OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [libiberty/] [hashtab.c] - Blame information for rev 104

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 21 khays
/* An expandable hash tables datatype.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3
   Free Software Foundation, Inc.
4
   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
 
6
This file is part of the libiberty library.
7
Libiberty is free software; you can redistribute it and/or
8
modify it under the terms of the GNU Library General Public
9
License as published by the Free Software Foundation; either
10
version 2 of the License, or (at your option) any later version.
11
 
12
Libiberty is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
Library General Public License for more details.
16
 
17
You should have received a copy of the GNU Library General Public
18
License along with libiberty; see the file COPYING.LIB.  If
19
not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20
Boston, MA 02110-1301, USA.  */
21
 
22
/* This package implements basic hash table functionality.  It is possible
23
   to search for an entry, create an entry and destroy an entry.
24
 
25
   Elements in the table are generic pointers.
26
 
27
   The size of the table is not fixed; if the occupancy of the table
28
   grows too high the hash table will be expanded.
29
 
30
   The abstract data implementation is based on generalized Algorithm D
31
   from Knuth's book "The art of computer programming".  Hash table is
32
   expanded by creation of new hash table and transferring elements from
33
   the old table to the new table. */
34
 
35
#ifdef HAVE_CONFIG_H
36
#include "config.h"
37
#endif
38
 
39
#include <sys/types.h>
40
 
41
#ifdef HAVE_STDLIB_H
42
#include <stdlib.h>
43
#endif
44
#ifdef HAVE_STRING_H
45
#include <string.h>
46
#endif
47
#ifdef HAVE_MALLOC_H
48
#include <malloc.h>
49
#endif
50
#ifdef HAVE_LIMITS_H
51
#include <limits.h>
52
#endif
53
#ifdef HAVE_INTTYPES_H
54
#include <inttypes.h>
55
#endif
56
#ifdef HAVE_STDINT_H
57
#include <stdint.h>
58
#endif
59
 
60
#include <stdio.h>
61
 
62
#include "libiberty.h"
63
#include "ansidecl.h"
64
#include "hashtab.h"
65
 
66
#ifndef CHAR_BIT
67
#define CHAR_BIT 8
68
#endif
69
 
70
static unsigned int higher_prime_index (unsigned long);
71
static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72
static hashval_t htab_mod (hashval_t, htab_t);
73
static hashval_t htab_mod_m2 (hashval_t, htab_t);
74
static hashval_t hash_pointer (const void *);
75
static int eq_pointer (const void *, const void *);
76
static int htab_expand (htab_t);
77
static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
78
 
79
/* At some point, we could make these be NULL, and modify the
80
   hash-table routines to handle NULL specially; that would avoid
81
   function-call overhead for the common case of hashing pointers.  */
82
htab_hash htab_hash_pointer = hash_pointer;
83
htab_eq htab_eq_pointer = eq_pointer;
84
 
85
/* Table of primes and multiplicative inverses.
86
 
87
   Note that these are not minimally reduced inverses.  Unlike when generating
88
   code to divide by a constant, we want to be able to use the same algorithm
89
   all the time.  All of these inverses (are implied to) have bit 32 set.
90
 
91
   For the record, here's the function that computed the table; it's a
92
   vastly simplified version of the function of the same name from gcc.  */
93
 
94
#if 0
95
unsigned int
96
ceil_log2 (unsigned int x)
97
{
98
  int i;
99
  for (i = 31; i >= 0 ; --i)
100
    if (x > (1u << i))
101
      return i+1;
102
  abort ();
103
}
104
 
105
unsigned int
106
choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107
{
108
  unsigned long long mhigh;
109
  double nx;
110
  int lgup, post_shift;
111
  int pow, pow2;
112
  int n = 32, precision = 32;
113
 
114
  lgup = ceil_log2 (d);
115
  pow = n + lgup;
116
  pow2 = n + lgup - precision;
117
 
118
  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119
  mhigh = nx / d;
120
 
121
  *shiftp = lgup - 1;
122
  *mlp = mhigh;
123
  return mhigh >> 32;
124
}
125
#endif
126
 
127
struct prime_ent
128
{
129
  hashval_t prime;
130
  hashval_t inv;
131
  hashval_t inv_m2;     /* inverse of prime-2 */
132
  hashval_t shift;
133
};
134
 
135
static struct prime_ent const prime_tab[] = {
136
  {          7, 0x24924925, 0x9999999b, 2 },
137
  {         13, 0x3b13b13c, 0x745d1747, 3 },
138
  {         31, 0x08421085, 0x1a7b9612, 4 },
139
  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
140
  {        127, 0x02040811, 0x0624dd30, 6 },
141
  {        251, 0x05197f7e, 0x073260a5, 7 },
142
  {        509, 0x01824366, 0x02864fc8, 8 },
143
  {       1021, 0x00c0906d, 0x014191f7, 9 },
144
  {       2039, 0x0121456f, 0x0161e69e, 10 },
145
  {       4093, 0x00300902, 0x00501908, 11 },
146
  {       8191, 0x00080041, 0x00180241, 12 },
147
  {      16381, 0x000c0091, 0x00140191, 13 },
148
  {      32749, 0x002605a5, 0x002a06e6, 14 },
149
  {      65521, 0x000f00e2, 0x00110122, 15 },
150
  {     131071, 0x00008001, 0x00018003, 16 },
151
  {     262139, 0x00014002, 0x0001c004, 17 },
152
  {     524287, 0x00002001, 0x00006001, 18 },
153
  {    1048573, 0x00003001, 0x00005001, 19 },
154
  {    2097143, 0x00004801, 0x00005801, 20 },
155
  {    4194301, 0x00000c01, 0x00001401, 21 },
156
  {    8388593, 0x00001e01, 0x00002201, 22 },
157
  {   16777213, 0x00000301, 0x00000501, 23 },
158
  {   33554393, 0x00001381, 0x00001481, 24 },
159
  {   67108859, 0x00000141, 0x000001c1, 25 },
160
  {  134217689, 0x000004e1, 0x00000521, 26 },
161
  {  268435399, 0x00000391, 0x000003b1, 27 },
162
  {  536870909, 0x00000019, 0x00000029, 28 },
163
  { 1073741789, 0x0000008d, 0x00000095, 29 },
164
  { 2147483647, 0x00000003, 0x00000007, 30 },
165
  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
166
  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167
};
168
 
169
/* The following function returns an index into the above table of the
170
   nearest prime number which is greater than N, and near a power of two. */
171
 
172
static unsigned int
173
higher_prime_index (unsigned long n)
174
{
175
  unsigned int low = 0;
176
  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
177
 
178
  while (low != high)
179
    {
180
      unsigned int mid = low + (high - low) / 2;
181
      if (n > prime_tab[mid].prime)
182
        low = mid + 1;
183
      else
184
        high = mid;
185
    }
186
 
187
  /* If we've run out of primes, abort.  */
188
  if (n > prime_tab[low].prime)
189
    {
190
      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191
      abort ();
192
    }
193
 
194
  return low;
195
}
196
 
197
/* Returns a hash code for P.  */
198
 
199
static hashval_t
200
hash_pointer (const PTR p)
201
{
202
  return (hashval_t) ((intptr_t)p >> 3);
203
}
204
 
205
/* Returns non-zero if P1 and P2 are equal.  */
206
 
207
static int
208
eq_pointer (const PTR p1, const PTR p2)
209
{
210
  return p1 == p2;
211
}
212
 
213
 
214
/* The parens around the function names in the next two definitions
215
   are essential in order to prevent macro expansions of the name.
216
   The bodies, however, are expanded as expected, so they are not
217
   recursive definitions.  */
218
 
219
/* Return the current size of given hash table.  */
220
 
221
#define htab_size(htab)  ((htab)->size)
222
 
223
size_t
224
(htab_size) (htab_t htab)
225
{
226
  return htab_size (htab);
227
}
228
 
229
/* Return the current number of elements in given hash table. */
230
 
231
#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
232
 
233
size_t
234
(htab_elements) (htab_t htab)
235
{
236
  return htab_elements (htab);
237
}
238
 
239
/* Return X % Y.  */
240
 
241
static inline hashval_t
242
htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
243
{
244
  /* The multiplicative inverses computed above are for 32-bit types, and
245
     requires that we be able to compute a highpart multiply.  */
246
#ifdef UNSIGNED_64BIT_TYPE
247
  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
248
  if (sizeof (hashval_t) * CHAR_BIT <= 32)
249
    {
250
      hashval_t t1, t2, t3, t4, q, r;
251
 
252
      t1 = ((ull)x * inv) >> 32;
253
      t2 = x - t1;
254
      t3 = t2 >> 1;
255
      t4 = t1 + t3;
256
      q  = t4 >> shift;
257
      r  = x - (q * y);
258
 
259
      return r;
260
    }
261
#endif
262
 
263
  /* Otherwise just use the native division routines.  */
264
  return x % y;
265
}
266
 
267
/* Compute the primary hash for HASH given HTAB's current size.  */
268
 
269
static inline hashval_t
270
htab_mod (hashval_t hash, htab_t htab)
271
{
272
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273
  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
274
}
275
 
276
/* Compute the secondary hash for HASH given HTAB's current size.  */
277
 
278
static inline hashval_t
279
htab_mod_m2 (hashval_t hash, htab_t htab)
280
{
281
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
282
  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
283
}
284
 
285
/* This function creates table with length slightly longer than given
286
   source length.  Created hash table is initiated as empty (all the
287
   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
288
   created hash table, or NULL if memory allocation fails.  */
289
 
290
htab_t
291
htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
292
                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
293
{
294
  return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
295
                                  free_f);
296
}
297
 
298
/* As above, but uses the variants of ALLOC_F and FREE_F which accept
299
   an extra argument.  */
300
 
301
htab_t
302
htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
303
                      htab_del del_f, void *alloc_arg,
304
                      htab_alloc_with_arg alloc_f,
305
                      htab_free_with_arg free_f)
306
{
307
  htab_t result;
308
  unsigned int size_prime_index;
309
 
310
  size_prime_index = higher_prime_index (size);
311
  size = prime_tab[size_prime_index].prime;
312
 
313
  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
314
  if (result == NULL)
315
    return NULL;
316
  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
317
  if (result->entries == NULL)
318
    {
319
      if (free_f != NULL)
320
        (*free_f) (alloc_arg, result);
321
      return NULL;
322
    }
323
  result->size = size;
324
  result->size_prime_index = size_prime_index;
325
  result->hash_f = hash_f;
326
  result->eq_f = eq_f;
327
  result->del_f = del_f;
328
  result->alloc_arg = alloc_arg;
329
  result->alloc_with_arg_f = alloc_f;
330
  result->free_with_arg_f = free_f;
331
  return result;
332
}
333
 
334
/*
335
 
336
@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
337
htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
338
htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
339
htab_free @var{free_f})
340
 
341
This function creates a hash table that uses two different allocators
342
@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
343
and its entries respectively.  This is useful when variables of different
344
types need to be allocated with different allocators.
345
 
346
The created hash table is slightly larger than @var{size} and it is
347
initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
348
The function returns the created hash table, or @code{NULL} if memory
349
allocation fails.
350
 
351
@end deftypefn
352
 
353
*/
354
 
355
htab_t
356
htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
357
                         htab_del del_f, htab_alloc alloc_tab_f,
358
                         htab_alloc alloc_f, htab_free free_f)
359
{
360
  htab_t result;
361
  unsigned int size_prime_index;
362
 
363
  size_prime_index = higher_prime_index (size);
364
  size = prime_tab[size_prime_index].prime;
365
 
366
  result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
367
  if (result == NULL)
368
    return NULL;
369
  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
370
  if (result->entries == NULL)
371
    {
372
      if (free_f != NULL)
373
        (*free_f) (result);
374
      return NULL;
375
    }
376
  result->size = size;
377
  result->size_prime_index = size_prime_index;
378
  result->hash_f = hash_f;
379
  result->eq_f = eq_f;
380
  result->del_f = del_f;
381
  result->alloc_f = alloc_f;
382
  result->free_f = free_f;
383
  return result;
384
}
385
 
386
 
387
/* Update the function pointers and allocation parameter in the htab_t.  */
388
 
389
void
390
htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
391
                       htab_del del_f, PTR alloc_arg,
392
                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
393
{
394
  htab->hash_f = hash_f;
395
  htab->eq_f = eq_f;
396
  htab->del_f = del_f;
397
  htab->alloc_arg = alloc_arg;
398
  htab->alloc_with_arg_f = alloc_f;
399
  htab->free_with_arg_f = free_f;
400
}
401
 
402
/* These functions exist solely for backward compatibility.  */
403
 
404
#undef htab_create
405
htab_t
406
htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
407
{
408
  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
409
}
410
 
411
htab_t
412
htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
413
{
414
  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
415
}
416
 
417
/* This function frees all memory allocated for given hash table.
418
   Naturally the hash table must already exist. */
419
 
420
void
421
htab_delete (htab_t htab)
422
{
423
  size_t size = htab_size (htab);
424
  PTR *entries = htab->entries;
425
  int i;
426
 
427
  if (htab->del_f)
428
    for (i = size - 1; i >= 0; i--)
429
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
430
        (*htab->del_f) (entries[i]);
431
 
432
  if (htab->free_f != NULL)
433
    {
434
      (*htab->free_f) (entries);
435
      (*htab->free_f) (htab);
436
    }
437
  else if (htab->free_with_arg_f != NULL)
438
    {
439
      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
440
      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
441
    }
442
}
443
 
444
/* This function clears all entries in the given hash table.  */
445
 
446
void
447
htab_empty (htab_t htab)
448
{
449
  size_t size = htab_size (htab);
450
  PTR *entries = htab->entries;
451
  int i;
452
 
453
  if (htab->del_f)
454
    for (i = size - 1; i >= 0; i--)
455
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
456
        (*htab->del_f) (entries[i]);
457
 
458
  /* Instead of clearing megabyte, downsize the table.  */
459
  if (size > 1024*1024 / sizeof (PTR))
460
    {
461
      int nindex = higher_prime_index (1024 / sizeof (PTR));
462
      int nsize = prime_tab[nindex].prime;
463
 
464
      if (htab->free_f != NULL)
465
        (*htab->free_f) (htab->entries);
466
      else if (htab->free_with_arg_f != NULL)
467
        (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
468
      if (htab->alloc_with_arg_f != NULL)
469
        htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
470
                                                           sizeof (PTR *));
471
      else
472
        htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
473
     htab->size = nsize;
474
     htab->size_prime_index = nindex;
475
    }
476
  else
477
    memset (entries, 0, size * sizeof (PTR));
478
  htab->n_deleted = 0;
479
  htab->n_elements = 0;
480
}
481
 
482
/* Similar to htab_find_slot, but without several unwanted side effects:
483
    - Does not call htab->eq_f when it finds an existing entry.
484
    - Does not change the count of elements/searches/collisions in the
485
      hash table.
486
   This function also assumes there are no deleted entries in the table.
487
   HASH is the hash value for the element to be inserted.  */
488
 
489
static PTR *
490
find_empty_slot_for_expand (htab_t htab, hashval_t hash)
491
{
492
  hashval_t index = htab_mod (hash, htab);
493
  size_t size = htab_size (htab);
494
  PTR *slot = htab->entries + index;
495
  hashval_t hash2;
496
 
497
  if (*slot == HTAB_EMPTY_ENTRY)
498
    return slot;
499
  else if (*slot == HTAB_DELETED_ENTRY)
500
    abort ();
501
 
502
  hash2 = htab_mod_m2 (hash, htab);
503
  for (;;)
504
    {
505
      index += hash2;
506
      if (index >= size)
507
        index -= size;
508
 
509
      slot = htab->entries + index;
510
      if (*slot == HTAB_EMPTY_ENTRY)
511
        return slot;
512
      else if (*slot == HTAB_DELETED_ENTRY)
513
        abort ();
514
    }
515
}
516
 
517
/* The following function changes size of memory allocated for the
518
   entries and repeatedly inserts the table elements.  The occupancy
519
   of the table after the call will be about 50%.  Naturally the hash
520
   table must already exist.  Remember also that the place of the
521
   table entries is changed.  If memory allocation failures are allowed,
522
   this function will return zero, indicating that the table could not be
523
   expanded.  If all goes well, it will return a non-zero value.  */
524
 
525
static int
526
htab_expand (htab_t htab)
527
{
528
  PTR *oentries;
529
  PTR *olimit;
530
  PTR *p;
531
  PTR *nentries;
532
  size_t nsize, osize, elts;
533
  unsigned int oindex, nindex;
534
 
535
  oentries = htab->entries;
536
  oindex = htab->size_prime_index;
537
  osize = htab->size;
538
  olimit = oentries + osize;
539
  elts = htab_elements (htab);
540
 
541
  /* Resize only when table after removal of unused elements is either
542
     too full or too empty.  */
543
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
544
    {
545
      nindex = higher_prime_index (elts * 2);
546
      nsize = prime_tab[nindex].prime;
547
    }
548
  else
549
    {
550
      nindex = oindex;
551
      nsize = osize;
552
    }
553
 
554
  if (htab->alloc_with_arg_f != NULL)
555
    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
556
                                                  sizeof (PTR *));
557
  else
558
    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
559
  if (nentries == NULL)
560
    return 0;
561
  htab->entries = nentries;
562
  htab->size = nsize;
563
  htab->size_prime_index = nindex;
564
  htab->n_elements -= htab->n_deleted;
565
  htab->n_deleted = 0;
566
 
567
  p = oentries;
568
  do
569
    {
570
      PTR x = *p;
571
 
572
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
573
        {
574
          PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
575
 
576
          *q = x;
577
        }
578
 
579
      p++;
580
    }
581
  while (p < olimit);
582
 
583
  if (htab->free_f != NULL)
584
    (*htab->free_f) (oentries);
585
  else if (htab->free_with_arg_f != NULL)
586
    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
587
  return 1;
588
}
589
 
590
/* This function searches for a hash table entry equal to the given
591
   element.  It cannot be used to insert or delete an element.  */
592
 
593
PTR
594
htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
595
{
596
  hashval_t index, hash2;
597
  size_t size;
598
  PTR entry;
599
 
600
  htab->searches++;
601
  size = htab_size (htab);
602
  index = htab_mod (hash, htab);
603
 
604
  entry = htab->entries[index];
605
  if (entry == HTAB_EMPTY_ENTRY
606
      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
607
    return entry;
608
 
609
  hash2 = htab_mod_m2 (hash, htab);
610
  for (;;)
611
    {
612
      htab->collisions++;
613
      index += hash2;
614
      if (index >= size)
615
        index -= size;
616
 
617
      entry = htab->entries[index];
618
      if (entry == HTAB_EMPTY_ENTRY
619
          || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
620
        return entry;
621
    }
622
}
623
 
624
/* Like htab_find_slot_with_hash, but compute the hash value from the
625
   element.  */
626
 
627
PTR
628
htab_find (htab_t htab, const PTR element)
629
{
630
  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
631
}
632
 
633
/* This function searches for a hash table slot containing an entry
634
   equal to the given element.  To delete an entry, call this with
635
   insert=NO_INSERT, then call htab_clear_slot on the slot returned
636
   (possibly after doing some checks).  To insert an entry, call this
637
   with insert=INSERT, then write the value you want into the returned
638
   slot.  When inserting an entry, NULL may be returned if memory
639
   allocation fails.  */
640
 
641
PTR *
642
htab_find_slot_with_hash (htab_t htab, const PTR element,
643
                          hashval_t hash, enum insert_option insert)
644
{
645
  PTR *first_deleted_slot;
646
  hashval_t index, hash2;
647
  size_t size;
648
  PTR entry;
649
 
650
  size = htab_size (htab);
651
  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
652
    {
653
      if (htab_expand (htab) == 0)
654
        return NULL;
655
      size = htab_size (htab);
656
    }
657
 
658
  index = htab_mod (hash, htab);
659
 
660
  htab->searches++;
661
  first_deleted_slot = NULL;
662
 
663
  entry = htab->entries[index];
664
  if (entry == HTAB_EMPTY_ENTRY)
665
    goto empty_entry;
666
  else if (entry == HTAB_DELETED_ENTRY)
667
    first_deleted_slot = &htab->entries[index];
668
  else if ((*htab->eq_f) (entry, element))
669
    return &htab->entries[index];
670
 
671
  hash2 = htab_mod_m2 (hash, htab);
672
  for (;;)
673
    {
674
      htab->collisions++;
675
      index += hash2;
676
      if (index >= size)
677
        index -= size;
678
 
679
      entry = htab->entries[index];
680
      if (entry == HTAB_EMPTY_ENTRY)
681
        goto empty_entry;
682
      else if (entry == HTAB_DELETED_ENTRY)
683
        {
684
          if (!first_deleted_slot)
685
            first_deleted_slot = &htab->entries[index];
686
        }
687
      else if ((*htab->eq_f) (entry, element))
688
        return &htab->entries[index];
689
    }
690
 
691
 empty_entry:
692
  if (insert == NO_INSERT)
693
    return NULL;
694
 
695
  if (first_deleted_slot)
696
    {
697
      htab->n_deleted--;
698
      *first_deleted_slot = HTAB_EMPTY_ENTRY;
699
      return first_deleted_slot;
700
    }
701
 
702
  htab->n_elements++;
703
  return &htab->entries[index];
704
}
705
 
706
/* Like htab_find_slot_with_hash, but compute the hash value from the
707
   element.  */
708
 
709
PTR *
710
htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
711
{
712
  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
713
                                   insert);
714
}
715
 
716
/* This function deletes an element with the given value from hash
717
   table (the hash is computed from the element).  If there is no matching
718
   element in the hash table, this function does nothing.  */
719
 
720
void
721
htab_remove_elt (htab_t htab, PTR element)
722
{
723
  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
724
}
725
 
726
 
727
/* This function deletes an element with the given value from hash
728
   table.  If there is no matching element in the hash table, this
729
   function does nothing.  */
730
 
731
void
732
htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
733
{
734
  PTR *slot;
735
 
736
  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
737
  if (*slot == HTAB_EMPTY_ENTRY)
738
    return;
739
 
740
  if (htab->del_f)
741
    (*htab->del_f) (*slot);
742
 
743
  *slot = HTAB_DELETED_ENTRY;
744
  htab->n_deleted++;
745
}
746
 
747
/* This function clears a specified slot in a hash table.  It is
748
   useful when you've already done the lookup and don't want to do it
749
   again.  */
750
 
751
void
752
htab_clear_slot (htab_t htab, PTR *slot)
753
{
754
  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
755
      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
756
    abort ();
757
 
758
  if (htab->del_f)
759
    (*htab->del_f) (*slot);
760
 
761
  *slot = HTAB_DELETED_ENTRY;
762
  htab->n_deleted++;
763
}
764
 
765
/* This function scans over the entire hash table calling
766
   CALLBACK for each live entry.  If CALLBACK returns false,
767
   the iteration stops.  INFO is passed as CALLBACK's second
768
   argument.  */
769
 
770
void
771
htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
772
{
773
  PTR *slot;
774
  PTR *limit;
775
 
776
  slot = htab->entries;
777
  limit = slot + htab_size (htab);
778
 
779
  do
780
    {
781
      PTR x = *slot;
782
 
783
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
784
        if (!(*callback) (slot, info))
785
          break;
786
    }
787
  while (++slot < limit);
788
}
789
 
790
/* Like htab_traverse_noresize, but does resize the table when it is
791
   too empty to improve effectivity of subsequent calls.  */
792
 
793
void
794
htab_traverse (htab_t htab, htab_trav callback, PTR info)
795
{
796
  size_t size = htab_size (htab);
797
  if (htab_elements (htab) * 8 < size && size > 32)
798
    htab_expand (htab);
799
 
800
  htab_traverse_noresize (htab, callback, info);
801
}
802
 
803
/* Return the fraction of fixed collisions during all work with given
804
   hash table. */
805
 
806
double
807
htab_collisions (htab_t htab)
808
{
809
  if (htab->searches == 0)
810
    return 0.0;
811
 
812
  return (double) htab->collisions / (double) htab->searches;
813
}
814
 
815
/* Hash P as a null-terminated string.
816
 
817
   Copied from gcc/hashtable.c.  Zack had the following to say with respect
818
   to applicability, though note that unlike hashtable.c, this hash table
819
   implementation re-hashes rather than chain buckets.
820
 
821
   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
822
   From: Zack Weinberg <zackw@panix.com>
823
   Date: Fri, 17 Aug 2001 02:15:56 -0400
824
 
825
   I got it by extracting all the identifiers from all the source code
826
   I had lying around in mid-1999, and testing many recurrences of
827
   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
828
   prime numbers or the appropriate identity.  This was the best one.
829
   I don't remember exactly what constituted "best", except I was
830
   looking at bucket-length distributions mostly.
831
 
832
   So it should be very good at hashing identifiers, but might not be
833
   as good at arbitrary strings.
834
 
835
   I'll add that it thoroughly trounces the hash functions recommended
836
   for this use at http://burtleburtle.net/bob/hash/index.html, both
837
   on speed and bucket distribution.  I haven't tried it against the
838
   function they just started using for Perl's hashes.  */
839
 
840
hashval_t
841
htab_hash_string (const PTR p)
842
{
843
  const unsigned char *str = (const unsigned char *) p;
844
  hashval_t r = 0;
845
  unsigned char c;
846
 
847
  while ((c = *str++) != 0)
848
    r = r * 67 + c - 113;
849
 
850
  return r;
851
}
852
 
853
/* DERIVED FROM:
854
--------------------------------------------------------------------
855
lookup2.c, by Bob Jenkins, December 1996, Public Domain.
856
hash(), hash2(), hash3, and mix() are externally useful functions.
857
Routines to test the hash are included if SELF_TEST is defined.
858
You can use this free for any purpose.  It has no warranty.
859
--------------------------------------------------------------------
860
*/
861
 
862
/*
863
--------------------------------------------------------------------
864
mix -- mix 3 32-bit values reversibly.
865
For every delta with one or two bit set, and the deltas of all three
866
  high bits or all three low bits, whether the original value of a,b,c
867
  is almost all zero or is uniformly distributed,
868
* If mix() is run forward or backward, at least 32 bits in a,b,c
869
  have at least 1/4 probability of changing.
870
* If mix() is run forward, every bit of c will change between 1/3 and
871
  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
872
mix() was built out of 36 single-cycle latency instructions in a
873
  structure that could supported 2x parallelism, like so:
874
      a -= b;
875
      a -= c; x = (c>>13);
876
      b -= c; a ^= x;
877
      b -= a; x = (a<<8);
878
      c -= a; b ^= x;
879
      c -= b; x = (b>>13);
880
      ...
881
  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
882
  of that parallelism.  They've also turned some of those single-cycle
883
  latency instructions into multi-cycle latency instructions.  Still,
884
  this is the fastest good hash I could find.  There were about 2^^68
885
  to choose from.  I only looked at a billion or so.
886
--------------------------------------------------------------------
887
*/
888
/* same, but slower, works on systems that might have 8 byte hashval_t's */
889
#define mix(a,b,c) \
890
{ \
891
  a -= b; a -= c; a ^= (c>>13); \
892
  b -= c; b -= a; b ^= (a<< 8); \
893
  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
894
  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
895
  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
896
  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
897
  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
898
  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
899
  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
900
}
901
 
902
/*
903
--------------------------------------------------------------------
904
hash() -- hash a variable-length key into a 32-bit value
905
  k     : the key (the unaligned variable-length array of bytes)
906
  len   : the length of the key, counting by bytes
907
  level : can be any 4-byte value
908
Returns a 32-bit value.  Every bit of the key affects every bit of
909
the return value.  Every 1-bit and 2-bit delta achieves avalanche.
910
About 36+6len instructions.
911
 
912
The best hash table sizes are powers of 2.  There is no need to do
913
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
914
use a bitmask.  For example, if you need only 10 bits, do
915
  h = (h & hashmask(10));
916
In which case, the hash table should have hashsize(10) elements.
917
 
918
If you are hashing n strings (ub1 **)k, do it like this:
919
  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
920
 
921
By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
922
code any way you wish, private, educational, or commercial.  It's free.
923
 
924
See http://burtleburtle.net/bob/hash/evahash.html
925
Use for hash table lookup, or anything where one collision in 2^32 is
926
acceptable.  Do NOT use for cryptographic purposes.
927
--------------------------------------------------------------------
928
*/
929
 
930
hashval_t
931
iterative_hash (const PTR k_in /* the key */,
932
                register size_t  length /* the length of the key */,
933
                register hashval_t initval /* the previous hash, or
934
                                              an arbitrary value */)
935
{
936
  register const unsigned char *k = (const unsigned char *)k_in;
937
  register hashval_t a,b,c,len;
938
 
939
  /* Set up the internal state */
940
  len = length;
941
  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
942
  c = initval;           /* the previous hash value */
943
 
944
  /*---------------------------------------- handle most of the key */
945
#ifndef WORDS_BIGENDIAN
946
  /* On a little-endian machine, if the data is 4-byte aligned we can hash
947
     by word for better speed.  This gives nondeterministic results on
948
     big-endian machines.  */
949
  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
950
    while (len >= 12)    /* aligned */
951
      {
952
        a += *(hashval_t *)(k+0);
953
        b += *(hashval_t *)(k+4);
954
        c += *(hashval_t *)(k+8);
955
        mix(a,b,c);
956
        k += 12; len -= 12;
957
      }
958
  else /* unaligned */
959
#endif
960
    while (len >= 12)
961
      {
962
        a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
963
        b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
964
        c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
965
        mix(a,b,c);
966
        k += 12; len -= 12;
967
      }
968
 
969
  /*------------------------------------- handle the last 11 bytes */
970
  c += length;
971
  switch(len)              /* all the case statements fall through */
972
    {
973
    case 11: c+=((hashval_t)k[10]<<24);
974
    case 10: c+=((hashval_t)k[9]<<16);
975
    case 9 : c+=((hashval_t)k[8]<<8);
976
      /* the first byte of c is reserved for the length */
977
    case 8 : b+=((hashval_t)k[7]<<24);
978
    case 7 : b+=((hashval_t)k[6]<<16);
979
    case 6 : b+=((hashval_t)k[5]<<8);
980
    case 5 : b+=k[4];
981
    case 4 : a+=((hashval_t)k[3]<<24);
982
    case 3 : a+=((hashval_t)k[2]<<16);
983
    case 2 : a+=((hashval_t)k[1]<<8);
984
    case 1 : a+=k[0];
985
      /* case 0: nothing left to add */
986
    }
987
  mix(a,b,c);
988
  /*-------------------------------------------- report the result */
989
  return c;
990
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.