OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [symtab.h] - Blame information for rev 117

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// symtab.h -- the gold symbol table   -*- C++ -*-
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
// Symbol_table
24
//   The symbol table.
25
 
26
#ifndef GOLD_SYMTAB_H
27
#define GOLD_SYMTAB_H
28
 
29
#include <string>
30
#include <utility>
31
#include <vector>
32
 
33
#include "elfcpp.h"
34
#include "parameters.h"
35
#include "stringpool.h"
36
#include "object.h"
37
 
38
namespace gold
39
{
40
 
41
class Mapfile;
42
class Object;
43
class Relobj;
44
template<int size, bool big_endian>
45
class Sized_relobj_file;
46
template<int size, bool big_endian>
47
class Sized_pluginobj;
48
class Dynobj;
49
template<int size, bool big_endian>
50
class Sized_dynobj;
51
template<int size, bool big_endian>
52
class Sized_incrobj;
53
class Versions;
54
class Version_script_info;
55
class Input_objects;
56
class Output_data;
57
class Output_section;
58
class Output_segment;
59
class Output_file;
60
class Output_symtab_xindex;
61
class Garbage_collection;
62
class Icf;
63
 
64
// The base class of an entry in the symbol table.  The symbol table
65
// can have a lot of entries, so we don't want this class to big.
66
// Size dependent fields can be found in the template class
67
// Sized_symbol.  Targets may support their own derived classes.
68
 
69
class Symbol
70
{
71
 public:
72
  // Because we want the class to be small, we don't use any virtual
73
  // functions.  But because symbols can be defined in different
74
  // places, we need to classify them.  This enum is the different
75
  // sources of symbols we support.
76
  enum Source
77
  {
78
    // Symbol defined in a relocatable or dynamic input file--this is
79
    // the most common case.
80
    FROM_OBJECT,
81
    // Symbol defined in an Output_data, a special section created by
82
    // the target.
83
    IN_OUTPUT_DATA,
84
    // Symbol defined in an Output_segment, with no associated
85
    // section.
86
    IN_OUTPUT_SEGMENT,
87
    // Symbol value is constant.
88
    IS_CONSTANT,
89
    // Symbol is undefined.
90
    IS_UNDEFINED
91
  };
92
 
93
  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94
  // the offset means.
95
  enum Segment_offset_base
96
  {
97
    // From the start of the segment.
98
    SEGMENT_START,
99
    // From the end of the segment.
100
    SEGMENT_END,
101
    // From the filesz of the segment--i.e., after the loaded bytes
102
    // but before the bytes which are allocated but zeroed.
103
    SEGMENT_BSS
104
  };
105
 
106
  // Return the symbol name.
107
  const char*
108
  name() const
109
  { return this->name_; }
110
 
111
  // Return the (ANSI) demangled version of the name, if
112
  // parameters.demangle() is true.  Otherwise, return the name.  This
113
  // is intended to be used only for logging errors, so it's not
114
  // super-efficient.
115
  std::string
116
  demangled_name() const;
117
 
118
  // Return the symbol version.  This will return NULL for an
119
  // unversioned symbol.
120
  const char*
121
  version() const
122
  { return this->version_; }
123
 
124
  // Return whether this version is the default for this symbol name
125
  // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
126
  // meaningful for versioned symbols.
127
  bool
128
  is_default() const
129
  {
130
    gold_assert(this->version_ != NULL);
131
    return this->is_def_;
132
  }
133
 
134
  // Set that this version is the default for this symbol name.
135
  void
136
  set_is_default()
137
  { this->is_def_ = true; }
138
 
139
  // Return the symbol source.
140
  Source
141
  source() const
142
  { return this->source_; }
143
 
144
  // Return the object with which this symbol is associated.
145
  Object*
146
  object() const
147
  {
148
    gold_assert(this->source_ == FROM_OBJECT);
149
    return this->u_.from_object.object;
150
  }
151
 
152
  // Return the index of the section in the input relocatable or
153
  // dynamic object file.
154
  unsigned int
155
  shndx(bool* is_ordinary) const
156
  {
157
    gold_assert(this->source_ == FROM_OBJECT);
158
    *is_ordinary = this->is_ordinary_shndx_;
159
    return this->u_.from_object.shndx;
160
  }
161
 
162
  // Return the output data section with which this symbol is
163
  // associated, if the symbol was specially defined with respect to
164
  // an output data section.
165
  Output_data*
166
  output_data() const
167
  {
168
    gold_assert(this->source_ == IN_OUTPUT_DATA);
169
    return this->u_.in_output_data.output_data;
170
  }
171
 
172
  // If this symbol was defined with respect to an output data
173
  // section, return whether the value is an offset from end.
174
  bool
175
  offset_is_from_end() const
176
  {
177
    gold_assert(this->source_ == IN_OUTPUT_DATA);
178
    return this->u_.in_output_data.offset_is_from_end;
179
  }
180
 
181
  // Return the output segment with which this symbol is associated,
182
  // if the symbol was specially defined with respect to an output
183
  // segment.
184
  Output_segment*
185
  output_segment() const
186
  {
187
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
188
    return this->u_.in_output_segment.output_segment;
189
  }
190
 
191
  // If this symbol was defined with respect to an output segment,
192
  // return the offset base.
193
  Segment_offset_base
194
  offset_base() const
195
  {
196
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
197
    return this->u_.in_output_segment.offset_base;
198
  }
199
 
200
  // Return the symbol binding.
201
  elfcpp::STB
202
  binding() const
203
  { return this->binding_; }
204
 
205
  // Return the symbol type.
206
  elfcpp::STT
207
  type() const
208
  { return this->type_; }
209
 
210
  // Return true for function symbol.
211
  bool
212
  is_func() const
213
  {
214
    return (this->type_ == elfcpp::STT_FUNC
215
            || this->type_ == elfcpp::STT_GNU_IFUNC);
216
  }
217
 
218
  // Return the symbol visibility.
219
  elfcpp::STV
220
  visibility() const
221
  { return this->visibility_; }
222
 
223
  // Set the visibility.
224
  void
225
  set_visibility(elfcpp::STV visibility)
226
  { this->visibility_ = visibility; }
227
 
228
  // Override symbol visibility.
229
  void
230
  override_visibility(elfcpp::STV);
231
 
232
  // Set whether the symbol was originally a weak undef or a regular undef
233
  // when resolved by a dynamic def.
234
  inline void
235
  set_undef_binding(elfcpp::STB bind)
236
  {
237
    if (!this->undef_binding_set_ || this->undef_binding_weak_)
238
      {
239
        this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
240
        this->undef_binding_set_ = true;
241
      }
242
  }
243
 
244
  // Return TRUE if a weak undef was resolved by a dynamic def.
245
  inline bool
246
  is_undef_binding_weak() const
247
  { return this->undef_binding_weak_; }
248
 
249
  // Return the non-visibility part of the st_other field.
250
  unsigned char
251
  nonvis() const
252
  { return this->nonvis_; }
253
 
254
  // Return whether this symbol is a forwarder.  This will never be
255
  // true of a symbol found in the hash table, but may be true of
256
  // symbol pointers attached to object files.
257
  bool
258
  is_forwarder() const
259
  { return this->is_forwarder_; }
260
 
261
  // Mark this symbol as a forwarder.
262
  void
263
  set_forwarder()
264
  { this->is_forwarder_ = true; }
265
 
266
  // Return whether this symbol has an alias in the weak aliases table
267
  // in Symbol_table.
268
  bool
269
  has_alias() const
270
  { return this->has_alias_; }
271
 
272
  // Mark this symbol as having an alias.
273
  void
274
  set_has_alias()
275
  { this->has_alias_ = true; }
276
 
277
  // Return whether this symbol needs an entry in the dynamic symbol
278
  // table.
279
  bool
280
  needs_dynsym_entry() const
281
  {
282
    return (this->needs_dynsym_entry_
283
            || (this->in_reg()
284
                && this->in_dyn()
285
                && this->is_externally_visible()));
286
  }
287
 
288
  // Mark this symbol as needing an entry in the dynamic symbol table.
289
  void
290
  set_needs_dynsym_entry()
291
  { this->needs_dynsym_entry_ = true; }
292
 
293
  // Return whether this symbol should be added to the dynamic symbol
294
  // table.
295
  bool
296
  should_add_dynsym_entry(Symbol_table*) const;
297
 
298
  // Return whether this symbol has been seen in a regular object.
299
  bool
300
  in_reg() const
301
  { return this->in_reg_; }
302
 
303
  // Mark this symbol as having been seen in a regular object.
304
  void
305
  set_in_reg()
306
  { this->in_reg_ = true; }
307
 
308
  // Return whether this symbol has been seen in a dynamic object.
309
  bool
310
  in_dyn() const
311
  { return this->in_dyn_; }
312
 
313
  // Mark this symbol as having been seen in a dynamic object.
314
  void
315
  set_in_dyn()
316
  { this->in_dyn_ = true; }
317
 
318
  // Return whether this symbol has been seen in a real ELF object.
319
  // (IN_REG will return TRUE if the symbol has been seen in either
320
  // a real ELF object or an object claimed by a plugin.)
321
  bool
322
  in_real_elf() const
323
  { return this->in_real_elf_; }
324
 
325
  // Mark this symbol as having been seen in a real ELF object.
326
  void
327
  set_in_real_elf()
328
  { this->in_real_elf_ = true; }
329
 
330
  // Return whether this symbol was defined in a section that was
331
  // discarded from the link.  This is used to control some error
332
  // reporting.
333
  bool
334
  is_defined_in_discarded_section() const
335
  { return this->is_defined_in_discarded_section_; }
336
 
337
  // Mark this symbol as having been defined in a discarded section.
338
  void
339
  set_is_defined_in_discarded_section()
340
  { this->is_defined_in_discarded_section_ = true; }
341
 
342
  // Return the index of this symbol in the output file symbol table.
343
  // A value of -1U means that this symbol is not going into the
344
  // output file.  This starts out as zero, and is set to a non-zero
345
  // value by Symbol_table::finalize.  It is an error to ask for the
346
  // symbol table index before it has been set.
347
  unsigned int
348
  symtab_index() const
349
  {
350
    gold_assert(this->symtab_index_ != 0);
351
    return this->symtab_index_;
352
  }
353
 
354
  // Set the index of the symbol in the output file symbol table.
355
  void
356
  set_symtab_index(unsigned int index)
357
  {
358
    gold_assert(index != 0);
359
    this->symtab_index_ = index;
360
  }
361
 
362
  // Return whether this symbol already has an index in the output
363
  // file symbol table.
364
  bool
365
  has_symtab_index() const
366
  { return this->symtab_index_ != 0; }
367
 
368
  // Return the index of this symbol in the dynamic symbol table.  A
369
  // value of -1U means that this symbol is not going into the dynamic
370
  // symbol table.  This starts out as zero, and is set to a non-zero
371
  // during Layout::finalize.  It is an error to ask for the dynamic
372
  // symbol table index before it has been set.
373
  unsigned int
374
  dynsym_index() const
375
  {
376
    gold_assert(this->dynsym_index_ != 0);
377
    return this->dynsym_index_;
378
  }
379
 
380
  // Set the index of the symbol in the dynamic symbol table.
381
  void
382
  set_dynsym_index(unsigned int index)
383
  {
384
    gold_assert(index != 0);
385
    this->dynsym_index_ = index;
386
  }
387
 
388
  // Return whether this symbol already has an index in the dynamic
389
  // symbol table.
390
  bool
391
  has_dynsym_index() const
392
  { return this->dynsym_index_ != 0; }
393
 
394
  // Return whether this symbol has an entry in the GOT section.
395
  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
396
  bool
397
  has_got_offset(unsigned int got_type) const
398
  { return this->got_offsets_.get_offset(got_type) != -1U; }
399
 
400
  // Return the offset into the GOT section of this symbol.
401
  unsigned int
402
  got_offset(unsigned int got_type) const
403
  {
404
    unsigned int got_offset = this->got_offsets_.get_offset(got_type);
405
    gold_assert(got_offset != -1U);
406
    return got_offset;
407
  }
408
 
409
  // Set the GOT offset of this symbol.
410
  void
411
  set_got_offset(unsigned int got_type, unsigned int got_offset)
412
  { this->got_offsets_.set_offset(got_type, got_offset); }
413
 
414
  // Return the GOT offset list.
415
  const Got_offset_list*
416
  got_offset_list() const
417
  { return this->got_offsets_.get_list(); }
418
 
419
  // Return whether this symbol has an entry in the PLT section.
420
  bool
421
  has_plt_offset() const
422
  { return this->plt_offset_ != -1U; }
423
 
424
  // Return the offset into the PLT section of this symbol.
425
  unsigned int
426
  plt_offset() const
427
  {
428
    gold_assert(this->has_plt_offset());
429
    return this->plt_offset_;
430
  }
431
 
432
  // Set the PLT offset of this symbol.
433
  void
434
  set_plt_offset(unsigned int plt_offset)
435
  {
436
    gold_assert(plt_offset != -1U);
437
    this->plt_offset_ = plt_offset;
438
  }
439
 
440
  // Return whether this dynamic symbol needs a special value in the
441
  // dynamic symbol table.
442
  bool
443
  needs_dynsym_value() const
444
  { return this->needs_dynsym_value_; }
445
 
446
  // Set that this dynamic symbol needs a special value in the dynamic
447
  // symbol table.
448
  void
449
  set_needs_dynsym_value()
450
  {
451
    gold_assert(this->object()->is_dynamic());
452
    this->needs_dynsym_value_ = true;
453
  }
454
 
455
  // Return true if the final value of this symbol is known at link
456
  // time.
457
  bool
458
  final_value_is_known() const;
459
 
460
  // Return true if SHNDX represents a common symbol.  This depends on
461
  // the target.
462
  static bool
463
  is_common_shndx(unsigned int shndx);
464
 
465
  // Return whether this is a defined symbol (not undefined or
466
  // common).
467
  bool
468
  is_defined() const
469
  {
470
    bool is_ordinary;
471
    if (this->source_ != FROM_OBJECT)
472
      return this->source_ != IS_UNDEFINED;
473
    unsigned int shndx = this->shndx(&is_ordinary);
474
    return (is_ordinary
475
            ? shndx != elfcpp::SHN_UNDEF
476
            : !Symbol::is_common_shndx(shndx));
477
  }
478
 
479
  // Return true if this symbol is from a dynamic object.
480
  bool
481
  is_from_dynobj() const
482
  {
483
    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
484
  }
485
 
486
  // Return whether this is a placeholder symbol from a plugin object.
487
  bool
488
  is_placeholder() const
489
  {
490
    return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
491
  }
492
 
493
  // Return whether this is an undefined symbol.
494
  bool
495
  is_undefined() const
496
  {
497
    bool is_ordinary;
498
    return ((this->source_ == FROM_OBJECT
499
             && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
500
             && is_ordinary)
501
            || this->source_ == IS_UNDEFINED);
502
  }
503
 
504
  // Return whether this is a weak undefined symbol.
505
  bool
506
  is_weak_undefined() const
507
  { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
508
 
509
  // Return whether this is an absolute symbol.
510
  bool
511
  is_absolute() const
512
  {
513
    bool is_ordinary;
514
    return ((this->source_ == FROM_OBJECT
515
             && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
516
             && !is_ordinary)
517
            || this->source_ == IS_CONSTANT);
518
  }
519
 
520
  // Return whether this is a common symbol.
521
  bool
522
  is_common() const
523
  {
524
    if (this->source_ != FROM_OBJECT)
525
      return false;
526
    if (this->type_ == elfcpp::STT_COMMON)
527
      return true;
528
    bool is_ordinary;
529
    unsigned int shndx = this->shndx(&is_ordinary);
530
    return !is_ordinary && Symbol::is_common_shndx(shndx);
531
  }
532
 
533
  // Return whether this symbol can be seen outside this object.
534
  bool
535
  is_externally_visible() const
536
  {
537
    return (this->visibility_ == elfcpp::STV_DEFAULT
538
            || this->visibility_ == elfcpp::STV_PROTECTED);
539
  }
540
 
541
  // Return true if this symbol can be preempted by a definition in
542
  // another link unit.
543
  bool
544
  is_preemptible() const
545
  {
546
    // It doesn't make sense to ask whether a symbol defined in
547
    // another object is preemptible.
548
    gold_assert(!this->is_from_dynobj());
549
 
550
    // It doesn't make sense to ask whether an undefined symbol
551
    // is preemptible.
552
    gold_assert(!this->is_undefined());
553
 
554
    // If a symbol does not have default visibility, it can not be
555
    // seen outside this link unit and therefore is not preemptible.
556
    if (this->visibility_ != elfcpp::STV_DEFAULT)
557
      return false;
558
 
559
    // If this symbol has been forced to be a local symbol by a
560
    // version script, then it is not visible outside this link unit
561
    // and is not preemptible.
562
    if (this->is_forced_local_)
563
      return false;
564
 
565
    // If we are not producing a shared library, then nothing is
566
    // preemptible.
567
    if (!parameters->options().shared())
568
      return false;
569
 
570
    // If the user used -Bsymbolic, then nothing is preemptible.
571
    if (parameters->options().Bsymbolic())
572
      return false;
573
 
574
    // If the user used -Bsymbolic-functions, then functions are not
575
    // preemptible.  We explicitly check for not being STT_OBJECT,
576
    // rather than for being STT_FUNC, because that is what the GNU
577
    // linker does.
578
    if (this->type() != elfcpp::STT_OBJECT
579
        && parameters->options().Bsymbolic_functions())
580
      return false;
581
 
582
    // Otherwise the symbol is preemptible.
583
    return true;
584
  }
585
 
586
  // Return true if this symbol is a function that needs a PLT entry.
587
  bool
588
  needs_plt_entry() const
589
  {
590
    // An undefined symbol from an executable does not need a PLT entry.
591
    if (this->is_undefined() && !parameters->options().shared())
592
      return false;
593
 
594
    // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
595
    // doing a static link.
596
    if (this->type() == elfcpp::STT_GNU_IFUNC)
597
      return true;
598
 
599
    // We only need a PLT entry for a function.
600
    if (!this->is_func())
601
      return false;
602
 
603
    // If we're doing a static link or a -pie link, we don't create
604
    // PLT entries.
605
    if (parameters->doing_static_link()
606
        || parameters->options().pie())
607
      return false;
608
 
609
    // We need a PLT entry if the function is defined in a dynamic
610
    // object, or is undefined when building a shared object, or if it
611
    // is subject to pre-emption.
612
    return (this->is_from_dynobj()
613
            || this->is_undefined()
614
            || this->is_preemptible());
615
  }
616
 
617
  // When determining whether a reference to a symbol needs a dynamic
618
  // relocation, we need to know several things about the reference.
619
  // These flags may be or'ed together.  0 means that the symbol
620
  // isn't referenced at all.
621
  enum Reference_flags
622
  {
623
    // A reference to the symbol's absolute address.  This includes
624
    // references that cause an absolute address to be stored in the GOT.
625
    ABSOLUTE_REF = 1,
626
    // A reference that calculates the offset of the symbol from some
627
    // anchor point, such as the PC or GOT.
628
    RELATIVE_REF = 2,
629
    // A TLS-related reference.
630
    TLS_REF = 4,
631
    // A reference that can always be treated as a function call.
632
    FUNCTION_CALL = 8
633
  };
634
 
635
  // Given a direct absolute or pc-relative static relocation against
636
  // the global symbol, this function returns whether a dynamic relocation
637
  // is needed.
638
 
639
  bool
640
  needs_dynamic_reloc(int flags) const
641
  {
642
    // No dynamic relocations in a static link!
643
    if (parameters->doing_static_link())
644
      return false;
645
 
646
    // A reference to an undefined symbol from an executable should be
647
    // statically resolved to 0, and does not need a dynamic relocation.
648
    // This matches gnu ld behavior.
649
    if (this->is_undefined() && !parameters->options().shared())
650
      return false;
651
 
652
    // A reference to an absolute symbol does not need a dynamic relocation.
653
    if (this->is_absolute())
654
      return false;
655
 
656
    // An absolute reference within a position-independent output file
657
    // will need a dynamic relocation.
658
    if ((flags & ABSOLUTE_REF)
659
        && parameters->options().output_is_position_independent())
660
      return true;
661
 
662
    // A function call that can branch to a local PLT entry does not need
663
    // a dynamic relocation.
664
    if ((flags & FUNCTION_CALL) && this->has_plt_offset())
665
      return false;
666
 
667
    // A reference to any PLT entry in a non-position-independent executable
668
    // does not need a dynamic relocation.
669
    if (!parameters->options().output_is_position_independent()
670
        && this->has_plt_offset())
671
      return false;
672
 
673
    // A reference to a symbol defined in a dynamic object or to a
674
    // symbol that is preemptible will need a dynamic relocation.
675
    if (this->is_from_dynobj()
676
        || this->is_undefined()
677
        || this->is_preemptible())
678
      return true;
679
 
680
    // For all other cases, return FALSE.
681
    return false;
682
  }
683
 
684
  // Whether we should use the PLT offset associated with a symbol for
685
  // a relocation.  FLAGS is a set of Reference_flags.
686
 
687
  bool
688
  use_plt_offset(int flags) const
689
  {
690
    // If the symbol doesn't have a PLT offset, then naturally we
691
    // don't want to use it.
692
    if (!this->has_plt_offset())
693
      return false;
694
 
695
    // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
696
    if (this->type() == elfcpp::STT_GNU_IFUNC)
697
      return true;
698
 
699
    // If we are going to generate a dynamic relocation, then we will
700
    // wind up using that, so no need to use the PLT entry.
701
    if (this->needs_dynamic_reloc(flags))
702
      return false;
703
 
704
    // If the symbol is from a dynamic object, we need to use the PLT
705
    // entry.
706
    if (this->is_from_dynobj())
707
      return true;
708
 
709
    // If we are generating a shared object, and this symbol is
710
    // undefined or preemptible, we need to use the PLT entry.
711
    if (parameters->options().shared()
712
        && (this->is_undefined() || this->is_preemptible()))
713
      return true;
714
 
715
    // If this is a call to a weak undefined symbol, we need to use
716
    // the PLT entry; the symbol may be defined by a library loaded
717
    // at runtime.
718
    if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
719
      return true;
720
 
721
    // Otherwise we can use the regular definition.
722
    return false;
723
  }
724
 
725
  // Given a direct absolute static relocation against
726
  // the global symbol, where a dynamic relocation is needed, this
727
  // function returns whether a relative dynamic relocation can be used.
728
  // The caller must determine separately whether the static relocation
729
  // is compatible with a relative relocation.
730
 
731
  bool
732
  can_use_relative_reloc(bool is_function_call) const
733
  {
734
    // A function call that can branch to a local PLT entry can
735
    // use a RELATIVE relocation.
736
    if (is_function_call && this->has_plt_offset())
737
      return true;
738
 
739
    // A reference to a symbol defined in a dynamic object or to a
740
    // symbol that is preemptible can not use a RELATIVE relocation.
741
    if (this->is_from_dynobj()
742
        || this->is_undefined()
743
        || this->is_preemptible())
744
      return false;
745
 
746
    // For all other cases, return TRUE.
747
    return true;
748
  }
749
 
750
  // Return the output section where this symbol is defined.  Return
751
  // NULL if the symbol has an absolute value.
752
  Output_section*
753
  output_section() const;
754
 
755
  // Set the symbol's output section.  This is used for symbols
756
  // defined in scripts.  This should only be called after the symbol
757
  // table has been finalized.
758
  void
759
  set_output_section(Output_section*);
760
 
761
  // Return whether there should be a warning for references to this
762
  // symbol.
763
  bool
764
  has_warning() const
765
  { return this->has_warning_; }
766
 
767
  // Mark this symbol as having a warning.
768
  void
769
  set_has_warning()
770
  { this->has_warning_ = true; }
771
 
772
  // Return whether this symbol is defined by a COPY reloc from a
773
  // dynamic object.
774
  bool
775
  is_copied_from_dynobj() const
776
  { return this->is_copied_from_dynobj_; }
777
 
778
  // Mark this symbol as defined by a COPY reloc.
779
  void
780
  set_is_copied_from_dynobj()
781
  { this->is_copied_from_dynobj_ = true; }
782
 
783
  // Return whether this symbol is forced to visibility STB_LOCAL
784
  // by a "local:" entry in a version script.
785
  bool
786
  is_forced_local() const
787
  { return this->is_forced_local_; }
788
 
789
  // Mark this symbol as forced to STB_LOCAL visibility.
790
  void
791
  set_is_forced_local()
792
  { this->is_forced_local_ = true; }
793
 
794
  // Return true if this may need a COPY relocation.
795
  // References from an executable object to non-function symbols
796
  // defined in a dynamic object may need a COPY relocation.
797
  bool
798
  may_need_copy_reloc() const
799
  {
800
    return (!parameters->options().output_is_position_independent()
801
            && parameters->options().copyreloc()
802
            && this->is_from_dynobj()
803
            && !this->is_func());
804
  }
805
 
806
 protected:
807
  // Instances of this class should always be created at a specific
808
  // size.
809
  Symbol()
810
  { memset(this, 0, sizeof *this); }
811
 
812
  // Initialize the general fields.
813
  void
814
  init_fields(const char* name, const char* version,
815
              elfcpp::STT type, elfcpp::STB binding,
816
              elfcpp::STV visibility, unsigned char nonvis);
817
 
818
  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
819
  // section index, IS_ORDINARY is whether it is a normal section
820
  // index rather than a special code.
821
  template<int size, bool big_endian>
822
  void
823
  init_base_object(const char* name, const char* version, Object* object,
824
                   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
825
                   bool is_ordinary);
826
 
827
  // Initialize fields for an Output_data.
828
  void
829
  init_base_output_data(const char* name, const char* version, Output_data*,
830
                        elfcpp::STT, elfcpp::STB, elfcpp::STV,
831
                        unsigned char nonvis, bool offset_is_from_end);
832
 
833
  // Initialize fields for an Output_segment.
834
  void
835
  init_base_output_segment(const char* name, const char* version,
836
                           Output_segment* os, elfcpp::STT type,
837
                           elfcpp::STB binding, elfcpp::STV visibility,
838
                           unsigned char nonvis,
839
                           Segment_offset_base offset_base);
840
 
841
  // Initialize fields for a constant.
842
  void
843
  init_base_constant(const char* name, const char* version, elfcpp::STT type,
844
                     elfcpp::STB binding, elfcpp::STV visibility,
845
                     unsigned char nonvis);
846
 
847
  // Initialize fields for an undefined symbol.
848
  void
849
  init_base_undefined(const char* name, const char* version, elfcpp::STT type,
850
                      elfcpp::STB binding, elfcpp::STV visibility,
851
                      unsigned char nonvis);
852
 
853
  // Override existing symbol.
854
  template<int size, bool big_endian>
855
  void
856
  override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
857
                bool is_ordinary, Object* object, const char* version);
858
 
859
  // Override existing symbol with a special symbol.
860
  void
861
  override_base_with_special(const Symbol* from);
862
 
863
  // Override symbol version.
864
  void
865
  override_version(const char* version);
866
 
867
  // Allocate a common symbol by giving it a location in the output
868
  // file.
869
  void
870
  allocate_base_common(Output_data*);
871
 
872
 private:
873
  Symbol(const Symbol&);
874
  Symbol& operator=(const Symbol&);
875
 
876
  // Symbol name (expected to point into a Stringpool).
877
  const char* name_;
878
  // Symbol version (expected to point into a Stringpool).  This may
879
  // be NULL.
880
  const char* version_;
881
 
882
  union
883
  {
884
    // This struct is used if SOURCE_ == FROM_OBJECT.
885
    struct
886
    {
887
      // Object in which symbol is defined, or in which it was first
888
      // seen.
889
      Object* object;
890
      // Section number in object_ in which symbol is defined.
891
      unsigned int shndx;
892
    } from_object;
893
 
894
    // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
895
    struct
896
    {
897
      // Output_data in which symbol is defined.  Before
898
      // Layout::finalize the symbol's value is an offset within the
899
      // Output_data.
900
      Output_data* output_data;
901
      // True if the offset is from the end, false if the offset is
902
      // from the beginning.
903
      bool offset_is_from_end;
904
    } in_output_data;
905
 
906
    // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
907
    struct
908
    {
909
      // Output_segment in which the symbol is defined.  Before
910
      // Layout::finalize the symbol's value is an offset.
911
      Output_segment* output_segment;
912
      // The base to use for the offset before Layout::finalize.
913
      Segment_offset_base offset_base;
914
    } in_output_segment;
915
  } u_;
916
 
917
  // The index of this symbol in the output file.  If the symbol is
918
  // not going into the output file, this value is -1U.  This field
919
  // starts as always holding zero.  It is set to a non-zero value by
920
  // Symbol_table::finalize.
921
  unsigned int symtab_index_;
922
 
923
  // The index of this symbol in the dynamic symbol table.  If the
924
  // symbol is not going into the dynamic symbol table, this value is
925
  // -1U.  This field starts as always holding zero.  It is set to a
926
  // non-zero value during Layout::finalize.
927
  unsigned int dynsym_index_;
928
 
929
  // The GOT section entries for this symbol.  A symbol may have more
930
  // than one GOT offset (e.g., when mixing modules compiled with two
931
  // different TLS models), but will usually have at most one.
932
  Got_offset_list got_offsets_;
933
 
934
  // If this symbol has an entry in the PLT section, then this is the
935
  // offset from the start of the PLT section.  This is -1U if there
936
  // is no PLT entry.
937
  unsigned int plt_offset_;
938
 
939
  // Symbol type (bits 0 to 3).
940
  elfcpp::STT type_ : 4;
941
  // Symbol binding (bits 4 to 7).
942
  elfcpp::STB binding_ : 4;
943
  // Symbol visibility (bits 8 to 9).
944
  elfcpp::STV visibility_ : 2;
945
  // Rest of symbol st_other field (bits 10 to 15).
946
  unsigned int nonvis_ : 6;
947
  // The type of symbol (bits 16 to 18).
948
  Source source_ : 3;
949
  // True if this is the default version of the symbol (bit 19).
950
  bool is_def_ : 1;
951
  // True if this symbol really forwards to another symbol.  This is
952
  // used when we discover after the fact that two different entries
953
  // in the hash table really refer to the same symbol.  This will
954
  // never be set for a symbol found in the hash table, but may be set
955
  // for a symbol found in the list of symbols attached to an Object.
956
  // It forwards to the symbol found in the forwarders_ map of
957
  // Symbol_table (bit 20).
958
  bool is_forwarder_ : 1;
959
  // True if the symbol has an alias in the weak_aliases table in
960
  // Symbol_table (bit 21).
961
  bool has_alias_ : 1;
962
  // True if this symbol needs to be in the dynamic symbol table (bit
963
  // 22).
964
  bool needs_dynsym_entry_ : 1;
965
  // True if we've seen this symbol in a regular object (bit 23).
966
  bool in_reg_ : 1;
967
  // True if we've seen this symbol in a dynamic object (bit 24).
968
  bool in_dyn_ : 1;
969
  // True if this is a dynamic symbol which needs a special value in
970
  // the dynamic symbol table (bit 25).
971
  bool needs_dynsym_value_ : 1;
972
  // True if there is a warning for this symbol (bit 26).
973
  bool has_warning_ : 1;
974
  // True if we are using a COPY reloc for this symbol, so that the
975
  // real definition lives in a dynamic object (bit 27).
976
  bool is_copied_from_dynobj_ : 1;
977
  // True if this symbol was forced to local visibility by a version
978
  // script (bit 28).
979
  bool is_forced_local_ : 1;
980
  // True if the field u_.from_object.shndx is an ordinary section
981
  // index, not one of the special codes from SHN_LORESERVE to
982
  // SHN_HIRESERVE (bit 29).
983
  bool is_ordinary_shndx_ : 1;
984
  // True if we've seen this symbol in a real ELF object (bit 30).
985
  bool in_real_elf_ : 1;
986
  // True if this symbol is defined in a section which was discarded
987
  // (bit 31).
988
  bool is_defined_in_discarded_section_ : 1;
989
  // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
990
  bool undef_binding_set_ : 1;
991
  // True if this symbol was a weak undef resolved by a dynamic def
992
  // (bit 33).
993
  bool undef_binding_weak_ : 1;
994
};
995
 
996
// The parts of a symbol which are size specific.  Using a template
997
// derived class like this helps us use less space on a 32-bit system.
998
 
999
template<int size>
1000
class Sized_symbol : public Symbol
1001
{
1002
 public:
1003
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1004
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1005
 
1006
  Sized_symbol()
1007
  { }
1008
 
1009
  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1010
  // section index, IS_ORDINARY is whether it is a normal section
1011
  // index rather than a special code.
1012
  template<bool big_endian>
1013
  void
1014
  init_object(const char* name, const char* version, Object* object,
1015
              const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1016
              bool is_ordinary);
1017
 
1018
  // Initialize fields for an Output_data.
1019
  void
1020
  init_output_data(const char* name, const char* version, Output_data*,
1021
                   Value_type value, Size_type symsize, elfcpp::STT,
1022
                   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1023
                   bool offset_is_from_end);
1024
 
1025
  // Initialize fields for an Output_segment.
1026
  void
1027
  init_output_segment(const char* name, const char* version, Output_segment*,
1028
                      Value_type value, Size_type symsize, elfcpp::STT,
1029
                      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1030
                      Segment_offset_base offset_base);
1031
 
1032
  // Initialize fields for a constant.
1033
  void
1034
  init_constant(const char* name, const char* version, Value_type value,
1035
                Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1036
                unsigned char nonvis);
1037
 
1038
  // Initialize fields for an undefined symbol.
1039
  void
1040
  init_undefined(const char* name, const char* version, elfcpp::STT,
1041
                 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1042
 
1043
  // Override existing symbol.
1044
  template<bool big_endian>
1045
  void
1046
  override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1047
           bool is_ordinary, Object* object, const char* version);
1048
 
1049
  // Override existing symbol with a special symbol.
1050
  void
1051
  override_with_special(const Sized_symbol<size>*);
1052
 
1053
  // Return the symbol's value.
1054
  Value_type
1055
  value() const
1056
  { return this->value_; }
1057
 
1058
  // Return the symbol's size (we can't call this 'size' because that
1059
  // is a template parameter).
1060
  Size_type
1061
  symsize() const
1062
  { return this->symsize_; }
1063
 
1064
  // Set the symbol size.  This is used when resolving common symbols.
1065
  void
1066
  set_symsize(Size_type symsize)
1067
  { this->symsize_ = symsize; }
1068
 
1069
  // Set the symbol value.  This is called when we store the final
1070
  // values of the symbols into the symbol table.
1071
  void
1072
  set_value(Value_type value)
1073
  { this->value_ = value; }
1074
 
1075
  // Allocate a common symbol by giving it a location in the output
1076
  // file.
1077
  void
1078
  allocate_common(Output_data*, Value_type value);
1079
 
1080
 private:
1081
  Sized_symbol(const Sized_symbol&);
1082
  Sized_symbol& operator=(const Sized_symbol&);
1083
 
1084
  // Symbol value.  Before Layout::finalize this is the offset in the
1085
  // input section.  This is set to the final value during
1086
  // Layout::finalize.
1087
  Value_type value_;
1088
  // Symbol size.
1089
  Size_type symsize_;
1090
};
1091
 
1092
// A struct describing a symbol defined by the linker, where the value
1093
// of the symbol is defined based on an output section.  This is used
1094
// for symbols defined by the linker, like "_init_array_start".
1095
 
1096
struct Define_symbol_in_section
1097
{
1098
  // The symbol name.
1099
  const char* name;
1100
  // The name of the output section with which this symbol should be
1101
  // associated.  If there is no output section with that name, the
1102
  // symbol will be defined as zero.
1103
  const char* output_section;
1104
  // The offset of the symbol within the output section.  This is an
1105
  // offset from the start of the output section, unless start_at_end
1106
  // is true, in which case this is an offset from the end of the
1107
  // output section.
1108
  uint64_t value;
1109
  // The size of the symbol.
1110
  uint64_t size;
1111
  // The symbol type.
1112
  elfcpp::STT type;
1113
  // The symbol binding.
1114
  elfcpp::STB binding;
1115
  // The symbol visibility.
1116
  elfcpp::STV visibility;
1117
  // The rest of the st_other field.
1118
  unsigned char nonvis;
1119
  // If true, the value field is an offset from the end of the output
1120
  // section.
1121
  bool offset_is_from_end;
1122
  // If true, this symbol is defined only if we see a reference to it.
1123
  bool only_if_ref;
1124
};
1125
 
1126
// A struct describing a symbol defined by the linker, where the value
1127
// of the symbol is defined based on a segment.  This is used for
1128
// symbols defined by the linker, like "_end".  We describe the
1129
// segment with which the symbol should be associated by its
1130
// characteristics.  If no segment meets these characteristics, the
1131
// symbol will be defined as zero.  If there is more than one segment
1132
// which meets these characteristics, we will use the first one.
1133
 
1134
struct Define_symbol_in_segment
1135
{
1136
  // The symbol name.
1137
  const char* name;
1138
  // The segment type where the symbol should be defined, typically
1139
  // PT_LOAD.
1140
  elfcpp::PT segment_type;
1141
  // Bitmask of segment flags which must be set.
1142
  elfcpp::PF segment_flags_set;
1143
  // Bitmask of segment flags which must be clear.
1144
  elfcpp::PF segment_flags_clear;
1145
  // The offset of the symbol within the segment.  The offset is
1146
  // calculated from the position set by offset_base.
1147
  uint64_t value;
1148
  // The size of the symbol.
1149
  uint64_t size;
1150
  // The symbol type.
1151
  elfcpp::STT type;
1152
  // The symbol binding.
1153
  elfcpp::STB binding;
1154
  // The symbol visibility.
1155
  elfcpp::STV visibility;
1156
  // The rest of the st_other field.
1157
  unsigned char nonvis;
1158
  // The base from which we compute the offset.
1159
  Symbol::Segment_offset_base offset_base;
1160
  // If true, this symbol is defined only if we see a reference to it.
1161
  bool only_if_ref;
1162
};
1163
 
1164
// This class manages warnings.  Warnings are a GNU extension.  When
1165
// we see a section named .gnu.warning.SYM in an object file, and if
1166
// we wind using the definition of SYM from that object file, then we
1167
// will issue a warning for any relocation against SYM from a
1168
// different object file.  The text of the warning is the contents of
1169
// the section.  This is not precisely the definition used by the old
1170
// GNU linker; the old GNU linker treated an occurrence of
1171
// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1172
// would trigger a warning on any reference.  However, it was
1173
// inconsistent in that a warning in a dynamic object only triggered
1174
// if there was no definition in a regular object.  This linker is
1175
// different in that we only issue a warning if we use the symbol
1176
// definition from the same object file as the warning section.
1177
 
1178
class Warnings
1179
{
1180
 public:
1181
  Warnings()
1182
    : warnings_()
1183
  { }
1184
 
1185
  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1186
  // of the warning.
1187
  void
1188
  add_warning(Symbol_table* symtab, const char* name, Object* obj,
1189
              const std::string& warning);
1190
 
1191
  // For each symbol for which we should give a warning, make a note
1192
  // on the symbol.
1193
  void
1194
  note_warnings(Symbol_table* symtab);
1195
 
1196
  // Issue a warning for a reference to SYM at RELINFO's location.
1197
  template<int size, bool big_endian>
1198
  void
1199
  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1200
                size_t relnum, off_t reloffset) const;
1201
 
1202
 private:
1203
  Warnings(const Warnings&);
1204
  Warnings& operator=(const Warnings&);
1205
 
1206
  // What we need to know to get the warning text.
1207
  struct Warning_location
1208
  {
1209
    // The object the warning is in.
1210
    Object* object;
1211
    // The warning text.
1212
    std::string text;
1213
 
1214
    Warning_location()
1215
      : object(NULL), text()
1216
    { }
1217
 
1218
    void
1219
    set(Object* o, const std::string& t)
1220
    {
1221
      this->object = o;
1222
      this->text = t;
1223
    }
1224
  };
1225
 
1226
  // A mapping from warning symbol names (canonicalized in
1227
  // Symbol_table's namepool_ field) to warning information.
1228
  typedef Unordered_map<const char*, Warning_location> Warning_table;
1229
 
1230
  Warning_table warnings_;
1231
};
1232
 
1233
// The main linker symbol table.
1234
 
1235
class Symbol_table
1236
{
1237
 public:
1238
  // The different places where a symbol definition can come from.
1239
  enum Defined
1240
  {
1241
    // Defined in an object file--the normal case.
1242
    OBJECT,
1243
    // Defined for a COPY reloc.
1244
    COPY,
1245
    // Defined on the command line using --defsym.
1246
    DEFSYM,
1247
    // Defined (so to speak) on the command line using -u.
1248
    UNDEFINED,
1249
    // Defined in a linker script.
1250
    SCRIPT,
1251
    // Predefined by the linker.
1252
    PREDEFINED,
1253
  };
1254
 
1255
  // The order in which we sort common symbols.
1256
  enum Sort_commons_order
1257
  {
1258
    SORT_COMMONS_BY_SIZE_DESCENDING,
1259
    SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1260
    SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1261
  };
1262
 
1263
  // COUNT is an estimate of how many symbols will be inserted in the
1264
  // symbol table.  It's ok to put 0 if you don't know; a correct
1265
  // guess will just save some CPU by reducing hashtable resizes.
1266
  Symbol_table(unsigned int count, const Version_script_info& version_script);
1267
 
1268
  ~Symbol_table();
1269
 
1270
  void
1271
  set_icf(Icf* icf)
1272
  { this->icf_ = icf;}
1273
 
1274
  Icf*
1275
  icf() const
1276
  { return this->icf_; }
1277
 
1278
  // Returns true if ICF determined that this is a duplicate section. 
1279
  bool
1280
  is_section_folded(Object* obj, unsigned int shndx) const;
1281
 
1282
  void
1283
  set_gc(Garbage_collection* gc)
1284
  { this->gc_ = gc; }
1285
 
1286
  Garbage_collection*
1287
  gc() const
1288
  { return this->gc_; }
1289
 
1290
  // During garbage collection, this keeps undefined symbols.
1291
  void
1292
  gc_mark_undef_symbols(Layout*);
1293
 
1294
  // During garbage collection, this ensures externally visible symbols
1295
  // are not treated as garbage while building shared objects.
1296
  void
1297
  gc_mark_symbol_for_shlib(Symbol* sym);
1298
 
1299
  // During garbage collection, this keeps sections that correspond to 
1300
  // symbols seen in dynamic objects.
1301
  inline void
1302
  gc_mark_dyn_syms(Symbol* sym);
1303
 
1304
  // Add COUNT external symbols from the relocatable object RELOBJ to
1305
  // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1306
  // offset in the symbol table of the first symbol, SYM_NAMES is
1307
  // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1308
  // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1309
  // *DEFINED to the number of defined symbols.
1310
  template<int size, bool big_endian>
1311
  void
1312
  add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1313
                  const unsigned char* syms, size_t count,
1314
                  size_t symndx_offset, const char* sym_names,
1315
                  size_t sym_name_size,
1316
                  typename Sized_relobj_file<size, big_endian>::Symbols*,
1317
                  size_t* defined);
1318
 
1319
  // Add one external symbol from the plugin object OBJ to the symbol table.
1320
  // Returns a pointer to the resolved symbol in the symbol table.
1321
  template<int size, bool big_endian>
1322
  Symbol*
1323
  add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1324
                     const char* name, const char* ver,
1325
                     elfcpp::Sym<size, big_endian>* sym);
1326
 
1327
  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1328
  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1329
  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1330
  // symbol version data.
1331
  template<int size, bool big_endian>
1332
  void
1333
  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1334
                  const unsigned char* syms, size_t count,
1335
                  const char* sym_names, size_t sym_name_size,
1336
                  const unsigned char* versym, size_t versym_size,
1337
                  const std::vector<const char*>*,
1338
                  typename Sized_relobj_file<size, big_endian>::Symbols*,
1339
                  size_t* defined);
1340
 
1341
  // Add one external symbol from the incremental object OBJ to the symbol
1342
  // table.  Returns a pointer to the resolved symbol in the symbol table.
1343
  template<int size, bool big_endian>
1344
  Symbol*
1345
  add_from_incrobj(Object* obj, const char* name,
1346
                   const char* ver, elfcpp::Sym<size, big_endian>* sym);
1347
 
1348
  // Define a special symbol based on an Output_data.  It is a
1349
  // multiple definition error if this symbol is already defined.
1350
  Symbol*
1351
  define_in_output_data(const char* name, const char* version, Defined,
1352
                        Output_data*, uint64_t value, uint64_t symsize,
1353
                        elfcpp::STT type, elfcpp::STB binding,
1354
                        elfcpp::STV visibility, unsigned char nonvis,
1355
                        bool offset_is_from_end, bool only_if_ref);
1356
 
1357
  // Define a special symbol based on an Output_segment.  It is a
1358
  // multiple definition error if this symbol is already defined.
1359
  Symbol*
1360
  define_in_output_segment(const char* name, const char* version, Defined,
1361
                           Output_segment*, uint64_t value, uint64_t symsize,
1362
                           elfcpp::STT type, elfcpp::STB binding,
1363
                           elfcpp::STV visibility, unsigned char nonvis,
1364
                           Symbol::Segment_offset_base, bool only_if_ref);
1365
 
1366
  // Define a special symbol with a constant value.  It is a multiple
1367
  // definition error if this symbol is already defined.
1368
  Symbol*
1369
  define_as_constant(const char* name, const char* version, Defined,
1370
                     uint64_t value, uint64_t symsize, elfcpp::STT type,
1371
                     elfcpp::STB binding, elfcpp::STV visibility,
1372
                     unsigned char nonvis, bool only_if_ref,
1373
                     bool force_override);
1374
 
1375
  // Define a set of symbols in output sections.  If ONLY_IF_REF is
1376
  // true, only define them if they are referenced.
1377
  void
1378
  define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1379
                 bool only_if_ref);
1380
 
1381
  // Define a set of symbols in output segments.  If ONLY_IF_REF is
1382
  // true, only defined them if they are referenced.
1383
  void
1384
  define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1385
                 bool only_if_ref);
1386
 
1387
  // Define SYM using a COPY reloc.  POSD is the Output_data where the
1388
  // symbol should be defined--typically a .dyn.bss section.  VALUE is
1389
  // the offset within POSD.
1390
  template<int size>
1391
  void
1392
  define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1393
                         typename elfcpp::Elf_types<size>::Elf_Addr);
1394
 
1395
  // Look up a symbol.
1396
  Symbol*
1397
  lookup(const char*, const char* version = NULL) const;
1398
 
1399
  // Return the real symbol associated with the forwarder symbol FROM.
1400
  Symbol*
1401
  resolve_forwards(const Symbol* from) const;
1402
 
1403
  // Return the sized version of a symbol in this table.
1404
  template<int size>
1405
  Sized_symbol<size>*
1406
  get_sized_symbol(Symbol*) const;
1407
 
1408
  template<int size>
1409
  const Sized_symbol<size>*
1410
  get_sized_symbol(const Symbol*) const;
1411
 
1412
  // Return the count of undefined symbols seen.
1413
  size_t
1414
  saw_undefined() const
1415
  { return this->saw_undefined_; }
1416
 
1417
  // Allocate the common symbols
1418
  void
1419
  allocate_commons(Layout*, Mapfile*);
1420
 
1421
  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1422
  // of the warning.
1423
  void
1424
  add_warning(const char* name, Object* obj, const std::string& warning)
1425
  { this->warnings_.add_warning(this, name, obj, warning); }
1426
 
1427
  // Canonicalize a symbol name for use in the hash table.
1428
  const char*
1429
  canonicalize_name(const char* name)
1430
  { return this->namepool_.add(name, true, NULL); }
1431
 
1432
  // Possibly issue a warning for a reference to SYM at LOCATION which
1433
  // is in OBJ.
1434
  template<int size, bool big_endian>
1435
  void
1436
  issue_warning(const Symbol* sym,
1437
                const Relocate_info<size, big_endian>* relinfo,
1438
                size_t relnum, off_t reloffset) const
1439
  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1440
 
1441
  // Check candidate_odr_violations_ to find symbols with the same name
1442
  // but apparently different definitions (different source-file/line-no).
1443
  void
1444
  detect_odr_violations(const Task*, const char* output_file_name) const;
1445
 
1446
  // Add any undefined symbols named on the command line to the symbol
1447
  // table.
1448
  void
1449
  add_undefined_symbols_from_command_line(Layout*);
1450
 
1451
  // SYM is defined using a COPY reloc.  Return the dynamic object
1452
  // where the original definition was found.
1453
  Dynobj*
1454
  get_copy_source(const Symbol* sym) const;
1455
 
1456
  // Set the dynamic symbol indexes.  INDEX is the index of the first
1457
  // global dynamic symbol.  Pointers to the symbols are stored into
1458
  // the vector.  The names are stored into the Stringpool.  This
1459
  // returns an updated dynamic symbol index.
1460
  unsigned int
1461
  set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1462
                     Stringpool*, Versions*);
1463
 
1464
  // Finalize the symbol table after we have set the final addresses
1465
  // of all the input sections.  This sets the final symbol indexes,
1466
  // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1467
  // index of the first global symbol.  OFF is the file offset of the
1468
  // global symbol table, DYNOFF is the offset of the globals in the
1469
  // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1470
  // global dynamic symbol, and DYNCOUNT is the number of global
1471
  // dynamic symbols.  This records the parameters, and returns the
1472
  // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1473
  // local symbols.
1474
  off_t
1475
  finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1476
           Stringpool* pool, unsigned int* plocal_symcount);
1477
 
1478
  // Set the final file offset of the symbol table.
1479
  void
1480
  set_file_offset(off_t off)
1481
  { this->offset_ = off; }
1482
 
1483
  // Status code of Symbol_table::compute_final_value.
1484
  enum Compute_final_value_status
1485
  {
1486
    // No error.
1487
    CFVS_OK,
1488
    // Unsupported symbol section.
1489
    CFVS_UNSUPPORTED_SYMBOL_SECTION,
1490
    // No output section.
1491
    CFVS_NO_OUTPUT_SECTION
1492
  };
1493
 
1494
  // Compute the final value of SYM and store status in location PSTATUS.
1495
  // During relaxation, this may be called multiple times for a symbol to 
1496
  // compute its would-be final value in each relaxation pass.
1497
 
1498
  template<int size>
1499
  typename Sized_symbol<size>::Value_type
1500
  compute_final_value(const Sized_symbol<size>* sym,
1501
                      Compute_final_value_status* pstatus) const;
1502
 
1503
  // Return the index of the first global symbol.
1504
  unsigned int
1505
  first_global_index() const
1506
  { return this->first_global_index_; }
1507
 
1508
  // Return the total number of symbols in the symbol table.
1509
  unsigned int
1510
  output_count() const
1511
  { return this->output_count_; }
1512
 
1513
  // Write out the global symbols.
1514
  void
1515
  write_globals(const Stringpool*, const Stringpool*,
1516
                Output_symtab_xindex*, Output_symtab_xindex*,
1517
                Output_file*) const;
1518
 
1519
  // Write out a section symbol.  Return the updated offset.
1520
  void
1521
  write_section_symbol(const Output_section*, Output_symtab_xindex*,
1522
                       Output_file*, off_t) const;
1523
 
1524
  // Loop over all symbols, applying the function F to each.
1525
  template<int size, typename F>
1526
  void
1527
  for_all_symbols(F f) const
1528
  {
1529
    for (Symbol_table_type::const_iterator p = this->table_.begin();
1530
         p != this->table_.end();
1531
         ++p)
1532
      {
1533
        Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1534
        f(sym);
1535
      }
1536
  }
1537
 
1538
  // Dump statistical information to stderr.
1539
  void
1540
  print_stats() const;
1541
 
1542
  // Return the version script information.
1543
  const Version_script_info&
1544
  version_script() const
1545
  { return version_script_; }
1546
 
1547
 private:
1548
  Symbol_table(const Symbol_table&);
1549
  Symbol_table& operator=(const Symbol_table&);
1550
 
1551
  // The type of the list of common symbols.
1552
  typedef std::vector<Symbol*> Commons_type;
1553
 
1554
  // The type of the symbol hash table.
1555
 
1556
  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1557
 
1558
  // The hash function.  The key values are Stringpool keys.
1559
  struct Symbol_table_hash
1560
  {
1561
    inline size_t
1562
    operator()(const Symbol_table_key& key) const
1563
    {
1564
      return key.first ^ key.second;
1565
    }
1566
  };
1567
 
1568
  struct Symbol_table_eq
1569
  {
1570
    bool
1571
    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1572
  };
1573
 
1574
  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1575
                        Symbol_table_eq> Symbol_table_type;
1576
 
1577
  // A map from symbol name (as a pointer into the namepool) to all
1578
  // the locations the symbols is (weakly) defined (and certain other
1579
  // conditions are met).  This map will be used later to detect
1580
  // possible One Definition Rule (ODR) violations.
1581
  struct Symbol_location
1582
  {
1583
    Object* object;         // Object where the symbol is defined.
1584
    unsigned int shndx;     // Section-in-object where the symbol is defined.
1585
    off_t offset;           // Offset-in-section where the symbol is defined.
1586
    bool operator==(const Symbol_location& that) const
1587
    {
1588
      return (this->object == that.object
1589
              && this->shndx == that.shndx
1590
              && this->offset == that.offset);
1591
    }
1592
  };
1593
 
1594
  struct Symbol_location_hash
1595
  {
1596
    size_t operator()(const Symbol_location& loc) const
1597
    { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1598
  };
1599
 
1600
  typedef Unordered_map<const char*,
1601
                        Unordered_set<Symbol_location, Symbol_location_hash> >
1602
  Odr_map;
1603
 
1604
  // Make FROM a forwarder symbol to TO.
1605
  void
1606
  make_forwarder(Symbol* from, Symbol* to);
1607
 
1608
  // Add a symbol.
1609
  template<int size, bool big_endian>
1610
  Sized_symbol<size>*
1611
  add_from_object(Object*, const char* name, Stringpool::Key name_key,
1612
                  const char* version, Stringpool::Key version_key,
1613
                  bool def, const elfcpp::Sym<size, big_endian>& sym,
1614
                  unsigned int st_shndx, bool is_ordinary,
1615
                  unsigned int orig_st_shndx);
1616
 
1617
  // Define a default symbol.
1618
  template<int size, bool big_endian>
1619
  void
1620
  define_default_version(Sized_symbol<size>*, bool,
1621
                         Symbol_table_type::iterator);
1622
 
1623
  // Resolve symbols.
1624
  template<int size, bool big_endian>
1625
  void
1626
  resolve(Sized_symbol<size>* to,
1627
          const elfcpp::Sym<size, big_endian>& sym,
1628
          unsigned int st_shndx, bool is_ordinary,
1629
          unsigned int orig_st_shndx,
1630
          Object*, const char* version);
1631
 
1632
  template<int size, bool big_endian>
1633
  void
1634
  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1635
 
1636
  // Record that a symbol is forced to be local by a version script or
1637
  // by visibility.
1638
  void
1639
  force_local(Symbol*);
1640
 
1641
  // Adjust NAME and *NAME_KEY for wrapping.
1642
  const char*
1643
  wrap_symbol(const char* name, Stringpool::Key* name_key);
1644
 
1645
  // Whether we should override a symbol, based on flags in
1646
  // resolve.cc.
1647
  static bool
1648
  should_override(const Symbol*, unsigned int, Defined, Object*, bool*, bool*);
1649
 
1650
  // Report a problem in symbol resolution.
1651
  static void
1652
  report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1653
                         Defined, Object* object);
1654
 
1655
  // Override a symbol.
1656
  template<int size, bool big_endian>
1657
  void
1658
  override(Sized_symbol<size>* tosym,
1659
           const elfcpp::Sym<size, big_endian>& fromsym,
1660
           unsigned int st_shndx, bool is_ordinary,
1661
           Object* object, const char* version);
1662
 
1663
  // Whether we should override a symbol with a special symbol which
1664
  // is automatically defined by the linker.
1665
  static bool
1666
  should_override_with_special(const Symbol*, Defined);
1667
 
1668
  // Override a symbol with a special symbol.
1669
  template<int size>
1670
  void
1671
  override_with_special(Sized_symbol<size>* tosym,
1672
                        const Sized_symbol<size>* fromsym);
1673
 
1674
  // Record all weak alias sets for a dynamic object.
1675
  template<int size>
1676
  void
1677
  record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1678
 
1679
  // Define a special symbol.
1680
  template<int size, bool big_endian>
1681
  Sized_symbol<size>*
1682
  define_special_symbol(const char** pname, const char** pversion,
1683
                        bool only_if_ref, Sized_symbol<size>** poldsym,
1684
                        bool* resolve_oldsym);
1685
 
1686
  // Define a symbol in an Output_data, sized version.
1687
  template<int size>
1688
  Sized_symbol<size>*
1689
  do_define_in_output_data(const char* name, const char* version, Defined,
1690
                           Output_data*,
1691
                           typename elfcpp::Elf_types<size>::Elf_Addr value,
1692
                           typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1693
                           elfcpp::STT type, elfcpp::STB binding,
1694
                           elfcpp::STV visibility, unsigned char nonvis,
1695
                           bool offset_is_from_end, bool only_if_ref);
1696
 
1697
  // Define a symbol in an Output_segment, sized version.
1698
  template<int size>
1699
  Sized_symbol<size>*
1700
  do_define_in_output_segment(
1701
    const char* name, const char* version, Defined, Output_segment* os,
1702
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1703
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1704
    elfcpp::STT type, elfcpp::STB binding,
1705
    elfcpp::STV visibility, unsigned char nonvis,
1706
    Symbol::Segment_offset_base offset_base, bool only_if_ref);
1707
 
1708
  // Define a symbol as a constant, sized version.
1709
  template<int size>
1710
  Sized_symbol<size>*
1711
  do_define_as_constant(
1712
    const char* name, const char* version, Defined,
1713
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1714
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1715
    elfcpp::STT type, elfcpp::STB binding,
1716
    elfcpp::STV visibility, unsigned char nonvis,
1717
    bool only_if_ref, bool force_override);
1718
 
1719
  // Add any undefined symbols named on the command line to the symbol
1720
  // table, sized version.
1721
  template<int size>
1722
  void
1723
  do_add_undefined_symbols_from_command_line(Layout*);
1724
 
1725
  // Add one undefined symbol.
1726
  template<int size>
1727
  void
1728
  add_undefined_symbol_from_command_line(const char* name);
1729
 
1730
  // Types of common symbols.
1731
 
1732
  enum Commons_section_type
1733
  {
1734
    COMMONS_NORMAL,
1735
    COMMONS_TLS,
1736
    COMMONS_SMALL,
1737
    COMMONS_LARGE
1738
  };
1739
 
1740
  // Allocate the common symbols, sized version.
1741
  template<int size>
1742
  void
1743
  do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1744
 
1745
  // Allocate the common symbols from one list.
1746
  template<int size>
1747
  void
1748
  do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1749
                           Mapfile*, Sort_commons_order);
1750
 
1751
  // Returns all of the lines attached to LOC, not just the one the
1752
  // instruction actually came from.  This helps the ODR checker avoid
1753
  // false positives.
1754
  static std::vector<std::string>
1755
  linenos_from_loc(const Task* task, const Symbol_location& loc);
1756
 
1757
  // Implement detect_odr_violations.
1758
  template<int size, bool big_endian>
1759
  void
1760
  sized_detect_odr_violations() const;
1761
 
1762
  // Finalize symbols specialized for size.
1763
  template<int size>
1764
  off_t
1765
  sized_finalize(off_t, Stringpool*, unsigned int*);
1766
 
1767
  // Finalize a symbol.  Return whether it should be added to the
1768
  // symbol table.
1769
  template<int size>
1770
  bool
1771
  sized_finalize_symbol(Symbol*);
1772
 
1773
  // Add a symbol the final symtab by setting its index.
1774
  template<int size>
1775
  void
1776
  add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1777
 
1778
  // Write globals specialized for size and endianness.
1779
  template<int size, bool big_endian>
1780
  void
1781
  sized_write_globals(const Stringpool*, const Stringpool*,
1782
                      Output_symtab_xindex*, Output_symtab_xindex*,
1783
                      Output_file*) const;
1784
 
1785
  // Write out a symbol to P.
1786
  template<int size, bool big_endian>
1787
  void
1788
  sized_write_symbol(Sized_symbol<size>*,
1789
                     typename elfcpp::Elf_types<size>::Elf_Addr value,
1790
                     unsigned int shndx, elfcpp::STB,
1791
                     const Stringpool*, unsigned char* p) const;
1792
 
1793
  // Possibly warn about an undefined symbol from a dynamic object.
1794
  void
1795
  warn_about_undefined_dynobj_symbol(Symbol*) const;
1796
 
1797
  // Write out a section symbol, specialized for size and endianness.
1798
  template<int size, bool big_endian>
1799
  void
1800
  sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1801
                             Output_file*, off_t) const;
1802
 
1803
  // The type of the list of symbols which have been forced local.
1804
  typedef std::vector<Symbol*> Forced_locals;
1805
 
1806
  // A map from symbols with COPY relocs to the dynamic objects where
1807
  // they are defined.
1808
  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1809
 
1810
  // We increment this every time we see a new undefined symbol, for
1811
  // use in archive groups.
1812
  size_t saw_undefined_;
1813
  // The index of the first global symbol in the output file.
1814
  unsigned int first_global_index_;
1815
  // The file offset within the output symtab section where we should
1816
  // write the table.
1817
  off_t offset_;
1818
  // The number of global symbols we want to write out.
1819
  unsigned int output_count_;
1820
  // The file offset of the global dynamic symbols, or 0 if none.
1821
  off_t dynamic_offset_;
1822
  // The index of the first global dynamic symbol.
1823
  unsigned int first_dynamic_global_index_;
1824
  // The number of global dynamic symbols, or 0 if none.
1825
  unsigned int dynamic_count_;
1826
  // The symbol hash table.
1827
  Symbol_table_type table_;
1828
  // A pool of symbol names.  This is used for all global symbols.
1829
  // Entries in the hash table point into this pool.
1830
  Stringpool namepool_;
1831
  // Forwarding symbols.
1832
  Unordered_map<const Symbol*, Symbol*> forwarders_;
1833
  // Weak aliases.  A symbol in this list points to the next alias.
1834
  // The aliases point to each other in a circular list.
1835
  Unordered_map<Symbol*, Symbol*> weak_aliases_;
1836
  // We don't expect there to be very many common symbols, so we keep
1837
  // a list of them.  When we find a common symbol we add it to this
1838
  // list.  It is possible that by the time we process the list the
1839
  // symbol is no longer a common symbol.  It may also have become a
1840
  // forwarder.
1841
  Commons_type commons_;
1842
  // This is like the commons_ field, except that it holds TLS common
1843
  // symbols.
1844
  Commons_type tls_commons_;
1845
  // This is for small common symbols.
1846
  Commons_type small_commons_;
1847
  // This is for large common symbols.
1848
  Commons_type large_commons_;
1849
  // A list of symbols which have been forced to be local.  We don't
1850
  // expect there to be very many of them, so we keep a list of them
1851
  // rather than walking the whole table to find them.
1852
  Forced_locals forced_locals_;
1853
  // Manage symbol warnings.
1854
  Warnings warnings_;
1855
  // Manage potential One Definition Rule (ODR) violations.
1856
  Odr_map candidate_odr_violations_;
1857
 
1858
  // When we emit a COPY reloc for a symbol, we define it in an
1859
  // Output_data.  When it's time to emit version information for it,
1860
  // we need to know the dynamic object in which we found the original
1861
  // definition.  This maps symbols with COPY relocs to the dynamic
1862
  // object where they were defined.
1863
  Copied_symbol_dynobjs copied_symbol_dynobjs_;
1864
  // Information parsed from the version script, if any.
1865
  const Version_script_info& version_script_;
1866
  Garbage_collection* gc_;
1867
  Icf* icf_;
1868
};
1869
 
1870
// We inline get_sized_symbol for efficiency.
1871
 
1872
template<int size>
1873
Sized_symbol<size>*
1874
Symbol_table::get_sized_symbol(Symbol* sym) const
1875
{
1876
  gold_assert(size == parameters->target().get_size());
1877
  return static_cast<Sized_symbol<size>*>(sym);
1878
}
1879
 
1880
template<int size>
1881
const Sized_symbol<size>*
1882
Symbol_table::get_sized_symbol(const Symbol* sym) const
1883
{
1884
  gold_assert(size == parameters->target().get_size());
1885
  return static_cast<const Sized_symbol<size>*>(sym);
1886
}
1887
 
1888
} // End namespace gold.
1889
 
1890
#endif // !defined(GOLD_SYMTAB_H)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.