OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [symtab.h] - Blame information for rev 163

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// symtab.h -- the gold symbol table   -*- C++ -*-
2
 
3 159 khays
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 27 khays
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
// Symbol_table
24
//   The symbol table.
25
 
26
#ifndef GOLD_SYMTAB_H
27
#define GOLD_SYMTAB_H
28
 
29
#include <string>
30
#include <utility>
31
#include <vector>
32
 
33
#include "elfcpp.h"
34
#include "parameters.h"
35
#include "stringpool.h"
36
#include "object.h"
37
 
38
namespace gold
39
{
40
 
41
class Mapfile;
42
class Object;
43
class Relobj;
44
template<int size, bool big_endian>
45
class Sized_relobj_file;
46
template<int size, bool big_endian>
47
class Sized_pluginobj;
48
class Dynobj;
49
template<int size, bool big_endian>
50
class Sized_dynobj;
51
template<int size, bool big_endian>
52
class Sized_incrobj;
53
class Versions;
54
class Version_script_info;
55
class Input_objects;
56
class Output_data;
57
class Output_section;
58
class Output_segment;
59
class Output_file;
60
class Output_symtab_xindex;
61
class Garbage_collection;
62
class Icf;
63
 
64
// The base class of an entry in the symbol table.  The symbol table
65
// can have a lot of entries, so we don't want this class to big.
66
// Size dependent fields can be found in the template class
67
// Sized_symbol.  Targets may support their own derived classes.
68
 
69
class Symbol
70
{
71
 public:
72
  // Because we want the class to be small, we don't use any virtual
73
  // functions.  But because symbols can be defined in different
74
  // places, we need to classify them.  This enum is the different
75
  // sources of symbols we support.
76
  enum Source
77
  {
78
    // Symbol defined in a relocatable or dynamic input file--this is
79
    // the most common case.
80
    FROM_OBJECT,
81
    // Symbol defined in an Output_data, a special section created by
82
    // the target.
83
    IN_OUTPUT_DATA,
84
    // Symbol defined in an Output_segment, with no associated
85
    // section.
86
    IN_OUTPUT_SEGMENT,
87
    // Symbol value is constant.
88
    IS_CONSTANT,
89
    // Symbol is undefined.
90
    IS_UNDEFINED
91
  };
92
 
93
  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94
  // the offset means.
95
  enum Segment_offset_base
96
  {
97
    // From the start of the segment.
98
    SEGMENT_START,
99
    // From the end of the segment.
100
    SEGMENT_END,
101
    // From the filesz of the segment--i.e., after the loaded bytes
102
    // but before the bytes which are allocated but zeroed.
103
    SEGMENT_BSS
104
  };
105
 
106
  // Return the symbol name.
107
  const char*
108
  name() const
109
  { return this->name_; }
110
 
111
  // Return the (ANSI) demangled version of the name, if
112
  // parameters.demangle() is true.  Otherwise, return the name.  This
113
  // is intended to be used only for logging errors, so it's not
114
  // super-efficient.
115
  std::string
116
  demangled_name() const;
117
 
118
  // Return the symbol version.  This will return NULL for an
119
  // unversioned symbol.
120
  const char*
121
  version() const
122
  { return this->version_; }
123
 
124
  // Return whether this version is the default for this symbol name
125
  // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
126
  // meaningful for versioned symbols.
127
  bool
128
  is_default() const
129
  {
130
    gold_assert(this->version_ != NULL);
131
    return this->is_def_;
132
  }
133
 
134
  // Set that this version is the default for this symbol name.
135
  void
136
  set_is_default()
137
  { this->is_def_ = true; }
138
 
139 159 khays
  // Return the symbol's name as name@version (or name@@version).
140
  std::string
141
  versioned_name() const;
142
 
143 27 khays
  // Return the symbol source.
144
  Source
145
  source() const
146
  { return this->source_; }
147
 
148
  // Return the object with which this symbol is associated.
149
  Object*
150
  object() const
151
  {
152
    gold_assert(this->source_ == FROM_OBJECT);
153
    return this->u_.from_object.object;
154
  }
155
 
156
  // Return the index of the section in the input relocatable or
157
  // dynamic object file.
158
  unsigned int
159
  shndx(bool* is_ordinary) const
160
  {
161
    gold_assert(this->source_ == FROM_OBJECT);
162
    *is_ordinary = this->is_ordinary_shndx_;
163
    return this->u_.from_object.shndx;
164
  }
165
 
166
  // Return the output data section with which this symbol is
167
  // associated, if the symbol was specially defined with respect to
168
  // an output data section.
169
  Output_data*
170
  output_data() const
171
  {
172
    gold_assert(this->source_ == IN_OUTPUT_DATA);
173
    return this->u_.in_output_data.output_data;
174
  }
175
 
176
  // If this symbol was defined with respect to an output data
177
  // section, return whether the value is an offset from end.
178
  bool
179
  offset_is_from_end() const
180
  {
181
    gold_assert(this->source_ == IN_OUTPUT_DATA);
182
    return this->u_.in_output_data.offset_is_from_end;
183
  }
184
 
185
  // Return the output segment with which this symbol is associated,
186
  // if the symbol was specially defined with respect to an output
187
  // segment.
188
  Output_segment*
189
  output_segment() const
190
  {
191
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
192
    return this->u_.in_output_segment.output_segment;
193
  }
194
 
195
  // If this symbol was defined with respect to an output segment,
196
  // return the offset base.
197
  Segment_offset_base
198
  offset_base() const
199
  {
200
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201
    return this->u_.in_output_segment.offset_base;
202
  }
203
 
204
  // Return the symbol binding.
205
  elfcpp::STB
206
  binding() const
207
  { return this->binding_; }
208
 
209
  // Return the symbol type.
210
  elfcpp::STT
211
  type() const
212
  { return this->type_; }
213
 
214
  // Return true for function symbol.
215
  bool
216
  is_func() const
217
  {
218
    return (this->type_ == elfcpp::STT_FUNC
219
            || this->type_ == elfcpp::STT_GNU_IFUNC);
220
  }
221
 
222
  // Return the symbol visibility.
223
  elfcpp::STV
224
  visibility() const
225
  { return this->visibility_; }
226
 
227
  // Set the visibility.
228
  void
229
  set_visibility(elfcpp::STV visibility)
230
  { this->visibility_ = visibility; }
231
 
232
  // Override symbol visibility.
233
  void
234
  override_visibility(elfcpp::STV);
235
 
236
  // Set whether the symbol was originally a weak undef or a regular undef
237
  // when resolved by a dynamic def.
238
  inline void
239
  set_undef_binding(elfcpp::STB bind)
240
  {
241
    if (!this->undef_binding_set_ || this->undef_binding_weak_)
242
      {
243
        this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
244
        this->undef_binding_set_ = true;
245
      }
246
  }
247
 
248
  // Return TRUE if a weak undef was resolved by a dynamic def.
249
  inline bool
250
  is_undef_binding_weak() const
251
  { return this->undef_binding_weak_; }
252
 
253
  // Return the non-visibility part of the st_other field.
254
  unsigned char
255
  nonvis() const
256
  { return this->nonvis_; }
257
 
258
  // Return whether this symbol is a forwarder.  This will never be
259
  // true of a symbol found in the hash table, but may be true of
260
  // symbol pointers attached to object files.
261
  bool
262
  is_forwarder() const
263
  { return this->is_forwarder_; }
264
 
265
  // Mark this symbol as a forwarder.
266
  void
267
  set_forwarder()
268
  { this->is_forwarder_ = true; }
269
 
270
  // Return whether this symbol has an alias in the weak aliases table
271
  // in Symbol_table.
272
  bool
273
  has_alias() const
274
  { return this->has_alias_; }
275
 
276
  // Mark this symbol as having an alias.
277
  void
278
  set_has_alias()
279
  { this->has_alias_ = true; }
280
 
281
  // Return whether this symbol needs an entry in the dynamic symbol
282
  // table.
283
  bool
284
  needs_dynsym_entry() const
285
  {
286
    return (this->needs_dynsym_entry_
287
            || (this->in_reg()
288
                && this->in_dyn()
289
                && this->is_externally_visible()));
290
  }
291
 
292
  // Mark this symbol as needing an entry in the dynamic symbol table.
293
  void
294
  set_needs_dynsym_entry()
295
  { this->needs_dynsym_entry_ = true; }
296
 
297
  // Return whether this symbol should be added to the dynamic symbol
298
  // table.
299
  bool
300
  should_add_dynsym_entry(Symbol_table*) const;
301
 
302
  // Return whether this symbol has been seen in a regular object.
303
  bool
304
  in_reg() const
305
  { return this->in_reg_; }
306
 
307
  // Mark this symbol as having been seen in a regular object.
308
  void
309
  set_in_reg()
310
  { this->in_reg_ = true; }
311
 
312
  // Return whether this symbol has been seen in a dynamic object.
313
  bool
314
  in_dyn() const
315
  { return this->in_dyn_; }
316
 
317
  // Mark this symbol as having been seen in a dynamic object.
318
  void
319
  set_in_dyn()
320
  { this->in_dyn_ = true; }
321
 
322
  // Return whether this symbol has been seen in a real ELF object.
323
  // (IN_REG will return TRUE if the symbol has been seen in either
324
  // a real ELF object or an object claimed by a plugin.)
325
  bool
326
  in_real_elf() const
327
  { return this->in_real_elf_; }
328
 
329
  // Mark this symbol as having been seen in a real ELF object.
330
  void
331
  set_in_real_elf()
332
  { this->in_real_elf_ = true; }
333
 
334
  // Return whether this symbol was defined in a section that was
335
  // discarded from the link.  This is used to control some error
336
  // reporting.
337
  bool
338
  is_defined_in_discarded_section() const
339
  { return this->is_defined_in_discarded_section_; }
340
 
341
  // Mark this symbol as having been defined in a discarded section.
342
  void
343
  set_is_defined_in_discarded_section()
344
  { this->is_defined_in_discarded_section_ = true; }
345
 
346
  // Return the index of this symbol in the output file symbol table.
347
  // A value of -1U means that this symbol is not going into the
348
  // output file.  This starts out as zero, and is set to a non-zero
349
  // value by Symbol_table::finalize.  It is an error to ask for the
350
  // symbol table index before it has been set.
351
  unsigned int
352
  symtab_index() const
353
  {
354
    gold_assert(this->symtab_index_ != 0);
355
    return this->symtab_index_;
356
  }
357
 
358
  // Set the index of the symbol in the output file symbol table.
359
  void
360
  set_symtab_index(unsigned int index)
361
  {
362
    gold_assert(index != 0);
363
    this->symtab_index_ = index;
364
  }
365
 
366
  // Return whether this symbol already has an index in the output
367
  // file symbol table.
368
  bool
369
  has_symtab_index() const
370
  { return this->symtab_index_ != 0; }
371
 
372
  // Return the index of this symbol in the dynamic symbol table.  A
373
  // value of -1U means that this symbol is not going into the dynamic
374
  // symbol table.  This starts out as zero, and is set to a non-zero
375
  // during Layout::finalize.  It is an error to ask for the dynamic
376
  // symbol table index before it has been set.
377
  unsigned int
378
  dynsym_index() const
379
  {
380
    gold_assert(this->dynsym_index_ != 0);
381
    return this->dynsym_index_;
382
  }
383
 
384
  // Set the index of the symbol in the dynamic symbol table.
385
  void
386
  set_dynsym_index(unsigned int index)
387
  {
388
    gold_assert(index != 0);
389
    this->dynsym_index_ = index;
390
  }
391
 
392
  // Return whether this symbol already has an index in the dynamic
393
  // symbol table.
394
  bool
395
  has_dynsym_index() const
396
  { return this->dynsym_index_ != 0; }
397
 
398
  // Return whether this symbol has an entry in the GOT section.
399
  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
400
  bool
401
  has_got_offset(unsigned int got_type) const
402
  { return this->got_offsets_.get_offset(got_type) != -1U; }
403
 
404
  // Return the offset into the GOT section of this symbol.
405
  unsigned int
406
  got_offset(unsigned int got_type) const
407
  {
408
    unsigned int got_offset = this->got_offsets_.get_offset(got_type);
409
    gold_assert(got_offset != -1U);
410
    return got_offset;
411
  }
412
 
413
  // Set the GOT offset of this symbol.
414
  void
415
  set_got_offset(unsigned int got_type, unsigned int got_offset)
416
  { this->got_offsets_.set_offset(got_type, got_offset); }
417
 
418
  // Return the GOT offset list.
419
  const Got_offset_list*
420
  got_offset_list() const
421
  { return this->got_offsets_.get_list(); }
422
 
423
  // Return whether this symbol has an entry in the PLT section.
424
  bool
425
  has_plt_offset() const
426
  { return this->plt_offset_ != -1U; }
427
 
428
  // Return the offset into the PLT section of this symbol.
429
  unsigned int
430
  plt_offset() const
431
  {
432
    gold_assert(this->has_plt_offset());
433
    return this->plt_offset_;
434
  }
435
 
436
  // Set the PLT offset of this symbol.
437
  void
438
  set_plt_offset(unsigned int plt_offset)
439
  {
440
    gold_assert(plt_offset != -1U);
441
    this->plt_offset_ = plt_offset;
442
  }
443
 
444
  // Return whether this dynamic symbol needs a special value in the
445
  // dynamic symbol table.
446
  bool
447
  needs_dynsym_value() const
448
  { return this->needs_dynsym_value_; }
449
 
450
  // Set that this dynamic symbol needs a special value in the dynamic
451
  // symbol table.
452
  void
453
  set_needs_dynsym_value()
454
  {
455
    gold_assert(this->object()->is_dynamic());
456
    this->needs_dynsym_value_ = true;
457
  }
458
 
459
  // Return true if the final value of this symbol is known at link
460
  // time.
461
  bool
462
  final_value_is_known() const;
463
 
464
  // Return true if SHNDX represents a common symbol.  This depends on
465
  // the target.
466
  static bool
467
  is_common_shndx(unsigned int shndx);
468
 
469
  // Return whether this is a defined symbol (not undefined or
470
  // common).
471
  bool
472
  is_defined() const
473
  {
474
    bool is_ordinary;
475
    if (this->source_ != FROM_OBJECT)
476
      return this->source_ != IS_UNDEFINED;
477
    unsigned int shndx = this->shndx(&is_ordinary);
478
    return (is_ordinary
479
            ? shndx != elfcpp::SHN_UNDEF
480
            : !Symbol::is_common_shndx(shndx));
481
  }
482
 
483
  // Return true if this symbol is from a dynamic object.
484
  bool
485
  is_from_dynobj() const
486
  {
487
    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
488
  }
489
 
490
  // Return whether this is a placeholder symbol from a plugin object.
491
  bool
492
  is_placeholder() const
493
  {
494
    return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
495
  }
496
 
497
  // Return whether this is an undefined symbol.
498
  bool
499
  is_undefined() const
500
  {
501
    bool is_ordinary;
502
    return ((this->source_ == FROM_OBJECT
503
             && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
504
             && is_ordinary)
505
            || this->source_ == IS_UNDEFINED);
506
  }
507
 
508
  // Return whether this is a weak undefined symbol.
509
  bool
510
  is_weak_undefined() const
511
  { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
512
 
513
  // Return whether this is an absolute symbol.
514
  bool
515
  is_absolute() const
516
  {
517
    bool is_ordinary;
518
    return ((this->source_ == FROM_OBJECT
519
             && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
520
             && !is_ordinary)
521
            || this->source_ == IS_CONSTANT);
522
  }
523
 
524
  // Return whether this is a common symbol.
525
  bool
526
  is_common() const
527
  {
528
    if (this->source_ != FROM_OBJECT)
529
      return false;
530
    if (this->type_ == elfcpp::STT_COMMON)
531
      return true;
532
    bool is_ordinary;
533
    unsigned int shndx = this->shndx(&is_ordinary);
534
    return !is_ordinary && Symbol::is_common_shndx(shndx);
535
  }
536
 
537
  // Return whether this symbol can be seen outside this object.
538
  bool
539
  is_externally_visible() const
540
  {
541 159 khays
    return ((this->visibility_ == elfcpp::STV_DEFAULT
542
             || this->visibility_ == elfcpp::STV_PROTECTED)
543
            && !this->is_forced_local_);
544 27 khays
  }
545
 
546
  // Return true if this symbol can be preempted by a definition in
547
  // another link unit.
548
  bool
549
  is_preemptible() const
550
  {
551
    // It doesn't make sense to ask whether a symbol defined in
552
    // another object is preemptible.
553
    gold_assert(!this->is_from_dynobj());
554
 
555
    // It doesn't make sense to ask whether an undefined symbol
556
    // is preemptible.
557
    gold_assert(!this->is_undefined());
558
 
559
    // If a symbol does not have default visibility, it can not be
560
    // seen outside this link unit and therefore is not preemptible.
561
    if (this->visibility_ != elfcpp::STV_DEFAULT)
562
      return false;
563
 
564
    // If this symbol has been forced to be a local symbol by a
565
    // version script, then it is not visible outside this link unit
566
    // and is not preemptible.
567
    if (this->is_forced_local_)
568
      return false;
569
 
570
    // If we are not producing a shared library, then nothing is
571
    // preemptible.
572
    if (!parameters->options().shared())
573
      return false;
574
 
575
    // If the user used -Bsymbolic, then nothing is preemptible.
576
    if (parameters->options().Bsymbolic())
577
      return false;
578
 
579
    // If the user used -Bsymbolic-functions, then functions are not
580
    // preemptible.  We explicitly check for not being STT_OBJECT,
581
    // rather than for being STT_FUNC, because that is what the GNU
582
    // linker does.
583
    if (this->type() != elfcpp::STT_OBJECT
584
        && parameters->options().Bsymbolic_functions())
585
      return false;
586
 
587
    // Otherwise the symbol is preemptible.
588
    return true;
589
  }
590
 
591
  // Return true if this symbol is a function that needs a PLT entry.
592
  bool
593
  needs_plt_entry() const
594
  {
595
    // An undefined symbol from an executable does not need a PLT entry.
596
    if (this->is_undefined() && !parameters->options().shared())
597
      return false;
598
 
599
    // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
600
    // doing a static link.
601
    if (this->type() == elfcpp::STT_GNU_IFUNC)
602
      return true;
603
 
604
    // We only need a PLT entry for a function.
605
    if (!this->is_func())
606
      return false;
607
 
608
    // If we're doing a static link or a -pie link, we don't create
609
    // PLT entries.
610
    if (parameters->doing_static_link()
611
        || parameters->options().pie())
612
      return false;
613
 
614
    // We need a PLT entry if the function is defined in a dynamic
615
    // object, or is undefined when building a shared object, or if it
616
    // is subject to pre-emption.
617
    return (this->is_from_dynobj()
618
            || this->is_undefined()
619
            || this->is_preemptible());
620
  }
621
 
622
  // When determining whether a reference to a symbol needs a dynamic
623
  // relocation, we need to know several things about the reference.
624
  // These flags may be or'ed together.  0 means that the symbol
625
  // isn't referenced at all.
626
  enum Reference_flags
627
  {
628
    // A reference to the symbol's absolute address.  This includes
629
    // references that cause an absolute address to be stored in the GOT.
630
    ABSOLUTE_REF = 1,
631
    // A reference that calculates the offset of the symbol from some
632
    // anchor point, such as the PC or GOT.
633
    RELATIVE_REF = 2,
634
    // A TLS-related reference.
635
    TLS_REF = 4,
636
    // A reference that can always be treated as a function call.
637
    FUNCTION_CALL = 8
638
  };
639
 
640
  // Given a direct absolute or pc-relative static relocation against
641
  // the global symbol, this function returns whether a dynamic relocation
642
  // is needed.
643
 
644
  bool
645
  needs_dynamic_reloc(int flags) const
646
  {
647
    // No dynamic relocations in a static link!
648
    if (parameters->doing_static_link())
649
      return false;
650
 
651
    // A reference to an undefined symbol from an executable should be
652
    // statically resolved to 0, and does not need a dynamic relocation.
653
    // This matches gnu ld behavior.
654
    if (this->is_undefined() && !parameters->options().shared())
655
      return false;
656
 
657
    // A reference to an absolute symbol does not need a dynamic relocation.
658
    if (this->is_absolute())
659
      return false;
660
 
661
    // An absolute reference within a position-independent output file
662
    // will need a dynamic relocation.
663
    if ((flags & ABSOLUTE_REF)
664
        && parameters->options().output_is_position_independent())
665
      return true;
666
 
667
    // A function call that can branch to a local PLT entry does not need
668
    // a dynamic relocation.
669
    if ((flags & FUNCTION_CALL) && this->has_plt_offset())
670
      return false;
671
 
672
    // A reference to any PLT entry in a non-position-independent executable
673
    // does not need a dynamic relocation.
674
    if (!parameters->options().output_is_position_independent()
675
        && this->has_plt_offset())
676
      return false;
677
 
678
    // A reference to a symbol defined in a dynamic object or to a
679
    // symbol that is preemptible will need a dynamic relocation.
680
    if (this->is_from_dynobj()
681
        || this->is_undefined()
682
        || this->is_preemptible())
683
      return true;
684
 
685
    // For all other cases, return FALSE.
686
    return false;
687
  }
688
 
689
  // Whether we should use the PLT offset associated with a symbol for
690
  // a relocation.  FLAGS is a set of Reference_flags.
691
 
692
  bool
693
  use_plt_offset(int flags) const
694
  {
695
    // If the symbol doesn't have a PLT offset, then naturally we
696
    // don't want to use it.
697
    if (!this->has_plt_offset())
698
      return false;
699
 
700
    // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
701
    if (this->type() == elfcpp::STT_GNU_IFUNC)
702
      return true;
703
 
704
    // If we are going to generate a dynamic relocation, then we will
705
    // wind up using that, so no need to use the PLT entry.
706
    if (this->needs_dynamic_reloc(flags))
707
      return false;
708
 
709
    // If the symbol is from a dynamic object, we need to use the PLT
710
    // entry.
711
    if (this->is_from_dynobj())
712
      return true;
713
 
714
    // If we are generating a shared object, and this symbol is
715
    // undefined or preemptible, we need to use the PLT entry.
716
    if (parameters->options().shared()
717
        && (this->is_undefined() || this->is_preemptible()))
718
      return true;
719
 
720
    // If this is a call to a weak undefined symbol, we need to use
721
    // the PLT entry; the symbol may be defined by a library loaded
722
    // at runtime.
723
    if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
724
      return true;
725
 
726
    // Otherwise we can use the regular definition.
727
    return false;
728
  }
729
 
730
  // Given a direct absolute static relocation against
731
  // the global symbol, where a dynamic relocation is needed, this
732
  // function returns whether a relative dynamic relocation can be used.
733
  // The caller must determine separately whether the static relocation
734
  // is compatible with a relative relocation.
735
 
736
  bool
737
  can_use_relative_reloc(bool is_function_call) const
738
  {
739
    // A function call that can branch to a local PLT entry can
740
    // use a RELATIVE relocation.
741
    if (is_function_call && this->has_plt_offset())
742
      return true;
743
 
744
    // A reference to a symbol defined in a dynamic object or to a
745
    // symbol that is preemptible can not use a RELATIVE relocation.
746
    if (this->is_from_dynobj()
747
        || this->is_undefined()
748
        || this->is_preemptible())
749
      return false;
750
 
751
    // For all other cases, return TRUE.
752
    return true;
753
  }
754
 
755
  // Return the output section where this symbol is defined.  Return
756
  // NULL if the symbol has an absolute value.
757
  Output_section*
758
  output_section() const;
759
 
760
  // Set the symbol's output section.  This is used for symbols
761
  // defined in scripts.  This should only be called after the symbol
762
  // table has been finalized.
763
  void
764
  set_output_section(Output_section*);
765
 
766
  // Return whether there should be a warning for references to this
767
  // symbol.
768
  bool
769
  has_warning() const
770
  { return this->has_warning_; }
771
 
772
  // Mark this symbol as having a warning.
773
  void
774
  set_has_warning()
775
  { this->has_warning_ = true; }
776
 
777
  // Return whether this symbol is defined by a COPY reloc from a
778
  // dynamic object.
779
  bool
780
  is_copied_from_dynobj() const
781
  { return this->is_copied_from_dynobj_; }
782
 
783
  // Mark this symbol as defined by a COPY reloc.
784
  void
785
  set_is_copied_from_dynobj()
786
  { this->is_copied_from_dynobj_ = true; }
787
 
788
  // Return whether this symbol is forced to visibility STB_LOCAL
789
  // by a "local:" entry in a version script.
790
  bool
791
  is_forced_local() const
792
  { return this->is_forced_local_; }
793
 
794
  // Mark this symbol as forced to STB_LOCAL visibility.
795
  void
796
  set_is_forced_local()
797
  { this->is_forced_local_ = true; }
798
 
799
  // Return true if this may need a COPY relocation.
800
  // References from an executable object to non-function symbols
801
  // defined in a dynamic object may need a COPY relocation.
802
  bool
803
  may_need_copy_reloc() const
804
  {
805
    return (!parameters->options().output_is_position_independent()
806
            && parameters->options().copyreloc()
807
            && this->is_from_dynobj()
808
            && !this->is_func());
809
  }
810
 
811 148 khays
  // Return true if this symbol was predefined by the linker.
812
  bool
813
  is_predefined() const
814
  { return this->is_predefined_; }
815
 
816 27 khays
 protected:
817
  // Instances of this class should always be created at a specific
818
  // size.
819
  Symbol()
820
  { memset(this, 0, sizeof *this); }
821
 
822
  // Initialize the general fields.
823
  void
824
  init_fields(const char* name, const char* version,
825
              elfcpp::STT type, elfcpp::STB binding,
826
              elfcpp::STV visibility, unsigned char nonvis);
827
 
828
  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
829
  // section index, IS_ORDINARY is whether it is a normal section
830
  // index rather than a special code.
831
  template<int size, bool big_endian>
832
  void
833
  init_base_object(const char* name, const char* version, Object* object,
834
                   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
835
                   bool is_ordinary);
836
 
837
  // Initialize fields for an Output_data.
838
  void
839
  init_base_output_data(const char* name, const char* version, Output_data*,
840
                        elfcpp::STT, elfcpp::STB, elfcpp::STV,
841 148 khays
                        unsigned char nonvis, bool offset_is_from_end,
842
                        bool is_predefined);
843 27 khays
 
844
  // Initialize fields for an Output_segment.
845
  void
846
  init_base_output_segment(const char* name, const char* version,
847
                           Output_segment* os, elfcpp::STT type,
848
                           elfcpp::STB binding, elfcpp::STV visibility,
849
                           unsigned char nonvis,
850 148 khays
                           Segment_offset_base offset_base,
851
                           bool is_predefined);
852 27 khays
 
853
  // Initialize fields for a constant.
854
  void
855
  init_base_constant(const char* name, const char* version, elfcpp::STT type,
856
                     elfcpp::STB binding, elfcpp::STV visibility,
857 148 khays
                     unsigned char nonvis, bool is_predefined);
858 27 khays
 
859
  // Initialize fields for an undefined symbol.
860
  void
861
  init_base_undefined(const char* name, const char* version, elfcpp::STT type,
862
                      elfcpp::STB binding, elfcpp::STV visibility,
863
                      unsigned char nonvis);
864
 
865
  // Override existing symbol.
866
  template<int size, bool big_endian>
867
  void
868
  override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
869
                bool is_ordinary, Object* object, const char* version);
870
 
871
  // Override existing symbol with a special symbol.
872
  void
873
  override_base_with_special(const Symbol* from);
874
 
875
  // Override symbol version.
876
  void
877
  override_version(const char* version);
878
 
879
  // Allocate a common symbol by giving it a location in the output
880
  // file.
881
  void
882
  allocate_base_common(Output_data*);
883
 
884
 private:
885
  Symbol(const Symbol&);
886
  Symbol& operator=(const Symbol&);
887
 
888
  // Symbol name (expected to point into a Stringpool).
889
  const char* name_;
890
  // Symbol version (expected to point into a Stringpool).  This may
891
  // be NULL.
892
  const char* version_;
893
 
894
  union
895
  {
896
    // This struct is used if SOURCE_ == FROM_OBJECT.
897
    struct
898
    {
899
      // Object in which symbol is defined, or in which it was first
900
      // seen.
901
      Object* object;
902
      // Section number in object_ in which symbol is defined.
903
      unsigned int shndx;
904
    } from_object;
905
 
906
    // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
907
    struct
908
    {
909
      // Output_data in which symbol is defined.  Before
910
      // Layout::finalize the symbol's value is an offset within the
911
      // Output_data.
912
      Output_data* output_data;
913
      // True if the offset is from the end, false if the offset is
914
      // from the beginning.
915
      bool offset_is_from_end;
916
    } in_output_data;
917
 
918
    // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
919
    struct
920
    {
921
      // Output_segment in which the symbol is defined.  Before
922
      // Layout::finalize the symbol's value is an offset.
923
      Output_segment* output_segment;
924
      // The base to use for the offset before Layout::finalize.
925
      Segment_offset_base offset_base;
926
    } in_output_segment;
927
  } u_;
928
 
929
  // The index of this symbol in the output file.  If the symbol is
930
  // not going into the output file, this value is -1U.  This field
931
  // starts as always holding zero.  It is set to a non-zero value by
932
  // Symbol_table::finalize.
933
  unsigned int symtab_index_;
934
 
935
  // The index of this symbol in the dynamic symbol table.  If the
936
  // symbol is not going into the dynamic symbol table, this value is
937
  // -1U.  This field starts as always holding zero.  It is set to a
938
  // non-zero value during Layout::finalize.
939
  unsigned int dynsym_index_;
940
 
941
  // The GOT section entries for this symbol.  A symbol may have more
942
  // than one GOT offset (e.g., when mixing modules compiled with two
943
  // different TLS models), but will usually have at most one.
944
  Got_offset_list got_offsets_;
945
 
946
  // If this symbol has an entry in the PLT section, then this is the
947
  // offset from the start of the PLT section.  This is -1U if there
948
  // is no PLT entry.
949
  unsigned int plt_offset_;
950
 
951
  // Symbol type (bits 0 to 3).
952
  elfcpp::STT type_ : 4;
953
  // Symbol binding (bits 4 to 7).
954
  elfcpp::STB binding_ : 4;
955
  // Symbol visibility (bits 8 to 9).
956
  elfcpp::STV visibility_ : 2;
957
  // Rest of symbol st_other field (bits 10 to 15).
958
  unsigned int nonvis_ : 6;
959
  // The type of symbol (bits 16 to 18).
960
  Source source_ : 3;
961
  // True if this is the default version of the symbol (bit 19).
962
  bool is_def_ : 1;
963
  // True if this symbol really forwards to another symbol.  This is
964
  // used when we discover after the fact that two different entries
965
  // in the hash table really refer to the same symbol.  This will
966
  // never be set for a symbol found in the hash table, but may be set
967
  // for a symbol found in the list of symbols attached to an Object.
968
  // It forwards to the symbol found in the forwarders_ map of
969
  // Symbol_table (bit 20).
970
  bool is_forwarder_ : 1;
971
  // True if the symbol has an alias in the weak_aliases table in
972
  // Symbol_table (bit 21).
973
  bool has_alias_ : 1;
974
  // True if this symbol needs to be in the dynamic symbol table (bit
975
  // 22).
976
  bool needs_dynsym_entry_ : 1;
977
  // True if we've seen this symbol in a regular object (bit 23).
978
  bool in_reg_ : 1;
979
  // True if we've seen this symbol in a dynamic object (bit 24).
980
  bool in_dyn_ : 1;
981
  // True if this is a dynamic symbol which needs a special value in
982
  // the dynamic symbol table (bit 25).
983
  bool needs_dynsym_value_ : 1;
984
  // True if there is a warning for this symbol (bit 26).
985
  bool has_warning_ : 1;
986
  // True if we are using a COPY reloc for this symbol, so that the
987
  // real definition lives in a dynamic object (bit 27).
988
  bool is_copied_from_dynobj_ : 1;
989
  // True if this symbol was forced to local visibility by a version
990
  // script (bit 28).
991
  bool is_forced_local_ : 1;
992
  // True if the field u_.from_object.shndx is an ordinary section
993
  // index, not one of the special codes from SHN_LORESERVE to
994
  // SHN_HIRESERVE (bit 29).
995
  bool is_ordinary_shndx_ : 1;
996 163 khays
  // True if we've seen this symbol in a "real" ELF object (bit 30).
997
  // If the symbol has been seen in a relocatable, non-IR, object file,
998
  // it's known to be referenced from outside the IR.  A reference from
999
  // a dynamic object doesn't count as a "real" ELF, and we'll simply
1000
  // mark the symbol as "visible" from outside the IR.  The compiler
1001
  // can use this distinction to guide its handling of COMDAT symbols.
1002 27 khays
  bool in_real_elf_ : 1;
1003
  // True if this symbol is defined in a section which was discarded
1004
  // (bit 31).
1005
  bool is_defined_in_discarded_section_ : 1;
1006
  // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1007
  bool undef_binding_set_ : 1;
1008
  // True if this symbol was a weak undef resolved by a dynamic def
1009
  // (bit 33).
1010
  bool undef_binding_weak_ : 1;
1011 148 khays
  // True if this symbol is a predefined linker symbol (bit 34).
1012
  bool is_predefined_ : 1;
1013 27 khays
};
1014
 
1015
// The parts of a symbol which are size specific.  Using a template
1016
// derived class like this helps us use less space on a 32-bit system.
1017
 
1018
template<int size>
1019
class Sized_symbol : public Symbol
1020
{
1021
 public:
1022
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1023
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1024
 
1025
  Sized_symbol()
1026
  { }
1027
 
1028
  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1029
  // section index, IS_ORDINARY is whether it is a normal section
1030
  // index rather than a special code.
1031
  template<bool big_endian>
1032
  void
1033
  init_object(const char* name, const char* version, Object* object,
1034
              const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1035
              bool is_ordinary);
1036
 
1037
  // Initialize fields for an Output_data.
1038
  void
1039
  init_output_data(const char* name, const char* version, Output_data*,
1040
                   Value_type value, Size_type symsize, elfcpp::STT,
1041
                   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1042 148 khays
                   bool offset_is_from_end, bool is_predefined);
1043 27 khays
 
1044
  // Initialize fields for an Output_segment.
1045
  void
1046
  init_output_segment(const char* name, const char* version, Output_segment*,
1047
                      Value_type value, Size_type symsize, elfcpp::STT,
1048
                      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1049 148 khays
                      Segment_offset_base offset_base, bool is_predefined);
1050 27 khays
 
1051
  // Initialize fields for a constant.
1052
  void
1053
  init_constant(const char* name, const char* version, Value_type value,
1054
                Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1055 148 khays
                unsigned char nonvis, bool is_predefined);
1056 27 khays
 
1057
  // Initialize fields for an undefined symbol.
1058
  void
1059
  init_undefined(const char* name, const char* version, elfcpp::STT,
1060
                 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1061
 
1062
  // Override existing symbol.
1063
  template<bool big_endian>
1064
  void
1065
  override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1066
           bool is_ordinary, Object* object, const char* version);
1067
 
1068
  // Override existing symbol with a special symbol.
1069
  void
1070
  override_with_special(const Sized_symbol<size>*);
1071
 
1072
  // Return the symbol's value.
1073
  Value_type
1074
  value() const
1075
  { return this->value_; }
1076
 
1077
  // Return the symbol's size (we can't call this 'size' because that
1078
  // is a template parameter).
1079
  Size_type
1080
  symsize() const
1081
  { return this->symsize_; }
1082
 
1083
  // Set the symbol size.  This is used when resolving common symbols.
1084
  void
1085
  set_symsize(Size_type symsize)
1086
  { this->symsize_ = symsize; }
1087
 
1088
  // Set the symbol value.  This is called when we store the final
1089
  // values of the symbols into the symbol table.
1090
  void
1091
  set_value(Value_type value)
1092
  { this->value_ = value; }
1093
 
1094
  // Allocate a common symbol by giving it a location in the output
1095
  // file.
1096
  void
1097
  allocate_common(Output_data*, Value_type value);
1098
 
1099
 private:
1100
  Sized_symbol(const Sized_symbol&);
1101
  Sized_symbol& operator=(const Sized_symbol&);
1102
 
1103
  // Symbol value.  Before Layout::finalize this is the offset in the
1104
  // input section.  This is set to the final value during
1105
  // Layout::finalize.
1106
  Value_type value_;
1107
  // Symbol size.
1108
  Size_type symsize_;
1109
};
1110
 
1111
// A struct describing a symbol defined by the linker, where the value
1112
// of the symbol is defined based on an output section.  This is used
1113
// for symbols defined by the linker, like "_init_array_start".
1114
 
1115
struct Define_symbol_in_section
1116
{
1117
  // The symbol name.
1118
  const char* name;
1119
  // The name of the output section with which this symbol should be
1120
  // associated.  If there is no output section with that name, the
1121
  // symbol will be defined as zero.
1122
  const char* output_section;
1123
  // The offset of the symbol within the output section.  This is an
1124
  // offset from the start of the output section, unless start_at_end
1125
  // is true, in which case this is an offset from the end of the
1126
  // output section.
1127
  uint64_t value;
1128
  // The size of the symbol.
1129
  uint64_t size;
1130
  // The symbol type.
1131
  elfcpp::STT type;
1132
  // The symbol binding.
1133
  elfcpp::STB binding;
1134
  // The symbol visibility.
1135
  elfcpp::STV visibility;
1136
  // The rest of the st_other field.
1137
  unsigned char nonvis;
1138
  // If true, the value field is an offset from the end of the output
1139
  // section.
1140
  bool offset_is_from_end;
1141
  // If true, this symbol is defined only if we see a reference to it.
1142
  bool only_if_ref;
1143
};
1144
 
1145
// A struct describing a symbol defined by the linker, where the value
1146
// of the symbol is defined based on a segment.  This is used for
1147
// symbols defined by the linker, like "_end".  We describe the
1148
// segment with which the symbol should be associated by its
1149
// characteristics.  If no segment meets these characteristics, the
1150
// symbol will be defined as zero.  If there is more than one segment
1151
// which meets these characteristics, we will use the first one.
1152
 
1153
struct Define_symbol_in_segment
1154
{
1155
  // The symbol name.
1156
  const char* name;
1157
  // The segment type where the symbol should be defined, typically
1158
  // PT_LOAD.
1159
  elfcpp::PT segment_type;
1160
  // Bitmask of segment flags which must be set.
1161
  elfcpp::PF segment_flags_set;
1162
  // Bitmask of segment flags which must be clear.
1163
  elfcpp::PF segment_flags_clear;
1164
  // The offset of the symbol within the segment.  The offset is
1165
  // calculated from the position set by offset_base.
1166
  uint64_t value;
1167
  // The size of the symbol.
1168
  uint64_t size;
1169
  // The symbol type.
1170
  elfcpp::STT type;
1171
  // The symbol binding.
1172
  elfcpp::STB binding;
1173
  // The symbol visibility.
1174
  elfcpp::STV visibility;
1175
  // The rest of the st_other field.
1176
  unsigned char nonvis;
1177
  // The base from which we compute the offset.
1178
  Symbol::Segment_offset_base offset_base;
1179
  // If true, this symbol is defined only if we see a reference to it.
1180
  bool only_if_ref;
1181
};
1182
 
1183
// This class manages warnings.  Warnings are a GNU extension.  When
1184
// we see a section named .gnu.warning.SYM in an object file, and if
1185
// we wind using the definition of SYM from that object file, then we
1186
// will issue a warning for any relocation against SYM from a
1187
// different object file.  The text of the warning is the contents of
1188
// the section.  This is not precisely the definition used by the old
1189
// GNU linker; the old GNU linker treated an occurrence of
1190
// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1191
// would trigger a warning on any reference.  However, it was
1192
// inconsistent in that a warning in a dynamic object only triggered
1193
// if there was no definition in a regular object.  This linker is
1194
// different in that we only issue a warning if we use the symbol
1195
// definition from the same object file as the warning section.
1196
 
1197
class Warnings
1198
{
1199
 public:
1200
  Warnings()
1201
    : warnings_()
1202
  { }
1203
 
1204
  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1205
  // of the warning.
1206
  void
1207
  add_warning(Symbol_table* symtab, const char* name, Object* obj,
1208
              const std::string& warning);
1209
 
1210
  // For each symbol for which we should give a warning, make a note
1211
  // on the symbol.
1212
  void
1213
  note_warnings(Symbol_table* symtab);
1214
 
1215
  // Issue a warning for a reference to SYM at RELINFO's location.
1216
  template<int size, bool big_endian>
1217
  void
1218
  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1219
                size_t relnum, off_t reloffset) const;
1220
 
1221
 private:
1222
  Warnings(const Warnings&);
1223
  Warnings& operator=(const Warnings&);
1224
 
1225
  // What we need to know to get the warning text.
1226
  struct Warning_location
1227
  {
1228
    // The object the warning is in.
1229
    Object* object;
1230
    // The warning text.
1231
    std::string text;
1232
 
1233
    Warning_location()
1234
      : object(NULL), text()
1235
    { }
1236
 
1237
    void
1238
    set(Object* o, const std::string& t)
1239
    {
1240
      this->object = o;
1241
      this->text = t;
1242
    }
1243
  };
1244
 
1245
  // A mapping from warning symbol names (canonicalized in
1246
  // Symbol_table's namepool_ field) to warning information.
1247
  typedef Unordered_map<const char*, Warning_location> Warning_table;
1248
 
1249
  Warning_table warnings_;
1250
};
1251
 
1252
// The main linker symbol table.
1253
 
1254
class Symbol_table
1255
{
1256
 public:
1257
  // The different places where a symbol definition can come from.
1258
  enum Defined
1259
  {
1260
    // Defined in an object file--the normal case.
1261
    OBJECT,
1262
    // Defined for a COPY reloc.
1263
    COPY,
1264
    // Defined on the command line using --defsym.
1265
    DEFSYM,
1266
    // Defined (so to speak) on the command line using -u.
1267
    UNDEFINED,
1268
    // Defined in a linker script.
1269
    SCRIPT,
1270
    // Predefined by the linker.
1271
    PREDEFINED,
1272 148 khays
    // Defined by the linker during an incremental base link, but not
1273
    // a predefined symbol (e.g., common, defined in script).
1274
    INCREMENTAL_BASE,
1275 27 khays
  };
1276
 
1277
  // The order in which we sort common symbols.
1278
  enum Sort_commons_order
1279
  {
1280
    SORT_COMMONS_BY_SIZE_DESCENDING,
1281
    SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1282
    SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1283
  };
1284
 
1285
  // COUNT is an estimate of how many symbols will be inserted in the
1286
  // symbol table.  It's ok to put 0 if you don't know; a correct
1287
  // guess will just save some CPU by reducing hashtable resizes.
1288
  Symbol_table(unsigned int count, const Version_script_info& version_script);
1289
 
1290
  ~Symbol_table();
1291
 
1292
  void
1293
  set_icf(Icf* icf)
1294
  { this->icf_ = icf;}
1295
 
1296
  Icf*
1297
  icf() const
1298
  { return this->icf_; }
1299
 
1300
  // Returns true if ICF determined that this is a duplicate section. 
1301
  bool
1302
  is_section_folded(Object* obj, unsigned int shndx) const;
1303
 
1304
  void
1305
  set_gc(Garbage_collection* gc)
1306
  { this->gc_ = gc; }
1307
 
1308
  Garbage_collection*
1309
  gc() const
1310
  { return this->gc_; }
1311
 
1312
  // During garbage collection, this keeps undefined symbols.
1313
  void
1314
  gc_mark_undef_symbols(Layout*);
1315
 
1316 163 khays
  // This tells garbage collection that this symbol is referenced.
1317 27 khays
  void
1318 163 khays
  gc_mark_symbol(Symbol* sym);
1319 27 khays
 
1320
  // During garbage collection, this keeps sections that correspond to 
1321
  // symbols seen in dynamic objects.
1322
  inline void
1323
  gc_mark_dyn_syms(Symbol* sym);
1324
 
1325
  // Add COUNT external symbols from the relocatable object RELOBJ to
1326
  // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1327
  // offset in the symbol table of the first symbol, SYM_NAMES is
1328
  // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1329
  // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1330
  // *DEFINED to the number of defined symbols.
1331
  template<int size, bool big_endian>
1332
  void
1333
  add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1334
                  const unsigned char* syms, size_t count,
1335
                  size_t symndx_offset, const char* sym_names,
1336
                  size_t sym_name_size,
1337
                  typename Sized_relobj_file<size, big_endian>::Symbols*,
1338
                  size_t* defined);
1339
 
1340
  // Add one external symbol from the plugin object OBJ to the symbol table.
1341
  // Returns a pointer to the resolved symbol in the symbol table.
1342
  template<int size, bool big_endian>
1343
  Symbol*
1344
  add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1345
                     const char* name, const char* ver,
1346
                     elfcpp::Sym<size, big_endian>* sym);
1347
 
1348
  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1349
  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1350
  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1351
  // symbol version data.
1352
  template<int size, bool big_endian>
1353
  void
1354
  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1355
                  const unsigned char* syms, size_t count,
1356
                  const char* sym_names, size_t sym_name_size,
1357
                  const unsigned char* versym, size_t versym_size,
1358
                  const std::vector<const char*>*,
1359
                  typename Sized_relobj_file<size, big_endian>::Symbols*,
1360
                  size_t* defined);
1361
 
1362
  // Add one external symbol from the incremental object OBJ to the symbol
1363
  // table.  Returns a pointer to the resolved symbol in the symbol table.
1364
  template<int size, bool big_endian>
1365 148 khays
  Sized_symbol<size>*
1366 27 khays
  add_from_incrobj(Object* obj, const char* name,
1367
                   const char* ver, elfcpp::Sym<size, big_endian>* sym);
1368
 
1369
  // Define a special symbol based on an Output_data.  It is a
1370
  // multiple definition error if this symbol is already defined.
1371
  Symbol*
1372
  define_in_output_data(const char* name, const char* version, Defined,
1373
                        Output_data*, uint64_t value, uint64_t symsize,
1374
                        elfcpp::STT type, elfcpp::STB binding,
1375
                        elfcpp::STV visibility, unsigned char nonvis,
1376
                        bool offset_is_from_end, bool only_if_ref);
1377
 
1378
  // Define a special symbol based on an Output_segment.  It is a
1379
  // multiple definition error if this symbol is already defined.
1380
  Symbol*
1381
  define_in_output_segment(const char* name, const char* version, Defined,
1382
                           Output_segment*, uint64_t value, uint64_t symsize,
1383
                           elfcpp::STT type, elfcpp::STB binding,
1384
                           elfcpp::STV visibility, unsigned char nonvis,
1385
                           Symbol::Segment_offset_base, bool only_if_ref);
1386
 
1387
  // Define a special symbol with a constant value.  It is a multiple
1388
  // definition error if this symbol is already defined.
1389
  Symbol*
1390
  define_as_constant(const char* name, const char* version, Defined,
1391
                     uint64_t value, uint64_t symsize, elfcpp::STT type,
1392
                     elfcpp::STB binding, elfcpp::STV visibility,
1393
                     unsigned char nonvis, bool only_if_ref,
1394
                     bool force_override);
1395
 
1396
  // Define a set of symbols in output sections.  If ONLY_IF_REF is
1397
  // true, only define them if they are referenced.
1398
  void
1399
  define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1400
                 bool only_if_ref);
1401
 
1402
  // Define a set of symbols in output segments.  If ONLY_IF_REF is
1403
  // true, only defined them if they are referenced.
1404
  void
1405
  define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1406
                 bool only_if_ref);
1407
 
1408
  // Define SYM using a COPY reloc.  POSD is the Output_data where the
1409
  // symbol should be defined--typically a .dyn.bss section.  VALUE is
1410
  // the offset within POSD.
1411
  template<int size>
1412
  void
1413
  define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1414
                         typename elfcpp::Elf_types<size>::Elf_Addr);
1415
 
1416
  // Look up a symbol.
1417
  Symbol*
1418
  lookup(const char*, const char* version = NULL) const;
1419
 
1420
  // Return the real symbol associated with the forwarder symbol FROM.
1421
  Symbol*
1422
  resolve_forwards(const Symbol* from) const;
1423
 
1424
  // Return the sized version of a symbol in this table.
1425
  template<int size>
1426
  Sized_symbol<size>*
1427
  get_sized_symbol(Symbol*) const;
1428
 
1429
  template<int size>
1430
  const Sized_symbol<size>*
1431
  get_sized_symbol(const Symbol*) const;
1432
 
1433
  // Return the count of undefined symbols seen.
1434
  size_t
1435
  saw_undefined() const
1436
  { return this->saw_undefined_; }
1437
 
1438
  // Allocate the common symbols
1439
  void
1440
  allocate_commons(Layout*, Mapfile*);
1441
 
1442
  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1443
  // of the warning.
1444
  void
1445
  add_warning(const char* name, Object* obj, const std::string& warning)
1446
  { this->warnings_.add_warning(this, name, obj, warning); }
1447
 
1448
  // Canonicalize a symbol name for use in the hash table.
1449
  const char*
1450
  canonicalize_name(const char* name)
1451
  { return this->namepool_.add(name, true, NULL); }
1452
 
1453
  // Possibly issue a warning for a reference to SYM at LOCATION which
1454
  // is in OBJ.
1455
  template<int size, bool big_endian>
1456
  void
1457
  issue_warning(const Symbol* sym,
1458
                const Relocate_info<size, big_endian>* relinfo,
1459
                size_t relnum, off_t reloffset) const
1460
  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1461
 
1462
  // Check candidate_odr_violations_ to find symbols with the same name
1463
  // but apparently different definitions (different source-file/line-no).
1464
  void
1465
  detect_odr_violations(const Task*, const char* output_file_name) const;
1466
 
1467
  // Add any undefined symbols named on the command line to the symbol
1468
  // table.
1469
  void
1470
  add_undefined_symbols_from_command_line(Layout*);
1471
 
1472
  // SYM is defined using a COPY reloc.  Return the dynamic object
1473
  // where the original definition was found.
1474
  Dynobj*
1475
  get_copy_source(const Symbol* sym) const;
1476
 
1477
  // Set the dynamic symbol indexes.  INDEX is the index of the first
1478
  // global dynamic symbol.  Pointers to the symbols are stored into
1479
  // the vector.  The names are stored into the Stringpool.  This
1480
  // returns an updated dynamic symbol index.
1481
  unsigned int
1482
  set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1483
                     Stringpool*, Versions*);
1484
 
1485
  // Finalize the symbol table after we have set the final addresses
1486
  // of all the input sections.  This sets the final symbol indexes,
1487
  // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1488
  // index of the first global symbol.  OFF is the file offset of the
1489
  // global symbol table, DYNOFF is the offset of the globals in the
1490
  // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1491
  // global dynamic symbol, and DYNCOUNT is the number of global
1492
  // dynamic symbols.  This records the parameters, and returns the
1493
  // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1494
  // local symbols.
1495
  off_t
1496
  finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1497
           Stringpool* pool, unsigned int* plocal_symcount);
1498
 
1499
  // Set the final file offset of the symbol table.
1500
  void
1501
  set_file_offset(off_t off)
1502
  { this->offset_ = off; }
1503
 
1504
  // Status code of Symbol_table::compute_final_value.
1505
  enum Compute_final_value_status
1506
  {
1507
    // No error.
1508
    CFVS_OK,
1509
    // Unsupported symbol section.
1510
    CFVS_UNSUPPORTED_SYMBOL_SECTION,
1511
    // No output section.
1512
    CFVS_NO_OUTPUT_SECTION
1513
  };
1514
 
1515
  // Compute the final value of SYM and store status in location PSTATUS.
1516
  // During relaxation, this may be called multiple times for a symbol to 
1517
  // compute its would-be final value in each relaxation pass.
1518
 
1519
  template<int size>
1520
  typename Sized_symbol<size>::Value_type
1521
  compute_final_value(const Sized_symbol<size>* sym,
1522
                      Compute_final_value_status* pstatus) const;
1523
 
1524
  // Return the index of the first global symbol.
1525
  unsigned int
1526
  first_global_index() const
1527
  { return this->first_global_index_; }
1528
 
1529
  // Return the total number of symbols in the symbol table.
1530
  unsigned int
1531
  output_count() const
1532
  { return this->output_count_; }
1533
 
1534
  // Write out the global symbols.
1535
  void
1536
  write_globals(const Stringpool*, const Stringpool*,
1537
                Output_symtab_xindex*, Output_symtab_xindex*,
1538
                Output_file*) const;
1539
 
1540
  // Write out a section symbol.  Return the updated offset.
1541
  void
1542
  write_section_symbol(const Output_section*, Output_symtab_xindex*,
1543
                       Output_file*, off_t) const;
1544
 
1545
  // Loop over all symbols, applying the function F to each.
1546
  template<int size, typename F>
1547
  void
1548
  for_all_symbols(F f) const
1549
  {
1550
    for (Symbol_table_type::const_iterator p = this->table_.begin();
1551
         p != this->table_.end();
1552
         ++p)
1553
      {
1554
        Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1555
        f(sym);
1556
      }
1557
  }
1558
 
1559
  // Dump statistical information to stderr.
1560
  void
1561
  print_stats() const;
1562
 
1563
  // Return the version script information.
1564
  const Version_script_info&
1565
  version_script() const
1566
  { return version_script_; }
1567
 
1568
 private:
1569
  Symbol_table(const Symbol_table&);
1570
  Symbol_table& operator=(const Symbol_table&);
1571
 
1572
  // The type of the list of common symbols.
1573
  typedef std::vector<Symbol*> Commons_type;
1574
 
1575
  // The type of the symbol hash table.
1576
 
1577
  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1578
 
1579
  // The hash function.  The key values are Stringpool keys.
1580
  struct Symbol_table_hash
1581
  {
1582
    inline size_t
1583
    operator()(const Symbol_table_key& key) const
1584
    {
1585
      return key.first ^ key.second;
1586
    }
1587
  };
1588
 
1589
  struct Symbol_table_eq
1590
  {
1591
    bool
1592
    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1593
  };
1594
 
1595
  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1596
                        Symbol_table_eq> Symbol_table_type;
1597
 
1598
  // A map from symbol name (as a pointer into the namepool) to all
1599
  // the locations the symbols is (weakly) defined (and certain other
1600
  // conditions are met).  This map will be used later to detect
1601
  // possible One Definition Rule (ODR) violations.
1602
  struct Symbol_location
1603
  {
1604
    Object* object;         // Object where the symbol is defined.
1605
    unsigned int shndx;     // Section-in-object where the symbol is defined.
1606
    off_t offset;           // Offset-in-section where the symbol is defined.
1607
    bool operator==(const Symbol_location& that) const
1608
    {
1609
      return (this->object == that.object
1610
              && this->shndx == that.shndx
1611
              && this->offset == that.offset);
1612
    }
1613
  };
1614
 
1615
  struct Symbol_location_hash
1616
  {
1617
    size_t operator()(const Symbol_location& loc) const
1618
    { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1619
  };
1620
 
1621
  typedef Unordered_map<const char*,
1622
                        Unordered_set<Symbol_location, Symbol_location_hash> >
1623
  Odr_map;
1624
 
1625
  // Make FROM a forwarder symbol to TO.
1626
  void
1627
  make_forwarder(Symbol* from, Symbol* to);
1628
 
1629
  // Add a symbol.
1630
  template<int size, bool big_endian>
1631
  Sized_symbol<size>*
1632
  add_from_object(Object*, const char* name, Stringpool::Key name_key,
1633
                  const char* version, Stringpool::Key version_key,
1634
                  bool def, const elfcpp::Sym<size, big_endian>& sym,
1635
                  unsigned int st_shndx, bool is_ordinary,
1636
                  unsigned int orig_st_shndx);
1637
 
1638
  // Define a default symbol.
1639
  template<int size, bool big_endian>
1640
  void
1641
  define_default_version(Sized_symbol<size>*, bool,
1642
                         Symbol_table_type::iterator);
1643
 
1644
  // Resolve symbols.
1645
  template<int size, bool big_endian>
1646
  void
1647
  resolve(Sized_symbol<size>* to,
1648
          const elfcpp::Sym<size, big_endian>& sym,
1649
          unsigned int st_shndx, bool is_ordinary,
1650
          unsigned int orig_st_shndx,
1651
          Object*, const char* version);
1652
 
1653
  template<int size, bool big_endian>
1654
  void
1655
  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1656
 
1657
  // Record that a symbol is forced to be local by a version script or
1658
  // by visibility.
1659
  void
1660
  force_local(Symbol*);
1661
 
1662
  // Adjust NAME and *NAME_KEY for wrapping.
1663
  const char*
1664
  wrap_symbol(const char* name, Stringpool::Key* name_key);
1665
 
1666
  // Whether we should override a symbol, based on flags in
1667
  // resolve.cc.
1668
  static bool
1669 159 khays
  should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1670
                  Object*, bool*, bool*);
1671 27 khays
 
1672
  // Report a problem in symbol resolution.
1673
  static void
1674
  report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1675
                         Defined, Object* object);
1676
 
1677
  // Override a symbol.
1678
  template<int size, bool big_endian>
1679
  void
1680
  override(Sized_symbol<size>* tosym,
1681
           const elfcpp::Sym<size, big_endian>& fromsym,
1682
           unsigned int st_shndx, bool is_ordinary,
1683
           Object* object, const char* version);
1684
 
1685
  // Whether we should override a symbol with a special symbol which
1686
  // is automatically defined by the linker.
1687
  static bool
1688 159 khays
  should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1689 27 khays
 
1690
  // Override a symbol with a special symbol.
1691
  template<int size>
1692
  void
1693
  override_with_special(Sized_symbol<size>* tosym,
1694
                        const Sized_symbol<size>* fromsym);
1695
 
1696
  // Record all weak alias sets for a dynamic object.
1697
  template<int size>
1698
  void
1699
  record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1700
 
1701
  // Define a special symbol.
1702
  template<int size, bool big_endian>
1703
  Sized_symbol<size>*
1704
  define_special_symbol(const char** pname, const char** pversion,
1705
                        bool only_if_ref, Sized_symbol<size>** poldsym,
1706
                        bool* resolve_oldsym);
1707
 
1708
  // Define a symbol in an Output_data, sized version.
1709
  template<int size>
1710
  Sized_symbol<size>*
1711
  do_define_in_output_data(const char* name, const char* version, Defined,
1712
                           Output_data*,
1713
                           typename elfcpp::Elf_types<size>::Elf_Addr value,
1714
                           typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1715
                           elfcpp::STT type, elfcpp::STB binding,
1716
                           elfcpp::STV visibility, unsigned char nonvis,
1717
                           bool offset_is_from_end, bool only_if_ref);
1718
 
1719
  // Define a symbol in an Output_segment, sized version.
1720
  template<int size>
1721
  Sized_symbol<size>*
1722
  do_define_in_output_segment(
1723
    const char* name, const char* version, Defined, Output_segment* os,
1724
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1725
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1726
    elfcpp::STT type, elfcpp::STB binding,
1727
    elfcpp::STV visibility, unsigned char nonvis,
1728
    Symbol::Segment_offset_base offset_base, bool only_if_ref);
1729
 
1730
  // Define a symbol as a constant, sized version.
1731
  template<int size>
1732
  Sized_symbol<size>*
1733
  do_define_as_constant(
1734
    const char* name, const char* version, Defined,
1735
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1736
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1737
    elfcpp::STT type, elfcpp::STB binding,
1738
    elfcpp::STV visibility, unsigned char nonvis,
1739
    bool only_if_ref, bool force_override);
1740
 
1741
  // Add any undefined symbols named on the command line to the symbol
1742
  // table, sized version.
1743
  template<int size>
1744
  void
1745
  do_add_undefined_symbols_from_command_line(Layout*);
1746
 
1747
  // Add one undefined symbol.
1748
  template<int size>
1749
  void
1750
  add_undefined_symbol_from_command_line(const char* name);
1751
 
1752
  // Types of common symbols.
1753
 
1754
  enum Commons_section_type
1755
  {
1756
    COMMONS_NORMAL,
1757
    COMMONS_TLS,
1758
    COMMONS_SMALL,
1759
    COMMONS_LARGE
1760
  };
1761
 
1762
  // Allocate the common symbols, sized version.
1763
  template<int size>
1764
  void
1765
  do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1766
 
1767
  // Allocate the common symbols from one list.
1768
  template<int size>
1769
  void
1770
  do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1771
                           Mapfile*, Sort_commons_order);
1772
 
1773
  // Returns all of the lines attached to LOC, not just the one the
1774
  // instruction actually came from.  This helps the ODR checker avoid
1775
  // false positives.
1776
  static std::vector<std::string>
1777
  linenos_from_loc(const Task* task, const Symbol_location& loc);
1778
 
1779
  // Implement detect_odr_violations.
1780
  template<int size, bool big_endian>
1781
  void
1782
  sized_detect_odr_violations() const;
1783
 
1784
  // Finalize symbols specialized for size.
1785
  template<int size>
1786
  off_t
1787
  sized_finalize(off_t, Stringpool*, unsigned int*);
1788
 
1789
  // Finalize a symbol.  Return whether it should be added to the
1790
  // symbol table.
1791
  template<int size>
1792
  bool
1793
  sized_finalize_symbol(Symbol*);
1794
 
1795
  // Add a symbol the final symtab by setting its index.
1796
  template<int size>
1797
  void
1798
  add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1799
 
1800
  // Write globals specialized for size and endianness.
1801
  template<int size, bool big_endian>
1802
  void
1803
  sized_write_globals(const Stringpool*, const Stringpool*,
1804
                      Output_symtab_xindex*, Output_symtab_xindex*,
1805
                      Output_file*) const;
1806
 
1807
  // Write out a symbol to P.
1808
  template<int size, bool big_endian>
1809
  void
1810
  sized_write_symbol(Sized_symbol<size>*,
1811
                     typename elfcpp::Elf_types<size>::Elf_Addr value,
1812
                     unsigned int shndx, elfcpp::STB,
1813
                     const Stringpool*, unsigned char* p) const;
1814
 
1815
  // Possibly warn about an undefined symbol from a dynamic object.
1816
  void
1817
  warn_about_undefined_dynobj_symbol(Symbol*) const;
1818
 
1819
  // Write out a section symbol, specialized for size and endianness.
1820
  template<int size, bool big_endian>
1821
  void
1822
  sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1823
                             Output_file*, off_t) const;
1824
 
1825
  // The type of the list of symbols which have been forced local.
1826
  typedef std::vector<Symbol*> Forced_locals;
1827
 
1828
  // A map from symbols with COPY relocs to the dynamic objects where
1829
  // they are defined.
1830
  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1831
 
1832
  // We increment this every time we see a new undefined symbol, for
1833
  // use in archive groups.
1834
  size_t saw_undefined_;
1835
  // The index of the first global symbol in the output file.
1836
  unsigned int first_global_index_;
1837
  // The file offset within the output symtab section where we should
1838
  // write the table.
1839
  off_t offset_;
1840
  // The number of global symbols we want to write out.
1841
  unsigned int output_count_;
1842
  // The file offset of the global dynamic symbols, or 0 if none.
1843
  off_t dynamic_offset_;
1844
  // The index of the first global dynamic symbol.
1845
  unsigned int first_dynamic_global_index_;
1846
  // The number of global dynamic symbols, or 0 if none.
1847
  unsigned int dynamic_count_;
1848
  // The symbol hash table.
1849
  Symbol_table_type table_;
1850
  // A pool of symbol names.  This is used for all global symbols.
1851
  // Entries in the hash table point into this pool.
1852
  Stringpool namepool_;
1853
  // Forwarding symbols.
1854
  Unordered_map<const Symbol*, Symbol*> forwarders_;
1855
  // Weak aliases.  A symbol in this list points to the next alias.
1856
  // The aliases point to each other in a circular list.
1857
  Unordered_map<Symbol*, Symbol*> weak_aliases_;
1858
  // We don't expect there to be very many common symbols, so we keep
1859
  // a list of them.  When we find a common symbol we add it to this
1860
  // list.  It is possible that by the time we process the list the
1861
  // symbol is no longer a common symbol.  It may also have become a
1862
  // forwarder.
1863
  Commons_type commons_;
1864
  // This is like the commons_ field, except that it holds TLS common
1865
  // symbols.
1866
  Commons_type tls_commons_;
1867
  // This is for small common symbols.
1868
  Commons_type small_commons_;
1869
  // This is for large common symbols.
1870
  Commons_type large_commons_;
1871
  // A list of symbols which have been forced to be local.  We don't
1872
  // expect there to be very many of them, so we keep a list of them
1873
  // rather than walking the whole table to find them.
1874
  Forced_locals forced_locals_;
1875
  // Manage symbol warnings.
1876
  Warnings warnings_;
1877
  // Manage potential One Definition Rule (ODR) violations.
1878
  Odr_map candidate_odr_violations_;
1879
 
1880
  // When we emit a COPY reloc for a symbol, we define it in an
1881
  // Output_data.  When it's time to emit version information for it,
1882
  // we need to know the dynamic object in which we found the original
1883
  // definition.  This maps symbols with COPY relocs to the dynamic
1884
  // object where they were defined.
1885
  Copied_symbol_dynobjs copied_symbol_dynobjs_;
1886
  // Information parsed from the version script, if any.
1887
  const Version_script_info& version_script_;
1888
  Garbage_collection* gc_;
1889
  Icf* icf_;
1890
};
1891
 
1892
// We inline get_sized_symbol for efficiency.
1893
 
1894
template<int size>
1895
Sized_symbol<size>*
1896
Symbol_table::get_sized_symbol(Symbol* sym) const
1897
{
1898
  gold_assert(size == parameters->target().get_size());
1899
  return static_cast<Sized_symbol<size>*>(sym);
1900
}
1901
 
1902
template<int size>
1903
const Sized_symbol<size>*
1904
Symbol_table::get_sized_symbol(const Symbol* sym) const
1905
{
1906
  gold_assert(size == parameters->target().get_size());
1907
  return static_cast<const Sized_symbol<size>*>(sym);
1908
}
1909
 
1910
} // End namespace gold.
1911
 
1912
#endif // !defined(GOLD_SYMTAB_H)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.