OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [x86_64.cc] - Blame information for rev 158

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// x86_64.cc -- x86_64 target support for gold.
2
 
3
// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstring>
26
 
27
#include "elfcpp.h"
28
#include "parameters.h"
29
#include "reloc.h"
30
#include "x86_64.h"
31
#include "object.h"
32
#include "symtab.h"
33
#include "layout.h"
34
#include "output.h"
35
#include "copy-relocs.h"
36
#include "target.h"
37
#include "target-reloc.h"
38
#include "target-select.h"
39
#include "tls.h"
40
#include "freebsd.h"
41
#include "gc.h"
42
#include "icf.h"
43
 
44
namespace
45
{
46
 
47
using namespace gold;
48
 
49
// A class to handle the PLT data.
50
 
51
class Output_data_plt_x86_64 : public Output_section_data
52
{
53
 public:
54
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
55
 
56
  Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
57
                         Output_data_got<64, false>* got,
58
                         Output_data_space* got_plt)
59
    : Output_section_data(8), tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
60
      count_(0), tlsdesc_got_offset_(-1U), free_list_()
61
  { this->init(symtab, layout); }
62
 
63
  Output_data_plt_x86_64(Symbol_table* symtab, Layout* layout,
64
                         Output_data_got<64, false>* got,
65
                         Output_data_space* got_plt,
66
                         unsigned int plt_count)
67
    : Output_section_data((plt_count + 1) * plt_entry_size, 8, false),
68
      tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
69
      count_(plt_count), tlsdesc_got_offset_(-1U), free_list_()
70
  {
71
    this->init(symtab, layout);
72
 
73
    // Initialize the free list and reserve the first entry.
74
    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
75
    this->free_list_.remove(0, plt_entry_size);
76
  }
77
 
78
  // Initialize the PLT section.
79
  void
80
  init(Symbol_table* symtab, Layout* layout);
81
 
82
  // Add an entry to the PLT.
83
  void
84
  add_entry(Symbol* gsym);
85
 
86
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
87
  unsigned int
88
  add_local_ifunc_entry(Sized_relobj_file<64, false>* relobj,
89
                        unsigned int local_sym_index);
90
 
91
  // Add the relocation for a PLT entry.
92
  void
93
  add_relocation(Symbol* gsym, unsigned int got_offset);
94
 
95
  // Add the reserved TLSDESC_PLT entry to the PLT.
96
  void
97
  reserve_tlsdesc_entry(unsigned int got_offset)
98
  { this->tlsdesc_got_offset_ = got_offset; }
99
 
100
  // Return true if a TLSDESC_PLT entry has been reserved.
101
  bool
102
  has_tlsdesc_entry() const
103
  { return this->tlsdesc_got_offset_ != -1U; }
104
 
105
  // Return the GOT offset for the reserved TLSDESC_PLT entry.
106
  unsigned int
107
  get_tlsdesc_got_offset() const
108
  { return this->tlsdesc_got_offset_; }
109
 
110
  // Return the offset of the reserved TLSDESC_PLT entry.
111
  unsigned int
112
  get_tlsdesc_plt_offset() const
113
  { return (this->count_ + 1) * plt_entry_size; }
114
 
115
  // Return the .rela.plt section data.
116
  Reloc_section*
117
  rela_plt()
118
  { return this->rel_; }
119
 
120
  // Return where the TLSDESC relocations should go.
121
  Reloc_section*
122
  rela_tlsdesc(Layout*);
123
 
124
  // Return the number of PLT entries.
125
  unsigned int
126
  entry_count() const
127
  { return this->count_; }
128
 
129
  // Return the offset of the first non-reserved PLT entry.
130
  static unsigned int
131
  first_plt_entry_offset()
132
  { return plt_entry_size; }
133
 
134
  // Return the size of a PLT entry.
135
  static unsigned int
136
  get_plt_entry_size()
137
  { return plt_entry_size; }
138
 
139
  // Reserve a slot in the PLT for an existing symbol in an incremental update.
140
  void
141
  reserve_slot(unsigned int plt_index)
142
  {
143
    this->free_list_.remove((plt_index + 1) * plt_entry_size,
144
                            (plt_index + 2) * plt_entry_size);
145
  }
146
 
147
 protected:
148
  void
149
  do_adjust_output_section(Output_section* os);
150
 
151
  // Write to a map file.
152
  void
153
  do_print_to_mapfile(Mapfile* mapfile) const
154
  { mapfile->print_output_data(this, _("** PLT")); }
155
 
156
 private:
157
  // The size of an entry in the PLT.
158
  static const int plt_entry_size = 16;
159
 
160
  // The first entry in the PLT.
161
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
162
  // procedure linkage table for both programs and shared objects."
163
  static unsigned char first_plt_entry[plt_entry_size];
164
 
165
  // Other entries in the PLT for an executable.
166
  static unsigned char plt_entry[plt_entry_size];
167
 
168
  // The reserved TLSDESC entry in the PLT for an executable.
169
  static unsigned char tlsdesc_plt_entry[plt_entry_size];
170
 
171
  // Set the final size.
172
  void
173
  set_final_data_size();
174
 
175
  // Write out the PLT data.
176
  void
177
  do_write(Output_file*);
178
 
179
  // The reloc section.
180
  Reloc_section* rel_;
181
  // The TLSDESC relocs, if necessary.  These must follow the regular
182
  // PLT relocs.
183
  Reloc_section* tlsdesc_rel_;
184
  // The .got section.
185
  Output_data_got<64, false>* got_;
186
  // The .got.plt section.
187
  Output_data_space* got_plt_;
188
  // The number of PLT entries.
189
  unsigned int count_;
190
  // Offset of the reserved TLSDESC_GOT entry when needed.
191
  unsigned int tlsdesc_got_offset_;
192
  // List of available regions within the section, for incremental
193
  // update links.
194
  Free_list free_list_;
195
};
196
 
197
// The x86_64 target class.
198
// See the ABI at
199
//   http://www.x86-64.org/documentation/abi.pdf
200
// TLS info comes from
201
//   http://people.redhat.com/drepper/tls.pdf
202
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
203
 
204
class Target_x86_64 : public Target_freebsd<64, false>
205
{
206
 public:
207
  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
208
  // uses only Elf64_Rela relocation entries with explicit addends."
209
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
210
 
211
  Target_x86_64()
212
    : Target_freebsd<64, false>(&x86_64_info),
213
      got_(NULL), plt_(NULL), got_plt_(NULL), got_tlsdesc_(NULL),
214
      global_offset_table_(NULL), rela_dyn_(NULL),
215
      copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
216
      got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
217
      tls_base_symbol_defined_(false)
218
  { }
219
 
220
  // This function should be defined in targets that can use relocation
221
  // types to determine (implemented in local_reloc_may_be_function_pointer
222
  // and global_reloc_may_be_function_pointer)
223
  // if a function's pointer is taken.  ICF uses this in safe mode to only
224
  // fold those functions whose pointer is defintely not taken.  For x86_64
225
  // pie binaries, safe ICF cannot be done by looking at relocation types.
226
  inline bool
227
  can_check_for_function_pointers() const
228
  { return !parameters->options().pie(); }
229
 
230
  virtual bool
231
  can_icf_inline_merge_sections () const
232
  { return true; }
233
 
234
  // Hook for a new output section.
235
  void
236
  do_new_output_section(Output_section*) const;
237
 
238
  // Scan the relocations to look for symbol adjustments.
239
  void
240
  gc_process_relocs(Symbol_table* symtab,
241
                    Layout* layout,
242
                    Sized_relobj_file<64, false>* object,
243
                    unsigned int data_shndx,
244
                    unsigned int sh_type,
245
                    const unsigned char* prelocs,
246
                    size_t reloc_count,
247
                    Output_section* output_section,
248
                    bool needs_special_offset_handling,
249
                    size_t local_symbol_count,
250
                    const unsigned char* plocal_symbols);
251
 
252
  // Scan the relocations to look for symbol adjustments.
253
  void
254
  scan_relocs(Symbol_table* symtab,
255
              Layout* layout,
256
              Sized_relobj_file<64, false>* object,
257
              unsigned int data_shndx,
258
              unsigned int sh_type,
259
              const unsigned char* prelocs,
260
              size_t reloc_count,
261
              Output_section* output_section,
262
              bool needs_special_offset_handling,
263
              size_t local_symbol_count,
264
              const unsigned char* plocal_symbols);
265
 
266
  // Finalize the sections.
267
  void
268
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
269
 
270
  // Return the value to use for a dynamic which requires special
271
  // treatment.
272
  uint64_t
273
  do_dynsym_value(const Symbol*) const;
274
 
275
  // Relocate a section.
276
  void
277
  relocate_section(const Relocate_info<64, false>*,
278
                   unsigned int sh_type,
279
                   const unsigned char* prelocs,
280
                   size_t reloc_count,
281
                   Output_section* output_section,
282
                   bool needs_special_offset_handling,
283
                   unsigned char* view,
284
                   elfcpp::Elf_types<64>::Elf_Addr view_address,
285
                   section_size_type view_size,
286
                   const Reloc_symbol_changes*);
287
 
288
  // Scan the relocs during a relocatable link.
289
  void
290
  scan_relocatable_relocs(Symbol_table* symtab,
291
                          Layout* layout,
292
                          Sized_relobj_file<64, false>* object,
293
                          unsigned int data_shndx,
294
                          unsigned int sh_type,
295
                          const unsigned char* prelocs,
296
                          size_t reloc_count,
297
                          Output_section* output_section,
298
                          bool needs_special_offset_handling,
299
                          size_t local_symbol_count,
300
                          const unsigned char* plocal_symbols,
301
                          Relocatable_relocs*);
302
 
303
  // Relocate a section during a relocatable link.
304
  void
305
  relocate_for_relocatable(const Relocate_info<64, false>*,
306
                           unsigned int sh_type,
307
                           const unsigned char* prelocs,
308
                           size_t reloc_count,
309
                           Output_section* output_section,
310
                           off_t offset_in_output_section,
311
                           const Relocatable_relocs*,
312
                           unsigned char* view,
313
                           elfcpp::Elf_types<64>::Elf_Addr view_address,
314
                           section_size_type view_size,
315
                           unsigned char* reloc_view,
316
                           section_size_type reloc_view_size);
317
 
318
  // Return a string used to fill a code section with nops.
319
  std::string
320
  do_code_fill(section_size_type length) const;
321
 
322
  // Return whether SYM is defined by the ABI.
323
  bool
324
  do_is_defined_by_abi(const Symbol* sym) const
325
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
326
 
327
  // Return the symbol index to use for a target specific relocation.
328
  // The only target specific relocation is R_X86_64_TLSDESC for a
329
  // local symbol, which is an absolute reloc.
330
  unsigned int
331
  do_reloc_symbol_index(void*, unsigned int r_type) const
332
  {
333
    gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
334
    return 0;
335
  }
336
 
337
  // Return the addend to use for a target specific relocation.
338
  uint64_t
339
  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
340
 
341
  // Return the PLT section.
342
  Output_data*
343
  do_plt_section_for_global(const Symbol*) const
344
  { return this->plt_section(); }
345
 
346
  Output_data*
347
  do_plt_section_for_local(const Relobj*, unsigned int) const
348
  { return this->plt_section(); }
349
 
350
  // Adjust -fsplit-stack code which calls non-split-stack code.
351
  void
352
  do_calls_non_split(Relobj* object, unsigned int shndx,
353
                     section_offset_type fnoffset, section_size_type fnsize,
354
                     unsigned char* view, section_size_type view_size,
355
                     std::string* from, std::string* to) const;
356
 
357
  // Return the size of the GOT section.
358
  section_size_type
359
  got_size() const
360
  {
361
    gold_assert(this->got_ != NULL);
362
    return this->got_->data_size();
363
  }
364
 
365
  // Return the number of entries in the GOT.
366
  unsigned int
367
  got_entry_count() const
368
  {
369
    if (this->got_ == NULL)
370
      return 0;
371
    return this->got_size() / 8;
372
  }
373
 
374
  // Return the number of entries in the PLT.
375
  unsigned int
376
  plt_entry_count() const;
377
 
378
  // Return the offset of the first non-reserved PLT entry.
379
  unsigned int
380
  first_plt_entry_offset() const;
381
 
382
  // Return the size of each PLT entry.
383
  unsigned int
384
  plt_entry_size() const;
385
 
386
  // Create the GOT section for an incremental update.
387
  Output_data_got<64, false>*
388
  init_got_plt_for_update(Symbol_table* symtab,
389
                          Layout* layout,
390
                          unsigned int got_count,
391
                          unsigned int plt_count);
392
 
393
  // Reserve a GOT entry for a local symbol, and regenerate any
394
  // necessary dynamic relocations.
395
  void
396
  reserve_local_got_entry(unsigned int got_index,
397
                          Sized_relobj<64, false>* obj,
398
                          unsigned int r_sym,
399
                          unsigned int got_type);
400
 
401
  // Reserve a GOT entry for a global symbol, and regenerate any
402
  // necessary dynamic relocations.
403
  void
404
  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
405
                           unsigned int got_type);
406
 
407
  // Register an existing PLT entry for a global symbol.
408
  void
409
  register_global_plt_entry(unsigned int plt_index, Symbol* gsym);
410
 
411 148 khays
  // Force a COPY relocation for a given symbol.
412
  void
413
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
414
 
415 27 khays
  // Apply an incremental relocation.
416
  void
417
  apply_relocation(const Relocate_info<64, false>* relinfo,
418
                   elfcpp::Elf_types<64>::Elf_Addr r_offset,
419
                   unsigned int r_type,
420
                   elfcpp::Elf_types<64>::Elf_Swxword r_addend,
421
                   const Symbol* gsym,
422
                   unsigned char* view,
423
                   elfcpp::Elf_types<64>::Elf_Addr address,
424
                   section_size_type view_size);
425
 
426
  // Add a new reloc argument, returning the index in the vector.
427
  size_t
428
  add_tlsdesc_info(Sized_relobj_file<64, false>* object, unsigned int r_sym)
429
  {
430
    this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
431
    return this->tlsdesc_reloc_info_.size() - 1;
432
  }
433
 
434
 private:
435
  // The class which scans relocations.
436
  class Scan
437
  {
438
  public:
439
    Scan()
440
      : issued_non_pic_error_(false)
441
    { }
442
 
443
    static inline int
444
    get_reference_flags(unsigned int r_type);
445
 
446
    inline void
447
    local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
448
          Sized_relobj_file<64, false>* object,
449
          unsigned int data_shndx,
450
          Output_section* output_section,
451
          const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
452
          const elfcpp::Sym<64, false>& lsym);
453
 
454
    inline void
455
    global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
456
           Sized_relobj_file<64, false>* object,
457
           unsigned int data_shndx,
458
           Output_section* output_section,
459
           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
460
           Symbol* gsym);
461
 
462
    inline bool
463
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
464
                                        Target_x86_64* target,
465
                                        Sized_relobj_file<64, false>* object,
466
                                        unsigned int data_shndx,
467
                                        Output_section* output_section,
468
                                        const elfcpp::Rela<64, false>& reloc,
469
                                        unsigned int r_type,
470
                                        const elfcpp::Sym<64, false>& lsym);
471
 
472
    inline bool
473
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
474
                                         Target_x86_64* target,
475
                                         Sized_relobj_file<64, false>* object,
476
                                         unsigned int data_shndx,
477
                                         Output_section* output_section,
478
                                         const elfcpp::Rela<64, false>& reloc,
479
                                         unsigned int r_type,
480
                                         Symbol* gsym);
481
 
482
  private:
483
    static void
484
    unsupported_reloc_local(Sized_relobj_file<64, false>*, unsigned int r_type);
485
 
486
    static void
487
    unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
488
                             Symbol*);
489
 
490
    void
491
    check_non_pic(Relobj*, unsigned int r_type);
492
 
493
    inline bool
494
    possible_function_pointer_reloc(unsigned int r_type);
495
 
496
    bool
497
    reloc_needs_plt_for_ifunc(Sized_relobj_file<64, false>*,
498
                              unsigned int r_type);
499
 
500
    // Whether we have issued an error about a non-PIC compilation.
501
    bool issued_non_pic_error_;
502
  };
503
 
504
  // The class which implements relocation.
505
  class Relocate
506
  {
507
   public:
508
    Relocate()
509
      : skip_call_tls_get_addr_(false)
510
    { }
511
 
512
    ~Relocate()
513
    {
514
      if (this->skip_call_tls_get_addr_)
515
        {
516
          // FIXME: This needs to specify the location somehow.
517
          gold_error(_("missing expected TLS relocation"));
518
        }
519
    }
520
 
521
    // Do a relocation.  Return false if the caller should not issue
522
    // any warnings about this relocation.
523
    inline bool
524
    relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
525
             size_t relnum, const elfcpp::Rela<64, false>&,
526
             unsigned int r_type, const Sized_symbol<64>*,
527
             const Symbol_value<64>*,
528
             unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
529
             section_size_type);
530
 
531
   private:
532
    // Do a TLS relocation.
533
    inline void
534
    relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
535
                 size_t relnum, const elfcpp::Rela<64, false>&,
536
                 unsigned int r_type, const Sized_symbol<64>*,
537
                 const Symbol_value<64>*,
538
                 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
539
                 section_size_type);
540
 
541
    // Do a TLS General-Dynamic to Initial-Exec transition.
542
    inline void
543
    tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
544
                 Output_segment* tls_segment,
545
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
546
                 elfcpp::Elf_types<64>::Elf_Addr value,
547
                 unsigned char* view,
548
                 elfcpp::Elf_types<64>::Elf_Addr,
549
                 section_size_type view_size);
550
 
551
    // Do a TLS General-Dynamic to Local-Exec transition.
552
    inline void
553
    tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
554
                 Output_segment* tls_segment,
555
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
556
                 elfcpp::Elf_types<64>::Elf_Addr value,
557
                 unsigned char* view,
558
                 section_size_type view_size);
559
 
560
    // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
561
    inline void
562
    tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
563
                      Output_segment* tls_segment,
564
                      const elfcpp::Rela<64, false>&, unsigned int r_type,
565
                      elfcpp::Elf_types<64>::Elf_Addr value,
566
                      unsigned char* view,
567
                      elfcpp::Elf_types<64>::Elf_Addr,
568
                      section_size_type view_size);
569
 
570
    // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
571
    inline void
572
    tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
573
                      Output_segment* tls_segment,
574
                      const elfcpp::Rela<64, false>&, unsigned int r_type,
575
                      elfcpp::Elf_types<64>::Elf_Addr value,
576
                      unsigned char* view,
577
                      section_size_type view_size);
578
 
579
    // Do a TLS Local-Dynamic to Local-Exec transition.
580
    inline void
581
    tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
582
                 Output_segment* tls_segment,
583
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
584
                 elfcpp::Elf_types<64>::Elf_Addr value,
585
                 unsigned char* view,
586
                 section_size_type view_size);
587
 
588
    // Do a TLS Initial-Exec to Local-Exec transition.
589
    static inline void
590
    tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
591
                 Output_segment* tls_segment,
592
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
593
                 elfcpp::Elf_types<64>::Elf_Addr value,
594
                 unsigned char* view,
595
                 section_size_type view_size);
596
 
597
    // This is set if we should skip the next reloc, which should be a
598
    // PLT32 reloc against ___tls_get_addr.
599
    bool skip_call_tls_get_addr_;
600
  };
601
 
602
  // A class which returns the size required for a relocation type,
603
  // used while scanning relocs during a relocatable link.
604
  class Relocatable_size_for_reloc
605
  {
606
   public:
607
    unsigned int
608
    get_size_for_reloc(unsigned int, Relobj*);
609
  };
610
 
611
  // Adjust TLS relocation type based on the options and whether this
612
  // is a local symbol.
613
  static tls::Tls_optimization
614
  optimize_tls_reloc(bool is_final, int r_type);
615
 
616
  // Get the GOT section, creating it if necessary.
617
  Output_data_got<64, false>*
618
  got_section(Symbol_table*, Layout*);
619
 
620
  // Get the GOT PLT section.
621
  Output_data_space*
622
  got_plt_section() const
623
  {
624
    gold_assert(this->got_plt_ != NULL);
625
    return this->got_plt_;
626
  }
627
 
628
  // Get the GOT section for TLSDESC entries.
629
  Output_data_got<64, false>*
630
  got_tlsdesc_section() const
631
  {
632
    gold_assert(this->got_tlsdesc_ != NULL);
633
    return this->got_tlsdesc_;
634
  }
635
 
636
  // Create the PLT section.
637
  void
638
  make_plt_section(Symbol_table* symtab, Layout* layout);
639
 
640
  // Create a PLT entry for a global symbol.
641
  void
642
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
643
 
644
  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
645
  void
646
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
647
                             Sized_relobj_file<64, false>* relobj,
648
                             unsigned int local_sym_index);
649
 
650
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
651
  void
652
  define_tls_base_symbol(Symbol_table*, Layout*);
653
 
654
  // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
655
  void
656
  reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
657
 
658
  // Create a GOT entry for the TLS module index.
659
  unsigned int
660
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
661
                      Sized_relobj_file<64, false>* object);
662
 
663
  // Get the PLT section.
664
  Output_data_plt_x86_64*
665
  plt_section() const
666
  {
667
    gold_assert(this->plt_ != NULL);
668
    return this->plt_;
669
  }
670
 
671
  // Get the dynamic reloc section, creating it if necessary.
672
  Reloc_section*
673
  rela_dyn_section(Layout*);
674
 
675
  // Get the section to use for TLSDESC relocations.
676
  Reloc_section*
677
  rela_tlsdesc_section(Layout*) const;
678
 
679
  // Add a potential copy relocation.
680
  void
681
  copy_reloc(Symbol_table* symtab, Layout* layout,
682
             Sized_relobj_file<64, false>* object,
683
             unsigned int shndx, Output_section* output_section,
684
             Symbol* sym, const elfcpp::Rela<64, false>& reloc)
685
  {
686
    this->copy_relocs_.copy_reloc(symtab, layout,
687
                                  symtab->get_sized_symbol<64>(sym),
688
                                  object, shndx, output_section,
689
                                  reloc, this->rela_dyn_section(layout));
690
  }
691
 
692
  // Information about this specific target which we pass to the
693
  // general Target structure.
694
  static const Target::Target_info x86_64_info;
695
 
696
  // The types of GOT entries needed for this platform.
697
  // These values are exposed to the ABI in an incremental link.
698
  // Do not renumber existing values without changing the version
699
  // number of the .gnu_incremental_inputs section.
700
  enum Got_type
701
  {
702
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
703
    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
704
    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
705
    GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
706
  };
707
 
708
  // This type is used as the argument to the target specific
709
  // relocation routines.  The only target specific reloc is
710
  // R_X86_64_TLSDESC against a local symbol.
711
  struct Tlsdesc_info
712
  {
713
    Tlsdesc_info(Sized_relobj_file<64, false>* a_object, unsigned int a_r_sym)
714
      : object(a_object), r_sym(a_r_sym)
715
    { }
716
 
717
    // The object in which the local symbol is defined.
718
    Sized_relobj_file<64, false>* object;
719
    // The local symbol index in the object.
720
    unsigned int r_sym;
721
  };
722
 
723
  // The GOT section.
724
  Output_data_got<64, false>* got_;
725
  // The PLT section.
726
  Output_data_plt_x86_64* plt_;
727
  // The GOT PLT section.
728
  Output_data_space* got_plt_;
729
  // The GOT section for TLSDESC relocations.
730
  Output_data_got<64, false>* got_tlsdesc_;
731
  // The _GLOBAL_OFFSET_TABLE_ symbol.
732
  Symbol* global_offset_table_;
733
  // The dynamic reloc section.
734
  Reloc_section* rela_dyn_;
735
  // Relocs saved to avoid a COPY reloc.
736
  Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
737
  // Space for variables copied with a COPY reloc.
738
  Output_data_space* dynbss_;
739
  // Offset of the GOT entry for the TLS module index.
740
  unsigned int got_mod_index_offset_;
741
  // We handle R_X86_64_TLSDESC against a local symbol as a target
742
  // specific relocation.  Here we store the object and local symbol
743
  // index for the relocation.
744
  std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
745
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
746
  bool tls_base_symbol_defined_;
747
};
748
 
749
const Target::Target_info Target_x86_64::x86_64_info =
750
{
751
  64,                   // size
752
  false,                // is_big_endian
753
  elfcpp::EM_X86_64,    // machine_code
754
  false,                // has_make_symbol
755
  false,                // has_resolve
756
  true,                 // has_code_fill
757
  true,                 // is_default_stack_executable
758
  '\0',                 // wrap_char
759
  "/lib/ld64.so.1",     // program interpreter
760
  0x400000,             // default_text_segment_address
761
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
762
  0x1000,               // common_pagesize (overridable by -z common-page-size)
763
  elfcpp::SHN_UNDEF,    // small_common_shndx
764
  elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
765
  0,                     // small_common_section_flags
766
  elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
767
  NULL,                 // attributes_section
768
  NULL                  // attributes_vendor
769
};
770
 
771
// This is called when a new output section is created.  This is where
772
// we handle the SHF_X86_64_LARGE.
773
 
774
void
775
Target_x86_64::do_new_output_section(Output_section* os) const
776
{
777
  if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
778
    os->set_is_large_section();
779
}
780
 
781
// Get the GOT section, creating it if necessary.
782
 
783
Output_data_got<64, false>*
784
Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
785
{
786
  if (this->got_ == NULL)
787
    {
788
      gold_assert(symtab != NULL && layout != NULL);
789
 
790
      this->got_ = new Output_data_got<64, false>();
791
 
792
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
793
                                      (elfcpp::SHF_ALLOC
794
                                       | elfcpp::SHF_WRITE),
795
                                      this->got_, ORDER_RELRO_LAST,
796
                                      true);
797
 
798
      this->got_plt_ = new Output_data_space(8, "** GOT PLT");
799
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
800
                                      (elfcpp::SHF_ALLOC
801
                                       | elfcpp::SHF_WRITE),
802
                                      this->got_plt_, ORDER_NON_RELRO_FIRST,
803
                                      false);
804
 
805
      // The first three entries are reserved.
806
      this->got_plt_->set_current_data_size(3 * 8);
807
 
808
      // Those bytes can go into the relro segment.
809
      layout->increase_relro(3 * 8);
810
 
811
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
812
      this->global_offset_table_ =
813
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
814
                                      Symbol_table::PREDEFINED,
815
                                      this->got_plt_,
816
                                      0, 0, elfcpp::STT_OBJECT,
817
                                      elfcpp::STB_LOCAL,
818
                                      elfcpp::STV_HIDDEN, 0,
819
                                      false, false);
820
 
821
      // If there are any TLSDESC relocations, they get GOT entries in
822
      // .got.plt after the jump slot entries.
823
      this->got_tlsdesc_ = new Output_data_got<64, false>();
824
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
825
                                      (elfcpp::SHF_ALLOC
826
                                       | elfcpp::SHF_WRITE),
827
                                      this->got_tlsdesc_,
828
                                      ORDER_NON_RELRO_FIRST, false);
829
    }
830
 
831
  return this->got_;
832
}
833
 
834
// Get the dynamic reloc section, creating it if necessary.
835
 
836
Target_x86_64::Reloc_section*
837
Target_x86_64::rela_dyn_section(Layout* layout)
838
{
839
  if (this->rela_dyn_ == NULL)
840
    {
841
      gold_assert(layout != NULL);
842
      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
843
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
844
                                      elfcpp::SHF_ALLOC, this->rela_dyn_,
845
                                      ORDER_DYNAMIC_RELOCS, false);
846
    }
847
  return this->rela_dyn_;
848
}
849
 
850
// Initialize the PLT section.
851
 
852
void
853
Output_data_plt_x86_64::init(Symbol_table* symtab, Layout* layout)
854
{
855
  this->rel_ = new Reloc_section(false);
856
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
857
                                  elfcpp::SHF_ALLOC, this->rel_,
858
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
859
 
860
  if (parameters->doing_static_link())
861
    {
862
      // A statically linked executable will only have a .rela.plt
863
      // section to hold R_X86_64_IRELATIVE relocs for STT_GNU_IFUNC
864
      // symbols.  The library will use these symbols to locate the
865
      // IRELATIVE relocs at program startup time.
866
      symtab->define_in_output_data("__rela_iplt_start", NULL,
867
                                    Symbol_table::PREDEFINED,
868
                                    this->rel_, 0, 0, elfcpp::STT_NOTYPE,
869
                                    elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
870
                                    0, false, true);
871
      symtab->define_in_output_data("__rela_iplt_end", NULL,
872
                                    Symbol_table::PREDEFINED,
873
                                    this->rel_, 0, 0, elfcpp::STT_NOTYPE,
874
                                    elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
875
                                    0, true, true);
876
    }
877
}
878
 
879
void
880
Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
881
{
882
  os->set_entsize(plt_entry_size);
883
}
884
 
885
// Add an entry to the PLT.
886
 
887
void
888
Output_data_plt_x86_64::add_entry(Symbol* gsym)
889
{
890
  gold_assert(!gsym->has_plt_offset());
891
 
892
  unsigned int plt_index;
893
  off_t plt_offset;
894
  section_offset_type got_offset;
895
 
896
  if (!this->is_data_size_valid())
897
    {
898
      // Note that when setting the PLT offset we skip the initial
899
      // reserved PLT entry.
900
      plt_index = this->count_ + 1;
901
      plt_offset = plt_index * plt_entry_size;
902
 
903
      ++this->count_;
904
 
905
      got_offset = (plt_index - 1 + 3) * 8;
906
      gold_assert(got_offset == this->got_plt_->current_data_size());
907
 
908
      // Every PLT entry needs a GOT entry which points back to the PLT
909
      // entry (this will be changed by the dynamic linker, normally
910
      // lazily when the function is called).
911
      this->got_plt_->set_current_data_size(got_offset + 8);
912
    }
913
  else
914
    {
915
      // For incremental updates, find an available slot.
916
      plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
917
      if (plt_offset == -1)
918 148 khays
        gold_fallback(_("out of patch space (PLT);"
919
                        " relink with --incremental-full"));
920 27 khays
 
921
      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
922
      // can be calculated from the PLT index, adjusting for the three
923
      // reserved entries at the beginning of the GOT.
924
      plt_index = plt_offset / plt_entry_size - 1;
925
      got_offset = (plt_index - 1 + 3) * 8;
926
    }
927
 
928
  gsym->set_plt_offset(plt_offset);
929
 
930
  // Every PLT entry needs a reloc.
931
  this->add_relocation(gsym, got_offset);
932
 
933
  // Note that we don't need to save the symbol.  The contents of the
934
  // PLT are independent of which symbols are used.  The symbols only
935
  // appear in the relocations.
936
}
937
 
938
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
939
// the PLT offset.
940
 
941
unsigned int
942
Output_data_plt_x86_64::add_local_ifunc_entry(
943
    Sized_relobj_file<64, false>* relobj,
944
    unsigned int local_sym_index)
945
{
946
  unsigned int plt_offset = (this->count_ + 1) * plt_entry_size;
947
  ++this->count_;
948
 
949
  section_offset_type got_offset = this->got_plt_->current_data_size();
950
 
951
  // Every PLT entry needs a GOT entry which points back to the PLT
952
  // entry.
953
  this->got_plt_->set_current_data_size(got_offset + 8);
954
 
955
  // Every PLT entry needs a reloc.
956
  this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
957
                                          elfcpp::R_X86_64_IRELATIVE,
958
                                          this->got_plt_, got_offset, 0);
959
 
960
  return plt_offset;
961
}
962
 
963
// Add the relocation for a PLT entry.
964
 
965
void
966
Output_data_plt_x86_64::add_relocation(Symbol* gsym, unsigned int got_offset)
967
{
968
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
969
      && gsym->can_use_relative_reloc(false))
970
    this->rel_->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
971
                                             this->got_plt_, got_offset, 0);
972
  else
973
    {
974
      gsym->set_needs_dynsym_entry();
975
      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
976
                             got_offset, 0);
977
    }
978
}
979
 
980
// Return where the TLSDESC relocations should go, creating it if
981
// necessary.  These follow the JUMP_SLOT relocations.
982
 
983
Output_data_plt_x86_64::Reloc_section*
984
Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
985
{
986
  if (this->tlsdesc_rel_ == NULL)
987
    {
988
      this->tlsdesc_rel_ = new Reloc_section(false);
989
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
990
                                      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
991
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
992
      gold_assert(this->tlsdesc_rel_->output_section() ==
993
                  this->rel_->output_section());
994
    }
995
  return this->tlsdesc_rel_;
996
}
997
 
998
// Set the final size.
999
void
1000
Output_data_plt_x86_64::set_final_data_size()
1001
{
1002
  unsigned int count = this->count_;
1003
  if (this->has_tlsdesc_entry())
1004
    ++count;
1005
  this->set_data_size((count + 1) * plt_entry_size);
1006
}
1007
 
1008
// The first entry in the PLT for an executable.
1009
 
1010
unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
1011
{
1012
  // From AMD64 ABI Draft 0.98, page 76
1013
  0xff, 0x35,   // pushq contents of memory address
1014
  0, 0, 0, 0,       // replaced with address of .got + 8
1015
  0xff, 0x25,   // jmp indirect
1016
  0, 0, 0, 0,       // replaced with address of .got + 16
1017
  0x90, 0x90, 0x90, 0x90   // noop (x4)
1018
};
1019
 
1020
// Subsequent entries in the PLT for an executable.
1021
 
1022
unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
1023
{
1024
  // From AMD64 ABI Draft 0.98, page 76
1025
  0xff, 0x25,   // jmpq indirect
1026
  0, 0, 0, 0,       // replaced with address of symbol in .got
1027
  0x68,         // pushq immediate
1028
  0, 0, 0, 0,       // replaced with offset into relocation table
1029
  0xe9,         // jmpq relative
1030
  0, 0, 0, 0        // replaced with offset to start of .plt
1031
};
1032
 
1033
// The reserved TLSDESC entry in the PLT for an executable.
1034
 
1035
unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
1036
{
1037
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1038
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1039
  0xff, 0x35,   // pushq x(%rip)
1040
  0, 0, 0, 0,       // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1041
  0xff, 0x25,   // jmpq *y(%rip)
1042
  0, 0, 0, 0,       // replaced with offset of reserved TLSDESC_GOT entry
1043
  0x0f, 0x1f,   // nop
1044
  0x40, 0
1045
};
1046
 
1047
// Write out the PLT.  This uses the hand-coded instructions above,
1048
// and adjusts them as needed.  This is specified by the AMD64 ABI.
1049
 
1050
void
1051
Output_data_plt_x86_64::do_write(Output_file* of)
1052
{
1053
  const off_t offset = this->offset();
1054
  const section_size_type oview_size =
1055
    convert_to_section_size_type(this->data_size());
1056
  unsigned char* const oview = of->get_output_view(offset, oview_size);
1057
 
1058
  const off_t got_file_offset = this->got_plt_->offset();
1059
  const section_size_type got_size =
1060
    convert_to_section_size_type(this->got_plt_->data_size());
1061
  unsigned char* const got_view = of->get_output_view(got_file_offset,
1062
                                                      got_size);
1063
 
1064
  unsigned char* pov = oview;
1065
 
1066
  // The base address of the .plt section.
1067
  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
1068
  // The base address of the .got section.
1069
  elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
1070
  // The base address of the PLT portion of the .got section,
1071
  // which is where the GOT pointer will point, and where the
1072
  // three reserved GOT entries are located.
1073
  elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
1074
 
1075
  memcpy(pov, first_plt_entry, plt_entry_size);
1076
  // We do a jmp relative to the PC at the end of this instruction.
1077
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1078
                                              (got_address + 8
1079
                                               - (plt_address + 6)));
1080
  elfcpp::Swap<32, false>::writeval(pov + 8,
1081
                                    (got_address + 16
1082
                                     - (plt_address + 12)));
1083
  pov += plt_entry_size;
1084
 
1085
  unsigned char* got_pov = got_view;
1086
 
1087
  memset(got_pov, 0, 24);
1088
  got_pov += 24;
1089
 
1090
  unsigned int plt_offset = plt_entry_size;
1091
  unsigned int got_offset = 24;
1092
  const unsigned int count = this->count_;
1093
  for (unsigned int plt_index = 0;
1094
       plt_index < count;
1095
       ++plt_index,
1096
         pov += plt_entry_size,
1097
         got_pov += 8,
1098
         plt_offset += plt_entry_size,
1099
         got_offset += 8)
1100
    {
1101
      // Set and adjust the PLT entry itself.
1102
      memcpy(pov, plt_entry, plt_entry_size);
1103
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1104
                                                  (got_address + got_offset
1105
                                                   - (plt_address + plt_offset
1106
                                                      + 6)));
1107
 
1108
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1109
      elfcpp::Swap<32, false>::writeval(pov + 12,
1110
                                        - (plt_offset + plt_entry_size));
1111
 
1112
      // Set the entry in the GOT.
1113
      elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
1114
    }
1115
 
1116
  if (this->has_tlsdesc_entry())
1117
    {
1118
      // Set and adjust the reserved TLSDESC PLT entry.
1119
      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1120
      memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1121
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1122
                                                  (got_address + 8
1123
                                                   - (plt_address + plt_offset
1124
                                                      + 6)));
1125
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1126
                                                  (got_base
1127
                                                   + tlsdesc_got_offset
1128
                                                   - (plt_address + plt_offset
1129
                                                      + 12)));
1130
      pov += plt_entry_size;
1131
    }
1132
 
1133
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1134
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1135
 
1136
  of->write_output_view(offset, oview_size, oview);
1137
  of->write_output_view(got_file_offset, got_size, got_view);
1138
}
1139
 
1140
// Create the PLT section.
1141
 
1142
void
1143
Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
1144
{
1145
  if (this->plt_ == NULL)
1146
    {
1147
      // Create the GOT sections first.
1148
      this->got_section(symtab, layout);
1149
 
1150
      this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1151
                                              this->got_plt_);
1152
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1153
                                      (elfcpp::SHF_ALLOC
1154
                                       | elfcpp::SHF_EXECINSTR),
1155
                                      this->plt_, ORDER_PLT, false);
1156
 
1157
      // Make the sh_info field of .rela.plt point to .plt.
1158
      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1159
      rela_plt_os->set_info_section(this->plt_->output_section());
1160
    }
1161
}
1162
 
1163
// Return the section for TLSDESC relocations.
1164
 
1165
Target_x86_64::Reloc_section*
1166
Target_x86_64::rela_tlsdesc_section(Layout* layout) const
1167
{
1168
  return this->plt_section()->rela_tlsdesc(layout);
1169
}
1170
 
1171
// Create a PLT entry for a global symbol.
1172
 
1173
void
1174
Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
1175
                              Symbol* gsym)
1176
{
1177
  if (gsym->has_plt_offset())
1178
    return;
1179
 
1180
  if (this->plt_ == NULL)
1181
    this->make_plt_section(symtab, layout);
1182
 
1183
  this->plt_->add_entry(gsym);
1184
}
1185
 
1186
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1187
 
1188
void
1189
Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1190
                                          Sized_relobj_file<64, false>* relobj,
1191
                                          unsigned int local_sym_index)
1192
{
1193
  if (relobj->local_has_plt_offset(local_sym_index))
1194
    return;
1195
  if (this->plt_ == NULL)
1196
    this->make_plt_section(symtab, layout);
1197
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(relobj,
1198
                                                              local_sym_index);
1199
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
1200
}
1201
 
1202
// Return the number of entries in the PLT.
1203
 
1204
unsigned int
1205
Target_x86_64::plt_entry_count() const
1206
{
1207
  if (this->plt_ == NULL)
1208
    return 0;
1209
  return this->plt_->entry_count();
1210
}
1211
 
1212
// Return the offset of the first non-reserved PLT entry.
1213
 
1214
unsigned int
1215
Target_x86_64::first_plt_entry_offset() const
1216
{
1217
  return Output_data_plt_x86_64::first_plt_entry_offset();
1218
}
1219
 
1220
// Return the size of each PLT entry.
1221
 
1222
unsigned int
1223
Target_x86_64::plt_entry_size() const
1224
{
1225
  return Output_data_plt_x86_64::get_plt_entry_size();
1226
}
1227
 
1228
// Create the GOT and PLT sections for an incremental update.
1229
 
1230
Output_data_got<64, false>*
1231
Target_x86_64::init_got_plt_for_update(Symbol_table* symtab,
1232
                                       Layout* layout,
1233
                                       unsigned int got_count,
1234
                                       unsigned int plt_count)
1235
{
1236
  gold_assert(this->got_ == NULL);
1237
 
1238
  this->got_ = new Output_data_got<64, false>(got_count * 8);
1239
  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1240
                                  (elfcpp::SHF_ALLOC
1241
                                   | elfcpp::SHF_WRITE),
1242
                                  this->got_, ORDER_RELRO_LAST,
1243
                                  true);
1244
 
1245
  // Add the three reserved entries.
1246
  this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
1247
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1248
                                  (elfcpp::SHF_ALLOC
1249
                                   | elfcpp::SHF_WRITE),
1250
                                  this->got_plt_, ORDER_NON_RELRO_FIRST,
1251
                                  false);
1252
 
1253
  // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1254
  this->global_offset_table_ =
1255
    symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1256
                                  Symbol_table::PREDEFINED,
1257
                                  this->got_plt_,
1258
                                  0, 0, elfcpp::STT_OBJECT,
1259
                                  elfcpp::STB_LOCAL,
1260
                                  elfcpp::STV_HIDDEN, 0,
1261
                                  false, false);
1262
 
1263
  // If there are any TLSDESC relocations, they get GOT entries in
1264
  // .got.plt after the jump slot entries.
1265
  // FIXME: Get the count for TLSDESC entries.
1266
  this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1267
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1268
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1269
                                  this->got_tlsdesc_,
1270
                                  ORDER_NON_RELRO_FIRST, false);
1271
 
1272
  // Create the PLT section.
1273
  this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1274
                                          this->got_plt_, plt_count);
1275
  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1276
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1277
                                  this->plt_, ORDER_PLT, false);
1278
 
1279
  // Make the sh_info field of .rela.plt point to .plt.
1280
  Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1281
  rela_plt_os->set_info_section(this->plt_->output_section());
1282
 
1283
  // Create the rela_dyn section.
1284
  this->rela_dyn_section(layout);
1285
 
1286
  return this->got_;
1287
}
1288
 
1289
// Reserve a GOT entry for a local symbol, and regenerate any
1290
// necessary dynamic relocations.
1291
 
1292
void
1293
Target_x86_64::reserve_local_got_entry(
1294
    unsigned int got_index,
1295
    Sized_relobj<64, false>* obj,
1296
    unsigned int r_sym,
1297
    unsigned int got_type)
1298
{
1299
  unsigned int got_offset = got_index * 8;
1300
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1301
 
1302
  this->got_->reserve_local(got_index, obj, r_sym, got_type);
1303
  switch (got_type)
1304
    {
1305
    case GOT_TYPE_STANDARD:
1306
      if (parameters->options().output_is_position_independent())
1307
        rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1308
                                     this->got_, got_offset, 0);
1309
      break;
1310
    case GOT_TYPE_TLS_OFFSET:
1311
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1312
                          this->got_, got_offset, 0);
1313
      break;
1314
    case GOT_TYPE_TLS_PAIR:
1315
      this->got_->reserve_slot(got_index + 1);
1316
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1317
                          this->got_, got_offset, 0);
1318
      break;
1319
    case GOT_TYPE_TLS_DESC:
1320
      gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1321
      // this->got_->reserve_slot(got_index + 1);
1322
      // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1323
      //                               this->got_, got_offset, 0);
1324
      break;
1325
    default:
1326
      gold_unreachable();
1327
    }
1328
}
1329
 
1330
// Reserve a GOT entry for a global symbol, and regenerate any
1331
// necessary dynamic relocations.
1332
 
1333
void
1334
Target_x86_64::reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
1335
                                        unsigned int got_type)
1336
{
1337
  unsigned int got_offset = got_index * 8;
1338
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1339
 
1340
  this->got_->reserve_global(got_index, gsym, got_type);
1341
  switch (got_type)
1342
    {
1343
    case GOT_TYPE_STANDARD:
1344
      if (!gsym->final_value_is_known())
1345
        {
1346
          if (gsym->is_from_dynobj()
1347
              || gsym->is_undefined()
1348
              || gsym->is_preemptible()
1349
              || gsym->type() == elfcpp::STT_GNU_IFUNC)
1350
            rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1351
                                 this->got_, got_offset, 0);
1352
          else
1353
            rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1354
                                          this->got_, got_offset, 0);
1355
        }
1356
      break;
1357
    case GOT_TYPE_TLS_OFFSET:
1358
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1359
                                    this->got_, got_offset, 0);
1360
      break;
1361
    case GOT_TYPE_TLS_PAIR:
1362
      this->got_->reserve_slot(got_index + 1);
1363
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1364
                                    this->got_, got_offset, 0);
1365
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1366
                                    this->got_, got_offset + 8, 0);
1367
      break;
1368
    case GOT_TYPE_TLS_DESC:
1369
      this->got_->reserve_slot(got_index + 1);
1370
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1371
                                    this->got_, got_offset, 0);
1372
      break;
1373
    default:
1374
      gold_unreachable();
1375
    }
1376
}
1377
 
1378
// Register an existing PLT entry for a global symbol.
1379
 
1380
void
1381
Target_x86_64::register_global_plt_entry(unsigned int plt_index,
1382
                                         Symbol* gsym)
1383
{
1384
  gold_assert(this->plt_ != NULL);
1385
  gold_assert(!gsym->has_plt_offset());
1386
 
1387
  this->plt_->reserve_slot(plt_index);
1388
 
1389
  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1390
 
1391
  unsigned int got_offset = (plt_index + 3) * 8;
1392
  this->plt_->add_relocation(gsym, got_offset);
1393
}
1394
 
1395 148 khays
// Force a COPY relocation for a given symbol.
1396
 
1397
void
1398
Target_x86_64::emit_copy_reloc(
1399
    Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1400
{
1401
  this->copy_relocs_.emit_copy_reloc(symtab,
1402
                                     symtab->get_sized_symbol<64>(sym),
1403
                                     os,
1404
                                     offset,
1405
                                     this->rela_dyn_section(NULL));
1406
}
1407
 
1408 27 khays
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1409
 
1410
void
1411
Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1412
{
1413
  if (this->tls_base_symbol_defined_)
1414
    return;
1415
 
1416
  Output_segment* tls_segment = layout->tls_segment();
1417
  if (tls_segment != NULL)
1418
    {
1419
      bool is_exec = parameters->options().output_is_executable();
1420
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1421
                                       Symbol_table::PREDEFINED,
1422
                                       tls_segment, 0, 0,
1423
                                       elfcpp::STT_TLS,
1424
                                       elfcpp::STB_LOCAL,
1425
                                       elfcpp::STV_HIDDEN, 0,
1426
                                       (is_exec
1427
                                        ? Symbol::SEGMENT_END
1428
                                        : Symbol::SEGMENT_START),
1429
                                       true);
1430
    }
1431
  this->tls_base_symbol_defined_ = true;
1432
}
1433
 
1434
// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1435
 
1436
void
1437
Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
1438
                                             Layout* layout)
1439
{
1440
  if (this->plt_ == NULL)
1441
    this->make_plt_section(symtab, layout);
1442
 
1443
  if (!this->plt_->has_tlsdesc_entry())
1444
    {
1445
      // Allocate the TLSDESC_GOT entry.
1446
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
1447
      unsigned int got_offset = got->add_constant(0);
1448
 
1449
      // Allocate the TLSDESC_PLT entry.
1450
      this->plt_->reserve_tlsdesc_entry(got_offset);
1451
    }
1452
}
1453
 
1454
// Create a GOT entry for the TLS module index.
1455
 
1456
unsigned int
1457
Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1458
                                   Sized_relobj_file<64, false>* object)
1459
{
1460
  if (this->got_mod_index_offset_ == -1U)
1461
    {
1462
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
1463
      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1464
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
1465
      unsigned int got_offset = got->add_constant(0);
1466
      rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1467
                          got_offset, 0);
1468
      got->add_constant(0);
1469
      this->got_mod_index_offset_ = got_offset;
1470
    }
1471
  return this->got_mod_index_offset_;
1472
}
1473
 
1474
// Optimize the TLS relocation type based on what we know about the
1475
// symbol.  IS_FINAL is true if the final address of this symbol is
1476
// known at link time.
1477
 
1478
tls::Tls_optimization
1479
Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
1480
{
1481
  // If we are generating a shared library, then we can't do anything
1482
  // in the linker.
1483
  if (parameters->options().shared())
1484
    return tls::TLSOPT_NONE;
1485
 
1486
  switch (r_type)
1487
    {
1488
    case elfcpp::R_X86_64_TLSGD:
1489
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1490
    case elfcpp::R_X86_64_TLSDESC_CALL:
1491
      // These are General-Dynamic which permits fully general TLS
1492
      // access.  Since we know that we are generating an executable,
1493
      // we can convert this to Initial-Exec.  If we also know that
1494
      // this is a local symbol, we can further switch to Local-Exec.
1495
      if (is_final)
1496
        return tls::TLSOPT_TO_LE;
1497
      return tls::TLSOPT_TO_IE;
1498
 
1499
    case elfcpp::R_X86_64_TLSLD:
1500
      // This is Local-Dynamic, which refers to a local symbol in the
1501
      // dynamic TLS block.  Since we know that we generating an
1502
      // executable, we can switch to Local-Exec.
1503
      return tls::TLSOPT_TO_LE;
1504
 
1505
    case elfcpp::R_X86_64_DTPOFF32:
1506
    case elfcpp::R_X86_64_DTPOFF64:
1507
      // Another Local-Dynamic reloc.
1508
      return tls::TLSOPT_TO_LE;
1509
 
1510
    case elfcpp::R_X86_64_GOTTPOFF:
1511
      // These are Initial-Exec relocs which get the thread offset
1512
      // from the GOT.  If we know that we are linking against the
1513
      // local symbol, we can switch to Local-Exec, which links the
1514
      // thread offset into the instruction.
1515
      if (is_final)
1516
        return tls::TLSOPT_TO_LE;
1517
      return tls::TLSOPT_NONE;
1518
 
1519
    case elfcpp::R_X86_64_TPOFF32:
1520
      // When we already have Local-Exec, there is nothing further we
1521
      // can do.
1522
      return tls::TLSOPT_NONE;
1523
 
1524
    default:
1525
      gold_unreachable();
1526
    }
1527
}
1528
 
1529
// Get the Reference_flags for a particular relocation.
1530
 
1531
int
1532
Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
1533
{
1534
  switch (r_type)
1535
    {
1536
    case elfcpp::R_X86_64_NONE:
1537
    case elfcpp::R_X86_64_GNU_VTINHERIT:
1538
    case elfcpp::R_X86_64_GNU_VTENTRY:
1539
    case elfcpp::R_X86_64_GOTPC32:
1540
    case elfcpp::R_X86_64_GOTPC64:
1541
      // No symbol reference.
1542
      return 0;
1543
 
1544
    case elfcpp::R_X86_64_64:
1545
    case elfcpp::R_X86_64_32:
1546
    case elfcpp::R_X86_64_32S:
1547
    case elfcpp::R_X86_64_16:
1548
    case elfcpp::R_X86_64_8:
1549
      return Symbol::ABSOLUTE_REF;
1550
 
1551
    case elfcpp::R_X86_64_PC64:
1552
    case elfcpp::R_X86_64_PC32:
1553
    case elfcpp::R_X86_64_PC16:
1554
    case elfcpp::R_X86_64_PC8:
1555
    case elfcpp::R_X86_64_GOTOFF64:
1556
      return Symbol::RELATIVE_REF;
1557
 
1558
    case elfcpp::R_X86_64_PLT32:
1559
    case elfcpp::R_X86_64_PLTOFF64:
1560
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1561
 
1562
    case elfcpp::R_X86_64_GOT64:
1563
    case elfcpp::R_X86_64_GOT32:
1564
    case elfcpp::R_X86_64_GOTPCREL64:
1565
    case elfcpp::R_X86_64_GOTPCREL:
1566
    case elfcpp::R_X86_64_GOTPLT64:
1567
      // Absolute in GOT.
1568
      return Symbol::ABSOLUTE_REF;
1569
 
1570
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1571
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1572
    case elfcpp::R_X86_64_TLSDESC_CALL:
1573
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1574
    case elfcpp::R_X86_64_DTPOFF32:
1575
    case elfcpp::R_X86_64_DTPOFF64:
1576
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1577
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1578
      return Symbol::TLS_REF;
1579
 
1580
    case elfcpp::R_X86_64_COPY:
1581
    case elfcpp::R_X86_64_GLOB_DAT:
1582
    case elfcpp::R_X86_64_JUMP_SLOT:
1583
    case elfcpp::R_X86_64_RELATIVE:
1584
    case elfcpp::R_X86_64_IRELATIVE:
1585
    case elfcpp::R_X86_64_TPOFF64:
1586
    case elfcpp::R_X86_64_DTPMOD64:
1587
    case elfcpp::R_X86_64_TLSDESC:
1588
    case elfcpp::R_X86_64_SIZE32:
1589
    case elfcpp::R_X86_64_SIZE64:
1590
    default:
1591
      // Not expected.  We will give an error later.
1592
      return 0;
1593
    }
1594
}
1595
 
1596
// Report an unsupported relocation against a local symbol.
1597
 
1598
void
1599
Target_x86_64::Scan::unsupported_reloc_local(
1600
     Sized_relobj_file<64, false>* object,
1601
     unsigned int r_type)
1602
{
1603
  gold_error(_("%s: unsupported reloc %u against local symbol"),
1604
             object->name().c_str(), r_type);
1605
}
1606
 
1607
// We are about to emit a dynamic relocation of type R_TYPE.  If the
1608
// dynamic linker does not support it, issue an error.  The GNU linker
1609
// only issues a non-PIC error for an allocated read-only section.
1610
// Here we know the section is allocated, but we don't know that it is
1611
// read-only.  But we check for all the relocation types which the
1612
// glibc dynamic linker supports, so it seems appropriate to issue an
1613
// error even if the section is not read-only.
1614
 
1615
void
1616
Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
1617
{
1618
  switch (r_type)
1619
    {
1620
      // These are the relocation types supported by glibc for x86_64
1621
      // which should always work.
1622
    case elfcpp::R_X86_64_RELATIVE:
1623
    case elfcpp::R_X86_64_IRELATIVE:
1624
    case elfcpp::R_X86_64_GLOB_DAT:
1625
    case elfcpp::R_X86_64_JUMP_SLOT:
1626
    case elfcpp::R_X86_64_DTPMOD64:
1627
    case elfcpp::R_X86_64_DTPOFF64:
1628
    case elfcpp::R_X86_64_TPOFF64:
1629
    case elfcpp::R_X86_64_64:
1630
    case elfcpp::R_X86_64_COPY:
1631
      return;
1632
 
1633
      // glibc supports these reloc types, but they can overflow.
1634
    case elfcpp::R_X86_64_32:
1635
    case elfcpp::R_X86_64_PC32:
1636
      if (this->issued_non_pic_error_)
1637
        return;
1638
      gold_assert(parameters->options().output_is_position_independent());
1639
      object->error(_("requires dynamic reloc which may overflow at runtime; "
1640
                      "recompile with -fPIC"));
1641
      this->issued_non_pic_error_ = true;
1642
      return;
1643
 
1644
    default:
1645
      // This prevents us from issuing more than one error per reloc
1646
      // section.  But we can still wind up issuing more than one
1647
      // error per object file.
1648
      if (this->issued_non_pic_error_)
1649
        return;
1650
      gold_assert(parameters->options().output_is_position_independent());
1651
      object->error(_("requires unsupported dynamic reloc; "
1652
                      "recompile with -fPIC"));
1653
      this->issued_non_pic_error_ = true;
1654
      return;
1655
 
1656
    case elfcpp::R_X86_64_NONE:
1657
      gold_unreachable();
1658
    }
1659
}
1660
 
1661
// Return whether we need to make a PLT entry for a relocation of the
1662
// given type against a STT_GNU_IFUNC symbol.
1663
 
1664
bool
1665
Target_x86_64::Scan::reloc_needs_plt_for_ifunc(
1666
     Sized_relobj_file<64, false>* object,
1667
     unsigned int r_type)
1668
{
1669
  int flags = Scan::get_reference_flags(r_type);
1670
  if (flags & Symbol::TLS_REF)
1671
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1672
               object->name().c_str(), r_type);
1673
  return flags != 0;
1674
}
1675
 
1676
// Scan a relocation for a local symbol.
1677
 
1678
inline void
1679
Target_x86_64::Scan::local(Symbol_table* symtab,
1680
                           Layout* layout,
1681
                           Target_x86_64* target,
1682
                           Sized_relobj_file<64, false>* object,
1683
                           unsigned int data_shndx,
1684
                           Output_section* output_section,
1685
                           const elfcpp::Rela<64, false>& reloc,
1686
                           unsigned int r_type,
1687
                           const elfcpp::Sym<64, false>& lsym)
1688
{
1689
  // A local STT_GNU_IFUNC symbol may require a PLT entry.
1690
  if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1691
      && this->reloc_needs_plt_for_ifunc(object, r_type))
1692
    {
1693
      unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1694
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1695
    }
1696
 
1697
  switch (r_type)
1698
    {
1699
    case elfcpp::R_X86_64_NONE:
1700
    case elfcpp::R_X86_64_GNU_VTINHERIT:
1701
    case elfcpp::R_X86_64_GNU_VTENTRY:
1702
      break;
1703
 
1704
    case elfcpp::R_X86_64_64:
1705
      // If building a shared library (or a position-independent
1706
      // executable), we need to create a dynamic relocation for this
1707
      // location.  The relocation applied at link time will apply the
1708
      // link-time value, so we flag the location with an
1709
      // R_X86_64_RELATIVE relocation so the dynamic loader can
1710
      // relocate it easily.
1711
      if (parameters->options().output_is_position_independent())
1712
        {
1713
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1714
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1715
          rela_dyn->add_local_relative(object, r_sym,
1716
                                       elfcpp::R_X86_64_RELATIVE,
1717
                                       output_section, data_shndx,
1718
                                       reloc.get_r_offset(),
1719
                                       reloc.get_r_addend());
1720
        }
1721
      break;
1722
 
1723
    case elfcpp::R_X86_64_32:
1724
    case elfcpp::R_X86_64_32S:
1725
    case elfcpp::R_X86_64_16:
1726
    case elfcpp::R_X86_64_8:
1727
      // If building a shared library (or a position-independent
1728
      // executable), we need to create a dynamic relocation for this
1729
      // location.  We can't use an R_X86_64_RELATIVE relocation
1730
      // because that is always a 64-bit relocation.
1731
      if (parameters->options().output_is_position_independent())
1732
        {
1733
          this->check_non_pic(object, r_type);
1734
 
1735
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1736
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1737
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
1738
            rela_dyn->add_local(object, r_sym, r_type, output_section,
1739
                                data_shndx, reloc.get_r_offset(),
1740
                                reloc.get_r_addend());
1741
          else
1742
            {
1743
              gold_assert(lsym.get_st_value() == 0);
1744
              unsigned int shndx = lsym.get_st_shndx();
1745
              bool is_ordinary;
1746
              shndx = object->adjust_sym_shndx(r_sym, shndx,
1747
                                               &is_ordinary);
1748
              if (!is_ordinary)
1749
                object->error(_("section symbol %u has bad shndx %u"),
1750
                              r_sym, shndx);
1751
              else
1752
                rela_dyn->add_local_section(object, shndx,
1753
                                            r_type, output_section,
1754
                                            data_shndx, reloc.get_r_offset(),
1755
                                            reloc.get_r_addend());
1756
            }
1757
        }
1758
      break;
1759
 
1760
    case elfcpp::R_X86_64_PC64:
1761
    case elfcpp::R_X86_64_PC32:
1762
    case elfcpp::R_X86_64_PC16:
1763
    case elfcpp::R_X86_64_PC8:
1764
      break;
1765
 
1766
    case elfcpp::R_X86_64_PLT32:
1767
      // Since we know this is a local symbol, we can handle this as a
1768
      // PC32 reloc.
1769
      break;
1770
 
1771
    case elfcpp::R_X86_64_GOTPC32:
1772
    case elfcpp::R_X86_64_GOTOFF64:
1773
    case elfcpp::R_X86_64_GOTPC64:
1774
    case elfcpp::R_X86_64_PLTOFF64:
1775
      // We need a GOT section.
1776
      target->got_section(symtab, layout);
1777
      // For PLTOFF64, we'd normally want a PLT section, but since we
1778
      // know this is a local symbol, no PLT is needed.
1779
      break;
1780
 
1781
    case elfcpp::R_X86_64_GOT64:
1782
    case elfcpp::R_X86_64_GOT32:
1783
    case elfcpp::R_X86_64_GOTPCREL64:
1784
    case elfcpp::R_X86_64_GOTPCREL:
1785
    case elfcpp::R_X86_64_GOTPLT64:
1786
      {
1787
        // The symbol requires a GOT entry.
1788
        Output_data_got<64, false>* got = target->got_section(symtab, layout);
1789
        unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1790
 
1791
        // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1792
        // lets function pointers compare correctly with shared
1793
        // libraries.  Otherwise we would need an IRELATIVE reloc.
1794
        bool is_new;
1795
        if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1796
          is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1797
        else
1798
          is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1799
        if (is_new)
1800
          {
1801
            // If we are generating a shared object, we need to add a
1802
            // dynamic relocation for this symbol's GOT entry.
1803
            if (parameters->options().output_is_position_independent())
1804
              {
1805
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1806
                // R_X86_64_RELATIVE assumes a 64-bit relocation.
1807
                if (r_type != elfcpp::R_X86_64_GOT32)
1808
                  {
1809
                    unsigned int got_offset =
1810
                      object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1811
                    rela_dyn->add_local_relative(object, r_sym,
1812
                                                 elfcpp::R_X86_64_RELATIVE,
1813
                                                 got, got_offset, 0);
1814
                  }
1815
                else
1816
                  {
1817
                    this->check_non_pic(object, r_type);
1818
 
1819
                    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1820
                    rela_dyn->add_local(
1821
                        object, r_sym, r_type, got,
1822
                        object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1823
                  }
1824
              }
1825
          }
1826
        // For GOTPLT64, we'd normally want a PLT section, but since
1827
        // we know this is a local symbol, no PLT is needed.
1828
      }
1829
      break;
1830
 
1831
    case elfcpp::R_X86_64_COPY:
1832
    case elfcpp::R_X86_64_GLOB_DAT:
1833
    case elfcpp::R_X86_64_JUMP_SLOT:
1834
    case elfcpp::R_X86_64_RELATIVE:
1835
    case elfcpp::R_X86_64_IRELATIVE:
1836
      // These are outstanding tls relocs, which are unexpected when linking
1837
    case elfcpp::R_X86_64_TPOFF64:
1838
    case elfcpp::R_X86_64_DTPMOD64:
1839
    case elfcpp::R_X86_64_TLSDESC:
1840
      gold_error(_("%s: unexpected reloc %u in object file"),
1841
                 object->name().c_str(), r_type);
1842
      break;
1843
 
1844
      // These are initial tls relocs, which are expected when linking
1845
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1846
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1847
    case elfcpp::R_X86_64_TLSDESC_CALL:
1848
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1849
    case elfcpp::R_X86_64_DTPOFF32:
1850
    case elfcpp::R_X86_64_DTPOFF64:
1851
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1852
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1853
      {
1854
        bool output_is_shared = parameters->options().shared();
1855
        const tls::Tls_optimization optimized_type
1856
            = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1857
        switch (r_type)
1858
          {
1859
          case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1860
            if (optimized_type == tls::TLSOPT_NONE)
1861
              {
1862
                // Create a pair of GOT entries for the module index and
1863
                // dtv-relative offset.
1864
                Output_data_got<64, false>* got
1865
                    = target->got_section(symtab, layout);
1866
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1867
                unsigned int shndx = lsym.get_st_shndx();
1868
                bool is_ordinary;
1869
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1870
                if (!is_ordinary)
1871
                  object->error(_("local symbol %u has bad shndx %u"),
1872
                              r_sym, shndx);
1873
                else
1874
                  got->add_local_pair_with_rela(object, r_sym,
1875
                                                shndx,
1876
                                                GOT_TYPE_TLS_PAIR,
1877
                                                target->rela_dyn_section(layout),
1878
                                                elfcpp::R_X86_64_DTPMOD64, 0);
1879
              }
1880
            else if (optimized_type != tls::TLSOPT_TO_LE)
1881
              unsupported_reloc_local(object, r_type);
1882
            break;
1883
 
1884
          case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1885
            target->define_tls_base_symbol(symtab, layout);
1886
            if (optimized_type == tls::TLSOPT_NONE)
1887
              {
1888
                // Create reserved PLT and GOT entries for the resolver.
1889
                target->reserve_tlsdesc_entries(symtab, layout);
1890
 
1891
                // Generate a double GOT entry with an
1892
                // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
1893
                // is resolved lazily, so the GOT entry needs to be in
1894
                // an area in .got.plt, not .got.  Call got_section to
1895
                // make sure the section has been created.
1896
                target->got_section(symtab, layout);
1897
                Output_data_got<64, false>* got = target->got_tlsdesc_section();
1898
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1899
                if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1900
                  {
1901
                    unsigned int got_offset = got->add_constant(0);
1902
                    got->add_constant(0);
1903
                    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1904
                                                 got_offset);
1905
                    Reloc_section* rt = target->rela_tlsdesc_section(layout);
1906
                    // We store the arguments we need in a vector, and
1907
                    // use the index into the vector as the parameter
1908
                    // to pass to the target specific routines.
1909
                    uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
1910
                    void* arg = reinterpret_cast<void*>(intarg);
1911
                    rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1912
                                            got, got_offset, 0);
1913
                  }
1914
              }
1915
            else if (optimized_type != tls::TLSOPT_TO_LE)
1916
              unsupported_reloc_local(object, r_type);
1917
            break;
1918
 
1919
          case elfcpp::R_X86_64_TLSDESC_CALL:
1920
            break;
1921
 
1922
          case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1923
            if (optimized_type == tls::TLSOPT_NONE)
1924
              {
1925
                // Create a GOT entry for the module index.
1926
                target->got_mod_index_entry(symtab, layout, object);
1927
              }
1928
            else if (optimized_type != tls::TLSOPT_TO_LE)
1929
              unsupported_reloc_local(object, r_type);
1930
            break;
1931
 
1932
          case elfcpp::R_X86_64_DTPOFF32:
1933
          case elfcpp::R_X86_64_DTPOFF64:
1934
            break;
1935
 
1936
          case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1937
            layout->set_has_static_tls();
1938
            if (optimized_type == tls::TLSOPT_NONE)
1939
              {
1940
                // Create a GOT entry for the tp-relative offset.
1941
                Output_data_got<64, false>* got
1942
                    = target->got_section(symtab, layout);
1943
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1944
                got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1945
                                         target->rela_dyn_section(layout),
1946
                                         elfcpp::R_X86_64_TPOFF64);
1947
              }
1948
            else if (optimized_type != tls::TLSOPT_TO_LE)
1949
              unsupported_reloc_local(object, r_type);
1950
            break;
1951
 
1952
          case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1953
            layout->set_has_static_tls();
1954
            if (output_is_shared)
1955
              unsupported_reloc_local(object, r_type);
1956
            break;
1957
 
1958
          default:
1959
            gold_unreachable();
1960
          }
1961
      }
1962
      break;
1963
 
1964
    case elfcpp::R_X86_64_SIZE32:
1965
    case elfcpp::R_X86_64_SIZE64:
1966
    default:
1967
      gold_error(_("%s: unsupported reloc %u against local symbol"),
1968
                 object->name().c_str(), r_type);
1969
      break;
1970
    }
1971
}
1972
 
1973
 
1974
// Report an unsupported relocation against a global symbol.
1975
 
1976
void
1977
Target_x86_64::Scan::unsupported_reloc_global(
1978
    Sized_relobj_file<64, false>* object,
1979
    unsigned int r_type,
1980
    Symbol* gsym)
1981
{
1982
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1983
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
1984
}
1985
 
1986
// Returns true if this relocation type could be that of a function pointer.
1987
inline bool
1988
Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
1989
{
1990
  switch (r_type)
1991
    {
1992
    case elfcpp::R_X86_64_64:
1993
    case elfcpp::R_X86_64_32:
1994
    case elfcpp::R_X86_64_32S:
1995
    case elfcpp::R_X86_64_16:
1996
    case elfcpp::R_X86_64_8:
1997
    case elfcpp::R_X86_64_GOT64:
1998
    case elfcpp::R_X86_64_GOT32:
1999
    case elfcpp::R_X86_64_GOTPCREL64:
2000
    case elfcpp::R_X86_64_GOTPCREL:
2001
    case elfcpp::R_X86_64_GOTPLT64:
2002
      {
2003
        return true;
2004
      }
2005
    }
2006
  return false;
2007
}
2008
 
2009
// For safe ICF, scan a relocation for a local symbol to check if it
2010
// corresponds to a function pointer being taken.  In that case mark
2011
// the function whose pointer was taken as not foldable.
2012
 
2013
inline bool
2014
Target_x86_64::Scan::local_reloc_may_be_function_pointer(
2015
  Symbol_table* ,
2016
  Layout* ,
2017
  Target_x86_64* ,
2018
  Sized_relobj_file<64, false>* ,
2019
  unsigned int ,
2020
  Output_section* ,
2021
  const elfcpp::Rela<64, false>& ,
2022
  unsigned int r_type,
2023
  const elfcpp::Sym<64, false>&)
2024
{
2025
  // When building a shared library, do not fold any local symbols as it is
2026
  // not possible to distinguish pointer taken versus a call by looking at
2027
  // the relocation types.
2028
  return (parameters->options().shared()
2029
          || possible_function_pointer_reloc(r_type));
2030
}
2031
 
2032
// For safe ICF, scan a relocation for a global symbol to check if it
2033
// corresponds to a function pointer being taken.  In that case mark
2034
// the function whose pointer was taken as not foldable.
2035
 
2036
inline bool
2037
Target_x86_64::Scan::global_reloc_may_be_function_pointer(
2038
  Symbol_table*,
2039
  Layout* ,
2040
  Target_x86_64* ,
2041
  Sized_relobj_file<64, false>* ,
2042
  unsigned int ,
2043
  Output_section* ,
2044
  const elfcpp::Rela<64, false>& ,
2045
  unsigned int r_type,
2046
  Symbol* gsym)
2047
{
2048
  // When building a shared library, do not fold symbols whose visibility
2049
  // is hidden, internal or protected.
2050
  return ((parameters->options().shared()
2051
           && (gsym->visibility() == elfcpp::STV_INTERNAL
2052
               || gsym->visibility() == elfcpp::STV_PROTECTED
2053
               || gsym->visibility() == elfcpp::STV_HIDDEN))
2054
          || possible_function_pointer_reloc(r_type));
2055
}
2056
 
2057
// Scan a relocation for a global symbol.
2058
 
2059
inline void
2060
Target_x86_64::Scan::global(Symbol_table* symtab,
2061
                            Layout* layout,
2062
                            Target_x86_64* target,
2063
                            Sized_relobj_file<64, false>* object,
2064
                            unsigned int data_shndx,
2065
                            Output_section* output_section,
2066
                            const elfcpp::Rela<64, false>& reloc,
2067
                            unsigned int r_type,
2068
                            Symbol* gsym)
2069
{
2070
  // A STT_GNU_IFUNC symbol may require a PLT entry.
2071
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
2072
      && this->reloc_needs_plt_for_ifunc(object, r_type))
2073
    target->make_plt_entry(symtab, layout, gsym);
2074
 
2075
  switch (r_type)
2076
    {
2077
    case elfcpp::R_X86_64_NONE:
2078
    case elfcpp::R_X86_64_GNU_VTINHERIT:
2079
    case elfcpp::R_X86_64_GNU_VTENTRY:
2080
      break;
2081
 
2082
    case elfcpp::R_X86_64_64:
2083
    case elfcpp::R_X86_64_32:
2084
    case elfcpp::R_X86_64_32S:
2085
    case elfcpp::R_X86_64_16:
2086
    case elfcpp::R_X86_64_8:
2087
      {
2088
        // Make a PLT entry if necessary.
2089
        if (gsym->needs_plt_entry())
2090
          {
2091
            target->make_plt_entry(symtab, layout, gsym);
2092
            // Since this is not a PC-relative relocation, we may be
2093
            // taking the address of a function. In that case we need to
2094
            // set the entry in the dynamic symbol table to the address of
2095
            // the PLT entry.
2096
            if (gsym->is_from_dynobj() && !parameters->options().shared())
2097
              gsym->set_needs_dynsym_value();
2098
          }
2099
        // Make a dynamic relocation if necessary.
2100
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2101
          {
2102
            if (gsym->may_need_copy_reloc())
2103
              {
2104
                target->copy_reloc(symtab, layout, object,
2105
                                   data_shndx, output_section, gsym, reloc);
2106
              }
2107
            else if (r_type == elfcpp::R_X86_64_64
2108
                     && gsym->type() == elfcpp::STT_GNU_IFUNC
2109
                     && gsym->can_use_relative_reloc(false)
2110
                     && !gsym->is_from_dynobj()
2111
                     && !gsym->is_undefined()
2112
                     && !gsym->is_preemptible())
2113
              {
2114
                // Use an IRELATIVE reloc for a locally defined
2115
                // STT_GNU_IFUNC symbol.  This makes a function
2116
                // address in a PIE executable match the address in a
2117
                // shared library that it links against.
2118
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2119
                unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2120
                rela_dyn->add_symbolless_global_addend(gsym, r_type,
2121
                                                       output_section, object,
2122
                                                       data_shndx,
2123
                                                       reloc.get_r_offset(),
2124
                                                       reloc.get_r_addend());
2125
              }
2126
            else if (r_type == elfcpp::R_X86_64_64
2127
                     && gsym->can_use_relative_reloc(false))
2128
              {
2129
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2130
                rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2131
                                              output_section, object,
2132
                                              data_shndx,
2133
                                              reloc.get_r_offset(),
2134
                                              reloc.get_r_addend());
2135
              }
2136
            else
2137
              {
2138
                this->check_non_pic(object, r_type);
2139
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2140
                rela_dyn->add_global(gsym, r_type, output_section, object,
2141
                                     data_shndx, reloc.get_r_offset(),
2142
                                     reloc.get_r_addend());
2143
              }
2144
          }
2145
      }
2146
      break;
2147
 
2148
    case elfcpp::R_X86_64_PC64:
2149
    case elfcpp::R_X86_64_PC32:
2150
    case elfcpp::R_X86_64_PC16:
2151
    case elfcpp::R_X86_64_PC8:
2152
      {
2153
        // Make a PLT entry if necessary.
2154
        if (gsym->needs_plt_entry())
2155
          target->make_plt_entry(symtab, layout, gsym);
2156
        // Make a dynamic relocation if necessary.
2157
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2158
          {
2159
            if (gsym->may_need_copy_reloc())
2160
              {
2161
                target->copy_reloc(symtab, layout, object,
2162
                                   data_shndx, output_section, gsym, reloc);
2163
              }
2164
            else
2165
              {
2166
                this->check_non_pic(object, r_type);
2167
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2168
                rela_dyn->add_global(gsym, r_type, output_section, object,
2169
                                     data_shndx, reloc.get_r_offset(),
2170
                                     reloc.get_r_addend());
2171
              }
2172
          }
2173
      }
2174
      break;
2175
 
2176
    case elfcpp::R_X86_64_GOT64:
2177
    case elfcpp::R_X86_64_GOT32:
2178
    case elfcpp::R_X86_64_GOTPCREL64:
2179
    case elfcpp::R_X86_64_GOTPCREL:
2180
    case elfcpp::R_X86_64_GOTPLT64:
2181
      {
2182
        // The symbol requires a GOT entry.
2183
        Output_data_got<64, false>* got = target->got_section(symtab, layout);
2184
        if (gsym->final_value_is_known())
2185
          {
2186
            // For a STT_GNU_IFUNC symbol we want the PLT address.
2187
            if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2188
              got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2189
            else
2190
              got->add_global(gsym, GOT_TYPE_STANDARD);
2191
          }
2192
        else
2193
          {
2194
            // If this symbol is not fully resolved, we need to add a
2195
            // dynamic relocation for it.
2196
            Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2197
            if (gsym->is_from_dynobj()
2198
                || gsym->is_undefined()
2199
                || gsym->is_preemptible()
2200
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
2201
                    && parameters->options().output_is_position_independent()))
2202
              got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
2203
                                        elfcpp::R_X86_64_GLOB_DAT);
2204
            else
2205
              {
2206
                // For a STT_GNU_IFUNC symbol we want to write the PLT
2207
                // offset into the GOT, so that function pointer
2208
                // comparisons work correctly.
2209
                bool is_new;
2210
                if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2211
                  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2212
                else
2213
                  {
2214
                    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2215
                    // Tell the dynamic linker to use the PLT address
2216
                    // when resolving relocations.
2217
                    if (gsym->is_from_dynobj()
2218
                        && !parameters->options().shared())
2219
                      gsym->set_needs_dynsym_value();
2220
                  }
2221
                if (is_new)
2222
                  {
2223
                    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2224
                    rela_dyn->add_global_relative(gsym,
2225
                                                  elfcpp::R_X86_64_RELATIVE,
2226
                                                  got, got_off, 0);
2227
                  }
2228
              }
2229
          }
2230
        // For GOTPLT64, we also need a PLT entry (but only if the
2231
        // symbol is not fully resolved).
2232
        if (r_type == elfcpp::R_X86_64_GOTPLT64
2233
            && !gsym->final_value_is_known())
2234
          target->make_plt_entry(symtab, layout, gsym);
2235
      }
2236
      break;
2237
 
2238
    case elfcpp::R_X86_64_PLT32:
2239
      // If the symbol is fully resolved, this is just a PC32 reloc.
2240
      // Otherwise we need a PLT entry.
2241
      if (gsym->final_value_is_known())
2242
        break;
2243
      // If building a shared library, we can also skip the PLT entry
2244
      // if the symbol is defined in the output file and is protected
2245
      // or hidden.
2246
      if (gsym->is_defined()
2247
          && !gsym->is_from_dynobj()
2248
          && !gsym->is_preemptible())
2249
        break;
2250
      target->make_plt_entry(symtab, layout, gsym);
2251
      break;
2252
 
2253
    case elfcpp::R_X86_64_GOTPC32:
2254
    case elfcpp::R_X86_64_GOTOFF64:
2255
    case elfcpp::R_X86_64_GOTPC64:
2256
    case elfcpp::R_X86_64_PLTOFF64:
2257
      // We need a GOT section.
2258
      target->got_section(symtab, layout);
2259
      // For PLTOFF64, we also need a PLT entry (but only if the
2260
      // symbol is not fully resolved).
2261
      if (r_type == elfcpp::R_X86_64_PLTOFF64
2262
          && !gsym->final_value_is_known())
2263
        target->make_plt_entry(symtab, layout, gsym);
2264
      break;
2265
 
2266
    case elfcpp::R_X86_64_COPY:
2267
    case elfcpp::R_X86_64_GLOB_DAT:
2268
    case elfcpp::R_X86_64_JUMP_SLOT:
2269
    case elfcpp::R_X86_64_RELATIVE:
2270
    case elfcpp::R_X86_64_IRELATIVE:
2271
      // These are outstanding tls relocs, which are unexpected when linking
2272
    case elfcpp::R_X86_64_TPOFF64:
2273
    case elfcpp::R_X86_64_DTPMOD64:
2274
    case elfcpp::R_X86_64_TLSDESC:
2275
      gold_error(_("%s: unexpected reloc %u in object file"),
2276
                 object->name().c_str(), r_type);
2277
      break;
2278
 
2279
      // These are initial tls relocs, which are expected for global()
2280
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2281
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2282
    case elfcpp::R_X86_64_TLSDESC_CALL:
2283
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2284
    case elfcpp::R_X86_64_DTPOFF32:
2285
    case elfcpp::R_X86_64_DTPOFF64:
2286
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2287
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2288
      {
2289
        const bool is_final = gsym->final_value_is_known();
2290
        const tls::Tls_optimization optimized_type
2291
            = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2292
        switch (r_type)
2293
          {
2294
          case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2295
            if (optimized_type == tls::TLSOPT_NONE)
2296
              {
2297
                // Create a pair of GOT entries for the module index and
2298
                // dtv-relative offset.
2299
                Output_data_got<64, false>* got
2300
                    = target->got_section(symtab, layout);
2301
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
2302
                                               target->rela_dyn_section(layout),
2303
                                               elfcpp::R_X86_64_DTPMOD64,
2304
                                               elfcpp::R_X86_64_DTPOFF64);
2305
              }
2306
            else if (optimized_type == tls::TLSOPT_TO_IE)
2307
              {
2308
                // Create a GOT entry for the tp-relative offset.
2309
                Output_data_got<64, false>* got
2310
                    = target->got_section(symtab, layout);
2311
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2312
                                          target->rela_dyn_section(layout),
2313
                                          elfcpp::R_X86_64_TPOFF64);
2314
              }
2315
            else if (optimized_type != tls::TLSOPT_TO_LE)
2316
              unsupported_reloc_global(object, r_type, gsym);
2317
            break;
2318
 
2319
          case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2320
            target->define_tls_base_symbol(symtab, layout);
2321
            if (optimized_type == tls::TLSOPT_NONE)
2322
              {
2323
                // Create reserved PLT and GOT entries for the resolver.
2324
                target->reserve_tlsdesc_entries(symtab, layout);
2325
 
2326
                // Create a double GOT entry with an R_X86_64_TLSDESC
2327
                // reloc.  The R_X86_64_TLSDESC reloc is resolved
2328
                // lazily, so the GOT entry needs to be in an area in
2329
                // .got.plt, not .got.  Call got_section to make sure
2330
                // the section has been created.
2331
                target->got_section(symtab, layout);
2332
                Output_data_got<64, false>* got = target->got_tlsdesc_section();
2333
                Reloc_section* rt = target->rela_tlsdesc_section(layout);
2334
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
2335
                                               elfcpp::R_X86_64_TLSDESC, 0);
2336
              }
2337
            else if (optimized_type == tls::TLSOPT_TO_IE)
2338
              {
2339
                // Create a GOT entry for the tp-relative offset.
2340
                Output_data_got<64, false>* got
2341
                    = target->got_section(symtab, layout);
2342
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2343
                                          target->rela_dyn_section(layout),
2344
                                          elfcpp::R_X86_64_TPOFF64);
2345
              }
2346
            else if (optimized_type != tls::TLSOPT_TO_LE)
2347
              unsupported_reloc_global(object, r_type, gsym);
2348
            break;
2349
 
2350
          case elfcpp::R_X86_64_TLSDESC_CALL:
2351
            break;
2352
 
2353
          case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2354
            if (optimized_type == tls::TLSOPT_NONE)
2355
              {
2356
                // Create a GOT entry for the module index.
2357
                target->got_mod_index_entry(symtab, layout, object);
2358
              }
2359
            else if (optimized_type != tls::TLSOPT_TO_LE)
2360
              unsupported_reloc_global(object, r_type, gsym);
2361
            break;
2362
 
2363
          case elfcpp::R_X86_64_DTPOFF32:
2364
          case elfcpp::R_X86_64_DTPOFF64:
2365
            break;
2366
 
2367
          case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2368
            layout->set_has_static_tls();
2369
            if (optimized_type == tls::TLSOPT_NONE)
2370
              {
2371
                // Create a GOT entry for the tp-relative offset.
2372
                Output_data_got<64, false>* got
2373
                    = target->got_section(symtab, layout);
2374
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2375
                                          target->rela_dyn_section(layout),
2376
                                          elfcpp::R_X86_64_TPOFF64);
2377
              }
2378
            else if (optimized_type != tls::TLSOPT_TO_LE)
2379
              unsupported_reloc_global(object, r_type, gsym);
2380
            break;
2381
 
2382
          case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2383
            layout->set_has_static_tls();
2384
            if (parameters->options().shared())
2385
              unsupported_reloc_local(object, r_type);
2386
            break;
2387
 
2388
          default:
2389
            gold_unreachable();
2390
          }
2391
      }
2392
      break;
2393
 
2394
    case elfcpp::R_X86_64_SIZE32:
2395
    case elfcpp::R_X86_64_SIZE64:
2396
    default:
2397
      gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2398
                 object->name().c_str(), r_type,
2399
                 gsym->demangled_name().c_str());
2400
      break;
2401
    }
2402
}
2403
 
2404
void
2405
Target_x86_64::gc_process_relocs(Symbol_table* symtab,
2406
                                 Layout* layout,
2407
                                 Sized_relobj_file<64, false>* object,
2408
                                 unsigned int data_shndx,
2409
                                 unsigned int sh_type,
2410
                                 const unsigned char* prelocs,
2411
                                 size_t reloc_count,
2412
                                 Output_section* output_section,
2413
                                 bool needs_special_offset_handling,
2414
                                 size_t local_symbol_count,
2415
                                 const unsigned char* plocal_symbols)
2416
{
2417
 
2418
  if (sh_type == elfcpp::SHT_REL)
2419
    {
2420
      return;
2421
    }
2422
 
2423
   gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2424
                           Target_x86_64::Scan,
2425
                           Target_x86_64::Relocatable_size_for_reloc>(
2426
    symtab,
2427
    layout,
2428
    this,
2429
    object,
2430
    data_shndx,
2431
    prelocs,
2432
    reloc_count,
2433
    output_section,
2434
    needs_special_offset_handling,
2435
    local_symbol_count,
2436
    plocal_symbols);
2437
 
2438
}
2439
// Scan relocations for a section.
2440
 
2441
void
2442
Target_x86_64::scan_relocs(Symbol_table* symtab,
2443
                           Layout* layout,
2444
                           Sized_relobj_file<64, false>* object,
2445
                           unsigned int data_shndx,
2446
                           unsigned int sh_type,
2447
                           const unsigned char* prelocs,
2448
                           size_t reloc_count,
2449
                           Output_section* output_section,
2450
                           bool needs_special_offset_handling,
2451
                           size_t local_symbol_count,
2452
                           const unsigned char* plocal_symbols)
2453
{
2454
  if (sh_type == elfcpp::SHT_REL)
2455
    {
2456
      gold_error(_("%s: unsupported REL reloc section"),
2457
                 object->name().c_str());
2458
      return;
2459
    }
2460
 
2461
  gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2462
      Target_x86_64::Scan>(
2463
    symtab,
2464
    layout,
2465
    this,
2466
    object,
2467
    data_shndx,
2468
    prelocs,
2469
    reloc_count,
2470
    output_section,
2471
    needs_special_offset_handling,
2472
    local_symbol_count,
2473
    plocal_symbols);
2474
}
2475
 
2476
// Finalize the sections.
2477
 
2478
void
2479
Target_x86_64::do_finalize_sections(
2480
    Layout* layout,
2481
    const Input_objects*,
2482
    Symbol_table* symtab)
2483
{
2484
  const Reloc_section* rel_plt = (this->plt_ == NULL
2485
                                  ? NULL
2486
                                  : this->plt_->rela_plt());
2487
  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
2488
                                  this->rela_dyn_, true, false);
2489
 
2490
  // Fill in some more dynamic tags.
2491
  Output_data_dynamic* const odyn = layout->dynamic_data();
2492
  if (odyn != NULL)
2493
    {
2494
      if (this->plt_ != NULL
2495
          && this->plt_->output_section() != NULL
2496
          && this->plt_->has_tlsdesc_entry())
2497
        {
2498
          unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
2499
          unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
2500
          this->got_->finalize_data_size();
2501
          odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
2502
                                        this->plt_, plt_offset);
2503
          odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
2504
                                        this->got_, got_offset);
2505
        }
2506
    }
2507
 
2508
  // Emit any relocs we saved in an attempt to avoid generating COPY
2509
  // relocs.
2510
  if (this->copy_relocs_.any_saved_relocs())
2511
    this->copy_relocs_.emit(this->rela_dyn_section(layout));
2512
 
2513
  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2514
  // the .got.plt section.
2515
  Symbol* sym = this->global_offset_table_;
2516
  if (sym != NULL)
2517
    {
2518
      uint64_t data_size = this->got_plt_->current_data_size();
2519
      symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
2520
    }
2521
}
2522
 
2523
// Perform a relocation.
2524
 
2525
inline bool
2526
Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
2527
                                  Target_x86_64* target,
2528
                                  Output_section*,
2529
                                  size_t relnum,
2530
                                  const elfcpp::Rela<64, false>& rela,
2531
                                  unsigned int r_type,
2532
                                  const Sized_symbol<64>* gsym,
2533
                                  const Symbol_value<64>* psymval,
2534
                                  unsigned char* view,
2535
                                  elfcpp::Elf_types<64>::Elf_Addr address,
2536
                                  section_size_type view_size)
2537
{
2538
  if (this->skip_call_tls_get_addr_)
2539
    {
2540
      if ((r_type != elfcpp::R_X86_64_PLT32
2541
           && r_type != elfcpp::R_X86_64_PC32)
2542
          || gsym == NULL
2543
          || strcmp(gsym->name(), "__tls_get_addr") != 0)
2544
        {
2545
          gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2546
                                 _("missing expected TLS relocation"));
2547
        }
2548
      else
2549
        {
2550
          this->skip_call_tls_get_addr_ = false;
2551
          return false;
2552
        }
2553
    }
2554
 
2555
  const Sized_relobj_file<64, false>* object = relinfo->object;
2556
 
2557
  // Pick the value to use for symbols defined in the PLT.
2558
  Symbol_value<64> symval;
2559
  if (gsym != NULL
2560
      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2561
    {
2562
      symval.set_output_value(target->plt_section()->address()
2563
                              + gsym->plt_offset());
2564
      psymval = &symval;
2565
    }
2566
  else if (gsym == NULL && psymval->is_ifunc_symbol())
2567
    {
2568
      unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2569
      if (object->local_has_plt_offset(r_sym))
2570
        {
2571
          symval.set_output_value(target->plt_section()->address()
2572
                                  + object->local_plt_offset(r_sym));
2573
          psymval = &symval;
2574
        }
2575
    }
2576
 
2577
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
2578
 
2579
  // Get the GOT offset if needed.
2580
  // The GOT pointer points to the end of the GOT section.
2581
  // We need to subtract the size of the GOT section to get
2582
  // the actual offset to use in the relocation.
2583
  bool have_got_offset = false;
2584
  unsigned int got_offset = 0;
2585
  switch (r_type)
2586
    {
2587
    case elfcpp::R_X86_64_GOT32:
2588
    case elfcpp::R_X86_64_GOT64:
2589
    case elfcpp::R_X86_64_GOTPLT64:
2590
    case elfcpp::R_X86_64_GOTPCREL:
2591
    case elfcpp::R_X86_64_GOTPCREL64:
2592
      if (gsym != NULL)
2593
        {
2594
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2595
          got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
2596
        }
2597
      else
2598
        {
2599
          unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2600
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2601
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2602
                        - target->got_size());
2603
        }
2604
      have_got_offset = true;
2605
      break;
2606
 
2607
    default:
2608
      break;
2609
    }
2610
 
2611
  switch (r_type)
2612
    {
2613
    case elfcpp::R_X86_64_NONE:
2614
    case elfcpp::R_X86_64_GNU_VTINHERIT:
2615
    case elfcpp::R_X86_64_GNU_VTENTRY:
2616
      break;
2617
 
2618
    case elfcpp::R_X86_64_64:
2619
      Relocate_functions<64, false>::rela64(view, object, psymval, addend);
2620
      break;
2621
 
2622
    case elfcpp::R_X86_64_PC64:
2623
      Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
2624
                                              address);
2625
      break;
2626
 
2627
    case elfcpp::R_X86_64_32:
2628
      // FIXME: we need to verify that value + addend fits into 32 bits:
2629
      //    uint64_t x = value + addend;
2630
      //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
2631
      // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2632
      Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2633
      break;
2634
 
2635
    case elfcpp::R_X86_64_32S:
2636
      // FIXME: we need to verify that value + addend fits into 32 bits:
2637
      //    int64_t x = value + addend;   // note this quantity is signed!
2638
      //    x == static_cast<int64_t>(static_cast<int32_t>(x))
2639
      Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2640
      break;
2641
 
2642
    case elfcpp::R_X86_64_PC32:
2643
      Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2644
                                              address);
2645
      break;
2646
 
2647
    case elfcpp::R_X86_64_16:
2648
      Relocate_functions<64, false>::rela16(view, object, psymval, addend);
2649
      break;
2650
 
2651
    case elfcpp::R_X86_64_PC16:
2652
      Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
2653
                                              address);
2654
      break;
2655
 
2656
    case elfcpp::R_X86_64_8:
2657
      Relocate_functions<64, false>::rela8(view, object, psymval, addend);
2658
      break;
2659
 
2660
    case elfcpp::R_X86_64_PC8:
2661
      Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
2662
                                             address);
2663
      break;
2664
 
2665
    case elfcpp::R_X86_64_PLT32:
2666
      gold_assert(gsym == NULL
2667
                  || gsym->has_plt_offset()
2668
                  || gsym->final_value_is_known()
2669
                  || (gsym->is_defined()
2670
                      && !gsym->is_from_dynobj()
2671
                      && !gsym->is_preemptible()));
2672
      // Note: while this code looks the same as for R_X86_64_PC32, it
2673
      // behaves differently because psymval was set to point to
2674
      // the PLT entry, rather than the symbol, in Scan::global().
2675
      Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2676
                                              address);
2677
      break;
2678
 
2679
    case elfcpp::R_X86_64_PLTOFF64:
2680
      {
2681
        gold_assert(gsym);
2682
        gold_assert(gsym->has_plt_offset()
2683
                    || gsym->final_value_is_known());
2684
        elfcpp::Elf_types<64>::Elf_Addr got_address;
2685
        got_address = target->got_section(NULL, NULL)->address();
2686
        Relocate_functions<64, false>::rela64(view, object, psymval,
2687
                                              addend - got_address);
2688
      }
2689
 
2690
    case elfcpp::R_X86_64_GOT32:
2691
      gold_assert(have_got_offset);
2692
      Relocate_functions<64, false>::rela32(view, got_offset, addend);
2693
      break;
2694
 
2695
    case elfcpp::R_X86_64_GOTPC32:
2696
      {
2697
        gold_assert(gsym);
2698
        elfcpp::Elf_types<64>::Elf_Addr value;
2699
        value = target->got_plt_section()->address();
2700
        Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2701
      }
2702
      break;
2703
 
2704
    case elfcpp::R_X86_64_GOT64:
2705
      // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
2706
      // Since we always add a PLT entry, this is equivalent.
2707
    case elfcpp::R_X86_64_GOTPLT64:
2708
      gold_assert(have_got_offset);
2709
      Relocate_functions<64, false>::rela64(view, got_offset, addend);
2710
      break;
2711
 
2712
    case elfcpp::R_X86_64_GOTPC64:
2713
      {
2714
        gold_assert(gsym);
2715
        elfcpp::Elf_types<64>::Elf_Addr value;
2716
        value = target->got_plt_section()->address();
2717
        Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2718
      }
2719
      break;
2720
 
2721
    case elfcpp::R_X86_64_GOTOFF64:
2722
      {
2723
        elfcpp::Elf_types<64>::Elf_Addr value;
2724
        value = (psymval->value(object, 0)
2725
                 - target->got_plt_section()->address());
2726
        Relocate_functions<64, false>::rela64(view, value, addend);
2727
      }
2728
      break;
2729
 
2730
    case elfcpp::R_X86_64_GOTPCREL:
2731
      {
2732
        gold_assert(have_got_offset);
2733
        elfcpp::Elf_types<64>::Elf_Addr value;
2734
        value = target->got_plt_section()->address() + got_offset;
2735
        Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2736
      }
2737
      break;
2738
 
2739
    case elfcpp::R_X86_64_GOTPCREL64:
2740
      {
2741
        gold_assert(have_got_offset);
2742
        elfcpp::Elf_types<64>::Elf_Addr value;
2743
        value = target->got_plt_section()->address() + got_offset;
2744
        Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2745
      }
2746
      break;
2747
 
2748
    case elfcpp::R_X86_64_COPY:
2749
    case elfcpp::R_X86_64_GLOB_DAT:
2750
    case elfcpp::R_X86_64_JUMP_SLOT:
2751
    case elfcpp::R_X86_64_RELATIVE:
2752
    case elfcpp::R_X86_64_IRELATIVE:
2753
      // These are outstanding tls relocs, which are unexpected when linking
2754
    case elfcpp::R_X86_64_TPOFF64:
2755
    case elfcpp::R_X86_64_DTPMOD64:
2756
    case elfcpp::R_X86_64_TLSDESC:
2757
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2758
                             _("unexpected reloc %u in object file"),
2759
                             r_type);
2760
      break;
2761
 
2762
      // These are initial tls relocs, which are expected when linking
2763
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2764
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2765
    case elfcpp::R_X86_64_TLSDESC_CALL:
2766
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2767
    case elfcpp::R_X86_64_DTPOFF32:
2768
    case elfcpp::R_X86_64_DTPOFF64:
2769
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2770
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2771
      this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
2772
                         view, address, view_size);
2773
      break;
2774
 
2775
    case elfcpp::R_X86_64_SIZE32:
2776
    case elfcpp::R_X86_64_SIZE64:
2777
    default:
2778
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2779
                             _("unsupported reloc %u"),
2780
                             r_type);
2781
      break;
2782
    }
2783
 
2784
  return true;
2785
}
2786
 
2787
// Perform a TLS relocation.
2788
 
2789
inline void
2790
Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
2791
                                      Target_x86_64* target,
2792
                                      size_t relnum,
2793
                                      const elfcpp::Rela<64, false>& rela,
2794
                                      unsigned int r_type,
2795
                                      const Sized_symbol<64>* gsym,
2796
                                      const Symbol_value<64>* psymval,
2797
                                      unsigned char* view,
2798
                                      elfcpp::Elf_types<64>::Elf_Addr address,
2799
                                      section_size_type view_size)
2800
{
2801
  Output_segment* tls_segment = relinfo->layout->tls_segment();
2802
 
2803
  const Sized_relobj_file<64, false>* object = relinfo->object;
2804
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
2805
  elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
2806
  bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
2807
 
2808
  elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
2809
 
2810
  const bool is_final = (gsym == NULL
2811
                         ? !parameters->options().shared()
2812
                         : gsym->final_value_is_known());
2813
  tls::Tls_optimization optimized_type
2814
      = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2815
  switch (r_type)
2816
    {
2817
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2818
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2819
        {
2820
          // If this code sequence is used in a non-executable section,
2821
          // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
2822
          // on the assumption that it's being used by itself in a debug
2823
          // section.  Therefore, in the unlikely event that the code
2824
          // sequence appears in a non-executable section, we simply
2825
          // leave it unoptimized.
2826
          optimized_type = tls::TLSOPT_NONE;
2827
        }
2828
      if (optimized_type == tls::TLSOPT_TO_LE)
2829
        {
2830
          gold_assert(tls_segment != NULL);
2831
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
2832
                             rela, r_type, value, view,
2833
                             view_size);
2834
          break;
2835
        }
2836
      else
2837
        {
2838
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2839
                                   ? GOT_TYPE_TLS_OFFSET
2840
                                   : GOT_TYPE_TLS_PAIR);
2841
          unsigned int got_offset;
2842
          if (gsym != NULL)
2843
            {
2844
              gold_assert(gsym->has_got_offset(got_type));
2845
              got_offset = gsym->got_offset(got_type) - target->got_size();
2846
            }
2847
          else
2848
            {
2849
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2850
              gold_assert(object->local_has_got_offset(r_sym, got_type));
2851
              got_offset = (object->local_got_offset(r_sym, got_type)
2852
                            - target->got_size());
2853
            }
2854
          if (optimized_type == tls::TLSOPT_TO_IE)
2855
            {
2856
              gold_assert(tls_segment != NULL);
2857
              value = target->got_plt_section()->address() + got_offset;
2858
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2859
                                 value, view, address, view_size);
2860
              break;
2861
            }
2862
          else if (optimized_type == tls::TLSOPT_NONE)
2863
            {
2864
              // Relocate the field with the offset of the pair of GOT
2865
              // entries.
2866
              value = target->got_plt_section()->address() + got_offset;
2867
              Relocate_functions<64, false>::pcrela32(view, value, addend,
2868
                                                      address);
2869
              break;
2870
            }
2871
        }
2872
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2873
                             _("unsupported reloc %u"), r_type);
2874
      break;
2875
 
2876
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2877
    case elfcpp::R_X86_64_TLSDESC_CALL:
2878
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2879
        {
2880
          // See above comment for R_X86_64_TLSGD.
2881
          optimized_type = tls::TLSOPT_NONE;
2882
        }
2883
      if (optimized_type == tls::TLSOPT_TO_LE)
2884
        {
2885
          gold_assert(tls_segment != NULL);
2886
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2887
                                  rela, r_type, value, view,
2888
                                  view_size);
2889
          break;
2890
        }
2891
      else
2892
        {
2893
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2894
                                   ? GOT_TYPE_TLS_OFFSET
2895
                                   : GOT_TYPE_TLS_DESC);
2896
          unsigned int got_offset = 0;
2897
          if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
2898
              && optimized_type == tls::TLSOPT_NONE)
2899
            {
2900
              // We created GOT entries in the .got.tlsdesc portion of
2901
              // the .got.plt section, but the offset stored in the
2902
              // symbol is the offset within .got.tlsdesc.
2903
              got_offset = (target->got_size()
2904
                            + target->got_plt_section()->data_size());
2905
            }
2906
          if (gsym != NULL)
2907
            {
2908
              gold_assert(gsym->has_got_offset(got_type));
2909
              got_offset += gsym->got_offset(got_type) - target->got_size();
2910
            }
2911
          else
2912
            {
2913
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2914
              gold_assert(object->local_has_got_offset(r_sym, got_type));
2915
              got_offset += (object->local_got_offset(r_sym, got_type)
2916
                             - target->got_size());
2917
            }
2918
          if (optimized_type == tls::TLSOPT_TO_IE)
2919
            {
2920
              gold_assert(tls_segment != NULL);
2921
              value = target->got_plt_section()->address() + got_offset;
2922
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2923
                                      rela, r_type, value, view, address,
2924
                                      view_size);
2925
              break;
2926
            }
2927
          else if (optimized_type == tls::TLSOPT_NONE)
2928
            {
2929
              if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2930
                {
2931
                  // Relocate the field with the offset of the pair of GOT
2932
                  // entries.
2933
                  value = target->got_plt_section()->address() + got_offset;
2934
                  Relocate_functions<64, false>::pcrela32(view, value, addend,
2935
                                                          address);
2936
                }
2937
              break;
2938
            }
2939
        }
2940
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2941
                             _("unsupported reloc %u"), r_type);
2942
      break;
2943
 
2944
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2945
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2946
        {
2947
          // See above comment for R_X86_64_TLSGD.
2948
          optimized_type = tls::TLSOPT_NONE;
2949
        }
2950
      if (optimized_type == tls::TLSOPT_TO_LE)
2951
        {
2952
          gold_assert(tls_segment != NULL);
2953
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2954
                             value, view, view_size);
2955
          break;
2956
        }
2957
      else if (optimized_type == tls::TLSOPT_NONE)
2958
        {
2959
          // Relocate the field with the offset of the GOT entry for
2960
          // the module index.
2961
          unsigned int got_offset;
2962
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2963
                        - target->got_size());
2964
          value = target->got_plt_section()->address() + got_offset;
2965
          Relocate_functions<64, false>::pcrela32(view, value, addend,
2966
                                                  address);
2967
          break;
2968
        }
2969
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2970
                             _("unsupported reloc %u"), r_type);
2971
      break;
2972
 
2973
    case elfcpp::R_X86_64_DTPOFF32:
2974
      // This relocation type is used in debugging information.
2975
      // In that case we need to not optimize the value.  If the
2976
      // section is not executable, then we assume we should not
2977
      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
2978
      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
2979
      // R_X86_64_TLSLD.
2980
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
2981
        {
2982
          gold_assert(tls_segment != NULL);
2983
          value -= tls_segment->memsz();
2984
        }
2985
      Relocate_functions<64, false>::rela32(view, value, addend);
2986
      break;
2987
 
2988
    case elfcpp::R_X86_64_DTPOFF64:
2989
      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
2990
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
2991
        {
2992
          gold_assert(tls_segment != NULL);
2993
          value -= tls_segment->memsz();
2994
        }
2995
      Relocate_functions<64, false>::rela64(view, value, addend);
2996
      break;
2997
 
2998
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2999
      if (optimized_type == tls::TLSOPT_TO_LE)
3000
        {
3001
          gold_assert(tls_segment != NULL);
3002
          Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3003
                                                rela, r_type, value, view,
3004
                                                view_size);
3005
          break;
3006
        }
3007
      else if (optimized_type == tls::TLSOPT_NONE)
3008
        {
3009
          // Relocate the field with the offset of the GOT entry for
3010
          // the tp-relative offset of the symbol.
3011
          unsigned int got_offset;
3012
          if (gsym != NULL)
3013
            {
3014
              gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3015
              got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3016
                            - target->got_size());
3017
            }
3018
          else
3019
            {
3020
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
3021
              gold_assert(object->local_has_got_offset(r_sym,
3022
                                                       GOT_TYPE_TLS_OFFSET));
3023
              got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3024
                            - target->got_size());
3025
            }
3026
          value = target->got_plt_section()->address() + got_offset;
3027
          Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3028
          break;
3029
        }
3030
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3031
                             _("unsupported reloc type %u"),
3032
                             r_type);
3033
      break;
3034
 
3035
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3036
      value -= tls_segment->memsz();
3037
      Relocate_functions<64, false>::rela32(view, value, addend);
3038
      break;
3039
    }
3040
}
3041
 
3042
// Do a relocation in which we convert a TLS General-Dynamic to an
3043
// Initial-Exec.
3044
 
3045
inline void
3046
Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
3047
                                      size_t relnum,
3048
                                      Output_segment*,
3049
                                      const elfcpp::Rela<64, false>& rela,
3050
                                      unsigned int,
3051
                                      elfcpp::Elf_types<64>::Elf_Addr value,
3052
                                      unsigned char* view,
3053
                                      elfcpp::Elf_types<64>::Elf_Addr address,
3054
                                      section_size_type view_size)
3055
{
3056
  // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3057
  // .word 0x6666; rex64; call __tls_get_addr
3058
  // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3059
 
3060
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3061
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3062
 
3063
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3064
                 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3065
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3066
                 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3067
 
3068
  memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
3069
 
3070
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
3071
  Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
3072
 
3073
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
3074
  // We can skip it.
3075
  this->skip_call_tls_get_addr_ = true;
3076
}
3077
 
3078
// Do a relocation in which we convert a TLS General-Dynamic to a
3079
// Local-Exec.
3080
 
3081
inline void
3082
Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
3083
                                      size_t relnum,
3084
                                      Output_segment* tls_segment,
3085
                                      const elfcpp::Rela<64, false>& rela,
3086
                                      unsigned int,
3087
                                      elfcpp::Elf_types<64>::Elf_Addr value,
3088
                                      unsigned char* view,
3089
                                      section_size_type view_size)
3090
{
3091
  // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3092
  // .word 0x6666; rex64; call __tls_get_addr
3093
  // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3094
 
3095
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3096
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3097
 
3098
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3099
                 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3100
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3101
                 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3102
 
3103
  memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
3104
 
3105
  value -= tls_segment->memsz();
3106
  Relocate_functions<64, false>::rela32(view + 8, value, 0);
3107
 
3108
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
3109
  // We can skip it.
3110
  this->skip_call_tls_get_addr_ = true;
3111
}
3112
 
3113
// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3114
 
3115
inline void
3116
Target_x86_64::Relocate::tls_desc_gd_to_ie(
3117
    const Relocate_info<64, false>* relinfo,
3118
    size_t relnum,
3119
    Output_segment*,
3120
    const elfcpp::Rela<64, false>& rela,
3121
    unsigned int r_type,
3122
    elfcpp::Elf_types<64>::Elf_Addr value,
3123
    unsigned char* view,
3124
    elfcpp::Elf_types<64>::Elf_Addr address,
3125
    section_size_type view_size)
3126
{
3127
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3128
    {
3129
      // leaq foo@tlsdesc(%rip), %rax
3130
      // ==> movq foo@gottpoff(%rip), %rax
3131
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3132
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3133
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3134
                     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3135
      view[-2] = 0x8b;
3136
      const elfcpp::Elf_Xword addend = rela.get_r_addend();
3137
      Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3138
    }
3139
  else
3140
    {
3141
      // call *foo@tlscall(%rax)
3142
      // ==> nop; nop
3143
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3144
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3145
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3146
                     view[0] == 0xff && view[1] == 0x10);
3147
      view[0] = 0x66;
3148
      view[1] = 0x90;
3149
    }
3150
}
3151
 
3152
// Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3153
 
3154
inline void
3155
Target_x86_64::Relocate::tls_desc_gd_to_le(
3156
    const Relocate_info<64, false>* relinfo,
3157
    size_t relnum,
3158
    Output_segment* tls_segment,
3159
    const elfcpp::Rela<64, false>& rela,
3160
    unsigned int r_type,
3161
    elfcpp::Elf_types<64>::Elf_Addr value,
3162
    unsigned char* view,
3163
    section_size_type view_size)
3164
{
3165
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3166
    {
3167
      // leaq foo@tlsdesc(%rip), %rax
3168
      // ==> movq foo@tpoff, %rax
3169
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3170
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3171
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3172
                     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3173
      view[-2] = 0xc7;
3174
      view[-1] = 0xc0;
3175
      value -= tls_segment->memsz();
3176
      Relocate_functions<64, false>::rela32(view, value, 0);
3177
    }
3178
  else
3179
    {
3180
      // call *foo@tlscall(%rax)
3181
      // ==> nop; nop
3182
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3183
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3184
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3185
                     view[0] == 0xff && view[1] == 0x10);
3186
      view[0] = 0x66;
3187
      view[1] = 0x90;
3188
    }
3189
}
3190
 
3191
inline void
3192
Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
3193
                                      size_t relnum,
3194
                                      Output_segment*,
3195
                                      const elfcpp::Rela<64, false>& rela,
3196
                                      unsigned int,
3197
                                      elfcpp::Elf_types<64>::Elf_Addr,
3198
                                      unsigned char* view,
3199
                                      section_size_type view_size)
3200
{
3201
  // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3202
  // ... leq foo@dtpoff(%rax),%reg
3203
  // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3204
 
3205
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3206
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
3207
 
3208
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3209
                 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
3210
 
3211
  tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
3212
 
3213
  memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3214
 
3215
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
3216
  // We can skip it.
3217
  this->skip_call_tls_get_addr_ = true;
3218
}
3219
 
3220
// Do a relocation in which we convert a TLS Initial-Exec to a
3221
// Local-Exec.
3222
 
3223
inline void
3224
Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
3225
                                      size_t relnum,
3226
                                      Output_segment* tls_segment,
3227
                                      const elfcpp::Rela<64, false>& rela,
3228
                                      unsigned int,
3229
                                      elfcpp::Elf_types<64>::Elf_Addr value,
3230
                                      unsigned char* view,
3231
                                      section_size_type view_size)
3232
{
3233
  // We need to examine the opcodes to figure out which instruction we
3234
  // are looking at.
3235
 
3236
  // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
3237
  // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
3238
 
3239
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3240
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3241
 
3242
  unsigned char op1 = view[-3];
3243
  unsigned char op2 = view[-2];
3244
  unsigned char op3 = view[-1];
3245
  unsigned char reg = op3 >> 3;
3246
 
3247
  if (op2 == 0x8b)
3248
    {
3249
      // movq
3250
      if (op1 == 0x4c)
3251
        view[-3] = 0x49;
3252
      view[-2] = 0xc7;
3253
      view[-1] = 0xc0 | reg;
3254
    }
3255
  else if (reg == 4)
3256
    {
3257
      // Special handling for %rsp.
3258
      if (op1 == 0x4c)
3259
        view[-3] = 0x49;
3260
      view[-2] = 0x81;
3261
      view[-1] = 0xc0 | reg;
3262
    }
3263
  else
3264
    {
3265
      // addq
3266
      if (op1 == 0x4c)
3267
        view[-3] = 0x4d;
3268
      view[-2] = 0x8d;
3269
      view[-1] = 0x80 | reg | (reg << 3);
3270
    }
3271
 
3272
  value -= tls_segment->memsz();
3273
  Relocate_functions<64, false>::rela32(view, value, 0);
3274
}
3275
 
3276
// Relocate section data.
3277
 
3278
void
3279
Target_x86_64::relocate_section(
3280
    const Relocate_info<64, false>* relinfo,
3281
    unsigned int sh_type,
3282
    const unsigned char* prelocs,
3283
    size_t reloc_count,
3284
    Output_section* output_section,
3285
    bool needs_special_offset_handling,
3286
    unsigned char* view,
3287
    elfcpp::Elf_types<64>::Elf_Addr address,
3288
    section_size_type view_size,
3289
    const Reloc_symbol_changes* reloc_symbol_changes)
3290
{
3291
  gold_assert(sh_type == elfcpp::SHT_RELA);
3292
 
3293
  gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
3294
                         Target_x86_64::Relocate>(
3295
    relinfo,
3296
    this,
3297
    prelocs,
3298
    reloc_count,
3299
    output_section,
3300
    needs_special_offset_handling,
3301
    view,
3302
    address,
3303
    view_size,
3304
    reloc_symbol_changes);
3305
}
3306
 
3307
// Apply an incremental relocation.  Incremental relocations always refer
3308
// to global symbols.
3309
 
3310
void
3311
Target_x86_64::apply_relocation(
3312
    const Relocate_info<64, false>* relinfo,
3313
    elfcpp::Elf_types<64>::Elf_Addr r_offset,
3314
    unsigned int r_type,
3315
    elfcpp::Elf_types<64>::Elf_Swxword r_addend,
3316
    const Symbol* gsym,
3317
    unsigned char* view,
3318
    elfcpp::Elf_types<64>::Elf_Addr address,
3319
    section_size_type view_size)
3320
{
3321
  gold::apply_relocation<64, false, Target_x86_64, Target_x86_64::Relocate>(
3322
    relinfo,
3323
    this,
3324
    r_offset,
3325
    r_type,
3326
    r_addend,
3327
    gsym,
3328
    view,
3329
    address,
3330
    view_size);
3331
}
3332
 
3333
// Return the size of a relocation while scanning during a relocatable
3334
// link.
3335
 
3336
unsigned int
3337
Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
3338
    unsigned int r_type,
3339
    Relobj* object)
3340
{
3341
  switch (r_type)
3342
    {
3343
    case elfcpp::R_X86_64_NONE:
3344
    case elfcpp::R_X86_64_GNU_VTINHERIT:
3345
    case elfcpp::R_X86_64_GNU_VTENTRY:
3346
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3347
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3348
    case elfcpp::R_X86_64_TLSDESC_CALL:
3349
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3350
    case elfcpp::R_X86_64_DTPOFF32:
3351
    case elfcpp::R_X86_64_DTPOFF64:
3352
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3353
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3354
      return 0;
3355
 
3356
    case elfcpp::R_X86_64_64:
3357
    case elfcpp::R_X86_64_PC64:
3358
    case elfcpp::R_X86_64_GOTOFF64:
3359
    case elfcpp::R_X86_64_GOTPC64:
3360
    case elfcpp::R_X86_64_PLTOFF64:
3361
    case elfcpp::R_X86_64_GOT64:
3362
    case elfcpp::R_X86_64_GOTPCREL64:
3363
    case elfcpp::R_X86_64_GOTPCREL:
3364
    case elfcpp::R_X86_64_GOTPLT64:
3365
      return 8;
3366
 
3367
    case elfcpp::R_X86_64_32:
3368
    case elfcpp::R_X86_64_32S:
3369
    case elfcpp::R_X86_64_PC32:
3370
    case elfcpp::R_X86_64_PLT32:
3371
    case elfcpp::R_X86_64_GOTPC32:
3372
    case elfcpp::R_X86_64_GOT32:
3373
      return 4;
3374
 
3375
    case elfcpp::R_X86_64_16:
3376
    case elfcpp::R_X86_64_PC16:
3377
      return 2;
3378
 
3379
    case elfcpp::R_X86_64_8:
3380
    case elfcpp::R_X86_64_PC8:
3381
      return 1;
3382
 
3383
    case elfcpp::R_X86_64_COPY:
3384
    case elfcpp::R_X86_64_GLOB_DAT:
3385
    case elfcpp::R_X86_64_JUMP_SLOT:
3386
    case elfcpp::R_X86_64_RELATIVE:
3387
    case elfcpp::R_X86_64_IRELATIVE:
3388
      // These are outstanding tls relocs, which are unexpected when linking
3389
    case elfcpp::R_X86_64_TPOFF64:
3390
    case elfcpp::R_X86_64_DTPMOD64:
3391
    case elfcpp::R_X86_64_TLSDESC:
3392
      object->error(_("unexpected reloc %u in object file"), r_type);
3393
      return 0;
3394
 
3395
    case elfcpp::R_X86_64_SIZE32:
3396
    case elfcpp::R_X86_64_SIZE64:
3397
    default:
3398
      object->error(_("unsupported reloc %u against local symbol"), r_type);
3399
      return 0;
3400
    }
3401
}
3402
 
3403
// Scan the relocs during a relocatable link.
3404
 
3405
void
3406
Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
3407
                                       Layout* layout,
3408
                                       Sized_relobj_file<64, false>* object,
3409
                                       unsigned int data_shndx,
3410
                                       unsigned int sh_type,
3411
                                       const unsigned char* prelocs,
3412
                                       size_t reloc_count,
3413
                                       Output_section* output_section,
3414
                                       bool needs_special_offset_handling,
3415
                                       size_t local_symbol_count,
3416
                                       const unsigned char* plocal_symbols,
3417
                                       Relocatable_relocs* rr)
3418
{
3419
  gold_assert(sh_type == elfcpp::SHT_RELA);
3420
 
3421
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
3422
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
3423
 
3424
  gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
3425
      Scan_relocatable_relocs>(
3426
    symtab,
3427
    layout,
3428
    object,
3429
    data_shndx,
3430
    prelocs,
3431
    reloc_count,
3432
    output_section,
3433
    needs_special_offset_handling,
3434
    local_symbol_count,
3435
    plocal_symbols,
3436
    rr);
3437
}
3438
 
3439
// Relocate a section during a relocatable link.
3440
 
3441
void
3442
Target_x86_64::relocate_for_relocatable(
3443
    const Relocate_info<64, false>* relinfo,
3444
    unsigned int sh_type,
3445
    const unsigned char* prelocs,
3446
    size_t reloc_count,
3447
    Output_section* output_section,
3448
    off_t offset_in_output_section,
3449
    const Relocatable_relocs* rr,
3450
    unsigned char* view,
3451
    elfcpp::Elf_types<64>::Elf_Addr view_address,
3452
    section_size_type view_size,
3453
    unsigned char* reloc_view,
3454
    section_size_type reloc_view_size)
3455
{
3456
  gold_assert(sh_type == elfcpp::SHT_RELA);
3457
 
3458
  gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
3459
    relinfo,
3460
    prelocs,
3461
    reloc_count,
3462
    output_section,
3463
    offset_in_output_section,
3464
    rr,
3465
    view,
3466
    view_address,
3467
    view_size,
3468
    reloc_view,
3469
    reloc_view_size);
3470
}
3471
 
3472
// Return the value to use for a dynamic which requires special
3473
// treatment.  This is how we support equality comparisons of function
3474
// pointers across shared library boundaries, as described in the
3475
// processor specific ABI supplement.
3476
 
3477
uint64_t
3478
Target_x86_64::do_dynsym_value(const Symbol* gsym) const
3479
{
3480
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3481
  return this->plt_section()->address() + gsym->plt_offset();
3482
}
3483
 
3484
// Return a string used to fill a code section with nops to take up
3485
// the specified length.
3486
 
3487
std::string
3488
Target_x86_64::do_code_fill(section_size_type length) const
3489
{
3490
  if (length >= 16)
3491
    {
3492
      // Build a jmpq instruction to skip over the bytes.
3493
      unsigned char jmp[5];
3494
      jmp[0] = 0xe9;
3495
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3496
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3497
              + std::string(length - 5, '\0'));
3498
    }
3499
 
3500
  // Nop sequences of various lengths.
3501
  const char nop1[1] = { 0x90 };                   // nop
3502
  const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
3503
  const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
3504
  const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
3505
  const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
3506
                         0x00 };
3507
  const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
3508
                         0x00, 0x00 };
3509
  const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
3510
                         0x00, 0x00, 0x00 };
3511
  const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
3512
                         0x00, 0x00, 0x00, 0x00 };
3513
  const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
3514
                         0x00, 0x00, 0x00, 0x00,
3515
                         0x00 };
3516
  const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
3517
                           0x84, 0x00, 0x00, 0x00,
3518
                           0x00, 0x00 };
3519
  const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
3520
                           0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3521
                           0x00, 0x00, 0x00 };
3522
  const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
3523
                           0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
3524
                           0x00, 0x00, 0x00, 0x00 };
3525
  const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3526
                           0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
3527
                           0x00, 0x00, 0x00, 0x00,
3528
                           0x00 };
3529
  const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3530
                           0x66, 0x2e, 0x0f, 0x1f, // data16
3531
                           0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3532
                           0x00, 0x00 };
3533
  const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3534
                           0x66, 0x66, 0x2e, 0x0f, // data16; data16
3535
                           0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3536
                           0x00, 0x00, 0x00 };
3537
 
3538
  const char* nops[16] = {
3539
    NULL,
3540
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3541
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3542
  };
3543
 
3544
  return std::string(nops[length], length);
3545
}
3546
 
3547
// Return the addend to use for a target specific relocation.  The
3548
// only target specific relocation is R_X86_64_TLSDESC for a local
3549
// symbol.  We want to set the addend is the offset of the local
3550
// symbol in the TLS segment.
3551
 
3552
uint64_t
3553
Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
3554
                               uint64_t) const
3555
{
3556
  gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
3557
  uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
3558
  gold_assert(intarg < this->tlsdesc_reloc_info_.size());
3559
  const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
3560
  const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
3561
  gold_assert(psymval->is_tls_symbol());
3562
  // The value of a TLS symbol is the offset in the TLS segment.
3563
  return psymval->value(ti.object, 0);
3564
}
3565
 
3566
// FNOFFSET in section SHNDX in OBJECT is the start of a function
3567
// compiled with -fsplit-stack.  The function calls non-split-stack
3568
// code.  We have to change the function so that it always ensures
3569
// that it has enough stack space to run some random function.
3570
 
3571
void
3572
Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
3573
                                  section_offset_type fnoffset,
3574
                                  section_size_type fnsize,
3575
                                  unsigned char* view,
3576
                                  section_size_type view_size,
3577
                                  std::string* from,
3578
                                  std::string* to) const
3579
{
3580
  // The function starts with a comparison of the stack pointer and a
3581
  // field in the TCB.  This is followed by a jump.
3582
 
3583
  // cmp %fs:NN,%rsp
3584
  if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
3585
      && fnsize > 9)
3586
    {
3587
      // We will call __morestack if the carry flag is set after this
3588
      // comparison.  We turn the comparison into an stc instruction
3589
      // and some nops.
3590
      view[fnoffset] = '\xf9';
3591
      this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
3592
    }
3593
  // lea NN(%rsp),%r10
3594
  // lea NN(%rsp),%r11
3595
  else if ((this->match_view(view, view_size, fnoffset,
3596
                             "\x4c\x8d\x94\x24", 4)
3597
            || this->match_view(view, view_size, fnoffset,
3598
                                "\x4c\x8d\x9c\x24", 4))
3599
           && fnsize > 8)
3600
    {
3601
      // This is loading an offset from the stack pointer for a
3602
      // comparison.  The offset is negative, so we decrease the
3603
      // offset by the amount of space we need for the stack.  This
3604
      // means we will avoid calling __morestack if there happens to
3605
      // be plenty of space on the stack already.
3606
      unsigned char* pval = view + fnoffset + 4;
3607
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3608
      val -= parameters->options().split_stack_adjust_size();
3609
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3610
    }
3611
  else
3612
    {
3613
      if (!object->has_no_split_stack())
3614
        object->error(_("failed to match split-stack sequence at "
3615
                        "section %u offset %0zx"),
3616
                      shndx, static_cast<size_t>(fnoffset));
3617
      return;
3618
    }
3619
 
3620
  // We have to change the function so that it calls
3621
  // __morestack_non_split instead of __morestack.  The former will
3622
  // allocate additional stack space.
3623
  *from = "__morestack";
3624
  *to = "__morestack_non_split";
3625
}
3626
 
3627
// The selector for x86_64 object files.
3628
 
3629
class Target_selector_x86_64 : public Target_selector_freebsd
3630
{
3631
public:
3632
  Target_selector_x86_64()
3633
    : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
3634
                              "elf64-x86-64-freebsd")
3635
  { }
3636
 
3637
  Target*
3638
  do_instantiate_target()
3639
  { return new Target_x86_64(); }
3640
 
3641
};
3642
 
3643
Target_selector_x86_64 target_selector_x86_64;
3644
 
3645
} // End anonymous namespace.

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.