void
605
Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606
{
607
  if (!sym->is_from_dynobj()
608
      && sym->is_externally_visible())
609
    {
610
      //Add the object and section to the work list.
611
      Relobj* obj = static_cast<Relobj*>(sym->object());
612
      bool is_ordinary;
613
      unsigned int shndx = sym->shndx(&is_ordinary);
614
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615
        {
616
          gold_assert(this->gc_!= NULL);
617
          this->gc_->worklist().push(Section_id(obj, shndx));
618
        }
619
    }
620
}
621
 
622
// When doing garbage collection, keep symbols that have been seen in
623
// dynamic objects.
624
inline void
625
Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626
{
627
  if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628
      && !sym->object()->is_dynamic())
629
    {
630
      Relobj* obj = static_cast<Relobj*>(sym->object());
631
      bool is_ordinary;
632
      unsigned int shndx = sym->shndx(&is_ordinary);
633
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634
        {
635
          gold_assert(this->gc_ != NULL);
636
          this->gc_->worklist().push(Section_id(obj, shndx));
637
        }
638
    }
639
}
640
 
641
// Make TO a symbol which forwards to FROM.
642
 
643
void
644
Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645
{
646
  gold_assert(from != to);
647
  gold_assert(!from->is_forwarder() && !to->is_forwarder());
648
  this->forwarders_[from] = to;
649
  from->set_forwarder();
650
}
651
 
652
// Resolve the forwards from FROM, returning the real symbol.
653
 
654
Symbol*
655
Symbol_table::resolve_forwards(const Symbol* from) const
656
{
657
  gold_assert(from->is_forwarder());
658
  Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659
    this->forwarders_.find(from);
660
  gold_assert(p != this->forwarders_.end());
661
  return p->second;
662
}
663
 
664
// Look up a symbol by name.
665
 
666
Symbol*
667
Symbol_table::lookup(const char* name, const char* version) const
668
{
669
  Stringpool::Key name_key;
670
  name = this->namepool_.find(name, &name_key);
671
  if (name == NULL)
672
    return NULL;
673
 
674
  Stringpool::Key version_key = 0;
675
  if (version != NULL)
676
    {
677
      version = this->namepool_.find(version, &version_key);
678
      if (version == NULL)
679
        return NULL;
680
    }
681
 
682
  Symbol_table_key key(name_key, version_key);
683
  Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684
  if (p == this->table_.end())
685
    return NULL;
686
  return p->second;
687
}
688
 
689
// Resolve a Symbol with another Symbol.  This is only used in the
690
// unusual case where there are references to both an unversioned
691
// symbol and a symbol with a version, and we then discover that that
692
// version is the default version.  Because this is unusual, we do
693
// this the slow way, by converting back to an ELF symbol.
694
 
695
template<int size, bool big_endian>
696
void
697
Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698
{
699
  unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700
  elfcpp::Sym_write<size, big_endian> esym(buf);
701
  // We don't bother to set the st_name or the st_shndx field.
702
  esym.put_st_value(from->value());
703
  esym.put_st_size(from->symsize());
704
  esym.put_st_info(from->binding(), from->type());
705
  esym.put_st_other(from->visibility(), from->nonvis());
706
  bool is_ordinary;
707
  unsigned int shndx = from->shndx(&is_ordinary);
708
  this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709
                from->version());
710
  if (from->in_reg())
711
    to->set_in_reg();
712
  if (from->in_dyn())
713
    to->set_in_dyn();
714
  if (parameters->options().gc_sections())
715
    this->gc_mark_dyn_syms(to);
716
}
717
 
718
// Record that a symbol is forced to be local by a version script or
719
// by visibility.
720
 
721
void
722
Symbol_table::force_local(Symbol* sym)
723
{
724
  if (!sym->is_defined() && !sym->is_common())
725
    return;
726
  if (sym->is_forced_local())
727
    {
728
      // We already got this one.
729
      return;
730
    }
731
  sym->set_is_forced_local();
732
  this->forced_locals_.push_back(sym);
733
}
734
 
735
// Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
736
// is only called for undefined symbols, when at least one --wrap
737
// option was used.
738
 
739
const char*
740
Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741
{
742
  // For some targets, we need to ignore a specific character when
743
  // wrapping, and add it back later.
744
  char prefix = '\0';
745
  if (name[0] == parameters->target().wrap_char())
746
    {
747
      prefix = name[0];
748
      ++name;
749
    }
750
 
751
  if (parameters->options().is_wrap(name))
752
    {
753
      // Turn NAME into __wrap_NAME.
754
      std::string s;
755
      if (prefix != '\0')
756
        s += prefix;
757
      s += "__wrap_";
758
      s += name;
759
 
760
      // This will give us both the old and new name in NAMEPOOL_, but
761
      // that is OK.  Only the versions we need will wind up in the
762
      // real string table in the output file.
763
      return this->namepool_.add(s.c_str(), true, name_key);
764
    }
765
 
766
  const char* const real_prefix = "__real_";
767
  const size_t real_prefix_length = strlen(real_prefix);
768
  if (strncmp(name, real_prefix, real_prefix_length) == 0
769
      && parameters->options().is_wrap(name + real_prefix_length))
770
    {
771
      // Turn __real_NAME into NAME.
772
      std::string s;
773
      if (prefix != '\0')
774
        s += prefix;
775
      s += name + real_prefix_length;
776
      return this->namepool_.add(s.c_str(), true, name_key);
777
    }
778
 
779
  return name;
780
}
781
 
782
// This is called when we see a symbol NAME/VERSION, and the symbol
783
// already exists in the symbol table, and VERSION is marked as being
784
// the default version.  SYM is the NAME/VERSION symbol we just added.
785
// DEFAULT_IS_NEW is true if this is the first time we have seen the
786
// symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
787
 
788
template<int size, bool big_endian>
789
void
790
Symbol_table::define_default_version(Sized_symbol<size>* sym,
791
                                     bool default_is_new,
792
                                     Symbol_table_type::iterator pdef)
793
{
794
  if (default_is_new)
795
    {
796
      // This is the first time we have seen NAME/NULL.  Make
797
      // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798
      // version.
799
      pdef->second = sym;
800
      sym->set_is_default();
801
    }
802
  else if (pdef->second == sym)
803
    {
804
      // NAME/NULL already points to NAME/VERSION.  Don't mark the
805
      // symbol as the default if it is not already the default.
806
    }
807
  else
808
    {
809
      // This is the unfortunate case where we already have entries
810
      // for both NAME/VERSION and NAME/NULL.  We now see a symbol
811
      // NAME/VERSION where VERSION is the default version.  We have
812
      // already resolved this new symbol with the existing
813
      // NAME/VERSION symbol.
814
 
815
      // It's possible that NAME/NULL and NAME/VERSION are both
816
      // defined in regular objects.  This can only happen if one
817
      // object file defines foo and another defines foo@@ver.  This
818
      // is somewhat obscure, but we call it a multiple definition
819
      // error.
820
 
821
      // It's possible that NAME/NULL actually has a version, in which
822
      // case it won't be the same as VERSION.  This happens with
823
      // ver_test_7.so in the testsuite for the symbol t2_2.  We see
824
      // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
825
      // then see an unadorned t2_2 in an object file and give it
826
      // version VER1 from the version script.  This looks like a
827
      // default definition for VER1, so it looks like we should merge
828
      // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
829
      // not obvious that this is an error, either.  So we just punt.
830
 
831
      // If one of the symbols has non-default visibility, and the
832
      // other is defined in a shared object, then they are different
833
      // symbols.
834
 
835
      // Otherwise, we just resolve the symbols as though they were
836
      // the same.
837
 
838
      if (pdef->second->version() != NULL)
839
        gold_assert(pdef->second->version() != sym->version());
840
      else if (sym->visibility() != elfcpp::STV_DEFAULT
841
               && pdef->second->is_from_dynobj())
842
        ;
843
      else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844
               && sym->is_from_dynobj())
845
        ;
846
      else
847
        {
848
          const Sized_symbol<size>* symdef;
849
          symdef = this->get_sized_symbol<size>(pdef->second);
850
          Symbol_table::resolve<size, big_endian>(sym, symdef);
851
          this->make_forwarder(pdef->second, sym);
852
          pdef->second = sym;
853
          sym->set_is_default();
854
        }
855
    }
856
}
857
 
858
// Add one symbol from OBJECT to the symbol table.  NAME is symbol
859
// name and VERSION is the version; both are canonicalized.  DEF is
860
// whether this is the default version.  ST_SHNDX is the symbol's
861
// section index; IS_ORDINARY is whether this is a normal section
862
// rather than a special code.
863
 
864
// If IS_DEFAULT_VERSION is true, then this is the definition of a
865
// default version of a symbol.  That means that any lookup of
866
// NAME/NULL and any lookup of NAME/VERSION should always return the
867
// same symbol.  This is obvious for references, but in particular we
868
// want to do this for definitions: overriding NAME/NULL should also
869
// override NAME/VERSION.  If we don't do that, it would be very hard
870
// to override functions in a shared library which uses versioning.
871
 
872
// We implement this by simply making both entries in the hash table
873
// point to the same Symbol structure.  That is easy enough if this is
874
// the first time we see NAME/NULL or NAME/VERSION, but it is possible
875
// that we have seen both already, in which case they will both have
876
// independent entries in the symbol table.  We can't simply change
877
// the symbol table entry, because we have pointers to the entries
878
// attached to the object files.  So we mark the entry attached to the
879
// object file as a forwarder, and record it in the forwarders_ map.
880
// Note that entries in the hash table will never be marked as
881
// forwarders.
882
//
883
// ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884
// ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885
// for a special section code.  ST_SHNDX may be modified if the symbol
886
// is defined in a section being discarded.
887
 
888
template<int size, bool big_endian>
889
Sized_symbol<size>*
890
Symbol_table::add_from_object(Object* object,
891
                              const char* name,
892
                              Stringpool::Key name_key,
893
                              const char* version,
894
                              Stringpool::Key version_key,
895
                              bool is_default_version,
896
                              const elfcpp::Sym<size, big_endian>& sym,
897
                              unsigned int st_shndx,
898
                              bool is_ordinary,
899
                              unsigned int orig_st_shndx)
900
{
901
  // Print a message if this symbol is being traced.
902
  if (parameters->options().is_trace_symbol(name))
903
    {
904
      if (orig_st_shndx == elfcpp::SHN_UNDEF)
905
        gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906
      else
907
        gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908
    }
909
 
910
  // For an undefined symbol, we may need to adjust the name using
911
  // --wrap.
912
  if (orig_st_shndx == elfcpp::SHN_UNDEF
913
      && parameters->options().any_wrap())
914
    {
915
      const char* wrap_name = this->wrap_symbol(name, &name_key);
916
      if (wrap_name != name)
917
        {
918
          // If we see a reference to malloc with version GLIBC_2.0,
919
          // and we turn it into a reference to __wrap_malloc, then we
920
          // discard the version number.  Otherwise the user would be
921
          // required to specify the correct version for
922
          // __wrap_malloc.
923
          version = NULL;
924
          version_key = 0;
925
          name = wrap_name;
926
        }
927
    }
928
 
929
  Symbol* const snull = NULL;
930
  std::pair<typename Symbol_table_type::iterator, bool> ins =
931
    this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932
                                       snull));
933
 
934
  std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935
    std::make_pair(this->table_.end(), false);
936
  if (is_default_version)
937
    {
938
      const Stringpool::Key vnull_key = 0;
939
      insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940
                                                                     vnull_key),
941
                                                      snull));
942
    }
943
 
944
  // ins.first: an iterator, which is a pointer to a pair.
945
  // ins.first->first: the key (a pair of name and version).
946
  // ins.first->second: the value (Symbol*).
947
  // ins.second: true if new entry was inserted, false if not.
948
 
949
  Sized_symbol<size>* ret;
950
  bool was_undefined;
951
  bool was_common;
952
  if (!ins.second)
953
    {
954
      // We already have an entry for NAME/VERSION.
955
      ret = this->get_sized_symbol<size>(ins.first->second);
956
      gold_assert(ret != NULL);
957
 
958
      was_undefined = ret->is_undefined();
959
      was_common = ret->is_common();
960
 
961
      this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962
                    version);
963
      if (parameters->options().gc_sections())
964
        this->gc_mark_dyn_syms(ret);
965
 
966
      if (is_default_version)
967
        this->define_default_version<size, big_endian>(ret, insdefault.second,
968
                                                       insdefault.first);
969
    }
970
  else
971
    {
972
      // This is the first time we have seen NAME/VERSION.
973
      gold_assert(ins.first->second == NULL);
974
 
975
      if (is_default_version && !insdefault.second)
976
        {
977
          // We already have an entry for NAME/NULL.  If we override
978
          // it, then change it to NAME/VERSION.
979
          ret = this->get_sized_symbol<size>(insdefault.first->second);
980
 
981
          was_undefined = ret->is_undefined();
982
          was_common = ret->is_common();
983
 
984
          this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985
                        version);
986
          if (parameters->options().gc_sections())
987
            this->gc_mark_dyn_syms(ret);
988
          ins.first->second = ret;
989
        }
990
      else
991
        {
992
          was_undefined = false;
993
          was_common = false;
994
 
995
          Sized_target<size, big_endian>* target =
996
            parameters->sized_target<size, big_endian>();
997
          if (!target->has_make_symbol())
998
            ret = new Sized_symbol<size>();
999
          else
1000
            {
1001
              ret = target->make_symbol();
1002
              if (ret == NULL)
1003
                {
1004
                  // This means that we don't want a symbol table
1005
                  // entry after all.
1006
                  if (!is_default_version)
1007
                    this->table_.erase(ins.first);
1008
                  else
1009
                    {
1010
                      this->table_.erase(insdefault.first);
1011
                      // Inserting INSDEFAULT invalidated INS.
1012
                      this->table_.erase(std::make_pair(name_key,
1013
                                                        version_key));
1014
                    }
1015
                  return NULL;
1016
                }
1017
            }
1018
 
1019
          ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
 
1021
          ins.first->second = ret;
1022
          if (is_default_version)
1023
            {
1024
              // This is the first time we have seen NAME/NULL.  Point
1025
              // it at the new entry for NAME/VERSION.
1026
              gold_assert(insdefault.second);
1027
              insdefault.first->second = ret;
1028
            }
1029
        }
1030
 
1031
      if (is_default_version)
1032
        ret->set_is_default();
1033
    }
1034
 
1035
  // Record every time we see a new undefined symbol, to speed up
1036
  // archive groups.
1037
  if (!was_undefined && ret->is_undefined())
1038
    {
1039
      ++this->saw_undefined_;
1040
      if (parameters->options().has_plugins())
1041
        parameters->options().plugins()->new_undefined_symbol(ret);
1042
    }
1043
 
1044
  // Keep track of common symbols, to speed up common symbol
1045
  // allocation.
1046
  if (!was_common && ret->is_common())
1047
    {
1048
      if (ret->type() == elfcpp::STT_TLS)
1049
        this->tls_commons_.push_back(ret);
1050
      else if (!is_ordinary
1051
               && st_shndx == parameters->target().small_common_shndx())
1052
        this->small_commons_.push_back(ret);
1053
      else if (!is_ordinary
1054
               && st_shndx == parameters->target().large_common_shndx())
1055
        this->large_commons_.push_back(ret);
1056
      else
1057
        this->commons_.push_back(ret);
1058
    }
1059
 
1060
  // If we're not doing a relocatable link, then any symbol with
1061
  // hidden or internal visibility is local.
1062
  if ((ret->visibility() == elfcpp::STV_HIDDEN
1063
       || ret->visibility() == elfcpp::STV_INTERNAL)
1064
      && (ret->binding() == elfcpp::STB_GLOBAL
1065
          || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066
          || ret->binding() == elfcpp::STB_WEAK)
1067
      && !parameters->options().relocatable())
1068
    this->force_local(ret);
1069
 
1070
  return ret;
1071
}
1072
 
1073
// Add all the symbols in a relocatable object to the hash table.
1074
 
1075
template<int size, bool big_endian>
1076
void
1077
Symbol_table::add_from_relobj(
1078
    Sized_relobj_file<size, big_endian>* relobj,
1079
    const unsigned char* syms,
1080
    size_t count,
1081
    size_t symndx_offset,
1082
    const char* sym_names,
1083
    size_t sym_name_size,
1084
    typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085
    size_t* defined)
1086
{
1087
  *defined = 0;
1088
 
1089
  gold_assert(size == parameters->target().get_size());
1090
 
1091
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
 
1093
  const bool just_symbols = relobj->just_symbols();
1094
 
1095
  const unsigned char* p = syms;
1096
  for (size_t i = 0; i < count; ++i, p += sym_size)
1097
    {
1098
      (*sympointers)[i] = NULL;
1099
 
1100
      elfcpp::Sym<size, big_endian> sym(p);
1101
 
1102
      unsigned int st_name = sym.get_st_name();
1103
      if (st_name >= sym_name_size)
1104
        {
1105
          relobj->error(_("bad global symbol name offset %u at %zu"),
1106
                        st_name, i);
1107
          continue;
1108
        }
1109
 
1110
      const char* name = sym_names + st_name;
1111
 
1112
      bool is_ordinary;
1113
      unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114
                                                       sym.get_st_shndx(),
1115
                                                       &is_ordinary);
1116
      unsigned int orig_st_shndx = st_shndx;
1117
      if (!is_ordinary)
1118
        orig_st_shndx = elfcpp::SHN_UNDEF;
1119
 
1120
      if (st_shndx != elfcpp::SHN_UNDEF)
1121
        ++*defined;
1122
 
1123
      // A symbol defined in a section which we are not including must
1124
      // be treated as an undefined symbol.
1125
      bool is_defined_in_discarded_section = false;
1126
      if (st_shndx != elfcpp::SHN_UNDEF
1127
          && is_ordinary
1128
          && !relobj->is_section_included(st_shndx)
1129
          && !this->is_section_folded(relobj, st_shndx))
1130
        {
1131
          st_shndx = elfcpp::SHN_UNDEF;
1132
          is_defined_in_discarded_section = true;
1133
        }
1134
 
1135
      // In an object file, an '@' in the name separates the symbol
1136
      // name from the version name.  If there are two '@' characters,
1137
      // this is the default version.
1138
      const char* ver = strchr(name, '@');
1139
      Stringpool::Key ver_key = 0;
1140
      int namelen = 0;
1141
      // IS_DEFAULT_VERSION: is the version default?
1142
      // IS_FORCED_LOCAL: is the symbol forced local?
1143
      bool is_default_version = false;
1144
      bool is_forced_local = false;
1145
 
1146
      if (ver != NULL)
1147
        {
1148
          // The symbol name is of the form foo@VERSION or foo@@VERSION
1149
          namelen = ver - name;
1150
          ++ver;
1151
          if (*ver == '@')
1152
            {
1153
              is_default_version = true;
1154
              ++ver;
1155
            }
1156
          ver = this->namepool_.add(ver, true, &ver_key);
1157
        }
1158
      // We don't want to assign a version to an undefined symbol,
1159
      // even if it is listed in the version script.  FIXME: What
1160
      // about a common symbol?
1161
      else
1162
        {
1163
          namelen = strlen(name);
1164
          if (!this->version_script_.empty()
1165
              && st_shndx != elfcpp::SHN_UNDEF)
1166
            {
1167
              // The symbol name did not have a version, but the
1168
              // version script may assign a version anyway.
1169
              std::string version;
1170
              bool is_global;
1171
              if (this->version_script_.get_symbol_version(name, &version,
1172
                                                           &is_global))
1173
                {
1174
                  if (!is_global)
1175
                    is_forced_local = true;
1176
                  else if (!version.empty())
1177
                    {
1178
                      ver = this->namepool_.add_with_length(version.c_str(),
1179
                                                            version.length(),
1180
                                                            true,
1181
                                                            &ver_key);
1182
                      is_default_version = true;
1183
                    }
1184
                }
1185
            }
1186
        }
1187
 
1188
      elfcpp::Sym<size, big_endian>* psym = &sym;
1189
      unsigned char symbuf[sym_size];
1190
      elfcpp::Sym<size, big_endian> sym2(symbuf);
1191
      if (just_symbols)
1192
        {
1193
          memcpy(symbuf, p, sym_size);
1194
          elfcpp::Sym_write<size, big_endian> sw(symbuf);
1195 159 khays
          if (orig_st_shndx != elfcpp::SHN_UNDEF
1196
              && is_ordinary
1197
              && relobj->e_type() == elfcpp::ET_REL)
1198 27 khays
            {
1199 159 khays
              // Symbol values in relocatable object files are section
1200
              // relative.  This is normally what we want, but since here
1201
              // we are converting the symbol to absolute we need to add
1202
              // the section address.  The section address in an object
1203 27 khays
              // file is normally zero, but people can use a linker
1204
              // script to change it.
1205
              sw.put_st_value(sym.get_st_value()
1206
                              + relobj->section_address(orig_st_shndx));
1207
            }
1208
          st_shndx = elfcpp::SHN_ABS;
1209
          is_ordinary = false;
1210
          psym = &sym2;
1211
        }
1212
 
1213
      // Fix up visibility if object has no-export set.
1214
      if (relobj->no_export()
1215
          && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1216
        {
1217
          // We may have copied symbol already above.
1218
          if (psym != &sym2)
1219
            {
1220
              memcpy(symbuf, p, sym_size);
1221
              psym = &sym2;
1222
            }
1223
 
1224
          elfcpp::STV visibility = sym2.get_st_visibility();
1225
          if (visibility == elfcpp::STV_DEFAULT
1226
              || visibility == elfcpp::STV_PROTECTED)
1227
            {
1228
              elfcpp::Sym_write<size, big_endian> sw(symbuf);
1229
              unsigned char nonvis = sym2.get_st_nonvis();
1230
              sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1231
            }
1232
        }
1233
 
1234
      Stringpool::Key name_key;
1235
      name = this->namepool_.add_with_length(name, namelen, true,
1236
                                             &name_key);
1237
 
1238
      Sized_symbol<size>* res;
1239
      res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1240
                                  is_default_version, *psym, st_shndx,
1241
                                  is_ordinary, orig_st_shndx);
1242
 
1243 159 khays
      if (is_forced_local)
1244
        this->force_local(res);
1245
 
1246 27 khays
      // If building a shared library using garbage collection, do not 
1247
      // treat externally visible symbols as garbage.
1248
      if (parameters->options().gc_sections()
1249
          && parameters->options().shared())
1250
        this->gc_mark_symbol_for_shlib(res);
1251
 
1252
      if (is_defined_in_discarded_section)
1253
        res->set_is_defined_in_discarded_section();
1254
 
1255
      (*sympointers)[i] = res;
1256
    }
1257
}
1258
 
1259
// Add a symbol from a plugin-claimed file.
1260
 
1261
template<int size, bool big_endian>
1262
Symbol*
1263
Symbol_table::add_from_pluginobj(
1264
    Sized_pluginobj<size, big_endian>* obj,
1265
    const char* name,
1266
    const char* ver,
1267
    elfcpp::Sym<size, big_endian>* sym)
1268
{
1269
  unsigned int st_shndx = sym->get_st_shndx();
1270
  bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1271
 
1272
  Stringpool::Key ver_key = 0;
1273
  bool is_default_version = false;
1274
  bool is_forced_local = false;
1275
 
1276
  if (ver != NULL)
1277
    {
1278
      ver = this->namepool_.add(ver, true, &ver_key);
1279
    }
1280
  // We don't want to assign a version to an undefined symbol,
1281
  // even if it is listed in the version script.  FIXME: What
1282
  // about a common symbol?
1283
  else
1284
    {
1285
      if (!this->version_script_.empty()
1286
          && st_shndx != elfcpp::SHN_UNDEF)
1287
        {
1288
          // The symbol name did not have a version, but the
1289
          // version script may assign a version anyway.
1290
          std::string version;
1291
          bool is_global;
1292
          if (this->version_script_.get_symbol_version(name, &version,
1293
                                                       &is_global))
1294
            {
1295
              if (!is_global)
1296
                is_forced_local = true;
1297
              else if (!version.empty())
1298
                {
1299
                  ver = this->namepool_.add_with_length(version.c_str(),
1300
                                                        version.length(),
1301
                                                        true,
1302
                                                        &ver_key);
1303
                  is_default_version = true;
1304
                }
1305
            }
1306
        }
1307
    }
1308
 
1309
  Stringpool::Key name_key;
1310
  name = this->namepool_.add(name, true, &name_key);
1311
 
1312
  Sized_symbol<size>* res;
1313
  res = this->add_from_object(obj, name, name_key, ver, ver_key,
1314
                              is_default_version, *sym, st_shndx,
1315
                              is_ordinary, st_shndx);
1316
 
1317
  if (is_forced_local)
1318
    this->force_local(res);
1319
 
1320
  return res;
1321
}
1322
 
1323
// Add all the symbols in a dynamic object to the hash table.
1324
 
1325
template<int size, bool big_endian>
1326
void
1327
Symbol_table::add_from_dynobj(
1328
    Sized_dynobj<size, big_endian>* dynobj,
1329
    const unsigned char* syms,
1330
    size_t count,
1331
    const char* sym_names,
1332
    size_t sym_name_size,
1333
    const unsigned char* versym,
1334
    size_t versym_size,
1335
    const std::vector<const char*>* version_map,
1336
    typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1337
    size_t* defined)
1338
{
1339
  *defined = 0;
1340
 
1341
  gold_assert(size == parameters->target().get_size());
1342
 
1343
  if (dynobj->just_symbols())
1344
    {
1345
      gold_error(_("--just-symbols does not make sense with a shared object"));
1346
      return;
1347
    }
1348
 
1349
  if (versym != NULL && versym_size / 2 < count)
1350
    {
1351
      dynobj->error(_("too few symbol versions"));
1352
      return;
1353
    }
1354
 
1355
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1356
 
1357
  // We keep a list of all STT_OBJECT symbols, so that we can resolve
1358
  // weak aliases.  This is necessary because if the dynamic object
1359
  // provides the same variable under two names, one of which is a
1360
  // weak definition, and the regular object refers to the weak
1361
  // definition, we have to put both the weak definition and the
1362
  // strong definition into the dynamic symbol table.  Given a weak
1363
  // definition, the only way that we can find the corresponding
1364
  // strong definition, if any, is to search the symbol table.
1365
  std::vector<Sized_symbol<size>*> object_symbols;
1366
 
1367
  const unsigned char* p = syms;
1368
  const unsigned char* vs = versym;
1369
  for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1370
    {
1371
      elfcpp::Sym<size, big_endian> sym(p);
1372
 
1373
      if (sympointers != NULL)
1374
        (*sympointers)[i] = NULL;
1375
 
1376
      // Ignore symbols with local binding or that have
1377
      // internal or hidden visibility.
1378
      if (sym.get_st_bind() == elfcpp::STB_LOCAL
1379
          || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1380
          || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1381
        continue;
1382
 
1383
      // A protected symbol in a shared library must be treated as a
1384
      // normal symbol when viewed from outside the shared library.
1385
      // Implement this by overriding the visibility here.
1386
      elfcpp::Sym<size, big_endian>* psym = &sym;
1387
      unsigned char symbuf[sym_size];
1388
      elfcpp::Sym<size, big_endian> sym2(symbuf);
1389
      if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1390
        {
1391
          memcpy(symbuf, p, sym_size);
1392
          elfcpp::Sym_write<size, big_endian> sw(symbuf);
1393
          sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1394
          psym = &sym2;
1395
        }
1396
 
1397
      unsigned int st_name = psym->get_st_name();
1398
      if (st_name >= sym_name_size)
1399
        {
1400
          dynobj->error(_("bad symbol name offset %u at %zu"),
1401
                        st_name, i);
1402
          continue;
1403
        }
1404
 
1405
      const char* name = sym_names + st_name;
1406
 
1407
      bool is_ordinary;
1408
      unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1409
                                                       &is_ordinary);
1410
 
1411
      if (st_shndx != elfcpp::SHN_UNDEF)
1412
        ++*defined;
1413
 
1414
      Sized_symbol<size>* res;
1415
 
1416
      if (versym == NULL)
1417
        {
1418
          Stringpool::Key name_key;
1419
          name = this->namepool_.add(name, true, &name_key);
1420
          res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1421
                                      false, *psym, st_shndx, is_ordinary,
1422
                                      st_shndx);
1423
        }
1424
      else
1425
        {
1426
          // Read the version information.
1427
 
1428
          unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1429
 
1430
          bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1431
          v &= elfcpp::VERSYM_VERSION;
1432
 
1433
          // The Sun documentation says that V can be VER_NDX_LOCAL,
1434
          // or VER_NDX_GLOBAL, or a version index.  The meaning of
1435
          // VER_NDX_LOCAL is defined as "Symbol has local scope."
1436
          // The old GNU linker will happily generate VER_NDX_LOCAL
1437
          // for an undefined symbol.  I don't know what the Sun
1438
          // linker will generate.
1439
 
1440
          if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1441
              && st_shndx != elfcpp::SHN_UNDEF)
1442
            {
1443
              // This symbol should not be visible outside the object.
1444
              continue;
1445
            }
1446
 
1447
          // At this point we are definitely going to add this symbol.
1448
          Stringpool::Key name_key;
1449
          name = this->namepool_.add(name, true, &name_key);
1450
 
1451
          if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1452
              || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1453
            {
1454
              // This symbol does not have a version.
1455
              res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1456
                                          false, *psym, st_shndx, is_ordinary,
1457
                                          st_shndx);
1458
            }
1459
          else
1460
            {
1461
              if (v >= version_map->size())
1462
                {
1463
                  dynobj->error(_("versym for symbol %zu out of range: %u"),
1464
                                i, v);
1465
                  continue;
1466
                }
1467
 
1468
              const char* version = (*version_map)[v];
1469
              if (version == NULL)
1470
                {
1471
                  dynobj->error(_("versym for symbol %zu has no name: %u"),
1472
                                i, v);
1473
                  continue;
1474
                }
1475
 
1476
              Stringpool::Key version_key;
1477
              version = this->namepool_.add(version, true, &version_key);
1478
 
1479
              // If this is an absolute symbol, and the version name
1480
              // and symbol name are the same, then this is the
1481
              // version definition symbol.  These symbols exist to
1482
              // support using -u to pull in particular versions.  We
1483
              // do not want to record a version for them.
1484
              if (st_shndx == elfcpp::SHN_ABS
1485
                  && !is_ordinary
1486
                  && name_key == version_key)
1487
                res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1488
                                            false, *psym, st_shndx, is_ordinary,
1489
                                            st_shndx);
1490
              else
1491
                {
1492
                  const bool is_default_version =
1493
                    !hidden && st_shndx != elfcpp::SHN_UNDEF;
1494
                  res = this->add_from_object(dynobj, name, name_key, version,
1495
                                              version_key, is_default_version,
1496
                                              *psym, st_shndx,
1497
                                              is_ordinary, st_shndx);
1498
                }
1499
            }
1500
        }
1501
 
1502
      // Note that it is possible that RES was overridden by an
1503
      // earlier object, in which case it can't be aliased here.
1504
      if (st_shndx != elfcpp::SHN_UNDEF
1505
          && is_ordinary
1506
          && psym->get_st_type() == elfcpp::STT_OBJECT
1507
          && res->source() == Symbol::FROM_OBJECT
1508
          && res->object() == dynobj)
1509
        object_symbols.push_back(res);
1510
 
1511
      if (sympointers != NULL)
1512
        (*sympointers)[i] = res;
1513
    }
1514
 
1515
  this->record_weak_aliases(&object_symbols);
1516
}
1517
 
1518
// Add a symbol from a incremental object file.
1519
 
1520
template<int size, bool big_endian>
1521 148 khays
Sized_symbol<size>*
1522 27 khays
Symbol_table::add_from_incrobj(
1523
    Object* obj,
1524
    const char* name,
1525
    const char* ver,
1526
    elfcpp::Sym<size, big_endian>* sym)
1527
{
1528
  unsigned int st_shndx = sym->get_st_shndx();
1529
  bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1530
 
1531
  Stringpool::Key ver_key = 0;
1532
  bool is_default_version = false;
1533
  bool is_forced_local = false;
1534
 
1535
  Stringpool::Key name_key;
1536
  name = this->namepool_.add(name, true, &name_key);
1537
 
1538
  Sized_symbol<size>* res;
1539
  res = this->add_from_object(obj, name, name_key, ver, ver_key,
1540
                              is_default_version, *sym, st_shndx,
1541
                              is_ordinary, st_shndx);
1542
 
1543
  if (is_forced_local)
1544
    this->force_local(res);
1545
 
1546
  return res;
1547
}
1548
 
1549
// This is used to sort weak aliases.  We sort them first by section
1550
// index, then by offset, then by weak ahead of strong.
1551
 
1552
template<int size>
1553
class Weak_alias_sorter
1554
{
1555
 public:
1556
  bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1557
};
1558
 
1559
template<int size>
1560
bool
1561
Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1562
                                    const Sized_symbol<size>* s2) const
1563
{
1564
  bool is_ordinary;
1565
  unsigned int s1_shndx = s1->shndx(&is_ordinary);
1566
  gold_assert(is_ordinary);
1567
  unsigned int s2_shndx = s2->shndx(&is_ordinary);
1568
  gold_assert(is_ordinary);
1569
  if (s1_shndx != s2_shndx)
1570
    return s1_shndx < s2_shndx;
1571
 
1572
  if (s1->value() != s2->value())
1573
    return s1->value() < s2->value();
1574
  if (s1->binding() != s2->binding())
1575
    {
1576
      if (s1->binding() == elfcpp::STB_WEAK)
1577
        return true;
1578
      if (s2->binding() == elfcpp::STB_WEAK)
1579
        return false;
1580
    }
1581
  return std::string(s1->name()) < std::string(s2->name());
1582
}
1583
 
1584
// SYMBOLS is a list of object symbols from a dynamic object.  Look
1585
// for any weak aliases, and record them so that if we add the weak
1586
// alias to the dynamic symbol table, we also add the corresponding
1587
// strong symbol.
1588
 
1589
template<int size>
1590
void
1591
Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1592
{
1593
  // Sort the vector by section index, then by offset, then by weak
1594
  // ahead of strong.
1595
  std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1596
 
1597
  // Walk through the vector.  For each weak definition, record
1598
  // aliases.
1599
  for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1600
         symbols->begin();
1601
       p != symbols->end();
1602
       ++p)
1603
    {
1604
      if ((*p)->binding() != elfcpp::STB_WEAK)
1605
        continue;
1606
 
1607
      // Build a circular list of weak aliases.  Each symbol points to
1608
      // the next one in the circular list.
1609
 
1610
      Sized_symbol<size>* from_sym = *p;
1611
      typename std::vector<Sized_symbol<size>*>::const_iterator q;
1612
      for (q = p + 1; q != symbols->end(); ++q)
1613
        {
1614
          bool dummy;
1615
          if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1616
              || (*q)->value() != from_sym->value())
1617
            break;
1618
 
1619
          this->weak_aliases_[from_sym] = *q;
1620
          from_sym->set_has_alias();
1621
          from_sym = *q;
1622
        }
1623
 
1624
      if (from_sym != *p)
1625
        {
1626
          this->weak_aliases_[from_sym] = *p;
1627
          from_sym->set_has_alias();
1628
        }
1629
 
1630
      p = q - 1;
1631
    }
1632
}
1633
 
1634
// Create and return a specially defined symbol.  If ONLY_IF_REF is
1635
// true, then only create the symbol if there is a reference to it.
1636
// If this does not return NULL, it sets *POLDSYM to the existing
1637
// symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1638
// resolve the newly created symbol to the old one.  This
1639
// canonicalizes *PNAME and *PVERSION.
1640
 
1641
template<int size, bool big_endian>
1642
Sized_symbol<size>*
1643
Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1644
                                    bool only_if_ref,
1645
                                    Sized_symbol<size>** poldsym,
1646
                                    bool* resolve_oldsym)
1647
{
1648
  *resolve_oldsym = false;
1649
 
1650
  // If the caller didn't give us a version, see if we get one from
1651
  // the version script.
1652
  std::string v;
1653
  bool is_default_version = false;
1654
  if (*pversion == NULL)
1655
    {
1656
      bool is_global;
1657
      if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1658
        {
1659
          if (is_global && !v.empty())
1660
            {
1661
              *pversion = v.c_str();
1662
              // If we get the version from a version script, then we
1663
              // are also the default version.
1664
              is_default_version = true;
1665
            }
1666
        }
1667
    }
1668
 
1669
  Symbol* oldsym;
1670
  Sized_symbol<size>* sym;
1671
 
1672
  bool add_to_table = false;
1673
  typename Symbol_table_type::iterator add_loc = this->table_.end();
1674
  bool add_def_to_table = false;
1675
  typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1676
 
1677
  if (only_if_ref)
1678
    {
1679
      oldsym = this->lookup(*pname, *pversion);
1680
      if (oldsym == NULL && is_default_version)
1681
        oldsym = this->lookup(*pname, NULL);
1682
      if (oldsym == NULL || !oldsym->is_undefined())
1683
        return NULL;
1684
 
1685
      *pname = oldsym->name();
1686
      if (!is_default_version)
1687
        *pversion = oldsym->version();
1688
    }
1689
  else
1690
    {
1691
      // Canonicalize NAME and VERSION.
1692
      Stringpool::Key name_key;
1693
      *pname = this->namepool_.add(*pname, true, &name_key);
1694
 
1695
      Stringpool::Key version_key = 0;
1696
      if (*pversion != NULL)
1697
        *pversion = this->namepool_.add(*pversion, true, &version_key);
1698
 
1699
      Symbol* const snull = NULL;
1700
      std::pair<typename Symbol_table_type::iterator, bool> ins =
1701
        this->table_.insert(std::make_pair(std::make_pair(name_key,
1702
                                                          version_key),
1703
                                           snull));
1704
 
1705
      std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1706
        std::make_pair(this->table_.end(), false);
1707
      if (is_default_version)
1708
        {
1709
          const Stringpool::Key vnull = 0;
1710
          insdefault =
1711
            this->table_.insert(std::make_pair(std::make_pair(name_key,
1712
                                                              vnull),
1713
                                               snull));
1714
        }
1715
 
1716
      if (!ins.second)
1717
        {
1718
          // We already have a symbol table entry for NAME/VERSION.
1719
          oldsym = ins.first->second;
1720
          gold_assert(oldsym != NULL);
1721
 
1722
          if (is_default_version)
1723
            {
1724
              Sized_symbol<size>* soldsym =
1725
                this->get_sized_symbol<size>(oldsym);
1726
              this->define_default_version<size, big_endian>(soldsym,
1727
                                                             insdefault.second,
1728
                                                             insdefault.first);
1729
            }
1730
        }
1731
      else
1732
        {
1733
          // We haven't seen this symbol before.
1734
          gold_assert(ins.first->second == NULL);
1735
 
1736
          add_to_table = true;
1737
          add_loc = ins.first;
1738
 
1739
          if (is_default_version && !insdefault.second)
1740
            {
1741
              // We are adding NAME/VERSION, and it is the default
1742
              // version.  We already have an entry for NAME/NULL.
1743
              oldsym = insdefault.first->second;
1744
              *resolve_oldsym = true;
1745
            }
1746
          else
1747
            {
1748
              oldsym = NULL;
1749
 
1750
              if (is_default_version)
1751
                {
1752
                  add_def_to_table = true;
1753
                  add_def_loc = insdefault.first;
1754
                }
1755
            }
1756
        }
1757
    }
1758
 
1759
  const Target& target = parameters->target();
1760
  if (!target.has_make_symbol())
1761
    sym = new Sized_symbol<size>();
1762
  else
1763
    {
1764
      Sized_target<size, big_endian>* sized_target =
1765
        parameters->sized_target<size, big_endian>();
1766
      sym = sized_target->make_symbol();
1767
      if (sym == NULL)
1768
        return NULL;
1769
    }
1770
 
1771
  if (add_to_table)
1772
    add_loc->second = sym;
1773
  else
1774
    gold_assert(oldsym != NULL);
1775
 
1776
  if (add_def_to_table)
1777
    add_def_loc->second = sym;
1778
 
1779
  *poldsym = this->get_sized_symbol<size>(oldsym);
1780
 
1781
  return sym;
1782
}
1783
 
1784
// Define a symbol based on an Output_data.
1785
 
1786
Symbol*
1787
Symbol_table::define_in_output_data(const char* name,
1788
                                    const char* version,
1789
                                    Defined defined,
1790
                                    Output_data* od,
1791
                                    uint64_t value,
1792
                                    uint64_t symsize,
1793
                                    elfcpp::STT type,
1794
                                    elfcpp::STB binding,
1795
                                    elfcpp::STV visibility,
1796
                                    unsigned char nonvis,
1797
                                    bool offset_is_from_end,
1798
                                    bool only_if_ref)
1799
{
1800
  if (parameters->target().get_size() == 32)
1801
    {
1802
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1803
      return this->do_define_in_output_data<32>(name, version, defined, od,
1804
                                                value, symsize, type, binding,
1805
                                                visibility, nonvis,
1806
                                                offset_is_from_end,
1807
                                                only_if_ref);
1808
#else
1809
      gold_unreachable();
1810
#endif
1811
    }
1812
  else if (parameters->target().get_size() == 64)
1813
    {
1814
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1815
      return this->do_define_in_output_data<64>(name, version, defined, od,
1816
                                                value, symsize, type, binding,
1817
                                                visibility, nonvis,
1818
                                                offset_is_from_end,
1819
                                                only_if_ref);
1820
#else
1821
      gold_unreachable();
1822
#endif
1823
    }
1824
  else
1825
    gold_unreachable();
1826
}
1827
 
1828
// Define a symbol in an Output_data, sized version.
1829
 
1830
template<int size>
1831
Sized_symbol<size>*
1832
Symbol_table::do_define_in_output_data(
1833
    const char* name,
1834
    const char* version,
1835
    Defined defined,
1836
    Output_data* od,
1837
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1838
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1839
    elfcpp::STT type,
1840
    elfcpp::STB binding,
1841
    elfcpp::STV visibility,
1842
    unsigned char nonvis,
1843
    bool offset_is_from_end,
1844
    bool only_if_ref)
1845
{
1846
  Sized_symbol<size>* sym;
1847
  Sized_symbol<size>* oldsym;
1848
  bool resolve_oldsym;
1849
 
1850
  if (parameters->target().is_big_endian())
1851
    {
1852
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1853
      sym = this->define_special_symbol<size, true>(&name, &version,
1854
                                                    only_if_ref, &oldsym,
1855
                                                    &resolve_oldsym);
1856
#else
1857
      gold_unreachable();
1858
#endif
1859
    }
1860
  else
1861
    {
1862
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1863
      sym = this->define_special_symbol<size, false>(&name, &version,
1864
                                                     only_if_ref, &oldsym,
1865
                                                     &resolve_oldsym);
1866
#else
1867
      gold_unreachable();
1868
#endif
1869
    }
1870
 
1871
  if (sym == NULL)
1872
    return NULL;
1873
 
1874
  sym->init_output_data(name, version, od, value, symsize, type, binding,
1875 148 khays
                        visibility, nonvis, offset_is_from_end,
1876
                        defined == PREDEFINED);
1877 27 khays
 
1878
  if (oldsym == NULL)
1879
    {
1880
      if (binding == elfcpp::STB_LOCAL
1881
          || this->version_script_.symbol_is_local(name))
1882
        this->force_local(sym);
1883
      else if (version != NULL)
1884
        sym->set_is_default();
1885
      return sym;
1886
    }
1887
 
1888 159 khays
  if (Symbol_table::should_override_with_special(oldsym, type, defined))
1889 27 khays
    this->override_with_special(oldsym, sym);
1890
 
1891
  if (resolve_oldsym)
1892
    return sym;
1893
  else
1894
    {
1895
      delete sym;
1896
      return oldsym;
1897
    }
1898
}
1899
 
1900
// Define a symbol based on an Output_segment.
1901
 
1902
Symbol*
1903
Symbol_table::define_in_output_segment(const char* name,
1904
                                       const char* version,
1905
                                       Defined defined,
1906
                                       Output_segment* os,
1907
                                       uint64_t value,
1908
                                       uint64_t symsize,
1909
                                       elfcpp::STT type,
1910
                                       elfcpp::STB binding,
1911
                                       elfcpp::STV visibility,
1912
                                       unsigned char nonvis,
1913
                                       Symbol::Segment_offset_base offset_base,
1914
                                       bool only_if_ref)
1915
{
1916
  if (parameters->target().get_size() == 32)
1917
    {
1918
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1919
      return this->do_define_in_output_segment<32>(name, version, defined, os,
1920
                                                   value, symsize, type,
1921
                                                   binding, visibility, nonvis,
1922
                                                   offset_base, only_if_ref);
1923
#else
1924
      gold_unreachable();
1925
#endif
1926
    }
1927
  else if (parameters->target().get_size() == 64)
1928
    {
1929
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1930
      return this->do_define_in_output_segment<64>(name, version, defined, os,
1931
                                                   value, symsize, type,
1932
                                                   binding, visibility, nonvis,
1933
                                                   offset_base, only_if_ref);
1934
#else
1935
      gold_unreachable();
1936
#endif
1937
    }
1938
  else
1939
    gold_unreachable();
1940
}
1941
 
1942
// Define a symbol in an Output_segment, sized version.
1943
 
1944
template<int size>
1945
Sized_symbol<size>*
1946
Symbol_table::do_define_in_output_segment(
1947
    const char* name,
1948
    const char* version,
1949
    Defined defined,
1950
    Output_segment* os,
1951
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1952
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1953
    elfcpp::STT type,
1954
    elfcpp::STB binding,
1955
    elfcpp::STV visibility,
1956
    unsigned char nonvis,
1957
    Symbol::Segment_offset_base offset_base,
1958
    bool only_if_ref)
1959
{
1960
  Sized_symbol<size>* sym;
1961
  Sized_symbol<size>* oldsym;
1962
  bool resolve_oldsym;
1963
 
1964
  if (parameters->target().is_big_endian())
1965
    {
1966
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967
      sym = this->define_special_symbol<size, true>(&name, &version,
1968
                                                    only_if_ref, &oldsym,
1969
                                                    &resolve_oldsym);
1970
#else
1971
      gold_unreachable();
1972
#endif
1973
    }
1974
  else
1975
    {
1976
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977
      sym = this->define_special_symbol<size, false>(&name, &version,
1978
                                                     only_if_ref, &oldsym,
1979
                                                     &resolve_oldsym);
1980
#else
1981
      gold_unreachable();
1982
#endif
1983
    }
1984
 
1985
  if (sym == NULL)
1986
    return NULL;
1987
 
1988
  sym->init_output_segment(name, version, os, value, symsize, type, binding,
1989 148 khays
                           visibility, nonvis, offset_base,
1990
                           defined == PREDEFINED);
1991 27 khays
 
1992
  if (oldsym == NULL)
1993
    {
1994
      if (binding == elfcpp::STB_LOCAL
1995
          || this->version_script_.symbol_is_local(name))
1996
        this->force_local(sym);
1997
      else if (version != NULL)
1998
        sym->set_is_default();
1999
      return sym;
2000
    }
2001
 
2002 159 khays
  if (Symbol_table::should_override_with_special(oldsym, type, defined))
2003 27 khays
    this->override_with_special(oldsym, sym);
2004
 
2005
  if (resolve_oldsym)
2006
    return sym;
2007
  else
2008
    {
2009
      delete sym;
2010
      return oldsym;
2011
    }
2012
}
2013
 
2014
// Define a special symbol with a constant value.  It is a multiple
2015
// definition error if this symbol is already defined.
2016
 
2017
Symbol*
2018
Symbol_table::define_as_constant(const char* name,
2019
                                 const char* version,
2020
                                 Defined defined,
2021
                                 uint64_t value,
2022
                                 uint64_t symsize,
2023
                                 elfcpp::STT type,
2024
                                 elfcpp::STB binding,
2025
                                 elfcpp::STV visibility,
2026
                                 unsigned char nonvis,
2027
                                 bool only_if_ref,
2028
                                 bool force_override)
2029
{
2030
  if (parameters->target().get_size() == 32)
2031
    {
2032
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2033
      return this->do_define_as_constant<32>(name, version, defined, value,
2034
                                             symsize, type, binding,
2035
                                             visibility, nonvis, only_if_ref,
2036
                                             force_override);
2037
#else
2038
      gold_unreachable();
2039
#endif
2040
    }
2041
  else if (parameters->target().get_size() == 64)
2042
    {
2043
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2044
      return this->do_define_as_constant<64>(name, version, defined, value,
2045
                                             symsize, type, binding,
2046
                                             visibility, nonvis, only_if_ref,
2047
                                             force_override);
2048
#else
2049
      gold_unreachable();
2050
#endif
2051
    }
2052
  else
2053
    gold_unreachable();
2054
}
2055
 
2056
// Define a symbol as a constant, sized version.
2057
 
2058
template<int size>
2059
Sized_symbol<size>*
2060
Symbol_table::do_define_as_constant(
2061
    const char* name,
2062
    const char* version,
2063
    Defined defined,
2064
    typename elfcpp::Elf_types<size>::Elf_Addr value,
2065
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2066
    elfcpp::STT type,
2067
    elfcpp::STB binding,
2068
    elfcpp::STV visibility,
2069
    unsigned char nonvis,
2070
    bool only_if_ref,
2071
    bool force_override)
2072
{
2073
  Sized_symbol<size>* sym;
2074
  Sized_symbol<size>* oldsym;
2075
  bool resolve_oldsym;
2076
 
2077
  if (parameters->target().is_big_endian())
2078
    {
2079
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2080
      sym = this->define_special_symbol<size, true>(&name, &version,
2081
                                                    only_if_ref, &oldsym,
2082
                                                    &resolve_oldsym);
2083
#else
2084
      gold_unreachable();
2085
#endif
2086
    }
2087
  else
2088
    {
2089
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2090
      sym = this->define_special_symbol<size, false>(&name, &version,
2091
                                                     only_if_ref, &oldsym,
2092
                                                     &resolve_oldsym);
2093
#else
2094
      gold_unreachable();
2095
#endif
2096
    }
2097
 
2098
  if (sym == NULL)
2099
    return NULL;
2100
 
2101
  sym->init_constant(name, version, value, symsize, type, binding, visibility,
2102 148 khays
                     nonvis, defined == PREDEFINED);
2103 27 khays
 
2104
  if (oldsym == NULL)
2105
    {
2106
      // Version symbols are absolute symbols with name == version.
2107
      // We don't want to force them to be local.
2108
      if ((version == NULL
2109
           || name != version
2110
           || value != 0)
2111
          && (binding == elfcpp::STB_LOCAL
2112
              || this->version_script_.symbol_is_local(name)))
2113
        this->force_local(sym);
2114
      else if (version != NULL
2115
               && (name != version || value != 0))
2116
        sym->set_is_default();
2117
      return sym;
2118
    }
2119
 
2120
  if (force_override
2121 159 khays
      || Symbol_table::should_override_with_special(oldsym, type, defined))
2122 27 khays
    this->override_with_special(oldsym, sym);
2123
 
2124
  if (resolve_oldsym)
2125
    return sym;
2126
  else
2127
    {
2128
      delete sym;
2129
      return oldsym;
2130
    }
2131
}
2132
 
2133
// Define a set of symbols in output sections.
2134
 
2135
void
2136
Symbol_table::define_symbols(const Layout* layout, int count,
2137
                             const Define_symbol_in_section* p,
2138
                             bool only_if_ref)
2139
{
2140
  for (int i = 0; i < count; ++i, ++p)
2141
    {
2142
      Output_section* os = layout->find_output_section(p->output_section);
2143
      if (os != NULL)
2144
        this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2145
                                    p->size, p->type, p->binding,
2146
                                    p->visibility, p->nonvis,
2147
                                    p->offset_is_from_end,
2148
                                    only_if_ref || p->only_if_ref);
2149
      else
2150
        this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2151
                                 p->type, p->binding, p->visibility, p->nonvis,
2152
                                 only_if_ref || p->only_if_ref,
2153
                                 false);
2154
    }
2155
}
2156
 
2157
// Define a set of symbols in output segments.
2158
 
2159
void
2160
Symbol_table::define_symbols(const Layout* layout, int count,
2161
                             const Define_symbol_in_segment* p,
2162
                             bool only_if_ref)
2163
{
2164
  for (int i = 0; i < count; ++i, ++p)
2165
    {
2166
      Output_segment* os = layout->find_output_segment(p->segment_type,
2167
                                                       p->segment_flags_set,
2168
                                                       p->segment_flags_clear);
2169
      if (os != NULL)
2170
        this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2171
                                       p->size, p->type, p->binding,
2172
                                       p->visibility, p->nonvis,
2173
                                       p->offset_base,
2174
                                       only_if_ref || p->only_if_ref);
2175
      else
2176
        this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2177
                                 p->type, p->binding, p->visibility, p->nonvis,
2178
                                 only_if_ref || p->only_if_ref,
2179
                                 false);
2180
    }
2181
}
2182
 
2183
// Define CSYM using a COPY reloc.  POSD is the Output_data where the
2184
// symbol should be defined--typically a .dyn.bss section.  VALUE is
2185
// the offset within POSD.
2186
 
2187
template<int size>
2188
void
2189
Symbol_table::define_with_copy_reloc(
2190
    Sized_symbol<size>* csym,
2191
    Output_data* posd,
2192
    typename elfcpp::Elf_types<size>::Elf_Addr value)
2193
{
2194
  gold_assert(csym->is_from_dynobj());
2195
  gold_assert(!csym->is_copied_from_dynobj());
2196
  Object* object = csym->object();
2197
  gold_assert(object->is_dynamic());
2198
  Dynobj* dynobj = static_cast<Dynobj*>(object);
2199
 
2200
  // Our copied variable has to override any variable in a shared
2201
  // library.
2202
  elfcpp::STB binding = csym->binding();
2203
  if (binding == elfcpp::STB_WEAK)
2204
    binding = elfcpp::STB_GLOBAL;
2205
 
2206
  this->define_in_output_data(csym->name(), csym->version(), COPY,
2207
                              posd, value, csym->symsize(),
2208
                              csym->type(), binding,
2209
                              csym->visibility(), csym->nonvis(),
2210
                              false, false);
2211
 
2212
  csym->set_is_copied_from_dynobj();
2213
  csym->set_needs_dynsym_entry();
2214
 
2215
  this->copied_symbol_dynobjs_[csym] = dynobj;
2216
 
2217
  // We have now defined all aliases, but we have not entered them all
2218
  // in the copied_symbol_dynobjs_ map.
2219
  if (csym->has_alias())
2220
    {
2221
      Symbol* sym = csym;
2222
      while (true)
2223
        {
2224
          sym = this->weak_aliases_[sym];
2225
          if (sym == csym)
2226
            break;
2227
          gold_assert(sym->output_data() == posd);
2228
 
2229
          sym->set_is_copied_from_dynobj();
2230
          this->copied_symbol_dynobjs_[sym] = dynobj;
2231
        }
2232
    }
2233
}
2234
 
2235
// SYM is defined using a COPY reloc.  Return the dynamic object where
2236
// the original definition was found.
2237
 
2238
Dynobj*
2239
Symbol_table::get_copy_source(const Symbol* sym) const
2240
{
2241
  gold_assert(sym->is_copied_from_dynobj());
2242
  Copied_symbol_dynobjs::const_iterator p =
2243
    this->copied_symbol_dynobjs_.find(sym);
2244
  gold_assert(p != this->copied_symbol_dynobjs_.end());
2245
  return p->second;
2246
}
2247
 
2248
// Add any undefined symbols named on the command line.
2249
 
2250
void
2251
Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2252
{
2253
  if (parameters->options().any_undefined()
2254
      || layout->script_options()->any_unreferenced())
2255
    {
2256
      if (parameters->target().get_size() == 32)
2257
        {
2258
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2259
          this->do_add_undefined_symbols_from_command_line<32>(layout);
2260
#else
2261
          gold_unreachable();
2262
#endif
2263
        }
2264
      else if (parameters->target().get_size() == 64)
2265
        {
2266
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2267
          this->do_add_undefined_symbols_from_command_line<64>(layout);
2268
#else
2269
          gold_unreachable();
2270
#endif
2271
        }
2272
      else
2273
        gold_unreachable();
2274
    }
2275
}
2276
 
2277
template<int size>
2278
void
2279
Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2280
{
2281
  for (options::String_set::const_iterator p =
2282
         parameters->options().undefined_begin();
2283
       p != parameters->options().undefined_end();
2284
       ++p)
2285
    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2286
 
2287
  for (Script_options::referenced_const_iterator p =
2288
         layout->script_options()->referenced_begin();
2289
       p != layout->script_options()->referenced_end();
2290
       ++p)
2291
    this->add_undefined_symbol_from_command_line<size>(p->c_str());
2292
}
2293
 
2294
template<int size>
2295
void
2296
Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2297
{
2298
  if (this->lookup(name) != NULL)
2299
    return;
2300
 
2301
  const char* version = NULL;
2302
 
2303
  Sized_symbol<size>* sym;
2304
  Sized_symbol<size>* oldsym;
2305
  bool resolve_oldsym;
2306
  if (parameters->target().is_big_endian())
2307
    {
2308
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2309
      sym = this->define_special_symbol<size, true>(&name, &version,
2310
                                                    false, &oldsym,
2311
                                                    &resolve_oldsym);
2312
#else
2313
      gold_unreachable();
2314
#endif
2315
    }
2316
  else
2317
    {
2318
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2319
      sym = this->define_special_symbol<size, false>(&name, &version,
2320
                                                     false, &oldsym,
2321
                                                     &resolve_oldsym);
2322
#else
2323
      gold_unreachable();
2324
#endif
2325
    }
2326
 
2327
  gold_assert(oldsym == NULL);
2328
 
2329
  sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2330
                      elfcpp::STV_DEFAULT, 0);
2331
  ++this->saw_undefined_;
2332
}
2333
 
2334
// Set the dynamic symbol indexes.  INDEX is the index of the first
2335
// global dynamic symbol.  Pointers to the symbols are stored into the
2336
// vector SYMS.  The names are added to DYNPOOL.  This returns an
2337
// updated dynamic symbol index.
2338
 
2339
unsigned int
2340
Symbol_table::set_dynsym_indexes(unsigned int index,
2341
                                 std::vector<Symbol*>* syms,
2342
                                 Stringpool* dynpool,
2343
                                 Versions* versions)
2344
{
2345
  for (Symbol_table_type::iterator p = this->table_.begin();
2346
       p != this->table_.end();
2347
       ++p)
2348
    {
2349
      Symbol* sym = p->second;
2350
 
2351
      // Note that SYM may already have a dynamic symbol index, since
2352
      // some symbols appear more than once in the symbol table, with
2353
      // and without a version.
2354
 
2355
      if (!sym->should_add_dynsym_entry(this))
2356
        sym->set_dynsym_index(-1U);
2357
      else if (!sym->has_dynsym_index())
2358
        {
2359
          sym->set_dynsym_index(index);
2360
          ++index;
2361
          syms->push_back(sym);
2362
          dynpool->add(sym->name(), false, NULL);
2363
 
2364
          // Record any version information.
2365
          if (sym->version() != NULL)
2366
            versions->record_version(this, dynpool, sym);
2367
 
2368
          // If the symbol is defined in a dynamic object and is
2369
          // referenced in a regular object, then mark the dynamic
2370
          // object as needed.  This is used to implement --as-needed.
2371
          if (sym->is_from_dynobj() && sym->in_reg())
2372
            sym->object()->set_is_needed();
2373
        }
2374
    }
2375
 
2376
  // Finish up the versions.  In some cases this may add new dynamic
2377
  // symbols.
2378
  index = versions->finalize(this, index, syms);
2379
 
2380
  return index;
2381
}
2382
 
2383
// Set the final values for all the symbols.  The index of the first
2384
// global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2385
// file offset OFF.  Add their names to POOL.  Return the new file
2386
// offset.  Update *PLOCAL_SYMCOUNT if necessary.
2387
 
2388
off_t
2389
Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2390
                       size_t dyncount, Stringpool* pool,
2391
                       unsigned int* plocal_symcount)
2392
{
2393
  off_t ret;
2394
 
2395
  gold_assert(*plocal_symcount != 0);
2396
  this->first_global_index_ = *plocal_symcount;
2397
 
2398
  this->dynamic_offset_ = dynoff;
2399
  this->first_dynamic_global_index_ = dyn_global_index;
2400
  this->dynamic_count_ = dyncount;
2401
 
2402
  if (parameters->target().get_size() == 32)
2403
    {
2404
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2405
      ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2406
#else
2407
      gold_unreachable();
2408
#endif
2409
    }
2410
  else if (parameters->target().get_size() == 64)
2411
    {
2412
#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2413
      ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2414
#else
2415
      gold_unreachable();
2416
#endif
2417
    }
2418
  else
2419
    gold_unreachable();
2420
 
2421
  // Now that we have the final symbol table, we can reliably note
2422
  // which symbols should get warnings.
2423
  this->warnings_.note_warnings(this);
2424
 
2425
  return ret;
2426
}
2427
 
2428
// SYM is going into the symbol table at *PINDEX.  Add the name to
2429
// POOL, update *PINDEX and *POFF.
2430
 
2431
template<int size>
2432
void
2433
Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2434
                                  unsigned int* pindex, off_t* poff)
2435
{
2436
  sym->set_symtab_index(*pindex);
2437 159 khays
  if (sym->version() == NULL || !parameters->options().relocatable())
2438
    pool->add(sym->name(), false, NULL);
2439
  else
2440
    pool->add(sym->versioned_name(), true, NULL);
2441 27 khays
  ++*pindex;
2442
  *poff += elfcpp::Elf_sizes<size>::sym_size;
2443
}
2444
 
2445
// Set the final value for all the symbols.  This is called after
2446
// Layout::finalize, so all the output sections have their final
2447
// address.
2448
 
2449
template<int size>
2450
off_t
2451
Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2452
                             unsigned int* plocal_symcount)
2453
{
2454
  off = align_address(off, size >> 3);
2455
  this->offset_ = off;
2456
 
2457
  unsigned int index = *plocal_symcount;
2458
  const unsigned int orig_index = index;
2459
 
2460
  // First do all the symbols which have been forced to be local, as
2461
  // they must appear before all global symbols.
2462
  for (Forced_locals::iterator p = this->forced_locals_.begin();
2463
       p != this->forced_locals_.end();
2464
       ++p)
2465
    {
2466
      Symbol* sym = *p;
2467
      gold_assert(sym->is_forced_local());
2468
      if (this->sized_finalize_symbol<size>(sym))
2469
        {
2470
          this->add_to_final_symtab<size>(sym, pool, &index, &off);
2471
          ++*plocal_symcount;
2472
        }
2473
    }
2474
 
2475
  // Now do all the remaining symbols.
2476
  for (Symbol_table_type::iterator p = this->table_.begin();
2477
       p != this->table_.end();
2478
       ++p)
2479
    {
2480
      Symbol* sym = p->second;
2481
      if (this->sized_finalize_symbol<size>(sym))
2482
        this->add_to_final_symtab<size>(sym, pool, &index, &off);
2483
    }
2484
 
2485
  this->output_count_ = index - orig_index;
2486
 
2487
  return off;
2488
}
2489
 
2490
// Compute the final value of SYM and store status in location PSTATUS.
2491
// During relaxation, this may be called multiple times for a symbol to
2492
// compute its would-be final value in each relaxation pass.
2493
 
2494
template<int size>
2495
typename Sized_symbol<size>::Value_type
2496
Symbol_table::compute_final_value(
2497
    const Sized_symbol<size>* sym,
2498
    Compute_final_value_status* pstatus) const
2499
{
2500
  typedef typename Sized_symbol<size>::Value_type Value_type;
2501
  Value_type value;
2502
 
2503
  switch (sym->source())
2504
    {
2505
    case Symbol::FROM_OBJECT:
2506
      {
2507
        bool is_ordinary;
2508
        unsigned int shndx = sym->shndx(&is_ordinary);
2509
 
2510
        if (!is_ordinary
2511
            && shndx != elfcpp::SHN_ABS
2512
            && !Symbol::is_common_shndx(shndx))
2513
          {
2514
            *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2515
            return 0;
2516
          }
2517
 
2518
        Object* symobj = sym->object();
2519
        if (symobj->is_dynamic())
2520
          {
2521
            value = 0;
2522
            shndx = elfcpp::SHN_UNDEF;
2523
          }
2524
        else if (symobj->pluginobj() != NULL)
2525
          {
2526
            value = 0;
2527
            shndx = elfcpp::SHN_UNDEF;
2528
          }
2529
        else if (shndx == elfcpp::SHN_UNDEF)
2530
          value = 0;
2531
        else if (!is_ordinary
2532
                 && (shndx == elfcpp::SHN_ABS
2533
                     || Symbol::is_common_shndx(shndx)))
2534
          value = sym->value();
2535
        else
2536
          {
2537
            Relobj* relobj = static_cast<Relobj*>(symobj);
2538
            Output_section* os = relobj->output_section(shndx);
2539
 
2540
            if (this->is_section_folded(relobj, shndx))
2541
              {
2542
                gold_assert(os == NULL);
2543
                // Get the os of the section it is folded onto.
2544
                Section_id folded = this->icf_->get_folded_section(relobj,
2545
                                                                   shndx);
2546
                gold_assert(folded.first != NULL);
2547
                Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2548
                unsigned folded_shndx = folded.second;
2549
 
2550
                os = folded_obj->output_section(folded_shndx);
2551
                gold_assert(os != NULL);
2552
 
2553
                // Replace (relobj, shndx) with canonical ICF input section.
2554
                shndx = folded_shndx;
2555
                relobj = folded_obj;
2556
              }
2557
 
2558
            uint64_t secoff64 = relobj->output_section_offset(shndx);
2559
            if (os == NULL)
2560
              {
2561
                bool static_or_reloc = (parameters->doing_static_link() ||
2562
                                        parameters->options().relocatable());
2563
                gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2564
 
2565
                *pstatus = CFVS_NO_OUTPUT_SECTION;
2566
                return 0;
2567
              }
2568
 
2569
            if (secoff64 == -1ULL)
2570
              {
2571
                // The section needs special handling (e.g., a merge section).
2572
 
2573
                value = os->output_address(relobj, shndx, sym->value());
2574
              }
2575
            else
2576
              {
2577
                Value_type secoff =
2578
                  convert_types<Value_type, uint64_t>(secoff64);
2579
                if (sym->type() == elfcpp::STT_TLS)
2580
                  value = sym->value() + os->tls_offset() + secoff;
2581
                else
2582
                  value = sym->value() + os->address() + secoff;
2583
              }
2584
          }
2585
      }
2586
      break;
2587
 
2588
    case Symbol::IN_OUTPUT_DATA:
2589
      {
2590
        Output_data* od = sym->output_data();
2591
        value = sym->value();
2592
        if (sym->type() != elfcpp::STT_TLS)
2593
          value += od->address();
2594
        else
2595
          {
2596
            Output_section* os = od->output_section();
2597
            gold_assert(os != NULL);
2598
            value += os->tls_offset() + (od->address() - os->address());
2599
          }
2600
        if (sym->offset_is_from_end())
2601
          value += od->data_size();
2602
      }
2603
      break;
2604
 
2605
    case Symbol::IN_OUTPUT_SEGMENT:
2606
      {
2607
        Output_segment* os = sym->output_segment();
2608
        value = sym->value();
2609
        if (sym->type() != elfcpp::STT_TLS)
2610
          value += os->vaddr();
2611
        switch (sym->offset_base())
2612
          {
2613
          case Symbol::SEGMENT_START:
2614
            break;
2615
          case Symbol::SEGMENT_END:
2616
            value += os->memsz();
2617
            break;
2618
          case Symbol::SEGMENT_BSS:
2619
            value += os->filesz();
2620
            break;
2621
          default:
2622
            gold_unreachable();
2623
          }
2624
      }
2625
      break;
2626
 
2627
    case Symbol::IS_CONSTANT:
2628
      value = sym->value();
2629
      break;
2630
 
2631
    case Symbol::IS_UNDEFINED:
2632
      value = 0;
2633
      break;
2634
 
2635
    default:
2636
      gold_unreachable();
2637
    }
2638
 
2639
  *pstatus = CFVS_OK;
2640
  return value;
2641
}
2642
 
2643
// Finalize the symbol SYM.  This returns true if the symbol should be
2644
// added to the symbol table, false otherwise.
2645
 
2646
template<int size>
2647
bool
2648
Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2649
{
2650
  typedef typename Sized_symbol<size>::Value_type Value_type;
2651
 
2652
  Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2653
 
2654
  // The default version of a symbol may appear twice in the symbol
2655
  // table.  We only need to finalize it once.
2656
  if (sym->has_symtab_index())
2657
    return false;
2658
 
2659
  if (!sym->in_reg())
2660
    {
2661
      gold_assert(!sym->has_symtab_index());
2662
      sym->set_symtab_index(-1U);
2663
      gold_assert(sym->dynsym_index() == -1U);
2664
      return false;
2665
    }
2666
 
2667
  // If the symbol is only present on plugin files, the plugin decided we
2668
  // don't need it.
2669
  if (!sym->in_real_elf())
2670
    {
2671
      gold_assert(!sym->has_symtab_index());
2672
      sym->set_symtab_index(-1U);
2673
      return false;
2674
    }
2675
 
2676
  // Compute final symbol value.
2677
  Compute_final_value_status status;
2678
  Value_type value = this->compute_final_value(sym, &status);
2679
 
2680
  switch (status)
2681
    {
2682
    case CFVS_OK:
2683
      break;
2684
    case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2685
      {
2686
        bool is_ordinary;
2687
        unsigned int shndx = sym->shndx(&is_ordinary);
2688
        gold_error(_("%s: unsupported symbol section 0x%x"),
2689
                   sym->demangled_name().c_str(), shndx);
2690
      }
2691
      break;
2692
    case CFVS_NO_OUTPUT_SECTION:
2693
      sym->set_symtab_index(-1U);
2694
      return false;
2695
    default:
2696
      gold_unreachable();
2697
    }
2698
 
2699
  sym->set_value(value);
2700
 
2701
  if (parameters->options().strip_all()
2702
      || !parameters->options().should_retain_symbol(sym->name()))
2703
    {
2704
      sym->set_symtab_index(-1U);
2705
      return false;
2706
    }
2707
 
2708
  return true;
2709
}
2710
 
2711
// Write out the global symbols.
2712
 
2713
void
2714
Symbol_table::write_globals(const Stringpool* sympool,
2715
                            const Stringpool* dynpool,
2716
                            Output_symtab_xindex* symtab_xindex,
2717
                            Output_symtab_xindex* dynsym_xindex,
2718
                            Output_file* of) const
2719
{
2720
  switch (parameters->size_and_endianness())
2721
    {
2722
#ifdef HAVE_TARGET_32_LITTLE
2723
    case Parameters::TARGET_32_LITTLE:
2724
      this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2725
                                           dynsym_xindex, of);
2726
      break;
2727
#endif
2728
#ifdef HAVE_TARGET_32_BIG
2729
    case Parameters::TARGET_32_BIG:
2730
      this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2731
                                          dynsym_xindex, of);
2732
      break;
2733
#endif
2734
#ifdef HAVE_TARGET_64_LITTLE
2735
    case Parameters::TARGET_64_LITTLE:
2736
      this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2737
                                           dynsym_xindex, of);
2738
      break;
2739
#endif
2740
#ifdef HAVE_TARGET_64_BIG
2741
    case Parameters::TARGET_64_BIG:
2742
      this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2743
                                          dynsym_xindex, of);
2744
      break;
2745
#endif
2746
    default:
2747
      gold_unreachable();
2748
    }
2749
}
2750
 
2751
// Write out the global symbols.
2752
 
2753
template<int size, bool big_endian>
2754
void
2755
Symbol_table::sized_write_globals(const Stringpool* sympool,
2756
                                  const Stringpool* dynpool,
2757
                                  Output_symtab_xindex* symtab_xindex,
2758
                                  Output_symtab_xindex* dynsym_xindex,
2759
                                  Output_file* of) const
2760
{
2761
  const Target& target = parameters->target();
2762
 
2763
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2764
 
2765
  const unsigned int output_count = this->output_count_;
2766
  const section_size_type oview_size = output_count * sym_size;
2767
  const unsigned int first_global_index = this->first_global_index_;
2768
  unsigned char* psyms;
2769
  if (this->offset_ == 0 || output_count == 0)
2770
    psyms = NULL;
2771
  else
2772
    psyms = of->get_output_view(this->offset_, oview_size);
2773
 
2774
  const unsigned int dynamic_count = this->dynamic_count_;
2775
  const section_size_type dynamic_size = dynamic_count * sym_size;
2776
  const unsigned int first_dynamic_global_index =
2777
    this->first_dynamic_global_index_;
2778
  unsigned char* dynamic_view;
2779
  if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2780
    dynamic_view = NULL;
2781
  else
2782
    dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2783
 
2784
  for (Symbol_table_type::const_iterator p = this->table_.begin();
2785
       p != this->table_.end();
2786
       ++p)
2787
    {
2788
      Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2789
 
2790
      // Possibly warn about unresolved symbols in shared libraries.
2791
      this->warn_about_undefined_dynobj_symbol(sym);
2792
 
2793
      unsigned int sym_index = sym->symtab_index();
2794
      unsigned int dynsym_index;
2795
      if (dynamic_view == NULL)
2796
        dynsym_index = -1U;
2797
      else
2798
        dynsym_index = sym->dynsym_index();
2799
 
2800
      if (sym_index == -1U && dynsym_index == -1U)
2801
        {
2802
          // This symbol is not included in the output file.
2803
          continue;
2804
        }
2805
 
2806
      unsigned int shndx;
2807
      typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2808
      typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2809
      elfcpp::STB binding = sym->binding();
2810
      switch (sym->source())
2811
        {
2812
        case Symbol::FROM_OBJECT:
2813
          {
2814
            bool is_ordinary;
2815
            unsigned int in_shndx = sym->shndx(&is_ordinary);
2816
 
2817
            if (!is_ordinary
2818
                && in_shndx != elfcpp::SHN_ABS
2819
                && !Symbol::is_common_shndx(in_shndx))
2820
              {
2821
                gold_error(_("%s: unsupported symbol section 0x%x"),
2822
                           sym->demangled_name().c_str(), in_shndx);
2823
                shndx = in_shndx;
2824
              }
2825
            else
2826
              {
2827
                Object* symobj = sym->object();
2828
                if (symobj->is_dynamic())
2829
                  {
2830
                    if (sym->needs_dynsym_value())
2831
                      dynsym_value = target.dynsym_value(sym);
2832
                    shndx = elfcpp::SHN_UNDEF;
2833
                    if (sym->is_undef_binding_weak())
2834
                      binding = elfcpp::STB_WEAK;
2835
                    else
2836
                      binding = elfcpp::STB_GLOBAL;
2837
                  }
2838
                else if (symobj->pluginobj() != NULL)
2839
                  shndx = elfcpp::SHN_UNDEF;
2840
                else if (in_shndx == elfcpp::SHN_UNDEF
2841
                         || (!is_ordinary
2842
                             && (in_shndx == elfcpp::SHN_ABS
2843
                                 || Symbol::is_common_shndx(in_shndx))))
2844
                  shndx = in_shndx;
2845
                else
2846
                  {
2847
                    Relobj* relobj = static_cast<Relobj*>(symobj);
2848
                    Output_section* os = relobj->output_section(in_shndx);
2849
                    if (this->is_section_folded(relobj, in_shndx))
2850
                      {
2851
                        // This global symbol must be written out even though
2852
                        // it is folded.
2853
                        // Get the os of the section it is folded onto.
2854
                        Section_id folded =
2855
                             this->icf_->get_folded_section(relobj, in_shndx);
2856
                        gold_assert(folded.first !=NULL);
2857
                        Relobj* folded_obj =
2858
                          reinterpret_cast<Relobj*>(folded.first);
2859
                        os = folded_obj->output_section(folded.second);
2860
                        gold_assert(os != NULL);
2861
                      }
2862
                    gold_assert(os != NULL);
2863
                    shndx = os->out_shndx();
2864
 
2865
                    if (shndx >= elfcpp::SHN_LORESERVE)
2866
                      {
2867
                        if (sym_index != -1U)
2868
                          symtab_xindex->add(sym_index, shndx);
2869
                        if (dynsym_index != -1U)
2870
                          dynsym_xindex->add(dynsym_index, shndx);
2871
                        shndx = elfcpp::SHN_XINDEX;
2872
                      }
2873
 
2874
                    // In object files symbol values are section
2875
                    // relative.
2876
                    if (parameters->options().relocatable())
2877
                      sym_value -= os->address();
2878
                  }
2879
              }
2880
          }
2881
          break;
2882
 
2883
        case Symbol::IN_OUTPUT_DATA:
2884
          shndx = sym->output_data()->out_shndx();
2885
          if (shndx >= elfcpp::SHN_LORESERVE)
2886
            {
2887
              if (sym_index != -1U)
2888
                symtab_xindex->add(sym_index, shndx);
2889
              if (dynsym_index != -1U)
2890
                dynsym_xindex->add(dynsym_index, shndx);
2891
              shndx = elfcpp::SHN_XINDEX;
2892
            }
2893
          break;
2894
 
2895
        case Symbol::IN_OUTPUT_SEGMENT:
2896
          shndx = elfcpp::SHN_ABS;
2897
          break;
2898
 
2899
        case Symbol::IS_CONSTANT:
2900
          shndx = elfcpp::SHN_ABS;
2901
          break;
2902
 
2903
        case Symbol::IS_UNDEFINED:
2904
          shndx = elfcpp::SHN_UNDEF;
2905
          break;
2906
 
2907
        default:
2908
          gold_unreachable();
2909
        }
2910
 
2911
      if (sym_index != -1U)
2912
        {
2913
          sym_index -= first_global_index;
2914
          gold_assert(sym_index < output_count);
2915
          unsigned char* ps = psyms + (sym_index * sym_size);
2916
          this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2917
                                                     binding, sympool, ps);
2918
        }
2919
 
2920
      if (dynsym_index != -1U)
2921
        {
2922
          dynsym_index -= first_dynamic_global_index;
2923
          gold_assert(dynsym_index < dynamic_count);
2924
          unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2925
          this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2926
                                                     binding, dynpool, pd);
2927
        }
2928
    }
2929
 
2930
  of->write_output_view(this->offset_, oview_size, psyms);
2931
  if (dynamic_view != NULL)
2932
    of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2933
}
2934
 
2935
// Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2936
// strtab holding the name.
2937
 
2938
template<int size, bool big_endian>
2939
void
2940
Symbol_table::sized_write_symbol(
2941
    Sized_symbol<size>* sym,
2942
    typename elfcpp::Elf_types<size>::Elf_Addr value,
2943
    unsigned int shndx,
2944
    elfcpp::STB binding,
2945
    const Stringpool* pool,
2946
    unsigned char* p) const
2947
{
2948
  elfcpp::Sym_write<size, big_endian> osym(p);
2949 159 khays
  if (sym->version() == NULL || !parameters->options().relocatable())
2950
    osym.put_st_name(pool->get_offset(sym->name()));
2951
  else
2952
    osym.put_st_name(pool->get_offset(sym->versioned_name()));
2953 27 khays
  osym.put_st_value(value);
2954
  // Use a symbol size of zero for undefined symbols from shared libraries.
2955
  if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2956
    osym.put_st_size(0);
2957
  else
2958
    osym.put_st_size(sym->symsize());
2959
  elfcpp::STT type = sym->type();
2960
  // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2961
  if (type == elfcpp::STT_GNU_IFUNC
2962
      && sym->is_from_dynobj())
2963
    type = elfcpp::STT_FUNC;
2964
  // A version script may have overridden the default binding.
2965
  if (sym->is_forced_local())
2966
    osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2967
  else
2968
    osym.put_st_info(elfcpp::elf_st_info(binding, type));
2969
  osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2970
  osym.put_st_shndx(shndx);
2971
}
2972
 
2973
// Check for unresolved symbols in shared libraries.  This is
2974
// controlled by the --allow-shlib-undefined option.
2975
 
2976
// We only warn about libraries for which we have seen all the
2977
// DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
2978
// which were not seen in this link.  If we didn't see a DT_NEEDED
2979
// entry, we aren't going to be able to reliably report whether the
2980
// symbol is undefined.
2981
 
2982
// We also don't warn about libraries found in a system library
2983
// directory (e.g., /lib or /usr/lib); we assume that those libraries
2984
// are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
2985
// can have undefined references satisfied by ld-linux.so.
2986
 
2987
inline void
2988
Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2989
{
2990
  bool dummy;
2991
  if (sym->source() == Symbol::FROM_OBJECT
2992
      && sym->object()->is_dynamic()
2993
      && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2994
      && sym->binding() != elfcpp::STB_WEAK
2995
      && !parameters->options().allow_shlib_undefined()
2996
      && !parameters->target().is_defined_by_abi(sym)
2997
      && !sym->object()->is_in_system_directory())
2998
    {
2999
      // A very ugly cast.
3000
      Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3001
      if (!dynobj->has_unknown_needed_entries())
3002
        gold_undefined_symbol(sym);
3003
    }
3004
}
3005
 
3006
// Write out a section symbol.  Return the update offset.
3007
 
3008
void
3009
Symbol_table::write_section_symbol(const Output_section* os,
3010
                                   Output_symtab_xindex* symtab_xindex,
3011
                                   Output_file* of,
3012
                                   off_t offset) const
3013
{
3014
  switch (parameters->size_and_endianness())
3015
    {
3016
#ifdef HAVE_TARGET_32_LITTLE
3017
    case Parameters::TARGET_32_LITTLE:
3018
      this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3019
                                                  offset);
3020
      break;
3021
#endif
3022
#ifdef HAVE_TARGET_32_BIG
3023
    case Parameters::TARGET_32_BIG:
3024
      this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3025
                                                 offset);
3026
      break;
3027
#endif
3028
#ifdef HAVE_TARGET_64_LITTLE
3029
    case Parameters::TARGET_64_LITTLE:
3030
      this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3031
                                                  offset);
3032
      break;
3033
#endif
3034
#ifdef HAVE_TARGET_64_BIG
3035
    case Parameters::TARGET_64_BIG:
3036
      this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3037
                                                 offset);
3038
      break;
3039
#endif
3040
    default:
3041
      gold_unreachable();
3042
    }
3043
}
3044
 
3045
// Write out a section symbol, specialized for size and endianness.
3046
 
3047
template<int size, bool big_endian>
3048
void
3049
Symbol_table::sized_write_section_symbol(const Output_section* os,
3050
                                         Output_symtab_xindex* symtab_xindex,
3051
                                         Output_file* of,
3052
                                         off_t offset) const
3053
{
3054
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3055
 
3056
  unsigned char* pov = of->get_output_view(offset, sym_size);
3057
 
3058
  elfcpp::Sym_write<size, big_endian> osym(pov);
3059
  osym.put_st_name(0);
3060
  if (parameters->options().relocatable())
3061
    osym.put_st_value(0);
3062
  else
3063
    osym.put_st_value(os->address());
3064
  osym.put_st_size(0);
3065
  osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3066
                                       elfcpp::STT_SECTION));
3067
  osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3068
 
3069
  unsigned int shndx = os->out_shndx();
3070
  if (shndx >= elfcpp::SHN_LORESERVE)
3071
    {
3072
      symtab_xindex->add(os->symtab_index(), shndx);
3073
      shndx = elfcpp::SHN_XINDEX;
3074
    }
3075
  osym.put_st_shndx(shndx);
3076
 
3077
  of->write_output_view(offset, sym_size, pov);
3078
}
3079
 
3080
// Print statistical information to stderr.  This is used for --stats.
3081
 
3082
void
3083
Symbol_table::print_stats() const
3084
{
3085
#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3086
  fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3087
          program_name, this->table_.size(), this->table_.bucket_count());
3088
#else
3089
  fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3090
          program_name, this->table_.size());
3091
#endif
3092
  this->namepool_.print_stats("symbol table stringpool");
3093
}
3094
 
3095
// We check for ODR violations by looking for symbols with the same
3096
// name for which the debugging information reports that they were
3097
// defined in disjoint source locations.  When comparing the source
3098
// location, we consider instances with the same base filename to be
3099
// the same.  This is because different object files/shared libraries
3100
// can include the same header file using different paths, and
3101
// different optimization settings can make the line number appear to
3102
// be a couple lines off, and we don't want to report an ODR violation
3103
// in those cases.
3104
 
3105
// This struct is used to compare line information, as returned by
3106
// Dwarf_line_info::one_addr2line.  It implements a < comparison
3107
// operator used with std::sort.
3108
 
3109
struct Odr_violation_compare
3110
{
3111
  bool
3112
  operator()(const std::string& s1, const std::string& s2) const
3113
  {
3114
    // Inputs should be of the form "dirname/filename:linenum" where
3115
    // "dirname/" is optional.  We want to compare just the filename:linenum.
3116
 
3117
    // Find the last '/' in each string.
3118
    std::string::size_type s1begin = s1.rfind('/');
3119
    std::string::size_type s2begin = s2.rfind('/');
3120
    // If there was no '/' in a string, start at the beginning.
3121
    if (s1begin == std::string::npos)
3122
      s1begin = 0;
3123
    if (s2begin == std::string::npos)
3124
      s2begin = 0;
3125
    return s1.compare(s1begin, std::string::npos,
3126
                      s2, s2begin, std::string::npos) < 0;
3127
  }
3128
};
3129
 
3130
// Returns all of the lines attached to LOC, not just the one the
3131
// instruction actually came from.
3132
std::vector<std::string>
3133
Symbol_table::linenos_from_loc(const Task* task,
3134
                               const Symbol_location& loc)
3135
{
3136
  // We need to lock the object in order to read it.  This
3137
  // means that we have to run in a singleton Task.  If we
3138
  // want to run this in a general Task for better
3139
  // performance, we will need one Task for object, plus
3140
  // appropriate locking to ensure that we don't conflict with
3141
  // other uses of the object.  Also note, one_addr2line is not
3142
  // currently thread-safe.
3143
  Task_lock_obj<Object> tl(task, loc.object);
3144
 
3145
  std::vector<std::string> result;
3146
  // 16 is the size of the object-cache that one_addr2line should use.
3147
  std::string canonical_result = Dwarf_line_info::one_addr2line(
3148
      loc.object, loc.shndx, loc.offset, 16, &result);
3149
  if (!canonical_result.empty())
3150
    result.push_back(canonical_result);
3151
  return result;
3152
}
3153
 
3154
// OutputIterator that records if it was ever assigned to.  This
3155
// allows it to be used with std::set_intersection() to check for
3156
// intersection rather than computing the intersection.
3157
struct Check_intersection
3158
{
3159
  Check_intersection()
3160
    : value_(false)
3161
  {}
3162
 
3163
  bool had_intersection() const
3164
  { return this->value_; }
3165
 
3166
  Check_intersection& operator++()
3167
  { return *this; }
3168
 
3169
  Check_intersection& operator*()
3170
  { return *this; }
3171
 
3172
  template<typename T>
3173
  Check_intersection& operator=(const T&)
3174
  {
3175
    this->value_ = true;
3176
    return *this;
3177
  }
3178
 
3179
 private:
3180
  bool value_;
3181
};
3182
 
3183
// Check candidate_odr_violations_ to find symbols with the same name
3184
// but apparently different definitions (different source-file/line-no
3185
// for each line assigned to the first instruction).
3186
 
3187
void
3188
Symbol_table::detect_odr_violations(const Task* task,
3189
                                    const char* output_file_name) const
3190
{
3191
  for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3192
       it != candidate_odr_violations_.end();
3193
       ++it)
3194
    {
3195
      const char* const symbol_name = it->first;
3196
 
3197
      std::string first_object_name;
3198
      std::vector<std::string> first_object_linenos;
3199
 
3200
      Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3201
          locs = it->second.begin();
3202
      const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3203
          locs_end = it->second.end();
3204
      for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3205
        {
3206
          // Save the line numbers from the first definition to
3207
          // compare to the other definitions.  Ideally, we'd compare
3208
          // every definition to every other, but we don't want to
3209
          // take O(N^2) time to do this.  This shortcut may cause
3210
          // false negatives that appear or disappear depending on the
3211
          // link order, but it won't cause false positives.
3212
          first_object_name = locs->object->name();
3213
          first_object_linenos = this->linenos_from_loc(task, *locs);
3214
        }
3215
 
3216
      // Sort by Odr_violation_compare to make std::set_intersection work.
3217
      std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3218
                Odr_violation_compare());
3219
 
3220
      for (; locs != locs_end; ++locs)
3221
        {
3222
          std::vector<std::string> linenos =
3223
              this->linenos_from_loc(task, *locs);
3224
          // linenos will be empty if we couldn't parse the debug info.
3225
          if (linenos.empty())
3226
            continue;
3227
          // Sort by Odr_violation_compare to make std::set_intersection work.
3228
          std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3229
 
3230
          Check_intersection intersection_result =
3231
              std::set_intersection(first_object_linenos.begin(),
3232
                                    first_object_linenos.end(),
3233
                                    linenos.begin(),
3234
                                    linenos.end(),
3235
                                    Check_intersection(),
3236
                                    Odr_violation_compare());
3237
          if (!intersection_result.had_intersection())
3238
            {
3239
              gold_warning(_("while linking %s: symbol '%s' defined in "
3240
                             "multiple places (possible ODR violation):"),
3241
                           output_file_name, demangle(symbol_name).c_str());
3242
              // This only prints one location from each definition,
3243
              // which may not be the location we expect to intersect
3244
              // with another definition.  We could print the whole
3245
              // set of locations, but that seems too verbose.
3246
              gold_assert(!first_object_linenos.empty());
3247
              gold_assert(!linenos.empty());
3248
              fprintf(stderr, _("  %s from %s\n"),
3249
                      first_object_linenos[0].c_str(),
3250
                      first_object_name.c_str());
3251
              fprintf(stderr, _("  %s from %s\n"),
3252
                      linenos[0].c_str(),
3253
                      locs->object->name().c_str());
3254
              // Only print one broken pair, to avoid needing to
3255
              // compare against a list of the disjoint definition
3256
              // locations we've found so far.  (If we kept comparing
3257
              // against just the first one, we'd get a lot of
3258
              // redundant complaints about the second definition
3259
              // location.)
3260
              break;
3261
            }
3262
        }
3263
    }
3264
  // We only call one_addr2line() in this function, so we can clear its cache.
3265
  Dwarf_line_info::clear_addr2line_cache();
3266
}
3267
 
3268
// Warnings functions.
3269
 
3270
// Add a new warning.
3271
 
3272
void
3273
Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3274
                      const std::string& warning)
3275
{
3276
  name = symtab->canonicalize_name(name);
3277
  this->warnings_[name].set(obj, warning);
3278
}
3279
 
3280
// Look through the warnings and mark the symbols for which we should
3281
// warn.  This is called during Layout::finalize when we know the
3282
// sources for all the symbols.
3283
 
3284
void
3285
Warnings::note_warnings(Symbol_table* symtab)
3286
{
3287
  for (Warning_table::iterator p = this->warnings_.begin();
3288
       p != this->warnings_.end();
3289
       ++p)
3290
    {
3291
      Symbol* sym = symtab->lookup(p->first, NULL);
3292
      if (sym != NULL
3293
          && sym->source() == Symbol::FROM_OBJECT
3294
          && sym->object() == p->second.object)
3295
        sym->set_has_warning();
3296
    }
3297
}
3298
 
3299
// Issue a warning.  This is called when we see a relocation against a
3300
// symbol for which has a warning.
3301
 
3302
template<int size, bool big_endian>
3303
void
3304
Warnings::issue_warning(const Symbol* sym,
3305
                        const Relocate_info<size, big_endian>* relinfo,
3306
                        size_t relnum, off_t reloffset) const
3307
{
3308
  gold_assert(sym->has_warning());
3309 159 khays
 
3310
  // We don't want to issue a warning for a relocation against the
3311
  // symbol in the same object file in which the symbol is defined.
3312
  if (sym->object() == relinfo->object)
3313
    return;
3314
 
3315 27 khays
  Warning_table::const_iterator p = this->warnings_.find(sym->name());
3316
  gold_assert(p != this->warnings_.end());
3317
  gold_warning_at_location(relinfo, relnum, reloffset,
3318
                           "%s", p->second.text.c_str());
3319
}
3320
 
3321
// Instantiate the templates we need.  We could use the configure
3322
// script to restrict this to only the ones needed for implemented
3323
// targets.
3324
 
3325
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3326
template
3327
void
3328
Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3329
#endif
3330
 
3331
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3332
template
3333
void
3334
Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3335
#endif
3336
 
3337
#ifdef HAVE_TARGET_32_LITTLE
3338
template
3339
void
3340
Symbol_table::add_from_relobj<32, false>(
3341
    Sized_relobj_file<32, false>* relobj,
3342
    const unsigned char* syms,
3343
    size_t count,
3344
    size_t symndx_offset,
3345
    const char* sym_names,
3346
    size_t sym_name_size,
3347
    Sized_relobj_file<32, false>::Symbols* sympointers,
3348
    size_t* defined);
3349
#endif
3350
 
3351
#ifdef HAVE_TARGET_32_BIG
3352
template
3353
void
3354
Symbol_table::add_from_relobj<32, true>(
3355
    Sized_relobj_file<32, true>* relobj,
3356
    const unsigned char* syms,
3357
    size_t count,
3358
    size_t symndx_offset,
3359
    const char* sym_names,
3360
    size_t sym_name_size,
3361
    Sized_relobj_file<32, true>::Symbols* sympointers,
3362
    size_t* defined);
3363
#endif
3364
 
3365
#ifdef HAVE_TARGET_64_LITTLE
3366
template
3367
void
3368
Symbol_table::add_from_relobj<64, false>(
3369
    Sized_relobj_file<64, false>* relobj,
3370
    const unsigned char* syms,
3371
    size_t count,
3372
    size_t symndx_offset,
3373
    const char* sym_names,
3374
    size_t sym_name_size,
3375
    Sized_relobj_file<64, false>::Symbols* sympointers,
3376
    size_t* defined);
3377
#endif
3378
 
3379
#ifdef HAVE_TARGET_64_BIG
3380
template
3381
void
3382
Symbol_table::add_from_relobj<64, true>(
3383
    Sized_relobj_file<64, true>* relobj,
3384
    const unsigned char* syms,
3385
    size_t count,
3386
    size_t symndx_offset,
3387
    const char* sym_names,
3388
    size_t sym_name_size,
3389
    Sized_relobj_file<64, true>::Symbols* sympointers,
3390
    size_t* defined);
3391
#endif
3392
 
3393
#ifdef HAVE_TARGET_32_LITTLE
3394
template
3395
Symbol*
3396
Symbol_table::add_from_pluginobj<32, false>(
3397
    Sized_pluginobj<32, false>* obj,
3398
    const char* name,
3399
    const char* ver,
3400
    elfcpp::Sym<32, false>* sym);
3401
#endif
3402
 
3403
#ifdef HAVE_TARGET_32_BIG
3404
template
3405
Symbol*
3406
Symbol_table::add_from_pluginobj<32, true>(
3407
    Sized_pluginobj<32, true>* obj,
3408
    const char* name,
3409
    const char* ver,
3410
    elfcpp::Sym<32, true>* sym);
3411
#endif
3412
 
3413
#ifdef HAVE_TARGET_64_LITTLE
3414
template
3415
Symbol*
3416
Symbol_table::add_from_pluginobj<64, false>(
3417
    Sized_pluginobj<64, false>* obj,
3418
    const char* name,
3419
    const char* ver,
3420
    elfcpp::Sym<64, false>* sym);
3421
#endif
3422
 
3423
#ifdef HAVE_TARGET_64_BIG
3424
template
3425
Symbol*
3426
Symbol_table::add_from_pluginobj<64, true>(
3427
    Sized_pluginobj<64, true>* obj,
3428
    const char* name,
3429
    const char* ver,
3430
    elfcpp::Sym<64, true>* sym);
3431
#endif
3432
 
3433
#ifdef HAVE_TARGET_32_LITTLE
3434
template
3435
void
3436
Symbol_table::add_from_dynobj<32, false>(
3437
    Sized_dynobj<32, false>* dynobj,
3438
    const unsigned char* syms,
3439
    size_t count,
3440
    const char* sym_names,
3441
    size_t sym_name_size,
3442
    const unsigned char* versym,
3443
    size_t versym_size,
3444
    const std::vector<const char*>* version_map,
3445
    Sized_relobj_file<32, false>::Symbols* sympointers,
3446
    size_t* defined);
3447
#endif
3448
 
3449
#ifdef HAVE_TARGET_32_BIG
3450
template
3451
void
3452
Symbol_table::add_from_dynobj<32, true>(
3453
    Sized_dynobj<32, true>* dynobj,
3454
    const unsigned char* syms,
3455
    size_t count,
3456
    const char* sym_names,
3457
    size_t sym_name_size,
3458
    const unsigned char* versym,
3459
    size_t versym_size,
3460
    const std::vector<const char*>* version_map,
3461
    Sized_relobj_file<32, true>::Symbols* sympointers,
3462
    size_t* defined);
3463
#endif
3464
 
3465
#ifdef HAVE_TARGET_64_LITTLE
3466
template
3467
void
3468
Symbol_table::add_from_dynobj<64, false>(
3469
    Sized_dynobj<64, false>* dynobj,
3470
    const unsigned char* syms,
3471
    size_t count,
3472
    const char* sym_names,
3473
    size_t sym_name_size,
3474
    const unsigned char* versym,
3475
    size_t versym_size,
3476
    const std::vector<const char*>* version_map,
3477
    Sized_relobj_file<64, false>::Symbols* sympointers,
3478
    size_t* defined);
3479
#endif
3480
 
3481
#ifdef HAVE_TARGET_64_BIG
3482
template
3483
void
3484
Symbol_table::add_from_dynobj<64, true>(
3485
    Sized_dynobj<64, true>* dynobj,
3486
    const unsigned char* syms,
3487
    size_t count,
3488
    const char* sym_names,
3489
    size_t sym_name_size,
3490
    const unsigned char* versym,
3491
    size_t versym_size,
3492
    const std::vector<const char*>* version_map,
3493
    Sized_relobj_file<64, true>::Symbols* sympointers,
3494
    size_t* defined);
3495
#endif
3496
 
3497
#ifdef HAVE_TARGET_32_LITTLE
3498
template
3499 148 khays
Sized_symbol<32>*
3500 27 khays
Symbol_table::add_from_incrobj(
3501
    Object* obj,
3502
    const char* name,
3503
    const char* ver,
3504
    elfcpp::Sym<32, false>* sym);
3505
#endif
3506
 
3507
#ifdef HAVE_TARGET_32_BIG
3508
template
3509 148 khays
Sized_symbol<32>*
3510 27 khays
Symbol_table::add_from_incrobj(
3511
    Object* obj,
3512
    const char* name,
3513
    const char* ver,
3514
    elfcpp::Sym<32, true>* sym);
3515
#endif
3516
 
3517
#ifdef HAVE_TARGET_64_LITTLE
3518
template
3519 148 khays
Sized_symbol<64>*
3520 27 khays
Symbol_table::add_from_incrobj(
3521
    Object* obj,
3522
    const char* name,
3523
    const char* ver,
3524
    elfcpp::Sym<64, false>* sym);
3525
#endif
3526
 
3527
#ifdef HAVE_TARGET_64_BIG
3528
template
3529 148 khays
Sized_symbol<64>*
3530 27 khays
Symbol_table::add_from_incrobj(
3531
    Object* obj,
3532
    const char* name,
3533
    const char* ver,
3534
    elfcpp::Sym<64, true>* sym);
3535
#endif
3536
 
3537
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3538
template
3539
void
3540
Symbol_table::define_with_copy_reloc<32>(
3541
    Sized_symbol<32>* sym,
3542
    Output_data* posd,
3543
    elfcpp::Elf_types<32>::Elf_Addr value);
3544
#endif
3545
 
3546
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3547
template
3548
void
3549
Symbol_table::define_with_copy_reloc<64>(
3550
    Sized_symbol<64>* sym,
3551
    Output_data* posd,
3552
    elfcpp::Elf_types<64>::Elf_Addr value);
3553
#endif
3554
 
3555
#ifdef HAVE_TARGET_32_LITTLE
3556
template
3557
void
3558
Warnings::issue_warning<32, false>(const Symbol* sym,
3559
                                   const Relocate_info<32, false>* relinfo,
3560
                                   size_t relnum, off_t reloffset) const;
3561
#endif
3562
 
3563
#ifdef HAVE_TARGET_32_BIG
3564
template
3565
void
3566
Warnings::issue_warning<32, true>(const Symbol* sym,
3567
                                  const Relocate_info<32, true>* relinfo,
3568
                                  size_t relnum, off_t reloffset) const;
3569
#endif
3570
 
3571
#ifdef HAVE_TARGET_64_LITTLE
3572
template
3573
void
3574
Warnings::issue_warning<64, false>(const Symbol* sym,
3575
                                   const Relocate_info<64, false>* relinfo,
3576
                                   size_t relnum, off_t reloffset) const;
3577
#endif
3578
 
3579
#ifdef HAVE_TARGET_64_BIG
3580
template
3581
void
3582
Warnings::issue_warning<64, true>(const Symbol* sym,
3583
                                  const Relocate_info<64, true>* relinfo,
3584
                                  size_t relnum, off_t reloffset) const;
3585
#endif
3586
 
3587
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.