| 1 |
50 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
3 |
dgisselq |
//
|
| 3 |
|
|
// Filename: cpuops.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: This supports the instruction set reordering of operations
|
| 8 |
|
|
// created by the second generation instruction set, as well as
|
| 9 |
|
|
// the new operations of POPC (population count) and BREV (bit reversal).
|
| 10 |
|
|
//
|
| 11 |
|
|
//
|
| 12 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 13 |
|
|
// Gisselquist Technology, LLC
|
| 14 |
|
|
//
|
| 15 |
50 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 16 |
3 |
dgisselq |
//
|
| 17 |
50 |
dgisselq |
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
| 18 |
3 |
dgisselq |
//
|
| 19 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 20 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 21 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 22 |
|
|
// your option) any later version.
|
| 23 |
|
|
//
|
| 24 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 25 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 26 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 27 |
|
|
// for more details.
|
| 28 |
|
|
//
|
| 29 |
50 |
dgisselq |
// You should have received a copy of the GNU General Public License along
|
| 30 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
| 31 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 32 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 33 |
|
|
//
|
| 34 |
3 |
dgisselq |
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 35 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 36 |
|
|
//
|
| 37 |
|
|
//
|
| 38 |
50 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 39 |
3 |
dgisselq |
//
|
| 40 |
42 |
dgisselq |
`include "cpudefs.v"
|
| 41 |
|
|
//
|
| 42 |
|
|
module cpuops(i_clk,i_rst, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid,
|
| 43 |
|
|
o_busy);
|
| 44 |
|
|
parameter IMPLEMENT_MPY = `OPT_MULTIPLY;
|
| 45 |
3 |
dgisselq |
input i_clk, i_rst, i_ce;
|
| 46 |
|
|
input [3:0] i_op;
|
| 47 |
|
|
input [31:0] i_a, i_b;
|
| 48 |
|
|
output reg [31:0] o_c;
|
| 49 |
|
|
output wire [3:0] o_f;
|
| 50 |
|
|
output reg o_valid;
|
| 51 |
|
|
output wire o_busy;
|
| 52 |
|
|
|
| 53 |
|
|
// Shift register pre-logic
|
| 54 |
|
|
wire [32:0] w_lsr_result, w_asr_result, w_lsl_result;
|
| 55 |
|
|
wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted;
|
| 56 |
|
|
assign w_pre_asr_input = { i_a, 1'b0 };
|
| 57 |
|
|
assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0];
|
| 58 |
|
|
assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}}
|
| 59 |
|
|
: w_pre_asr_shifted;// ASR
|
| 60 |
|
|
assign w_lsr_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
|
| 61 |
|
|
:((i_b[5])?{32'h0,i_a[31]}
|
| 62 |
|
|
|
| 63 |
|
|
: ( { i_a, 1'b0 } >> (i_b[4:0]) ));// LSR
|
| 64 |
|
|
assign w_lsl_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
|
| 65 |
|
|
:((i_b[5])?{i_a[0], 32'h0}
|
| 66 |
|
|
: ({1'b0, i_a } << i_b[4:0])); // LSL
|
| 67 |
|
|
|
| 68 |
|
|
// Bit reversal pre-logic
|
| 69 |
|
|
wire [31:0] w_brev_result;
|
| 70 |
|
|
genvar k;
|
| 71 |
|
|
generate
|
| 72 |
|
|
for(k=0; k<32; k=k+1)
|
| 73 |
|
|
begin : bit_reversal_cpuop
|
| 74 |
|
|
assign w_brev_result[k] = i_b[31-k];
|
| 75 |
|
|
end endgenerate
|
| 76 |
|
|
|
| 77 |
|
|
// Prelogic for our flags registers
|
| 78 |
|
|
wire z, n, v;
|
| 79 |
50 |
dgisselq |
reg c, pre_sign, set_ovfl, keep_sgn_on_ovfl;
|
| 80 |
3 |
dgisselq |
always @(posedge i_clk)
|
| 81 |
|
|
if (i_ce) // 1 LUT
|
| 82 |
50 |
dgisselq |
set_ovfl<=(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
| 83 |
3 |
dgisselq |
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
| 84 |
|
|
||(i_op == 4'h6) // LSL
|
| 85 |
|
|
||(i_op == 4'h5)); // LSR
|
| 86 |
50 |
dgisselq |
always @(posedge i_clk)
|
| 87 |
|
|
if (i_ce) // 1 LUT
|
| 88 |
|
|
keep_sgn_on_ovfl<=
|
| 89 |
|
|
(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
| 90 |
|
|
||((i_op==4'h2)&&(i_a[31] == i_b[31]))); // ADD
|
| 91 |
3 |
dgisselq |
|
| 92 |
42 |
dgisselq |
wire [63:0] mpy_result; // Where we dump the multiply result
|
| 93 |
|
|
reg mpyhi; // Return the high half of the multiply
|
| 94 |
|
|
wire mpybusy; // The multiply is busy if true
|
| 95 |
|
|
wire mpydone; // True if we'll be valid on the next clock;
|
| 96 |
3 |
dgisselq |
|
| 97 |
|
|
// A 4-way multiplexer can be done in one 6-LUT.
|
| 98 |
|
|
// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
|
| 99 |
|
|
// the Xilinx multiplexer fabric that follows.
|
| 100 |
|
|
// Given that we wish to apply this multiplexer approach to 33-bits,
|
| 101 |
|
|
// this will cost a minimum of 132 6-LUTs.
|
| 102 |
42 |
dgisselq |
|
| 103 |
|
|
wire this_is_a_multiply_op;
|
| 104 |
50 |
dgisselq |
assign this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'hc));
|
| 105 |
42 |
dgisselq |
|
| 106 |
3 |
dgisselq |
generate
|
| 107 |
|
|
if (IMPLEMENT_MPY == 0)
|
| 108 |
42 |
dgisselq |
begin // No multiply support.
|
| 109 |
|
|
assign mpy_result = 63'h00;
|
| 110 |
|
|
end else if (IMPLEMENT_MPY == 1)
|
| 111 |
|
|
begin // Our single clock option (no extra clocks)
|
| 112 |
|
|
wire signed [63:0] w_mpy_a_input, w_mpy_b_input;
|
| 113 |
|
|
assign w_mpy_a_input = {{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
|
| 114 |
|
|
assign w_mpy_b_input = {{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
|
| 115 |
|
|
assign mpy_result = w_mpy_a_input * w_mpy_b_input;
|
| 116 |
|
|
assign mpybusy = 1'b0;
|
| 117 |
|
|
assign mpydone = 1'b0;
|
| 118 |
|
|
always @(*) mpyhi = 1'b0; // Not needed
|
| 119 |
|
|
end else if (IMPLEMENT_MPY == 2)
|
| 120 |
|
|
begin // Our two clock option (ALU must pause for 1 clock)
|
| 121 |
|
|
reg signed [63:0] r_mpy_a_input, r_mpy_b_input;
|
| 122 |
3 |
dgisselq |
always @(posedge i_clk)
|
| 123 |
|
|
begin
|
| 124 |
42 |
dgisselq |
r_mpy_a_input <={{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
|
| 125 |
|
|
r_mpy_b_input <={{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
|
| 126 |
3 |
dgisselq |
end
|
| 127 |
|
|
|
| 128 |
42 |
dgisselq |
assign mpy_result = r_mpy_a_input * r_mpy_b_input;
|
| 129 |
|
|
assign mpybusy = 1'b0;
|
| 130 |
3 |
dgisselq |
|
| 131 |
50 |
dgisselq |
reg mpypipe;
|
| 132 |
42 |
dgisselq |
initial mpypipe = 1'b0;
|
| 133 |
3 |
dgisselq |
always @(posedge i_clk)
|
| 134 |
42 |
dgisselq |
if (i_rst)
|
| 135 |
|
|
mpypipe <= 1'b0;
|
| 136 |
|
|
else
|
| 137 |
|
|
mpypipe <= (this_is_a_multiply_op);
|
| 138 |
|
|
|
| 139 |
|
|
assign mpydone = mpypipe; // this_is_a_multiply_op;
|
| 140 |
|
|
always @(posedge i_clk)
|
| 141 |
|
|
if (this_is_a_multiply_op)
|
| 142 |
|
|
mpyhi = i_op[1];
|
| 143 |
|
|
end else if (IMPLEMENT_MPY == 3)
|
| 144 |
|
|
begin // Our three clock option (ALU pauses for 2 clocks)
|
| 145 |
|
|
reg signed [63:0] r_smpy_result;
|
| 146 |
|
|
reg [63:0] r_umpy_result;
|
| 147 |
|
|
reg signed [31:0] r_mpy_a_input, r_mpy_b_input;
|
| 148 |
|
|
reg [1:0] mpypipe;
|
| 149 |
|
|
reg [1:0] r_sgn;
|
| 150 |
|
|
|
| 151 |
|
|
initial mpypipe = 2'b0;
|
| 152 |
|
|
always @(posedge i_clk)
|
| 153 |
|
|
if (i_rst)
|
| 154 |
|
|
mpypipe <= 2'b0;
|
| 155 |
|
|
else
|
| 156 |
|
|
mpypipe <= { mpypipe[0], this_is_a_multiply_op };
|
| 157 |
|
|
|
| 158 |
|
|
// First clock
|
| 159 |
|
|
always @(posedge i_clk)
|
| 160 |
|
|
begin
|
| 161 |
|
|
r_mpy_a_input <= i_a[31:0];
|
| 162 |
|
|
r_mpy_b_input <= i_b[31:0];
|
| 163 |
|
|
r_sgn <= { r_sgn[0], i_op[0] };
|
| 164 |
|
|
end
|
| 165 |
|
|
|
| 166 |
|
|
// Second clock
|
| 167 |
|
|
`ifdef VERILATOR
|
| 168 |
|
|
wire signed [63:0] s_mpy_a_input, s_mpy_b_input;
|
| 169 |
|
|
wire [63:0] u_mpy_a_input, u_mpy_b_input;
|
| 170 |
|
|
|
| 171 |
|
|
assign s_mpy_a_input = {{(32){r_mpy_a_input[31]}},r_mpy_a_input};
|
| 172 |
|
|
assign s_mpy_b_input = {{(32){r_mpy_b_input[31]}},r_mpy_b_input};
|
| 173 |
|
|
assign u_mpy_a_input = {32'h00,r_mpy_a_input};
|
| 174 |
|
|
assign u_mpy_b_input = {32'h00,r_mpy_b_input};
|
| 175 |
|
|
always @(posedge i_clk)
|
| 176 |
|
|
r_smpy_result = s_mpy_a_input * s_mpy_b_input;
|
| 177 |
|
|
always @(posedge i_clk)
|
| 178 |
|
|
r_umpy_result = u_mpy_a_input * u_mpy_b_input;
|
| 179 |
|
|
`else
|
| 180 |
|
|
|
| 181 |
|
|
wire [31:0] u_mpy_a_input, u_mpy_b_input;
|
| 182 |
|
|
|
| 183 |
|
|
assign u_mpy_a_input = r_mpy_a_input;
|
| 184 |
|
|
assign u_mpy_b_input = r_mpy_b_input;
|
| 185 |
|
|
|
| 186 |
|
|
always @(posedge i_clk)
|
| 187 |
|
|
r_smpy_result = r_mpy_a_input * r_mpy_b_input;
|
| 188 |
|
|
always @(posedge i_clk)
|
| 189 |
|
|
r_umpy_result = u_mpy_a_input * u_mpy_b_input;
|
| 190 |
3 |
dgisselq |
`endif
|
| 191 |
42 |
dgisselq |
|
| 192 |
|
|
always @(posedge i_clk)
|
| 193 |
|
|
if (this_is_a_multiply_op)
|
| 194 |
|
|
mpyhi = i_op[1];
|
| 195 |
|
|
assign mpybusy = mpypipe[0];
|
| 196 |
|
|
assign mpy_result = (r_sgn[1])?r_smpy_result:r_umpy_result;
|
| 197 |
|
|
assign mpydone = mpypipe[1];
|
| 198 |
|
|
|
| 199 |
|
|
// Results are then set on the third clock
|
| 200 |
|
|
end else // if (IMPLEMENT_MPY <= 4)
|
| 201 |
|
|
begin // The three clock option
|
| 202 |
3 |
dgisselq |
reg [63:0] r_mpy_result;
|
| 203 |
42 |
dgisselq |
reg [31:0] r_mpy_a_input, r_mpy_b_input;
|
| 204 |
|
|
reg r_mpy_signed;
|
| 205 |
|
|
reg [2:0] mpypipe;
|
| 206 |
3 |
dgisselq |
|
| 207 |
42 |
dgisselq |
// First clock, latch in the inputs
|
| 208 |
50 |
dgisselq |
initial mpypipe = 3'b0;
|
| 209 |
42 |
dgisselq |
always @(posedge i_clk)
|
| 210 |
|
|
begin
|
| 211 |
|
|
// mpypipe indicates we have a multiply in the
|
| 212 |
|
|
// pipeline. In this case, the multiply
|
| 213 |
|
|
// pipeline is a two stage pipeline, so we need
|
| 214 |
|
|
// two bits in the pipe.
|
| 215 |
|
|
if (i_rst)
|
| 216 |
|
|
mpypipe <= 3'h0;
|
| 217 |
|
|
else begin
|
| 218 |
|
|
mpypipe[0] <= this_is_a_multiply_op;
|
| 219 |
3 |
dgisselq |
mpypipe[1] <= mpypipe[0];
|
| 220 |
42 |
dgisselq |
mpypipe[2] <= mpypipe[1];
|
| 221 |
3 |
dgisselq |
end
|
| 222 |
|
|
|
| 223 |
42 |
dgisselq |
if (i_op[0]) // i.e. if signed multiply
|
| 224 |
3 |
dgisselq |
begin
|
| 225 |
42 |
dgisselq |
r_mpy_a_input <= {(~i_a[31]),i_a[30:0]};
|
| 226 |
|
|
r_mpy_b_input <= {(~i_b[31]),i_b[30:0]};
|
| 227 |
|
|
end else begin
|
| 228 |
|
|
r_mpy_a_input <= i_a[31:0];
|
| 229 |
|
|
r_mpy_b_input <= i_b[31:0];
|
| 230 |
3 |
dgisselq |
end
|
| 231 |
42 |
dgisselq |
// The signed bit really only matters in the
|
| 232 |
|
|
// case of 64 bit multiply. We'll keep track
|
| 233 |
|
|
// of it, though, and pretend in all other
|
| 234 |
|
|
// cases.
|
| 235 |
|
|
r_mpy_signed <= i_op[0];
|
| 236 |
3 |
dgisselq |
|
| 237 |
42 |
dgisselq |
if (this_is_a_multiply_op)
|
| 238 |
|
|
mpyhi = i_op[1];
|
| 239 |
|
|
end
|
| 240 |
3 |
dgisselq |
|
| 241 |
42 |
dgisselq |
assign mpybusy = |mpypipe[1:0];
|
| 242 |
|
|
assign mpydone = mpypipe[2];
|
| 243 |
|
|
|
| 244 |
|
|
// Second clock, do the multiplies, get the "partial
|
| 245 |
|
|
// products". Here, we break our input up into two
|
| 246 |
|
|
// halves,
|
| 247 |
3 |
dgisselq |
//
|
| 248 |
42 |
dgisselq |
// A = (2^16 ah + al)
|
| 249 |
|
|
// B = (2^16 bh + bl)
|
| 250 |
3 |
dgisselq |
//
|
| 251 |
42 |
dgisselq |
// and use these to compute partial products.
|
| 252 |
|
|
//
|
| 253 |
|
|
// AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl)
|
| 254 |
|
|
//
|
| 255 |
|
|
// Since we're following the FOIL algorithm to get here,
|
| 256 |
|
|
// we'll name these partial products according to FOIL.
|
| 257 |
|
|
//
|
| 258 |
|
|
// The trick is what happens if A or B is signed. In
|
| 259 |
|
|
// those cases, the real value of A will not be given by
|
| 260 |
|
|
// A = (2^16 ah + al)
|
| 261 |
|
|
// but rather
|
| 262 |
|
|
// A = (2^16 ah[31^] + al) - 2^31
|
| 263 |
|
|
// (where we have flipped the sign bit of A)
|
| 264 |
|
|
// and so ...
|
| 265 |
|
|
//
|
| 266 |
|
|
// AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31)
|
| 267 |
|
|
// = 2^32(ah*bh)
|
| 268 |
|
|
// +2^16 (ah*bl+al*bh)
|
| 269 |
|
|
// +(al*bl)
|
| 270 |
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al)
|
| 271 |
|
|
// - 2^62
|
| 272 |
|
|
// = 2^32(ah*bh)
|
| 273 |
|
|
// +2^16 (ah*bl+al*bh)
|
| 274 |
|
|
// +(al*bl)
|
| 275 |
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31)
|
| 276 |
|
|
//
|
| 277 |
|
|
reg [31:0] pp_f, pp_l; // F and L from FOIL
|
| 278 |
|
|
reg [32:0] pp_oi; // The O and I from FOIL
|
| 279 |
|
|
reg [32:0] pp_s;
|
| 280 |
3 |
dgisselq |
always @(posedge i_clk)
|
| 281 |
|
|
begin
|
| 282 |
42 |
dgisselq |
pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16];
|
| 283 |
|
|
pp_oi<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0]
|
| 284 |
|
|
+ r_mpy_a_input[15: 0]*r_mpy_b_input[31:16];
|
| 285 |
|
|
pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0];
|
| 286 |
|
|
// And a special one for the sign
|
| 287 |
|
|
if (r_mpy_signed)
|
| 288 |
|
|
pp_s <= 32'h8000_0000-(
|
| 289 |
|
|
r_mpy_a_input[31:0]
|
| 290 |
|
|
+ r_mpy_b_input[31:0]);
|
| 291 |
|
|
else
|
| 292 |
|
|
pp_s <= 33'h0;
|
| 293 |
|
|
end
|
| 294 |
3 |
dgisselq |
|
| 295 |
42 |
dgisselq |
// Third clock, add the results and produce a product
|
| 296 |
3 |
dgisselq |
always @(posedge i_clk)
|
| 297 |
42 |
dgisselq |
begin
|
| 298 |
|
|
r_mpy_result[15:0] <= pp_l[15:0];
|
| 299 |
|
|
r_mpy_result[63:16] <=
|
| 300 |
|
|
{ 32'h00, pp_l[31:16] }
|
| 301 |
|
|
+ { 15'h00, pp_oi }
|
| 302 |
|
|
+ { pp_s, 15'h00 }
|
| 303 |
|
|
+ { pp_f, 16'h00 };
|
| 304 |
|
|
end
|
| 305 |
3 |
dgisselq |
|
| 306 |
42 |
dgisselq |
assign mpy_result = r_mpy_result;
|
| 307 |
|
|
// Fourth clock -- results are clocked into writeback
|
| 308 |
|
|
end
|
| 309 |
|
|
endgenerate // All possible multiply results have been determined
|
| 310 |
3 |
dgisselq |
|
| 311 |
42 |
dgisselq |
//
|
| 312 |
|
|
// The master ALU case statement
|
| 313 |
|
|
//
|
| 314 |
|
|
always @(posedge i_clk)
|
| 315 |
|
|
if (i_ce)
|
| 316 |
|
|
begin
|
| 317 |
|
|
pre_sign <= (i_a[31]);
|
| 318 |
|
|
c <= 1'b0;
|
| 319 |
|
|
casez(i_op)
|
| 320 |
|
|
4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB
|
| 321 |
|
|
4'b0001: o_c <= i_a & i_b; // BTST/And
|
| 322 |
|
|
4'b0010:{c,o_c } <= i_a + i_b; // Add
|
| 323 |
|
|
4'b0011: o_c <= i_a | i_b; // Or
|
| 324 |
|
|
4'b0100: o_c <= i_a ^ i_b; // Xor
|
| 325 |
|
|
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
|
| 326 |
|
|
4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL
|
| 327 |
|
|
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
|
| 328 |
50 |
dgisselq |
4'b1000: o_c <= w_brev_result; // BREV
|
| 329 |
42 |
dgisselq |
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
|
| 330 |
50 |
dgisselq |
4'b1010: o_c <= mpy_result[63:32]; // MPYHU
|
| 331 |
|
|
4'b1011: o_c <= mpy_result[63:32]; // MPYHS
|
| 332 |
|
|
4'b1100: o_c <= mpy_result[31:0]; // MPY
|
| 333 |
42 |
dgisselq |
default: o_c <= i_b; // MOV, LDI
|
| 334 |
|
|
endcase
|
| 335 |
|
|
end else // if (mpydone)
|
| 336 |
|
|
o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0];
|
| 337 |
3 |
dgisselq |
|
| 338 |
42 |
dgisselq |
reg r_busy;
|
| 339 |
|
|
initial r_busy = 1'b0;
|
| 340 |
|
|
always @(posedge i_clk)
|
| 341 |
|
|
if (i_rst)
|
| 342 |
|
|
r_busy <= 1'b0;
|
| 343 |
|
|
else
|
| 344 |
|
|
r_busy <= ((IMPLEMENT_MPY > 1)
|
| 345 |
|
|
&&(this_is_a_multiply_op))||mpybusy;
|
| 346 |
|
|
assign o_busy = (r_busy); // ||((IMPLEMENT_MPY>1)&&(this_is_a_multiply_op));
|
| 347 |
|
|
|
| 348 |
|
|
|
| 349 |
3 |
dgisselq |
assign z = (o_c == 32'h0000);
|
| 350 |
|
|
assign n = (o_c[31]);
|
| 351 |
|
|
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
|
| 352 |
50 |
dgisselq |
wire vx = (keep_sgn_on_ovfl)&&(pre_sign != o_c[31]);
|
| 353 |
3 |
dgisselq |
|
| 354 |
50 |
dgisselq |
assign o_f = { v, n^vx, c, z };
|
| 355 |
3 |
dgisselq |
|
| 356 |
|
|
initial o_valid = 1'b0;
|
| 357 |
|
|
always @(posedge i_clk)
|
| 358 |
|
|
if (i_rst)
|
| 359 |
|
|
o_valid <= 1'b0;
|
| 360 |
42 |
dgisselq |
else if (IMPLEMENT_MPY <= 1)
|
| 361 |
|
|
o_valid <= (i_ce);
|
| 362 |
3 |
dgisselq |
else
|
| 363 |
42 |
dgisselq |
o_valid <=((i_ce)&&(!this_is_a_multiply_op))||(mpydone);
|
| 364 |
|
|
|
| 365 |
3 |
dgisselq |
endmodule
|