OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [target.h] - Blame information for rev 165

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// target.h -- target support for gold   -*- C++ -*-
2
 
3 159 khays
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 27 khays
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
// The abstract class Target is the interface for target specific
24
// support.  It defines abstract methods which each target must
25
// implement.  Typically there will be one target per processor, but
26
// in some cases it may be necessary to have subclasses.
27
 
28
// For speed and consistency we want to use inline functions to handle
29
// relocation processing.  So besides implementations of the abstract
30
// methods, each target is expected to define a template
31
// specialization of the relocation functions.
32
 
33
#ifndef GOLD_TARGET_H
34
#define GOLD_TARGET_H
35
 
36
#include "elfcpp.h"
37
#include "options.h"
38
#include "parameters.h"
39
#include "debug.h"
40
 
41
namespace gold
42
{
43
 
44
class Object;
45
class Relobj;
46
template<int size, bool big_endian>
47
class Sized_relobj;
48
template<int size, bool big_endian>
49
class Sized_relobj_file;
50
class Relocatable_relocs;
51
template<int size, bool big_endian>
52
class Relocate_info;
53
class Reloc_symbol_changes;
54
class Symbol;
55
template<int size>
56
class Sized_symbol;
57
class Symbol_table;
58
class Output_data;
59
template<int size, bool big_endian>
60
class Output_data_got;
61
class Output_section;
62
class Input_objects;
63
class Task;
64
 
65
// The abstract class for target specific handling.
66
 
67
class Target
68
{
69
 public:
70
  virtual ~Target()
71
  { }
72
 
73
  // Return the bit size that this target implements.  This should
74
  // return 32 or 64.
75
  int
76
  get_size() const
77
  { return this->pti_->size; }
78
 
79
  // Return whether this target is big-endian.
80
  bool
81
  is_big_endian() const
82
  { return this->pti_->is_big_endian; }
83
 
84
  // Machine code to store in e_machine field of ELF header.
85
  elfcpp::EM
86
  machine_code() const
87
  { return this->pti_->machine_code; }
88
 
89
  // Processor specific flags to store in e_flags field of ELF header.
90
  elfcpp::Elf_Word
91
  processor_specific_flags() const
92
  { return this->processor_specific_flags_; }
93
 
94
  // Whether processor specific flags are set at least once.
95
  bool
96
  are_processor_specific_flags_set() const
97
  { return this->are_processor_specific_flags_set_; }
98
 
99
  // Whether this target has a specific make_symbol function.
100
  bool
101
  has_make_symbol() const
102
  { return this->pti_->has_make_symbol; }
103
 
104
  // Whether this target has a specific resolve function.
105
  bool
106
  has_resolve() const
107
  { return this->pti_->has_resolve; }
108
 
109
  // Whether this target has a specific code fill function.
110
  bool
111
  has_code_fill() const
112
  { return this->pti_->has_code_fill; }
113
 
114
  // Return the default name of the dynamic linker.
115
  const char*
116
  dynamic_linker() const
117
  { return this->pti_->dynamic_linker; }
118
 
119
  // Return the default address to use for the text segment.
120
  uint64_t
121
  default_text_segment_address() const
122
  { return this->pti_->default_text_segment_address; }
123
 
124
  // Return the ABI specified page size.
125
  uint64_t
126
  abi_pagesize() const
127
  {
128
    if (parameters->options().max_page_size() > 0)
129
      return parameters->options().max_page_size();
130
    else
131
      return this->pti_->abi_pagesize;
132
  }
133
 
134
  // Return the common page size used on actual systems.
135
  uint64_t
136
  common_pagesize() const
137
  {
138
    if (parameters->options().common_page_size() > 0)
139
      return std::min(parameters->options().common_page_size(),
140
                      this->abi_pagesize());
141
    else
142
      return std::min(this->pti_->common_pagesize,
143
                      this->abi_pagesize());
144
  }
145
 
146
  // If we see some object files with .note.GNU-stack sections, and
147
  // some objects files without them, this returns whether we should
148
  // consider the object files without them to imply that the stack
149
  // should be executable.
150
  bool
151
  is_default_stack_executable() const
152
  { return this->pti_->is_default_stack_executable; }
153
 
154
  // Return a character which may appear as a prefix for a wrap
155
  // symbol.  If this character appears, we strip it when checking for
156
  // wrapping and add it back when forming the final symbol name.
157
  // This should be '\0' if not special prefix is required, which is
158
  // the normal case.
159
  char
160
  wrap_char() const
161
  { return this->pti_->wrap_char; }
162
 
163
  // Return the special section index which indicates a small common
164
  // symbol.  This will return SHN_UNDEF if there are no small common
165
  // symbols.
166
  elfcpp::Elf_Half
167
  small_common_shndx() const
168
  { return this->pti_->small_common_shndx; }
169
 
170
  // Return values to add to the section flags for the section holding
171
  // small common symbols.
172
  elfcpp::Elf_Xword
173
  small_common_section_flags() const
174
  {
175
    gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
176
    return this->pti_->small_common_section_flags;
177
  }
178
 
179
  // Return the special section index which indicates a large common
180
  // symbol.  This will return SHN_UNDEF if there are no large common
181
  // symbols.
182
  elfcpp::Elf_Half
183
  large_common_shndx() const
184
  { return this->pti_->large_common_shndx; }
185
 
186
  // Return values to add to the section flags for the section holding
187
  // large common symbols.
188
  elfcpp::Elf_Xword
189
  large_common_section_flags() const
190
  {
191
    gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
192
    return this->pti_->large_common_section_flags;
193
  }
194
 
195
  // This hook is called when an output section is created.
196
  void
197
  new_output_section(Output_section* os) const
198
  { this->do_new_output_section(os); }
199
 
200
  // This is called to tell the target to complete any sections it is
201
  // handling.  After this all sections must have their final size.
202
  void
203
  finalize_sections(Layout* layout, const Input_objects* input_objects,
204
                    Symbol_table* symtab)
205
  { return this->do_finalize_sections(layout, input_objects, symtab); }
206
 
207
  // Return the value to use for a global symbol which needs a special
208
  // value in the dynamic symbol table.  This will only be called if
209
  // the backend first calls symbol->set_needs_dynsym_value().
210
  uint64_t
211
  dynsym_value(const Symbol* sym) const
212
  { return this->do_dynsym_value(sym); }
213
 
214
  // Return a string to use to fill out a code section.  This is
215
  // basically one or more NOPS which must fill out the specified
216
  // length in bytes.
217
  std::string
218
  code_fill(section_size_type length) const
219
  { return this->do_code_fill(length); }
220
 
221
  // Return whether SYM is known to be defined by the ABI.  This is
222
  // used to avoid inappropriate warnings about undefined symbols.
223
  bool
224
  is_defined_by_abi(const Symbol* sym) const
225
  { return this->do_is_defined_by_abi(sym); }
226
 
227
  // Adjust the output file header before it is written out.  VIEW
228
  // points to the header in external form.  LEN is the length.
229
  void
230
  adjust_elf_header(unsigned char* view, int len) const
231
  { return this->do_adjust_elf_header(view, len); }
232
 
233
  // Return whether NAME is a local label name.  This is used to implement the
234
  // --discard-locals options.
235
  bool
236
  is_local_label_name(const char* name) const
237
  { return this->do_is_local_label_name(name); }
238
 
239
  // Get the symbol index to use for a target specific reloc.
240
  unsigned int
241
  reloc_symbol_index(void* arg, unsigned int type) const
242
  { return this->do_reloc_symbol_index(arg, type); }
243
 
244
  // Get the addend to use for a target specific reloc.
245
  uint64_t
246
  reloc_addend(void* arg, unsigned int type, uint64_t addend) const
247
  { return this->do_reloc_addend(arg, type, addend); }
248
 
249 159 khays
  // Return the PLT address to use for a global symbol.  This is used
250
  // for STT_GNU_IFUNC symbols.  The symbol's plt_offset is relative
251
  // to this PLT address.
252
  uint64_t
253
  plt_address_for_global(const Symbol* sym) const
254
  { return this->do_plt_address_for_global(sym); }
255 27 khays
 
256 159 khays
  // Return the PLT address to use for a local symbol.  This is used
257
  // for STT_GNU_IFUNC symbols.  The symbol's plt_offset is relative
258
  // to this PLT address.
259
  uint64_t
260
  plt_address_for_local(const Relobj* object, unsigned int symndx) const
261
  { return this->do_plt_address_for_local(object, symndx); }
262 27 khays
 
263 159 khays
  // Return whether this target can use relocation types to determine
264
  // if a function's address is taken.
265
  bool
266
  can_check_for_function_pointers() const
267
  { return this->do_can_check_for_function_pointers(); }
268
 
269
  // Return whether a relocation to a merged section can be processed
270
  // to retrieve the contents.
271
  bool
272
  can_icf_inline_merge_sections () const
273
  { return this->pti_->can_icf_inline_merge_sections; }
274
 
275
  // Whether a section called SECTION_NAME may have function pointers to
276
  // sections not eligible for safe ICF folding.
277
  virtual bool
278
  section_may_have_icf_unsafe_pointers(const char* section_name) const
279
  { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
280
 
281
  // Return the base to use for the PC value in an FDE when it is
282
  // encoded using DW_EH_PE_datarel.  This does not appear to be
283
  // documented anywhere, but it is target specific.  Any use of
284
  // DW_EH_PE_datarel in gcc requires defining a special macro
285
  // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
286
  uint64_t
287
  ehframe_datarel_base() const
288
  { return this->do_ehframe_datarel_base(); }
289
 
290 27 khays
  // Return true if a reference to SYM from a reloc of type R_TYPE
291
  // means that the current function may call an object compiled
292
  // without -fsplit-stack.  SYM is known to be defined in an object
293
  // compiled without -fsplit-stack.
294
  bool
295
  is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
296
  { return this->do_is_call_to_non_split(sym, r_type); }
297
 
298
  // A function starts at OFFSET in section SHNDX in OBJECT.  That
299
  // function was compiled with -fsplit-stack, but it refers to a
300
  // function which was compiled without -fsplit-stack.  VIEW is a
301
  // modifiable view of the section; VIEW_SIZE is the size of the
302
  // view.  The target has to adjust the function so that it allocates
303
  // enough stack.
304
  void
305
  calls_non_split(Relobj* object, unsigned int shndx,
306
                  section_offset_type fnoffset, section_size_type fnsize,
307
                  unsigned char* view, section_size_type view_size,
308
                  std::string* from, std::string* to) const
309
  {
310
    this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
311
                             from, to);
312
  }
313
 
314
  // Make an ELF object.
315
  template<int size, bool big_endian>
316
  Object*
317
  make_elf_object(const std::string& name, Input_file* input_file,
318
                  off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
319
  { return this->do_make_elf_object(name, input_file, offset, ehdr); }
320
 
321
  // Make an output section.
322
  Output_section*
323
  make_output_section(const char* name, elfcpp::Elf_Word type,
324
                      elfcpp::Elf_Xword flags)
325
  { return this->do_make_output_section(name, type, flags); }
326
 
327
  // Return true if target wants to perform relaxation.
328
  bool
329
  may_relax() const
330
  {
331
    // Run the dummy relaxation pass twice if relaxation debugging is enabled.
332
    if (is_debugging_enabled(DEBUG_RELAXATION))
333
      return true;
334
 
335
     return this->do_may_relax();
336
  }
337
 
338
  // Perform a relaxation pass.  Return true if layout may be changed.
339
  bool
340
  relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
341
        Layout* layout, const Task* task)
342
  {
343
    // Run the dummy relaxation pass twice if relaxation debugging is enabled.
344
    if (is_debugging_enabled(DEBUG_RELAXATION))
345
      return pass < 2;
346
 
347
    return this->do_relax(pass, input_objects, symtab, layout, task);
348
  }
349
 
350
  // Return the target-specific name of attributes section.  This is
351
  // NULL if a target does not use attributes section or if it uses
352
  // the default section name ".gnu.attributes".
353
  const char*
354
  attributes_section() const
355
  { return this->pti_->attributes_section; }
356
 
357
  // Return the vendor name of vendor attributes.
358
  const char*
359
  attributes_vendor() const
360
  { return this->pti_->attributes_vendor; }
361
 
362
  // Whether a section called NAME is an attribute section.
363
  bool
364
  is_attributes_section(const char* name) const
365
  {
366
    return ((this->pti_->attributes_section != NULL
367
             && strcmp(name, this->pti_->attributes_section) == 0)
368
            || strcmp(name, ".gnu.attributes") == 0);
369
  }
370
 
371
  // Return a bit mask of argument types for attribute with TAG.
372
  int
373
  attribute_arg_type(int tag) const
374
  { return this->do_attribute_arg_type(tag); }
375
 
376
  // Return the attribute tag of the position NUM in the list of fixed
377
  // attributes.  Normally there is no reordering and
378
  // attributes_order(NUM) == NUM.
379
  int
380
  attributes_order(int num) const
381
  { return this->do_attributes_order(num); }
382
 
383
  // When a target is selected as the default target, we call this method,
384
  // which may be used for expensive, target-specific initialization.
385
  void
386
  select_as_default_target()
387
  { this->do_select_as_default_target(); }
388
 
389 159 khays
  // Return the value to store in the EI_OSABI field in the ELF
390
  // header.
391
  elfcpp::ELFOSABI
392
  osabi() const
393
  { return this->osabi_; }
394
 
395
  // Set the value to store in the EI_OSABI field in the ELF header.
396
  void
397
  set_osabi(elfcpp::ELFOSABI osabi)
398
  { this->osabi_ = osabi; }
399
 
400 27 khays
 protected:
401
  // This struct holds the constant information for a child class.  We
402
  // use a struct to avoid the overhead of virtual function calls for
403
  // simple information.
404
  struct Target_info
405
  {
406
    // Address size (32 or 64).
407
    int size;
408
    // Whether the target is big endian.
409
    bool is_big_endian;
410
    // The code to store in the e_machine field of the ELF header.
411
    elfcpp::EM machine_code;
412
    // Whether this target has a specific make_symbol function.
413
    bool has_make_symbol;
414
    // Whether this target has a specific resolve function.
415
    bool has_resolve;
416
    // Whether this target has a specific code fill function.
417
    bool has_code_fill;
418
    // Whether an object file with no .note.GNU-stack sections implies
419
    // that the stack should be executable.
420
    bool is_default_stack_executable;
421 159 khays
    // Whether a relocation to a merged section can be processed to
422
    // retrieve the contents.
423
    bool can_icf_inline_merge_sections;
424 27 khays
    // Prefix character to strip when checking for wrapping.
425
    char wrap_char;
426
    // The default dynamic linker name.
427
    const char* dynamic_linker;
428
    // The default text segment address.
429
    uint64_t default_text_segment_address;
430
    // The ABI specified page size.
431
    uint64_t abi_pagesize;
432
    // The common page size used by actual implementations.
433
    uint64_t common_pagesize;
434
    // The special section index for small common symbols; SHN_UNDEF
435
    // if none.
436
    elfcpp::Elf_Half small_common_shndx;
437
    // The special section index for large common symbols; SHN_UNDEF
438
    // if none.
439
    elfcpp::Elf_Half large_common_shndx;
440
    // Section flags for small common section.
441
    elfcpp::Elf_Xword small_common_section_flags;
442
    // Section flags for large common section.
443
    elfcpp::Elf_Xword large_common_section_flags;
444
    // Name of attributes section if it is not ".gnu.attributes".
445
    const char* attributes_section;
446
    // Vendor name of vendor attributes.
447
    const char* attributes_vendor;
448
  };
449
 
450
  Target(const Target_info* pti)
451
    : pti_(pti), processor_specific_flags_(0),
452 159 khays
      are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
453 27 khays
  { }
454
 
455
  // Virtual function which may be implemented by the child class.
456
  virtual void
457
  do_new_output_section(Output_section*) const
458
  { }
459
 
460
  // Virtual function which may be implemented by the child class.
461
  virtual void
462
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
463
  { }
464
 
465
  // Virtual function which may be implemented by the child class.
466
  virtual uint64_t
467
  do_dynsym_value(const Symbol*) const
468
  { gold_unreachable(); }
469
 
470
  // Virtual function which must be implemented by the child class if
471
  // needed.
472
  virtual std::string
473
  do_code_fill(section_size_type) const
474
  { gold_unreachable(); }
475
 
476
  // Virtual function which may be implemented by the child class.
477
  virtual bool
478
  do_is_defined_by_abi(const Symbol*) const
479
  { return false; }
480
 
481
  // Adjust the output file header before it is written out.  VIEW
482
  // points to the header in external form.  LEN is the length, and
483
  // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
484 159 khays
  // By default, we set the EI_OSABI field if requested (in
485
  // Sized_target).
486 27 khays
  virtual void
487 159 khays
  do_adjust_elf_header(unsigned char*, int) const = 0;
488 27 khays
 
489
  // Virtual function which may be overridden by the child class.
490
  virtual bool
491
  do_is_local_label_name(const char*) const;
492
 
493
  // Virtual function that must be overridden by a target which uses
494
  // target specific relocations.
495
  virtual unsigned int
496
  do_reloc_symbol_index(void*, unsigned int) const
497
  { gold_unreachable(); }
498
 
499
  // Virtual function that must be overridden by a target which uses
500
  // target specific relocations.
501
  virtual uint64_t
502
  do_reloc_addend(void*, unsigned int, uint64_t) const
503
  { gold_unreachable(); }
504
 
505
  // Virtual functions that must be overridden by a target that uses
506
  // STT_GNU_IFUNC symbols.
507 159 khays
  virtual uint64_t
508
  do_plt_address_for_global(const Symbol*) const
509 27 khays
  { gold_unreachable(); }
510
 
511 159 khays
  virtual uint64_t
512
  do_plt_address_for_local(const Relobj*, unsigned int) const
513 27 khays
  { gold_unreachable(); }
514
 
515 159 khays
  // Virtual function which may be overriden by the child class.
516
  virtual bool
517
  do_can_check_for_function_pointers() const
518
  { return false; }
519
 
520
  // Virtual function which may be overridden by the child class.  We
521
  // recognize some default sections for which we don't care whether
522
  // they have function pointers.
523
  virtual bool
524
  do_section_may_have_icf_unsafe_pointers(const char* section_name) const
525
  {
526
    // We recognize sections for normal vtables, construction vtables and
527
    // EH frames.
528
    return (!is_prefix_of(".rodata._ZTV", section_name)
529
            && !is_prefix_of(".data.rel.ro._ZTV", section_name)
530
            && !is_prefix_of(".rodata._ZTC", section_name)
531
            && !is_prefix_of(".data.rel.ro._ZTC", section_name)
532
            && !is_prefix_of(".eh_frame", section_name));
533
  }
534
 
535
  virtual uint64_t
536
  do_ehframe_datarel_base() const
537
  { gold_unreachable(); }
538
 
539 27 khays
  // Virtual function which may be overridden by the child class.  The
540
  // default implementation is that any function not defined by the
541
  // ABI is a call to a non-split function.
542
  virtual bool
543
  do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
544
 
545
  // Virtual function which may be overridden by the child class.
546
  virtual void
547
  do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
548
                     section_size_type, unsigned char*, section_size_type,
549
                     std::string*, std::string*) const;
550
 
551
  // make_elf_object hooks.  There are four versions of these for
552
  // different address sizes and endianness.
553
 
554
  // Set processor specific flags.
555
  void
556
  set_processor_specific_flags(elfcpp::Elf_Word flags)
557
  {
558
    this->processor_specific_flags_ = flags;
559
    this->are_processor_specific_flags_set_ = true;
560
  }
561
 
562
#ifdef HAVE_TARGET_32_LITTLE
563
  // Virtual functions which may be overridden by the child class.
564
  virtual Object*
565
  do_make_elf_object(const std::string&, Input_file*, off_t,
566
                     const elfcpp::Ehdr<32, false>&);
567
#endif
568
 
569
#ifdef HAVE_TARGET_32_BIG
570
  // Virtual functions which may be overridden by the child class.
571
  virtual Object*
572
  do_make_elf_object(const std::string&, Input_file*, off_t,
573
                     const elfcpp::Ehdr<32, true>&);
574
#endif
575
 
576
#ifdef HAVE_TARGET_64_LITTLE
577
  // Virtual functions which may be overridden by the child class.
578
  virtual Object*
579
  do_make_elf_object(const std::string&, Input_file*, off_t,
580
                     const elfcpp::Ehdr<64, false>& ehdr);
581
#endif
582
 
583
#ifdef HAVE_TARGET_64_BIG
584
  // Virtual functions which may be overridden by the child class.
585
  virtual Object*
586
  do_make_elf_object(const std::string& name, Input_file* input_file,
587
                     off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
588
#endif
589
 
590
  // Virtual functions which may be overridden by the child class.
591
  virtual Output_section*
592
  do_make_output_section(const char* name, elfcpp::Elf_Word type,
593
                         elfcpp::Elf_Xword flags);
594
 
595
  // Virtual function which may be overridden by the child class.
596
  virtual bool
597
  do_may_relax() const
598
  { return parameters->options().relax(); }
599
 
600
  // Virtual function which may be overridden by the child class.
601
  virtual bool
602
  do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
603
  { return false; }
604
 
605
  // A function for targets to call.  Return whether BYTES/LEN matches
606
  // VIEW/VIEW_SIZE at OFFSET.
607
  bool
608
  match_view(const unsigned char* view, section_size_type view_size,
609
             section_offset_type offset, const char* bytes, size_t len) const;
610
 
611
  // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
612
  // for LEN bytes.
613
  void
614
  set_view_to_nop(unsigned char* view, section_size_type view_size,
615
                  section_offset_type offset, size_t len) const;
616
 
617
  // This must be overridden by the child class if it has target-specific
618
  // attributes subsection in the attribute section. 
619
  virtual int
620
  do_attribute_arg_type(int) const
621
  { gold_unreachable(); }
622
 
623
  // This may be overridden by the child class.
624
  virtual int
625
  do_attributes_order(int num) const
626
  { return num; }
627
 
628
  // This may be overridden by the child class.
629
  virtual void
630
  do_select_as_default_target()
631
  { }
632
 
633
 private:
634
  // The implementations of the four do_make_elf_object virtual functions are
635
  // almost identical except for their sizes and endianness.  We use a template.
636
  // for their implementations.
637
  template<int size, bool big_endian>
638
  inline Object*
639
  do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
640
                                    const elfcpp::Ehdr<size, big_endian>&);
641
 
642
  Target(const Target&);
643
  Target& operator=(const Target&);
644
 
645
  // The target information.
646
  const Target_info* pti_;
647
  // Processor-specific flags.
648
  elfcpp::Elf_Word processor_specific_flags_;
649
  // Whether the processor-specific flags are set at least once.
650
  bool are_processor_specific_flags_set_;
651 159 khays
  // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
652
  // the ELF header.  This is handled at this level because it is
653
  // OS-specific rather than processor-specific.
654
  elfcpp::ELFOSABI osabi_;
655 27 khays
};
656
 
657
// The abstract class for a specific size and endianness of target.
658
// Each actual target implementation class should derive from an
659
// instantiation of Sized_target.
660
 
661
template<int size, bool big_endian>
662
class Sized_target : public Target
663
{
664
 public:
665
  // Make a new symbol table entry for the target.  This should be
666
  // overridden by a target which needs additional information in the
667
  // symbol table.  This will only be called if has_make_symbol()
668
  // returns true.
669
  virtual Sized_symbol<size>*
670
  make_symbol() const
671
  { gold_unreachable(); }
672
 
673
  // Resolve a symbol for the target.  This should be overridden by a
674
  // target which needs to take special action.  TO is the
675
  // pre-existing symbol.  SYM is the new symbol, seen in OBJECT.
676
  // VERSION is the version of SYM.  This will only be called if
677
  // has_resolve() returns true.
678
  virtual void
679
  resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
680
          const char*)
681
  { gold_unreachable(); }
682
 
683
  // Process the relocs for a section, and record information of the
684
  // mapping from source to destination sections. This mapping is later
685
  // used to determine unreferenced garbage sections. This procedure is
686
  // only called during garbage collection.
687
  virtual void
688
  gc_process_relocs(Symbol_table* symtab,
689
                    Layout* layout,
690
                    Sized_relobj_file<size, big_endian>* object,
691
                    unsigned int data_shndx,
692
                    unsigned int sh_type,
693
                    const unsigned char* prelocs,
694
                    size_t reloc_count,
695
                    Output_section* output_section,
696
                    bool needs_special_offset_handling,
697
                    size_t local_symbol_count,
698
                    const unsigned char* plocal_symbols) = 0;
699
 
700
  // Scan the relocs for a section, and record any information
701
  // required for the symbol.  SYMTAB is the symbol table.  OBJECT is
702
  // the object in which the section appears.  DATA_SHNDX is the
703
  // section index that these relocs apply to.  SH_TYPE is the type of
704
  // the relocation section, SHT_REL or SHT_RELA.  PRELOCS points to
705
  // the relocation data.  RELOC_COUNT is the number of relocs.
706
  // LOCAL_SYMBOL_COUNT is the number of local symbols.
707
  // OUTPUT_SECTION is the output section.
708
  // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
709
  // sections are not mapped as usual.  PLOCAL_SYMBOLS points to the
710
  // local symbol data from OBJECT.  GLOBAL_SYMBOLS is the array of
711
  // pointers to the global symbol table from OBJECT.
712
  virtual void
713
  scan_relocs(Symbol_table* symtab,
714
              Layout* layout,
715
              Sized_relobj_file<size, big_endian>* object,
716
              unsigned int data_shndx,
717
              unsigned int sh_type,
718
              const unsigned char* prelocs,
719
              size_t reloc_count,
720
              Output_section* output_section,
721
              bool needs_special_offset_handling,
722
              size_t local_symbol_count,
723
              const unsigned char* plocal_symbols) = 0;
724
 
725
  // Relocate section data.  SH_TYPE is the type of the relocation
726
  // section, SHT_REL or SHT_RELA.  PRELOCS points to the relocation
727
  // information.  RELOC_COUNT is the number of relocs.
728
  // OUTPUT_SECTION is the output section.
729
  // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
730
  // to correspond to the output section.  VIEW is a view into the
731
  // output file holding the section contents, VIEW_ADDRESS is the
732
  // virtual address of the view, and VIEW_SIZE is the size of the
733
  // view.  If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
734
  // parameters refer to the complete output section data, not just
735
  // the input section data.
736
  virtual void
737
  relocate_section(const Relocate_info<size, big_endian>*,
738
                   unsigned int sh_type,
739
                   const unsigned char* prelocs,
740
                   size_t reloc_count,
741
                   Output_section* output_section,
742
                   bool needs_special_offset_handling,
743
                   unsigned char* view,
744
                   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
745
                   section_size_type view_size,
746
                   const Reloc_symbol_changes*) = 0;
747
 
748
  // Scan the relocs during a relocatable link.  The parameters are
749
  // like scan_relocs, with an additional Relocatable_relocs
750
  // parameter, used to record the disposition of the relocs.
751
  virtual void
752
  scan_relocatable_relocs(Symbol_table* symtab,
753
                          Layout* layout,
754
                          Sized_relobj_file<size, big_endian>* object,
755
                          unsigned int data_shndx,
756
                          unsigned int sh_type,
757
                          const unsigned char* prelocs,
758
                          size_t reloc_count,
759
                          Output_section* output_section,
760
                          bool needs_special_offset_handling,
761
                          size_t local_symbol_count,
762
                          const unsigned char* plocal_symbols,
763
                          Relocatable_relocs*) = 0;
764
 
765
  // Relocate a section during a relocatable link.  The parameters are
766
  // like relocate_section, with additional parameters for the view of
767
  // the output reloc section.
768
  virtual void
769
  relocate_for_relocatable(const Relocate_info<size, big_endian>*,
770
                           unsigned int sh_type,
771
                           const unsigned char* prelocs,
772
                           size_t reloc_count,
773
                           Output_section* output_section,
774
                           off_t offset_in_output_section,
775
                           const Relocatable_relocs*,
776
                           unsigned char* view,
777
                           typename elfcpp::Elf_types<size>::Elf_Addr
778
                             view_address,
779
                           section_size_type view_size,
780
                           unsigned char* reloc_view,
781
                           section_size_type reloc_view_size) = 0;
782
 
783
  // Perform target-specific processing in a relocatable link.  This is
784
  // only used if we use the relocation strategy RELOC_SPECIAL.
785
  // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
786
  // section type. PRELOC_IN points to the original relocation.  RELNUM is
787
  // the index number of the relocation in the relocation section.
788
  // OUTPUT_SECTION is the output section to which the relocation is applied.
789
  // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
790
  // within the output section.  VIEW points to the output view of the
791
  // output section.  VIEW_ADDRESS is output address of the view.  VIEW_SIZE
792
  // is the size of the output view and PRELOC_OUT points to the new
793
  // relocation in the output object.
794
  //
795
  // A target only needs to override this if the generic code in
796
  // target-reloc.h cannot handle some relocation types.
797
 
798
  virtual void
799
  relocate_special_relocatable(const Relocate_info<size, big_endian>*
800
                                /*relinfo */,
801
                               unsigned int /* sh_type */,
802
                               const unsigned char* /* preloc_in */,
803
                               size_t /* relnum */,
804
                               Output_section* /* output_section */,
805
                               off_t /* offset_in_output_section */,
806
                               unsigned char* /* view */,
807
                               typename elfcpp::Elf_types<size>::Elf_Addr
808
                                 /* view_address */,
809
                               section_size_type /* view_size */,
810
                               unsigned char* /* preloc_out*/)
811
  { gold_unreachable(); }
812
 
813
  // Return the number of entries in the GOT.  This is only used for
814
  // laying out the incremental link info sections.  A target needs
815
  // to implement this to support incremental linking.
816
 
817
  virtual unsigned int
818
  got_entry_count() const
819
  { gold_unreachable(); }
820
 
821
  // Return the number of entries in the PLT.  This is only used for
822
  // laying out the incremental link info sections.  A target needs
823
  // to implement this to support incremental linking.
824
 
825
  virtual unsigned int
826
  plt_entry_count() const
827
  { gold_unreachable(); }
828
 
829
  // Return the offset of the first non-reserved PLT entry.  This is
830
  // only used for laying out the incremental link info sections.
831
  // A target needs to implement this to support incremental linking.
832
 
833
  virtual unsigned int
834
  first_plt_entry_offset() const
835
  { gold_unreachable(); }
836
 
837
  // Return the size of each PLT entry.  This is only used for
838
  // laying out the incremental link info sections.  A target needs
839
  // to implement this to support incremental linking.
840
 
841
  virtual unsigned int
842
  plt_entry_size() const
843
  { gold_unreachable(); }
844
 
845
  // Create the GOT and PLT sections for an incremental update.
846
  // A target needs to implement this to support incremental linking.
847
 
848
  virtual Output_data_got<size, big_endian>*
849
  init_got_plt_for_update(Symbol_table*,
850
                          Layout*,
851
                          unsigned int /* got_count */,
852
                          unsigned int /* plt_count */)
853
  { gold_unreachable(); }
854
 
855
  // Reserve a GOT entry for a local symbol, and regenerate any
856
  // necessary dynamic relocations.
857
  virtual void
858
  reserve_local_got_entry(unsigned int /* got_index */,
859
                          Sized_relobj<size, big_endian>* /* obj */,
860
                          unsigned int /* r_sym */,
861
                          unsigned int /* got_type */)
862
  { gold_unreachable(); }
863
 
864
  // Reserve a GOT entry for a global symbol, and regenerate any
865
  // necessary dynamic relocations.
866
  virtual void
867
  reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
868
                           unsigned int /* got_type */)
869
  { gold_unreachable(); }
870
 
871
  // Register an existing PLT entry for a global symbol.
872
  // A target needs to implement this to support incremental linking.
873
 
874
  virtual void
875 159 khays
  register_global_plt_entry(Symbol_table*, Layout*,
876
                            unsigned int /* plt_index */,
877 27 khays
                            Symbol*)
878
  { gold_unreachable(); }
879
 
880 148 khays
  // Force a COPY relocation for a given symbol.
881
  // A target needs to implement this to support incremental linking.
882
 
883
  virtual void
884
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
885
  { gold_unreachable(); }
886
 
887 27 khays
  // Apply an incremental relocation.
888
 
889
  virtual void
890
  apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
891
                   typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
892
                   unsigned int /* r_type */,
893
                   typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
894
                   const Symbol* /* gsym */,
895
                   unsigned char* /* view */,
896
                   typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
897
                   section_size_type /* view_size */)
898
  { gold_unreachable(); }
899
 
900
 protected:
901
  Sized_target(const Target::Target_info* pti)
902
    : Target(pti)
903
  {
904
    gold_assert(pti->size == size);
905
    gold_assert(pti->is_big_endian ? big_endian : !big_endian);
906
  }
907 159 khays
 
908
  // Set the EI_OSABI field if requested.
909
  virtual void
910
  do_adjust_elf_header(unsigned char*, int) const;
911 27 khays
};
912
 
913
} // End namespace gold.
914
 
915
#endif // !defined(GOLD_TARGET_H)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.