OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gprof/] [hist.c] - Blame information for rev 82

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 25 khays
/* hist.c  -  Histogram related operations.
2
 
3
   Copyright 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2009
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GNU Binutils.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software
20
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
21
   02110-1301, USA.  */
22
 
23
#include "gprof.h"
24
#include "libiberty.h"
25
#include "search_list.h"
26
#include "source.h"
27
#include "symtab.h"
28
#include "corefile.h"
29
#include "gmon_io.h"
30
#include "gmon_out.h"
31
#include "hist.h"
32
#include "sym_ids.h"
33
#include "utils.h"
34
#include "math.h"
35
#include "stdio.h"
36
#include "stdlib.h"
37
 
38
#define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))
39
 
40
static void scale_and_align_entries (void);
41
static void print_header (int);
42
static void print_line (Sym *, double);
43
static int cmp_time (const PTR, const PTR);
44
 
45
/* Declarations of automatically generated functions to output blurbs.  */
46
extern void flat_blurb (FILE * fp);
47
 
48
static histogram *find_histogram (bfd_vma lowpc, bfd_vma highpc);
49
static histogram *find_histogram_for_pc (bfd_vma pc);
50
 
51
histogram * histograms;
52
unsigned num_histograms;
53
double hist_scale;
54
static char hist_dimension[16] = "seconds";
55
static char hist_dimension_abbrev = 's';
56
 
57
static double accum_time;       /* Accumulated time so far for print_line(). */
58
static double total_time;       /* Total time for all routines.  */
59
 
60
/* Table of SI prefixes for powers of 10 (used to automatically
61
   scale some of the values in the flat profile).  */
62
const struct
63
  {
64
    char prefix;
65
    double scale;
66
  }
67
SItab[] =
68
{
69
  { 'T', 1e-12 },                               /* tera */
70
  { 'G', 1e-09 },                               /* giga */
71
  { 'M', 1e-06 },                               /* mega */
72
  { 'K', 1e-03 },                               /* kilo */
73
  { ' ', 1e-00 },
74
  { 'm', 1e+03 },                               /* milli */
75
  { 'u', 1e+06 },                               /* micro */
76
  { 'n', 1e+09 },                               /* nano */
77
  { 'p', 1e+12 },                               /* pico */
78
  { 'f', 1e+15 },                               /* femto */
79
  { 'a', 1e+18 }                                /* ato */
80
};
81
 
82
/* Reads just the header part of histogram record into
83
   *RECORD from IFP.  FILENAME is the name of IFP and
84
   is provided for formatting error messages only.
85
 
86
   If FIRST is non-zero, sets global variables HZ, HIST_DIMENSION,
87
   HIST_DIMENSION_ABBREV, HIST_SCALE.  If FIRST is zero, checks
88
   that the new histogram is compatible with already-set values
89
   of those variables and emits an error if that's not so.  */
90
static void
91
read_histogram_header (histogram *record,
92
                       FILE *ifp, const char *filename,
93
                       int first)
94
{
95
  unsigned int profrate;
96
  char n_hist_dimension[15];
97
  char n_hist_dimension_abbrev;
98
  double n_hist_scale;
99
 
100
  if (gmon_io_read_vma (ifp, &record->lowpc)
101
      || gmon_io_read_vma (ifp, &record->highpc)
102
      || gmon_io_read_32 (ifp, &record->num_bins)
103
      || gmon_io_read_32 (ifp, &profrate)
104
      || gmon_io_read (ifp, n_hist_dimension, 15)
105
      || gmon_io_read (ifp, &n_hist_dimension_abbrev, 1))
106
    {
107
      fprintf (stderr, _("%s: %s: unexpected end of file\n"),
108
               whoami, filename);
109
 
110
      done (1);
111
    }
112
 
113
  n_hist_scale = (double)((record->highpc - record->lowpc) / sizeof (UNIT))
114
    / record->num_bins;
115
 
116
  if (first)
117
    {
118
      /* We don't try to veryfy profrate is the same for all histogram
119
         records.  If we have two histogram records for the same
120
         address range and profiling samples is done as often
121
         as possible as opposed on timer, then the actual profrate will
122
         be slightly different.  Most of the time the difference does not
123
         matter and insisting that profiling rate is exactly the same
124
         will only create inconvenient.  */
125
      hz = profrate;
126
      memcpy (hist_dimension, n_hist_dimension, 15);
127
      hist_dimension_abbrev = n_hist_dimension_abbrev;
128
      hist_scale = n_hist_scale;
129
    }
130
  else
131
    {
132
      if (strncmp (n_hist_dimension, hist_dimension, 15) != 0)
133
        {
134
          fprintf (stderr,
135
                   _("%s: dimension unit changed between histogram records\n"
136
                     "%s: from '%s'\n"
137
                     "%s: to '%s'\n"),
138
                   whoami, whoami, hist_dimension, whoami, n_hist_dimension);
139
          done (1);
140
        }
141
 
142
      if (n_hist_dimension_abbrev != hist_dimension_abbrev)
143
        {
144
          fprintf (stderr,
145
                   _("%s: dimension abbreviation changed between histogram records\n"
146
                     "%s: from '%c'\n"
147
                     "%s: to '%c'\n"),
148
                   whoami, whoami, hist_dimension_abbrev, whoami, n_hist_dimension_abbrev);
149
          done (1);
150
        }
151
 
152
      /* The only reason we require the same scale for histograms is that
153
         there's code (notably printing code), that prints units,
154
         and it would be very confusing to have one unit mean different
155
         things for different functions.  */
156
      if (fabs (hist_scale - n_hist_scale) > 0.000001)
157
        {
158
          fprintf (stderr,
159
                   _("%s: different scales in histogram records"),
160
                   whoami);
161
          done (1);
162
        }
163
    }
164
}
165
 
166
/* Read the histogram from file IFP.  FILENAME is the name of IFP and
167
   is provided for formatting error messages only.  */
168
 
169
void
170
hist_read_rec (FILE * ifp, const char *filename)
171
{
172
  bfd_vma lowpc, highpc;
173
  histogram n_record;
174
  histogram *record, *existing_record;
175
  unsigned i;
176
 
177
  /* 1. Read the header and see if there's existing record for the
178
     same address range and that there are no overlapping records.  */
179
  read_histogram_header (&n_record, ifp, filename, num_histograms == 0);
180
 
181
  existing_record = find_histogram (n_record.lowpc, n_record.highpc);
182
  if (existing_record)
183
    {
184
      record = existing_record;
185
    }
186
  else
187
    {
188
      /* If this record overlaps, but does not completely match an existing
189
         record, it's an error.  */
190
      lowpc = n_record.lowpc;
191
      highpc = n_record.highpc;
192
      hist_clip_symbol_address (&lowpc, &highpc);
193
      if (lowpc != highpc)
194
        {
195
          fprintf (stderr,
196
                   _("%s: overlapping histogram records\n"),
197
                   whoami);
198
          done (1);
199
        }
200
 
201
      /* This is new record.  Add it to global array and allocate space for
202
         the samples.  */
203
      histograms = (struct histogram *)
204
          xrealloc (histograms, sizeof (histogram) * (num_histograms + 1));
205
      memcpy (histograms + num_histograms,
206
              &n_record, sizeof (histogram));
207
      record = &histograms[num_histograms];
208
      ++num_histograms;
209
 
210
      record->sample = (int *) xmalloc (record->num_bins
211
                                        * sizeof (record->sample[0]));
212
      memset (record->sample, 0, record->num_bins * sizeof (record->sample[0]));
213
    }
214
 
215
  /* 2. We have either a new record (with zeroed histogram data), or an existing
216
     record with some data in the histogram already.  Read new data into the
217
     record, adding hit counts.  */
218
 
219
  DBG (SAMPLEDEBUG,
220
       printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %u\n",
221
               (unsigned long) record->lowpc, (unsigned long) record->highpc,
222
               record->num_bins));
223
 
224
  for (i = 0; i < record->num_bins; ++i)
225
    {
226
      UNIT count;
227
      if (fread (&count[0], sizeof (count), 1, ifp) != 1)
228
        {
229
          fprintf (stderr,
230
                  _("%s: %s: unexpected EOF after reading %u of %u samples\n"),
231
                   whoami, filename, i, record->num_bins);
232
          done (1);
233
        }
234
      record->sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
235
      DBG (SAMPLEDEBUG,
236
           printf ("[hist_read_rec] 0x%lx: %u\n",
237
                   (unsigned long) (record->lowpc
238
                                    + i * (record->highpc - record->lowpc)
239
                                    / record->num_bins),
240
                   record->sample[i]));
241
    }
242
}
243
 
244
 
245
/* Write all execution histograms file OFP.  FILENAME is the name
246
   of OFP and is provided for formatting error-messages only.  */
247
 
248
void
249
hist_write_hist (FILE * ofp, const char *filename)
250
{
251
  UNIT count;
252
  unsigned int i, r;
253
 
254
  for (r = 0; r < num_histograms; ++r)
255
    {
256
      histogram *record = &histograms[r];
257
 
258
      /* Write header.  */
259
 
260
      if (gmon_io_write_8 (ofp, GMON_TAG_TIME_HIST)
261
          || gmon_io_write_vma (ofp, record->lowpc)
262
          || gmon_io_write_vma (ofp, record->highpc)
263
          || gmon_io_write_32 (ofp, record->num_bins)
264
          || gmon_io_write_32 (ofp, hz)
265
          || gmon_io_write (ofp, hist_dimension, 15)
266
          || gmon_io_write (ofp, &hist_dimension_abbrev, 1))
267
        {
268
          perror (filename);
269
          done (1);
270
        }
271
 
272
      for (i = 0; i < record->num_bins; ++i)
273
        {
274
          bfd_put_16 (core_bfd, (bfd_vma) record->sample[i], (bfd_byte *) &count[0]);
275
 
276
          if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
277
            {
278
              perror (filename);
279
              done (1);
280
            }
281
        }
282
    }
283
}
284
 
285
/* Calculate scaled entry point addresses (to save time in
286
   hist_assign_samples), and, on architectures that have procedure
287
   entry masks at the start of a function, possibly push the scaled
288
   entry points over the procedure entry mask, if it turns out that
289
   the entry point is in one bin and the code for a routine is in the
290
   next bin.  */
291
 
292
static void
293
scale_and_align_entries ()
294
{
295
  Sym *sym;
296
  bfd_vma bin_of_entry;
297
  bfd_vma bin_of_code;
298
 
299
  for (sym = symtab.base; sym < symtab.limit; sym++)
300
    {
301
      histogram *r = find_histogram_for_pc (sym->addr);
302
 
303
      sym->hist.scaled_addr = sym->addr / sizeof (UNIT);
304
 
305
      if (r)
306
        {
307
          bin_of_entry = (sym->hist.scaled_addr - r->lowpc) / hist_scale;
308
          bin_of_code = ((sym->hist.scaled_addr + UNITS_TO_CODE - r->lowpc)
309
                     / hist_scale);
310
          if (bin_of_entry < bin_of_code)
311
            {
312
              DBG (SAMPLEDEBUG,
313
                   printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
314
                           (unsigned long) sym->hist.scaled_addr,
315
                           (unsigned long) (sym->hist.scaled_addr
316
                                            + UNITS_TO_CODE)));
317
              sym->hist.scaled_addr += UNITS_TO_CODE;
318
            }
319
        }
320
    }
321
}
322
 
323
 
324
/* Assign samples to the symbol to which they belong.
325
 
326
   Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
327
   which may overlap one more symbol address ranges.  If a symbol
328
   overlaps with the bin's address range by O percent, then O percent
329
   of the bin's count is credited to that symbol.
330
 
331
   There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
332
   with respect to the symbol's address range [SYM_LOW_PC,
333
   SYM_HIGH_PC) as shown in the following diagram.  OVERLAP computes
334
   the distance (in UNITs) between the arrows, the fraction of the
335
   sample that is to be credited to the symbol which starts at
336
   SYM_LOW_PC.
337
 
338
          sym_low_pc                                      sym_high_pc
339
               |                                               |
340
               v                                               v
341
 
342
               +-----------------------------------------------+
343
               |                                               |
344
          |  ->|    |<-         ->|         |<-         ->|    |<-  |
345
          |         |             |         |             |         |
346
          +---------+             +---------+             +---------+
347
 
348
          ^         ^             ^         ^             ^         ^
349
          |         |             |         |             |         |
350
     bin_low_pc bin_high_pc  bin_low_pc bin_high_pc  bin_low_pc bin_high_pc
351
 
352
   For the VAX we assert that samples will never fall in the first two
353
   bytes of any routine, since that is the entry mask, thus we call
354
   scale_and_align_entries() to adjust the entry points if the entry
355
   mask falls in one bin but the code for the routine doesn't start
356
   until the next bin.  In conjunction with the alignment of routine
357
   addresses, this should allow us to have only one sample for every
358
   four bytes of text space and never have any overlap (the two end
359
   cases, above).  */
360
 
361
static void
362
hist_assign_samples_1 (histogram *r)
363
{
364
  bfd_vma bin_low_pc, bin_high_pc;
365
  bfd_vma sym_low_pc, sym_high_pc;
366
  bfd_vma overlap, addr;
367
  unsigned int bin_count;
368
  unsigned int i, j;
369
  double count_time, credit;
370
 
371
  bfd_vma lowpc = r->lowpc / sizeof (UNIT);
372
 
373
  /* Iterate over all sample bins.  */
374
  for (i = 0, j = 1; i < r->num_bins; ++i)
375
    {
376
      bin_count = r->sample[i];
377
      if (! bin_count)
378
        continue;
379
 
380
      bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
381
      bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
382
      count_time = bin_count;
383
 
384
      DBG (SAMPLEDEBUG,
385
           printf (
386
      "[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%u\n",
387
                    (unsigned long) (sizeof (UNIT) * bin_low_pc),
388
                    (unsigned long) (sizeof (UNIT) * bin_high_pc),
389
                    bin_count));
390
      total_time += count_time;
391
 
392
      /* Credit all symbols that are covered by bin I.  */
393
      for (j = j - 1; j < symtab.len; ++j)
394
        {
395
          sym_low_pc = symtab.base[j].hist.scaled_addr;
396
          sym_high_pc = symtab.base[j + 1].hist.scaled_addr;
397
 
398
          /* If high end of bin is below entry address,
399
             go for next bin.  */
400
          if (bin_high_pc < sym_low_pc)
401
            break;
402
 
403
          /* If low end of bin is above high end of symbol,
404
             go for next symbol.  */
405
          if (bin_low_pc >= sym_high_pc)
406
            continue;
407
 
408
          overlap =
409
            MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
410
          if (overlap > 0)
411
            {
412
              DBG (SAMPLEDEBUG,
413
                   printf (
414
               "[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
415
                           (unsigned long) symtab.base[j].addr,
416
                           (unsigned long) (sizeof (UNIT) * sym_high_pc),
417
                           symtab.base[j].name, overlap * count_time / hist_scale,
418
                           (long) overlap));
419
 
420
              addr = symtab.base[j].addr;
421
              credit = overlap * count_time / hist_scale;
422
 
423
              /* Credit symbol if it appears in INCL_FLAT or that
424
                 table is empty and it does not appear it in
425
                 EXCL_FLAT.  */
426
              if (sym_lookup (&syms[INCL_FLAT], addr)
427
                  || (syms[INCL_FLAT].len == 0
428
                      && !sym_lookup (&syms[EXCL_FLAT], addr)))
429
                {
430
                  symtab.base[j].hist.time += credit;
431
                }
432
              else
433
                {
434
                  total_time -= credit;
435
                }
436
            }
437
        }
438
    }
439
 
440
  DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
441
                            total_time));
442
}
443
 
444
/* Calls 'hist_assign_sampes_1' for all histogram records read so far. */
445
void
446
hist_assign_samples ()
447
{
448
  unsigned i;
449
 
450
  scale_and_align_entries ();
451
 
452
  for (i = 0; i < num_histograms; ++i)
453
    hist_assign_samples_1 (&histograms[i]);
454
 
455
}
456
 
457
/* Print header for flag histogram profile.  */
458
 
459
static void
460
print_header (int prefix)
461
{
462
  char unit[64];
463
 
464
  sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev);
465
 
466
  if (bsd_style_output)
467
    {
468
      printf (_("\ngranularity: each sample hit covers %ld byte(s)"),
469
              (long) hist_scale * (long) sizeof (UNIT));
470
      if (total_time > 0.0)
471
        {
472
          printf (_(" for %.2f%% of %.2f %s\n\n"),
473
                  100.0 / total_time, total_time / hz, hist_dimension);
474
        }
475
    }
476
  else
477
    {
478
      printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension);
479
    }
480
 
481
  if (total_time <= 0.0)
482
    {
483
      printf (_(" no time accumulated\n\n"));
484
 
485
      /* This doesn't hurt since all the numerators will be zero.  */
486
      total_time = 1.0;
487
    }
488
 
489
  printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s  %-8.8s\n",
490
          "%  ", _("cumulative"), _("self  "), "", _("self  "), _("total "),
491
          "");
492
  printf ("%5.5s %9.9s  %8.8s %8.8s %8.8s %8.8s  %-8.8s\n",
493
          _("time"), hist_dimension, hist_dimension, _("calls"), unit, unit,
494
          _("name"));
495
}
496
 
497
 
498
static void
499
print_line (Sym *sym, double scale)
500
{
501
  if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
502
    return;
503
 
504
  accum_time += sym->hist.time;
505
 
506
  if (bsd_style_output)
507
    printf ("%5.1f %10.2f %8.2f",
508
            total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
509
            accum_time / hz, sym->hist.time / hz);
510
  else
511
    printf ("%6.2f %9.2f %8.2f",
512
            total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
513
            accum_time / hz, sym->hist.time / hz);
514
 
515
  if (sym->ncalls != 0)
516
    printf (" %8lu %8.2f %8.2f  ",
517
            sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
518
            scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
519
  else
520
    printf (" %8.8s %8.8s %8.8s  ", "", "", "");
521
 
522
  if (bsd_style_output)
523
    print_name (sym);
524
  else
525
    print_name_only (sym);
526
 
527
  printf ("\n");
528
}
529
 
530
 
531
/* Compare LP and RP.  The primary comparison key is execution time,
532
   the secondary is number of invocation, and the tertiary is the
533
   lexicographic order of the function names.  */
534
 
535
static int
536
cmp_time (const PTR lp, const PTR rp)
537
{
538
  const Sym *left = *(const Sym **) lp;
539
  const Sym *right = *(const Sym **) rp;
540
  double time_diff;
541
 
542
  time_diff = right->hist.time - left->hist.time;
543
 
544
  if (time_diff > 0.0)
545
    return 1;
546
 
547
  if (time_diff < 0.0)
548
    return -1;
549
 
550
  if (right->ncalls > left->ncalls)
551
    return 1;
552
 
553
  if (right->ncalls < left->ncalls)
554
    return -1;
555
 
556
  return strcmp (left->name, right->name);
557
}
558
 
559
 
560
/* Print the flat histogram profile.  */
561
 
562
void
563
hist_print ()
564
{
565
  Sym **time_sorted_syms, *top_dog, *sym;
566
  unsigned int sym_index;
567
  unsigned log_scale;
568
  double top_time;
569
  bfd_vma addr;
570
 
571
  if (first_output)
572
    first_output = FALSE;
573
  else
574
    printf ("\f\n");
575
 
576
  accum_time = 0.0;
577
 
578
  if (bsd_style_output)
579
    {
580
      if (print_descriptions)
581
        {
582
          printf (_("\n\n\nflat profile:\n"));
583
          flat_blurb (stdout);
584
        }
585
    }
586
  else
587
    {
588
      printf (_("Flat profile:\n"));
589
    }
590
 
591
  /* Sort the symbol table by time (call-count and name as secondary
592
     and tertiary keys).  */
593
  time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
594
 
595
  for (sym_index = 0; sym_index < symtab.len; ++sym_index)
596
    time_sorted_syms[sym_index] = &symtab.base[sym_index];
597
 
598
  qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);
599
 
600
  if (bsd_style_output)
601
    {
602
      log_scale = 5;            /* Milli-seconds is BSD-default.  */
603
    }
604
  else
605
    {
606
      /* Search for symbol with highest per-call
607
         execution time and scale accordingly.  */
608
      log_scale = 0;
609
      top_dog = 0;
610
      top_time = 0.0;
611
 
612
      for (sym_index = 0; sym_index < symtab.len; ++sym_index)
613
        {
614
          sym = time_sorted_syms[sym_index];
615
 
616
          if (sym->ncalls != 0)
617
            {
618
              double call_time;
619
 
620
              call_time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;
621
 
622
              if (call_time > top_time)
623
                {
624
                  top_dog = sym;
625
                  top_time = call_time;
626
                }
627
            }
628
        }
629
 
630
      if (top_dog && top_dog->ncalls != 0 && top_time > 0.0)
631
        {
632
          top_time /= hz;
633
 
634
          for (log_scale = 0; log_scale < ARRAY_SIZE (SItab); log_scale ++)
635
            {
636
              double scaled_value = SItab[log_scale].scale * top_time;
637
 
638
              if (scaled_value >= 1.0 && scaled_value < 1000.0)
639
                break;
640
            }
641
        }
642
    }
643
 
644
  /* For now, the dimension is always seconds.  In the future, we
645
     may also want to support other (pseudo-)dimensions (such as
646
     I-cache misses etc.).  */
647
  print_header (SItab[log_scale].prefix);
648
 
649
  for (sym_index = 0; sym_index < symtab.len; ++sym_index)
650
    {
651
      addr = time_sorted_syms[sym_index]->addr;
652
 
653
      /* Print symbol if its in INCL_FLAT table or that table
654
        is empty and the symbol is not in EXCL_FLAT.  */
655
      if (sym_lookup (&syms[INCL_FLAT], addr)
656
          || (syms[INCL_FLAT].len == 0
657
              && !sym_lookup (&syms[EXCL_FLAT], addr)))
658
        print_line (time_sorted_syms[sym_index], SItab[log_scale].scale);
659
    }
660
 
661
  free (time_sorted_syms);
662
 
663
  if (print_descriptions && !bsd_style_output)
664
    flat_blurb (stdout);
665
}
666
 
667
int
668
hist_check_address (unsigned address)
669
{
670
  unsigned i;
671
 
672
  for (i = 0; i < num_histograms; ++i)
673
    if (histograms[i].lowpc <= address && address < histograms[i].highpc)
674
      return 1;
675
 
676
  return 0;
677
}
678
 
679
#if ! defined(min)
680
#define min(a,b) (((a)<(b)) ? (a) : (b))
681
#endif
682
#if ! defined(max)
683
#define max(a,b) (((a)>(b)) ? (a) : (b))
684
#endif
685
 
686
void
687
hist_clip_symbol_address (bfd_vma *p_lowpc, bfd_vma *p_highpc)
688
{
689
  unsigned i;
690
  int found = 0;
691
 
692
  if (num_histograms == 0)
693
    {
694
      *p_highpc = *p_lowpc;
695
      return;
696
    }
697
 
698
  for (i = 0; i < num_histograms; ++i)
699
    {
700
      bfd_vma common_low, common_high;
701
      common_low = max (histograms[i].lowpc, *p_lowpc);
702
      common_high = min (histograms[i].highpc, *p_highpc);
703
 
704
      if (common_low < common_high)
705
        {
706
          if (found)
707
            {
708
              fprintf (stderr,
709
                       _("%s: found a symbol that covers "
710
                         "several histogram records"),
711
                         whoami);
712
              done (1);
713
            }
714
 
715
          found = 1;
716
          *p_lowpc = common_low;
717
          *p_highpc = common_high;
718
        }
719
    }
720
 
721
  if (!found)
722
    *p_highpc = *p_lowpc;
723
}
724
 
725
/* Find and return exising histogram record having the same lowpc and
726
   highpc as passed via the parameters.  Return NULL if nothing is found.
727
   The return value is valid until any new histogram is read.  */
728
static histogram *
729
find_histogram (bfd_vma lowpc, bfd_vma highpc)
730
{
731
  unsigned i;
732
  for (i = 0; i < num_histograms; ++i)
733
    {
734
      if (histograms[i].lowpc == lowpc && histograms[i].highpc == highpc)
735
        return &histograms[i];
736
    }
737
  return 0;
738
}
739
 
740
/* Given a PC, return histogram record which address range include this PC.
741
   Return NULL if there's no such record.  */
742
static histogram *
743
find_histogram_for_pc (bfd_vma pc)
744
{
745
  unsigned i;
746
  for (i = 0; i < num_histograms; ++i)
747
    {
748
      if (histograms[i].lowpc <= pc && pc < histograms[i].highpc)
749
        return &histograms[i];
750
    }
751
  return 0;
752
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.