| 1 |
17 |
khays |
/* `a.out' object-file definitions, including extensions to 64-bit fields
|
| 2 |
|
|
|
| 3 |
|
|
Copyright 1999, 2000, 2001, 2003, 2009, 2010 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 6 |
|
|
it under the terms of the GNU General Public License as published by
|
| 7 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 8 |
|
|
(at your option) any later version.
|
| 9 |
|
|
|
| 10 |
|
|
This program is distributed in the hope that it will be useful,
|
| 11 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
|
|
GNU General Public License for more details.
|
| 14 |
|
|
|
| 15 |
|
|
You should have received a copy of the GNU General Public License
|
| 16 |
|
|
along with this program; if not, write to the Free Software
|
| 17 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
| 18 |
|
|
MA 02110-1301, USA. */
|
| 19 |
|
|
|
| 20 |
|
|
#ifndef __A_OUT_64_H__
|
| 21 |
|
|
#define __A_OUT_64_H__
|
| 22 |
|
|
|
| 23 |
|
|
#ifndef BYTES_IN_WORD
|
| 24 |
|
|
#define BYTES_IN_WORD 4
|
| 25 |
|
|
#endif
|
| 26 |
|
|
|
| 27 |
|
|
/* This is the layout on disk of the 32-bit or 64-bit exec header. */
|
| 28 |
|
|
|
| 29 |
|
|
#ifndef external_exec
|
| 30 |
|
|
struct external_exec
|
| 31 |
|
|
{
|
| 32 |
|
|
bfd_byte e_info[4]; /* Magic number and stuff. */
|
| 33 |
|
|
bfd_byte e_text[BYTES_IN_WORD]; /* Length of text section in bytes. */
|
| 34 |
|
|
bfd_byte e_data[BYTES_IN_WORD]; /* Length of data section in bytes. */
|
| 35 |
|
|
bfd_byte e_bss[BYTES_IN_WORD]; /* Length of bss area in bytes. */
|
| 36 |
|
|
bfd_byte e_syms[BYTES_IN_WORD]; /* Length of symbol table in bytes. */
|
| 37 |
|
|
bfd_byte e_entry[BYTES_IN_WORD]; /* Start address. */
|
| 38 |
|
|
bfd_byte e_trsize[BYTES_IN_WORD]; /* Length of text relocation info. */
|
| 39 |
|
|
bfd_byte e_drsize[BYTES_IN_WORD]; /* Length of data relocation info. */
|
| 40 |
|
|
};
|
| 41 |
|
|
|
| 42 |
|
|
#define EXEC_BYTES_SIZE (4 + BYTES_IN_WORD * 7)
|
| 43 |
|
|
|
| 44 |
|
|
/* Magic numbers for a.out files. */
|
| 45 |
|
|
|
| 46 |
|
|
#if ARCH_SIZE==64
|
| 47 |
|
|
#define OMAGIC 0x1001 /* Code indicating object file. */
|
| 48 |
|
|
#define ZMAGIC 0x1002 /* Code indicating demand-paged executable. */
|
| 49 |
|
|
#define NMAGIC 0x1003 /* Code indicating pure executable. */
|
| 50 |
|
|
|
| 51 |
|
|
/* There is no 64-bit QMAGIC as far as I know. */
|
| 52 |
|
|
|
| 53 |
|
|
#define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
|
| 54 |
|
|
&& N_MAGIC(x) != NMAGIC \
|
| 55 |
|
|
&& N_MAGIC(x) != ZMAGIC)
|
| 56 |
|
|
#else
|
| 57 |
|
|
#define OMAGIC 0407 /* Object file or impure executable. */
|
| 58 |
|
|
#define NMAGIC 0410 /* Code indicating pure executable. */
|
| 59 |
|
|
#define ZMAGIC 0413 /* Code indicating demand-paged executable. */
|
| 60 |
|
|
#define BMAGIC 0415 /* Used by a b.out object. */
|
| 61 |
|
|
|
| 62 |
|
|
/* This indicates a demand-paged executable with the header in the text.
|
| 63 |
|
|
It is used by 386BSD (and variants) and Linux, at least. */
|
| 64 |
|
|
#ifndef QMAGIC
|
| 65 |
|
|
#define QMAGIC 0314
|
| 66 |
|
|
#endif
|
| 67 |
|
|
# ifndef N_BADMAG
|
| 68 |
|
|
# define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
|
| 69 |
|
|
&& N_MAGIC(x) != NMAGIC \
|
| 70 |
|
|
&& N_MAGIC(x) != ZMAGIC \
|
| 71 |
|
|
&& N_MAGIC(x) != QMAGIC)
|
| 72 |
|
|
# endif /* N_BADMAG */
|
| 73 |
|
|
#endif
|
| 74 |
|
|
|
| 75 |
|
|
#endif
|
| 76 |
|
|
|
| 77 |
|
|
#ifdef QMAGIC
|
| 78 |
|
|
#define N_IS_QMAGIC(x) (N_MAGIC (x) == QMAGIC)
|
| 79 |
|
|
#else
|
| 80 |
|
|
#define N_IS_QMAGIC(x) (0)
|
| 81 |
|
|
#endif
|
| 82 |
|
|
|
| 83 |
|
|
/* The difference between TARGET_PAGE_SIZE and N_SEGSIZE is that TARGET_PAGE_SIZE is
|
| 84 |
|
|
the finest granularity at which you can page something, thus it
|
| 85 |
|
|
controls the padding (if any) before the text segment of a ZMAGIC
|
| 86 |
|
|
file. N_SEGSIZE is the resolution at which things can be marked as
|
| 87 |
|
|
read-only versus read/write, so it controls the padding between the
|
| 88 |
|
|
text segment and the data segment (in memory; on disk the padding
|
| 89 |
|
|
between them is TARGET_PAGE_SIZE). TARGET_PAGE_SIZE and N_SEGSIZE are the same
|
| 90 |
|
|
for most machines, but different for sun3. */
|
| 91 |
|
|
|
| 92 |
|
|
/* By default, segment size is constant. But some machines override this
|
| 93 |
|
|
to be a function of the a.out header (e.g. machine type). */
|
| 94 |
|
|
|
| 95 |
|
|
#ifndef N_SEGSIZE
|
| 96 |
|
|
#define N_SEGSIZE(x) SEGMENT_SIZE
|
| 97 |
|
|
#endif
|
| 98 |
|
|
|
| 99 |
|
|
/* Virtual memory address of the text section.
|
| 100 |
|
|
This is getting very complicated. A good reason to discard a.out format
|
| 101 |
|
|
for something that specifies these fields explicitly. But til then...
|
| 102 |
|
|
|
| 103 |
|
|
* OMAGIC and NMAGIC files:
|
| 104 |
|
|
(object files: text for "relocatable addr 0" right after the header)
|
| 105 |
|
|
start at 0, offset is EXEC_BYTES_SIZE, size as stated.
|
| 106 |
|
|
* The text address, offset, and size of ZMAGIC files depend
|
| 107 |
|
|
on the entry point of the file:
|
| 108 |
|
|
* entry point below TEXT_START_ADDR:
|
| 109 |
|
|
(hack for SunOS shared libraries)
|
| 110 |
|
|
start at 0, offset is 0, size as stated.
|
| 111 |
|
|
* If N_HEADER_IN_TEXT(x) is true (which defaults to being the
|
| 112 |
|
|
case when the entry point is EXEC_BYTES_SIZE or further into a page):
|
| 113 |
|
|
no padding is needed; text can start after exec header. Sun
|
| 114 |
|
|
considers the text segment of such files to include the exec header;
|
| 115 |
|
|
for BFD's purposes, we don't, which makes more work for us.
|
| 116 |
|
|
start at TEXT_START_ADDR + EXEC_BYTES_SIZE, offset is EXEC_BYTES_SIZE,
|
| 117 |
|
|
size as stated minus EXEC_BYTES_SIZE.
|
| 118 |
|
|
* If N_HEADER_IN_TEXT(x) is false (which defaults to being the case when
|
| 119 |
|
|
the entry point is less than EXEC_BYTES_SIZE into a page (e.g. page
|
| 120 |
|
|
aligned)): (padding is needed so that text can start at a page boundary)
|
| 121 |
|
|
start at TEXT_START_ADDR, offset TARGET_PAGE_SIZE, size as stated.
|
| 122 |
|
|
|
| 123 |
|
|
Specific configurations may want to hardwire N_HEADER_IN_TEXT,
|
| 124 |
|
|
for efficiency or to allow people to play games with the entry point.
|
| 125 |
|
|
In that case, you would #define N_HEADER_IN_TEXT(x) as 1 for sunos,
|
| 126 |
|
|
and as 0 for most other hosts (Sony News, Vax Ultrix, etc).
|
| 127 |
|
|
(Do this in the appropriate bfd target file.)
|
| 128 |
|
|
(The default is a heuristic that will break if people try changing
|
| 129 |
|
|
the entry point, perhaps with the ld -e flag.)
|
| 130 |
|
|
|
| 131 |
|
|
* QMAGIC is always like a ZMAGIC for which N_HEADER_IN_TEXT is true,
|
| 132 |
|
|
and for which the starting address is TARGET_PAGE_SIZE (or should this be
|
| 133 |
|
|
SEGMENT_SIZE?) (TEXT_START_ADDR only applies to ZMAGIC, not to QMAGIC). */
|
| 134 |
|
|
|
| 135 |
|
|
/* This macro is only relevant for ZMAGIC files; QMAGIC always has the header
|
| 136 |
|
|
in the text. */
|
| 137 |
|
|
#ifndef N_HEADER_IN_TEXT
|
| 138 |
|
|
#define N_HEADER_IN_TEXT(x) \
|
| 139 |
|
|
(((x).a_entry & (TARGET_PAGE_SIZE-1)) >= EXEC_BYTES_SIZE)
|
| 140 |
|
|
#endif
|
| 141 |
|
|
|
| 142 |
|
|
/* Sun shared libraries, not linux. This macro is only relevant for ZMAGIC
|
| 143 |
|
|
files. */
|
| 144 |
|
|
#ifndef N_SHARED_LIB
|
| 145 |
|
|
#define N_SHARED_LIB(x) (0)
|
| 146 |
|
|
#endif
|
| 147 |
|
|
|
| 148 |
|
|
/* Returning 0 not TEXT_START_ADDR for OMAGIC and NMAGIC is based on
|
| 149 |
|
|
the assumption that we are dealing with a .o file, not an
|
| 150 |
|
|
executable. This is necessary for OMAGIC (but means we don't work
|
| 151 |
|
|
right on the output from ld -N); more questionable for NMAGIC. */
|
| 152 |
|
|
|
| 153 |
|
|
#ifndef N_TXTADDR
|
| 154 |
|
|
#define N_TXTADDR(x) \
|
| 155 |
|
|
(/* The address of a QMAGIC file is always one page in, \
|
| 156 |
|
|
with the header in the text. */ \
|
| 157 |
|
|
N_IS_QMAGIC (x) \
|
| 158 |
|
|
? (bfd_vma) TARGET_PAGE_SIZE + EXEC_BYTES_SIZE \
|
| 159 |
|
|
: (N_MAGIC (x) != ZMAGIC \
|
| 160 |
|
|
? (bfd_vma) 0 /* Object file or NMAGIC. */ \
|
| 161 |
|
|
: (N_SHARED_LIB (x) \
|
| 162 |
|
|
? (bfd_vma) 0 \
|
| 163 |
|
|
: (N_HEADER_IN_TEXT (x) \
|
| 164 |
|
|
? (bfd_vma) TEXT_START_ADDR + EXEC_BYTES_SIZE \
|
| 165 |
|
|
: (bfd_vma) TEXT_START_ADDR))))
|
| 166 |
|
|
#endif
|
| 167 |
|
|
|
| 168 |
|
|
/* If N_HEADER_IN_TEXT is not true for ZMAGIC, there is some padding
|
| 169 |
|
|
to make the text segment start at a certain boundary. For most
|
| 170 |
|
|
systems, this boundary is TARGET_PAGE_SIZE. But for Linux, in the
|
| 171 |
|
|
time-honored tradition of crazy ZMAGIC hacks, it is 1024 which is
|
| 172 |
|
|
not what TARGET_PAGE_SIZE needs to be for QMAGIC. */
|
| 173 |
|
|
|
| 174 |
|
|
#ifndef ZMAGIC_DISK_BLOCK_SIZE
|
| 175 |
|
|
#define ZMAGIC_DISK_BLOCK_SIZE TARGET_PAGE_SIZE
|
| 176 |
|
|
#endif
|
| 177 |
|
|
|
| 178 |
|
|
#define N_DISK_BLOCK_SIZE(x) \
|
| 179 |
|
|
(N_MAGIC(x) == ZMAGIC ? ZMAGIC_DISK_BLOCK_SIZE : TARGET_PAGE_SIZE)
|
| 180 |
|
|
|
| 181 |
|
|
/* Offset in an a.out of the start of the text section. */
|
| 182 |
|
|
#ifndef N_TXTOFF
|
| 183 |
|
|
#define N_TXTOFF(x) \
|
| 184 |
|
|
(/* For {O,N,Q}MAGIC, no padding. */ \
|
| 185 |
|
|
N_MAGIC (x) != ZMAGIC \
|
| 186 |
|
|
? EXEC_BYTES_SIZE \
|
| 187 |
|
|
: (N_SHARED_LIB (x) \
|
| 188 |
|
|
? 0 \
|
| 189 |
|
|
: (N_HEADER_IN_TEXT (x) \
|
| 190 |
|
|
? EXEC_BYTES_SIZE /* No padding. */ \
|
| 191 |
|
|
: ZMAGIC_DISK_BLOCK_SIZE /* A page of padding. */)))
|
| 192 |
|
|
#endif
|
| 193 |
|
|
/* Size of the text section. It's always as stated, except that we
|
| 194 |
|
|
offset it to `undo' the adjustment to N_TXTADDR and N_TXTOFF
|
| 195 |
|
|
for ZMAGIC files that nominally include the exec header
|
| 196 |
|
|
as part of the first page of text. (BFD doesn't consider the
|
| 197 |
|
|
exec header to be part of the text segment.) */
|
| 198 |
|
|
#ifndef N_TXTSIZE
|
| 199 |
|
|
#define N_TXTSIZE(x) \
|
| 200 |
|
|
(/* For QMAGIC, we don't consider the header part of the text section. */\
|
| 201 |
|
|
N_IS_QMAGIC (x) \
|
| 202 |
|
|
? (x).a_text - EXEC_BYTES_SIZE \
|
| 203 |
|
|
: ((N_MAGIC (x) != ZMAGIC || N_SHARED_LIB (x)) \
|
| 204 |
|
|
? (x).a_text \
|
| 205 |
|
|
: (N_HEADER_IN_TEXT (x) \
|
| 206 |
|
|
? (x).a_text - EXEC_BYTES_SIZE /* No padding. */ \
|
| 207 |
|
|
: (x).a_text /* A page of padding. */ )))
|
| 208 |
|
|
#endif
|
| 209 |
|
|
/* The address of the data segment in virtual memory.
|
| 210 |
|
|
It is the text segment address, plus text segment size, rounded
|
| 211 |
|
|
up to a N_SEGSIZE boundary for pure or pageable files. */
|
| 212 |
|
|
#ifndef N_DATADDR
|
| 213 |
|
|
#define N_DATADDR(x) \
|
| 214 |
|
|
(N_MAGIC (x) == OMAGIC \
|
| 215 |
|
|
? (N_TXTADDR (x) + N_TXTSIZE (x)) \
|
| 216 |
|
|
: (N_SEGSIZE (x) + ((N_TXTADDR (x) + N_TXTSIZE (x) - 1) \
|
| 217 |
|
|
& ~ (bfd_vma) (N_SEGSIZE (x) - 1))))
|
| 218 |
|
|
#endif
|
| 219 |
|
|
/* The address of the BSS segment -- immediately after the data segment. */
|
| 220 |
|
|
|
| 221 |
|
|
#define N_BSSADDR(x) (N_DATADDR (x) + (x).a_data)
|
| 222 |
|
|
|
| 223 |
|
|
/* Offsets of the various portions of the file after the text segment. */
|
| 224 |
|
|
|
| 225 |
|
|
/* For {Q,Z}MAGIC, there is padding to make the data segment start on
|
| 226 |
|
|
a page boundary. Most of the time the a_text field (and thus
|
| 227 |
|
|
N_TXTSIZE) already contains this padding. It is possible that for
|
| 228 |
|
|
BSDI and/or 386BSD it sometimes doesn't contain the padding, and
|
| 229 |
|
|
perhaps we should be adding it here. But this seems kind of
|
| 230 |
|
|
questionable and probably should be BSDI/386BSD-specific if we do
|
| 231 |
|
|
do it.
|
| 232 |
|
|
|
| 233 |
|
|
For NMAGIC (at least for hp300 BSD, probably others), there is
|
| 234 |
|
|
padding in memory only, not on disk, so we must *not* ever pad here
|
| 235 |
|
|
for NMAGIC. */
|
| 236 |
|
|
|
| 237 |
|
|
#ifndef N_DATOFF
|
| 238 |
|
|
#define N_DATOFF(x) (N_TXTOFF (x) + N_TXTSIZE (x))
|
| 239 |
|
|
#endif
|
| 240 |
|
|
#ifndef N_TRELOFF
|
| 241 |
|
|
#define N_TRELOFF(x) (N_DATOFF (x) + (x).a_data)
|
| 242 |
|
|
#endif
|
| 243 |
|
|
#ifndef N_DRELOFF
|
| 244 |
|
|
#define N_DRELOFF(x) (N_TRELOFF (x) + (x).a_trsize)
|
| 245 |
|
|
#endif
|
| 246 |
|
|
#ifndef N_SYMOFF
|
| 247 |
|
|
#define N_SYMOFF(x) (N_DRELOFF (x) + (x).a_drsize)
|
| 248 |
|
|
#endif
|
| 249 |
|
|
#ifndef N_STROFF
|
| 250 |
|
|
#define N_STROFF(x) (N_SYMOFF (x) + (x).a_syms)
|
| 251 |
|
|
#endif
|
| 252 |
|
|
|
| 253 |
|
|
/* Symbols */
|
| 254 |
|
|
#ifndef external_nlist
|
| 255 |
|
|
struct external_nlist
|
| 256 |
|
|
{
|
| 257 |
|
|
bfd_byte e_strx[BYTES_IN_WORD]; /* Index into string table of name. */
|
| 258 |
|
|
bfd_byte e_type[1]; /* Type of symbol. */
|
| 259 |
|
|
bfd_byte e_other[1]; /* Misc info (usually empty). */
|
| 260 |
|
|
bfd_byte e_desc[2]; /* Description field. */
|
| 261 |
|
|
bfd_byte e_value[BYTES_IN_WORD]; /* Value of symbol. */
|
| 262 |
|
|
};
|
| 263 |
|
|
#define EXTERNAL_NLIST_SIZE (BYTES_IN_WORD+4+BYTES_IN_WORD)
|
| 264 |
|
|
#endif
|
| 265 |
|
|
|
| 266 |
|
|
struct internal_nlist
|
| 267 |
|
|
{
|
| 268 |
|
|
unsigned long n_strx; /* Index into string table of name. */
|
| 269 |
|
|
unsigned char n_type; /* Type of symbol. */
|
| 270 |
|
|
unsigned char n_other; /* Misc info (usually empty). */
|
| 271 |
|
|
unsigned short n_desc; /* Description field. */
|
| 272 |
|
|
bfd_vma n_value; /* Value of symbol. */
|
| 273 |
|
|
};
|
| 274 |
|
|
|
| 275 |
|
|
/* The n_type field is the symbol type, containing: */
|
| 276 |
|
|
|
| 277 |
|
|
#define N_UNDF 0 /* Undefined symbol. */
|
| 278 |
|
|
#define N_ABS 2 /* Absolute symbol -- defined at particular addr. */
|
| 279 |
|
|
#define N_TEXT 4 /* Text sym -- defined at offset in text seg. */
|
| 280 |
|
|
#define N_DATA 6 /* Data sym -- defined at offset in data seg. */
|
| 281 |
|
|
#define N_BSS 8 /* BSS sym -- defined at offset in zero'd seg. */
|
| 282 |
|
|
#define N_COMM 0x12 /* Common symbol (visible after shared lib dynlink). */
|
| 283 |
|
|
#define N_FN 0x1f /* File name of .o file. */
|
| 284 |
|
|
#define N_FN_SEQ 0x0C /* N_FN from Sequent compilers (sigh). */
|
| 285 |
|
|
/* Note: N_EXT can only be usefully OR-ed with N_UNDF, N_ABS, N_TEXT,
|
| 286 |
|
|
N_DATA, or N_BSS. When the low-order bit of other types is set,
|
| 287 |
|
|
(e.g. N_WARNING versus N_FN), they are two different types. */
|
| 288 |
|
|
#define N_EXT 1 /* External symbol (as opposed to local-to-this-file). */
|
| 289 |
|
|
#define N_TYPE 0x1e
|
| 290 |
|
|
#define N_STAB 0xe0 /* If any of these bits are on, it's a debug symbol. */
|
| 291 |
|
|
|
| 292 |
|
|
#define N_INDR 0x0a
|
| 293 |
|
|
|
| 294 |
|
|
/* The following symbols refer to set elements.
|
| 295 |
|
|
All the N_SET[ATDB] symbols with the same name form one set.
|
| 296 |
|
|
Space is allocated for the set in the text section, and each set
|
| 297 |
|
|
elements value is stored into one word of the space.
|
| 298 |
|
|
The first word of the space is the length of the set (number of elements).
|
| 299 |
|
|
|
| 300 |
|
|
The address of the set is made into an N_SETV symbol
|
| 301 |
|
|
whose name is the same as the name of the set.
|
| 302 |
|
|
This symbol acts like a N_DATA global symbol
|
| 303 |
|
|
in that it can satisfy undefined external references. */
|
| 304 |
|
|
|
| 305 |
|
|
/* These appear as input to LD, in a .o file. */
|
| 306 |
|
|
#define N_SETA 0x14 /* Absolute set element symbol. */
|
| 307 |
|
|
#define N_SETT 0x16 /* Text set element symbol. */
|
| 308 |
|
|
#define N_SETD 0x18 /* Data set element symbol. */
|
| 309 |
|
|
#define N_SETB 0x1A /* Bss set element symbol. */
|
| 310 |
|
|
|
| 311 |
|
|
/* This is output from LD. */
|
| 312 |
|
|
#define N_SETV 0x1C /* Pointer to set vector in data area. */
|
| 313 |
|
|
|
| 314 |
|
|
/* Warning symbol. The text gives a warning message, the next symbol
|
| 315 |
|
|
in the table will be undefined. When the symbol is referenced, the
|
| 316 |
|
|
message is printed. */
|
| 317 |
|
|
|
| 318 |
|
|
#define N_WARNING 0x1e
|
| 319 |
|
|
|
| 320 |
|
|
/* Weak symbols. These are a GNU extension to the a.out format. The
|
| 321 |
|
|
semantics are those of ELF weak symbols. Weak symbols are always
|
| 322 |
|
|
externally visible. The N_WEAK? values are squeezed into the
|
| 323 |
|
|
available slots. The value of a N_WEAKU symbol is 0. The values
|
| 324 |
|
|
of the other types are the definitions. */
|
| 325 |
|
|
#define N_WEAKU 0x0d /* Weak undefined symbol. */
|
| 326 |
|
|
#define N_WEAKA 0x0e /* Weak absolute symbol. */
|
| 327 |
|
|
#define N_WEAKT 0x0f /* Weak text symbol. */
|
| 328 |
|
|
#define N_WEAKD 0x10 /* Weak data symbol. */
|
| 329 |
|
|
#define N_WEAKB 0x11 /* Weak bss symbol. */
|
| 330 |
|
|
|
| 331 |
|
|
/* Relocations
|
| 332 |
|
|
|
| 333 |
|
|
There are two types of relocation flavours for a.out systems,
|
| 334 |
|
|
standard and extended. The standard form is used on systems where the
|
| 335 |
|
|
instruction has room for all the bits of an offset to the operand, whilst
|
| 336 |
|
|
the extended form is used when an address operand has to be split over n
|
| 337 |
|
|
instructions. Eg, on the 68k, each move instruction can reference
|
| 338 |
|
|
the target with a displacement of 16 or 32 bits. On the sparc, move
|
| 339 |
|
|
instructions use an offset of 14 bits, so the offset is stored in
|
| 340 |
|
|
the reloc field, and the data in the section is ignored. */
|
| 341 |
|
|
|
| 342 |
|
|
/* This structure describes a single relocation to be performed.
|
| 343 |
|
|
The text-relocation section of the file is a vector of these structures,
|
| 344 |
|
|
all of which apply to the text section.
|
| 345 |
|
|
Likewise, the data-relocation section applies to the data section. */
|
| 346 |
|
|
|
| 347 |
|
|
struct reloc_std_external
|
| 348 |
|
|
{
|
| 349 |
|
|
bfd_byte r_address[BYTES_IN_WORD]; /* Offset of of data to relocate. */
|
| 350 |
|
|
bfd_byte r_index[3]; /* Symbol table index of symbol. */
|
| 351 |
|
|
bfd_byte r_type[1]; /* Relocation type. */
|
| 352 |
|
|
};
|
| 353 |
|
|
|
| 354 |
|
|
#define RELOC_STD_BITS_PCREL_BIG ((unsigned int) 0x80)
|
| 355 |
|
|
#define RELOC_STD_BITS_PCREL_LITTLE ((unsigned int) 0x01)
|
| 356 |
|
|
|
| 357 |
|
|
#define RELOC_STD_BITS_LENGTH_BIG ((unsigned int) 0x60)
|
| 358 |
|
|
#define RELOC_STD_BITS_LENGTH_SH_BIG 5
|
| 359 |
|
|
#define RELOC_STD_BITS_LENGTH_LITTLE ((unsigned int) 0x06)
|
| 360 |
|
|
#define RELOC_STD_BITS_LENGTH_SH_LITTLE 1
|
| 361 |
|
|
|
| 362 |
|
|
#define RELOC_STD_BITS_EXTERN_BIG ((unsigned int) 0x10)
|
| 363 |
|
|
#define RELOC_STD_BITS_EXTERN_LITTLE ((unsigned int) 0x08)
|
| 364 |
|
|
|
| 365 |
|
|
#define RELOC_STD_BITS_BASEREL_BIG ((unsigned int) 0x08)
|
| 366 |
|
|
#define RELOC_STD_BITS_BASEREL_LITTLE ((unsigned int) 0x10)
|
| 367 |
|
|
|
| 368 |
|
|
#define RELOC_STD_BITS_JMPTABLE_BIG ((unsigned int) 0x04)
|
| 369 |
|
|
#define RELOC_STD_BITS_JMPTABLE_LITTLE ((unsigned int) 0x20)
|
| 370 |
|
|
|
| 371 |
|
|
#define RELOC_STD_BITS_RELATIVE_BIG ((unsigned int) 0x02)
|
| 372 |
|
|
#define RELOC_STD_BITS_RELATIVE_LITTLE ((unsigned int) 0x40)
|
| 373 |
|
|
|
| 374 |
|
|
#define RELOC_STD_SIZE (BYTES_IN_WORD + 3 + 1) /* Bytes per relocation entry. */
|
| 375 |
|
|
|
| 376 |
|
|
struct reloc_std_internal
|
| 377 |
|
|
{
|
| 378 |
|
|
bfd_vma r_address; /* Address (within segment) to be relocated. */
|
| 379 |
|
|
/* The meaning of r_symbolnum depends on r_extern. */
|
| 380 |
|
|
unsigned int r_symbolnum:24;
|
| 381 |
|
|
/* Nonzero means value is a pc-relative offset
|
| 382 |
|
|
and it should be relocated for changes in its own address
|
| 383 |
|
|
as well as for changes in the symbol or section specified. */
|
| 384 |
|
|
unsigned int r_pcrel:1;
|
| 385 |
|
|
/* Length (as exponent of 2) of the field to be relocated.
|
| 386 |
|
|
Thus, a value of 2 indicates 1<<2 bytes. */
|
| 387 |
|
|
unsigned int r_length:2;
|
| 388 |
|
|
/* 1 => relocate with value of symbol.
|
| 389 |
|
|
r_symbolnum is the index of the symbol
|
| 390 |
|
|
in files the symbol table.
|
| 391 |
|
|
|
| 392 |
|
|
r_symbolnum is N_TEXT, N_DATA, N_BSS or N_ABS
|
| 393 |
|
|
(the N_EXT bit may be set also, but signifies nothing). */
|
| 394 |
|
|
unsigned int r_extern:1;
|
| 395 |
|
|
/* The next three bits are for SunOS shared libraries, and seem to
|
| 396 |
|
|
be undocumented. */
|
| 397 |
|
|
unsigned int r_baserel:1; /* Linkage table relative. */
|
| 398 |
|
|
unsigned int r_jmptable:1; /* pc-relative to jump table. */
|
| 399 |
|
|
unsigned int r_relative:1; /* "relative relocation". */
|
| 400 |
|
|
/* unused */
|
| 401 |
|
|
unsigned int r_pad:1; /* Padding -- set to zero. */
|
| 402 |
|
|
};
|
| 403 |
|
|
|
| 404 |
|
|
|
| 405 |
|
|
/* EXTENDED RELOCS. */
|
| 406 |
|
|
|
| 407 |
|
|
struct reloc_ext_external
|
| 408 |
|
|
{
|
| 409 |
|
|
bfd_byte r_address[BYTES_IN_WORD]; /* Offset of of data to relocate. */
|
| 410 |
|
|
bfd_byte r_index[3]; /* Symbol table index of symbol. */
|
| 411 |
|
|
bfd_byte r_type[1]; /* Relocation type. */
|
| 412 |
|
|
bfd_byte r_addend[BYTES_IN_WORD]; /* Datum addend. */
|
| 413 |
|
|
};
|
| 414 |
|
|
|
| 415 |
|
|
#ifndef RELOC_EXT_BITS_EXTERN_BIG
|
| 416 |
|
|
#define RELOC_EXT_BITS_EXTERN_BIG ((unsigned int) 0x80)
|
| 417 |
|
|
#endif
|
| 418 |
|
|
|
| 419 |
|
|
#ifndef RELOC_EXT_BITS_EXTERN_LITTLE
|
| 420 |
|
|
#define RELOC_EXT_BITS_EXTERN_LITTLE ((unsigned int) 0x01)
|
| 421 |
|
|
#endif
|
| 422 |
|
|
|
| 423 |
|
|
#ifndef RELOC_EXT_BITS_TYPE_BIG
|
| 424 |
|
|
#define RELOC_EXT_BITS_TYPE_BIG ((unsigned int) 0x1F)
|
| 425 |
|
|
#endif
|
| 426 |
|
|
|
| 427 |
|
|
#ifndef RELOC_EXT_BITS_TYPE_SH_BIG
|
| 428 |
|
|
#define RELOC_EXT_BITS_TYPE_SH_BIG 0
|
| 429 |
|
|
#endif
|
| 430 |
|
|
|
| 431 |
|
|
#ifndef RELOC_EXT_BITS_TYPE_LITTLE
|
| 432 |
|
|
#define RELOC_EXT_BITS_TYPE_LITTLE ((unsigned int) 0xF8)
|
| 433 |
|
|
#endif
|
| 434 |
|
|
|
| 435 |
|
|
#ifndef RELOC_EXT_BITS_TYPE_SH_LITTLE
|
| 436 |
|
|
#define RELOC_EXT_BITS_TYPE_SH_LITTLE 3
|
| 437 |
|
|
#endif
|
| 438 |
|
|
|
| 439 |
|
|
/* Bytes per relocation entry. */
|
| 440 |
|
|
#define RELOC_EXT_SIZE (BYTES_IN_WORD + 3 + 1 + BYTES_IN_WORD)
|
| 441 |
|
|
|
| 442 |
|
|
enum reloc_type
|
| 443 |
|
|
{
|
| 444 |
|
|
/* Simple relocations. */
|
| 445 |
|
|
RELOC_8, /* data[0:7] = addend + sv */
|
| 446 |
|
|
RELOC_16, /* data[0:15] = addend + sv */
|
| 447 |
|
|
RELOC_32, /* data[0:31] = addend + sv */
|
| 448 |
|
|
/* PC-rel displacement. */
|
| 449 |
|
|
RELOC_DISP8, /* data[0:7] = addend - pc + sv */
|
| 450 |
|
|
RELOC_DISP16, /* data[0:15] = addend - pc + sv */
|
| 451 |
|
|
RELOC_DISP32, /* data[0:31] = addend - pc + sv */
|
| 452 |
|
|
/* Special. */
|
| 453 |
|
|
RELOC_WDISP30, /* data[0:29] = (addend + sv - pc)>>2 */
|
| 454 |
|
|
RELOC_WDISP22, /* data[0:21] = (addend + sv - pc)>>2 */
|
| 455 |
|
|
RELOC_HI22, /* data[0:21] = (addend + sv)>>10 */
|
| 456 |
|
|
RELOC_22, /* data[0:21] = (addend + sv) */
|
| 457 |
|
|
RELOC_13, /* data[0:12] = (addend + sv) */
|
| 458 |
|
|
RELOC_LO10, /* data[0:9] = (addend + sv) */
|
| 459 |
|
|
RELOC_SFA_BASE,
|
| 460 |
|
|
RELOC_SFA_OFF13,
|
| 461 |
|
|
/* P.I.C. (base-relative). */
|
| 462 |
|
|
RELOC_BASE10, /* Not sure - maybe we can do this the */
|
| 463 |
|
|
RELOC_BASE13, /* right way now */
|
| 464 |
|
|
RELOC_BASE22,
|
| 465 |
|
|
/* For some sort of pc-rel P.I.C. (?) */
|
| 466 |
|
|
RELOC_PC10,
|
| 467 |
|
|
RELOC_PC22,
|
| 468 |
|
|
/* P.I.C. jump table. */
|
| 469 |
|
|
RELOC_JMP_TBL,
|
| 470 |
|
|
/* Reputedly for shared libraries somehow. */
|
| 471 |
|
|
RELOC_SEGOFF16,
|
| 472 |
|
|
RELOC_GLOB_DAT,
|
| 473 |
|
|
RELOC_JMP_SLOT,
|
| 474 |
|
|
RELOC_RELATIVE,
|
| 475 |
|
|
|
| 476 |
|
|
RELOC_11,
|
| 477 |
|
|
RELOC_WDISP2_14,
|
| 478 |
|
|
RELOC_WDISP19,
|
| 479 |
|
|
RELOC_HHI22, /* data[0:21] = (addend + sv) >> 42 */
|
| 480 |
|
|
RELOC_HLO10, /* data[0:9] = (addend + sv) >> 32 */
|
| 481 |
|
|
|
| 482 |
|
|
/* 29K relocation types. */
|
| 483 |
|
|
RELOC_JUMPTARG,
|
| 484 |
|
|
RELOC_CONST,
|
| 485 |
|
|
RELOC_CONSTH,
|
| 486 |
|
|
|
| 487 |
|
|
/* All the new ones I can think of, for sparc v9. */
|
| 488 |
|
|
RELOC_64, /* data[0:63] = addend + sv */
|
| 489 |
|
|
RELOC_DISP64, /* data[0:63] = addend - pc + sv */
|
| 490 |
|
|
RELOC_WDISP21, /* data[0:20] = (addend + sv - pc)>>2 */
|
| 491 |
|
|
RELOC_DISP21, /* data[0:20] = addend - pc + sv */
|
| 492 |
|
|
RELOC_DISP14, /* data[0:13] = addend - pc + sv */
|
| 493 |
|
|
/* Q .
|
| 494 |
|
|
What are the other ones,
|
| 495 |
|
|
Since this is a clean slate, can we throw away the ones we dont
|
| 496 |
|
|
understand ? Should we sort the values ? What about using a
|
| 497 |
|
|
microcode format like the 68k ? */
|
| 498 |
|
|
NO_RELOC
|
| 499 |
|
|
};
|
| 500 |
|
|
|
| 501 |
|
|
|
| 502 |
|
|
struct reloc_internal
|
| 503 |
|
|
{
|
| 504 |
|
|
bfd_vma r_address; /* Offset of of data to relocate. */
|
| 505 |
|
|
long r_index; /* Symbol table index of symbol. */
|
| 506 |
|
|
enum reloc_type r_type; /* Relocation type. */
|
| 507 |
|
|
bfd_vma r_addend; /* Datum addend. */
|
| 508 |
|
|
};
|
| 509 |
|
|
|
| 510 |
|
|
/* Q.
|
| 511 |
|
|
Should the length of the string table be 4 bytes or 8 bytes ?
|
| 512 |
|
|
|
| 513 |
|
|
Q.
|
| 514 |
|
|
What about archive indexes ? */
|
| 515 |
|
|
|
| 516 |
|
|
#endif /* __A_OUT_64_H__ */
|