1 |
3 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: fastops.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This supports the instruction set reordering of operations
|
8 |
|
|
// created by the second generation instruction set, as well as
|
9 |
|
|
// the new operations of POPC (population count) and BREV (bit reversal).
|
10 |
|
|
//
|
11 |
|
|
//
|
12 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
13 |
|
|
// Gisselquist Technology, LLC
|
14 |
|
|
//
|
15 |
|
|
///////////////////////////////////////////////////////////////////////////
|
16 |
|
|
//
|
17 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
18 |
|
|
//
|
19 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
20 |
|
|
// modify it under the terms of the GNU General Public License as published
|
21 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
22 |
|
|
// your option) any later version.
|
23 |
|
|
//
|
24 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
25 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
26 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
27 |
|
|
// for more details.
|
28 |
|
|
//
|
29 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
30 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
31 |
|
|
//
|
32 |
|
|
//
|
33 |
|
|
///////////////////////////////////////////////////////////////////////////
|
34 |
|
|
//
|
35 |
|
|
module fastops(i_clk,i_rst, i_ce, i_valid, i_op, i_a, i_b, o_c, o_f, o_valid,
|
36 |
|
|
o_illegal, o_busy);
|
37 |
|
|
input i_clk, i_rst, i_ce;
|
38 |
|
|
input [3:0] i_op;
|
39 |
|
|
input [31:0] i_a, i_b;
|
40 |
|
|
input i_valid;
|
41 |
|
|
output reg [31:0] o_c;
|
42 |
|
|
output wire [3:0] o_f;
|
43 |
|
|
output wire o_valid;
|
44 |
|
|
output wire o_illegal;
|
45 |
|
|
output wire o_busy;
|
46 |
|
|
|
47 |
|
|
// Rotate-left logic
|
48 |
|
|
wire [63:0] w_rol_tmp;
|
49 |
|
|
assign w_rol_tmp = { i_a, i_a } << i_b[4:0];
|
50 |
|
|
reg [31:0] r_rol_result;
|
51 |
|
|
always @(posedge i_clk)
|
52 |
|
|
r_rol_result <= w_rol_tmp[63:32]; // Won't set flags
|
53 |
|
|
|
54 |
|
|
// Shift register logic
|
55 |
|
|
reg [32:0] r_lsr_result, r_asr_result, r_lsl_result;
|
56 |
|
|
always @(posedge i_clk)
|
57 |
|
|
begin
|
58 |
|
|
r_asr_result <= (|i_b[31:5])? {(33){i_a[31]}}
|
59 |
|
|
: ( $signed({i_a, 1'b0 })>>> (i_b[4:0]) );// ASR
|
60 |
|
|
r_lsr_result <= (|i_b[31:5])? 33'h00
|
61 |
|
|
: ( { i_a, 1'b0 } >> (i_b[4:0]) );// LSR
|
62 |
|
|
r_lsl_result <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
|
63 |
|
|
end
|
64 |
|
|
|
65 |
|
|
// Bit reversal pre-logic
|
66 |
|
|
wire [31:0] w_brev_result;
|
67 |
|
|
reg [31:0] r_brev_result;
|
68 |
|
|
genvar k;
|
69 |
|
|
generate
|
70 |
|
|
for(k=0; k<32; k=k+1)
|
71 |
|
|
begin : bit_reversal_cpuop
|
72 |
|
|
assign w_brev_result[k] = i_b[31-k];
|
73 |
|
|
end endgenerate
|
74 |
|
|
always @(posedge i_clk)
|
75 |
|
|
r_brev_result <= w_brev_result;
|
76 |
|
|
|
77 |
|
|
// Popcount logic
|
78 |
|
|
wire [31:0] w_popc_result;
|
79 |
|
|
reg [5:0] r_popc_result;
|
80 |
|
|
always @(posedge i_clk)
|
81 |
|
|
r_popc_result =
|
82 |
|
|
({5'h0,i_b[ 0]}+{5'h0,i_b[ 1]}+{5'h0,i_b[ 2]}+{5'h0,i_b[ 3]})
|
83 |
|
|
+({5'h0,i_b[ 4]}+{5'h0,i_b[ 5]}+{5'h0,i_b[ 6]}+{5'h0,i_b[ 7]})
|
84 |
|
|
+({5'h0,i_b[ 8]}+{5'h0,i_b[ 9]}+{5'h0,i_b[10]}+{5'h0,i_b[11]})
|
85 |
|
|
+({5'h0,i_b[12]}+{5'h0,i_b[13]}+{5'h0,i_b[14]}+{5'h0,i_b[15]})
|
86 |
|
|
+({5'h0,i_b[16]}+{5'h0,i_b[17]}+{5'h0,i_b[18]}+{5'h0,i_b[19]})
|
87 |
|
|
+({5'h0,i_b[20]}+{5'h0,i_b[21]}+{5'h0,i_b[22]}+{5'h0,i_b[23]})
|
88 |
|
|
+({5'h0,i_b[24]}+{5'h0,i_b[25]}+{5'h0,i_b[26]}+{5'h0,i_b[27]})
|
89 |
|
|
+({5'h0,i_b[28]}+{5'h0,i_b[29]}+{5'h0,i_b[30]}+{5'h0,i_b[31]});
|
90 |
|
|
assign w_popc_result = { 26'h00, r_popc_result };
|
91 |
|
|
|
92 |
|
|
// Prelogic for our flags registers
|
93 |
|
|
wire z, n, v;
|
94 |
|
|
reg c, pre_sign, set_ovfl;
|
95 |
|
|
always @(posedge i_clk)
|
96 |
|
|
if (i_ce) // 1 LUT
|
97 |
|
|
set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
|
98 |
|
|
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
|
99 |
|
|
||(i_op == 4'h6) // LSL
|
100 |
|
|
||(i_op == 4'h5)); // LSR
|
101 |
|
|
|
102 |
|
|
reg [31:0] r_logical;
|
103 |
|
|
always @(posedge i_clk)
|
104 |
|
|
r_logical <= (i_op[0]) ? (i_a & i_b) : (i_a | i_b);
|
105 |
|
|
|
106 |
|
|
reg [32:0] r_sum, r_diff;
|
107 |
|
|
reg [31:0] r_ldilo, r_bypass, r_xor;
|
108 |
|
|
always @(posedge i_clk)
|
109 |
|
|
r_sum <= i_a + i_b; // Add
|
110 |
|
|
always @(posedge i_clk)
|
111 |
|
|
r_diff <= {1'b0, i_a } - { 1'b0, i_b }; // SUB
|
112 |
|
|
always @(posedge i_clk)
|
113 |
|
|
r_xor <= i_a ^ i_b; // XOR
|
114 |
|
|
always @(posedge i_clk)
|
115 |
|
|
r_ldilo <= { i_a[31:16], i_b[15:0] }; // LDILO
|
116 |
|
|
always @(posedge i_clk)
|
117 |
|
|
r_bypass <= i_b; // LOD/MOV,ETC
|
118 |
|
|
|
119 |
|
|
reg mpyhi;
|
120 |
|
|
wire mpybusy;
|
121 |
|
|
|
122 |
|
|
//
|
123 |
|
|
// Multiply logic
|
124 |
|
|
//
|
125 |
|
|
reg [63:0] r_mpy_result; // Our final goal
|
126 |
|
|
|
127 |
|
|
// The three clock option
|
128 |
|
|
reg [31:0] r_mpy_a_input, r_mpy_b_input;
|
129 |
|
|
reg r_mpy_signed;
|
130 |
|
|
reg [1:0] mpypipe;
|
131 |
|
|
|
132 |
|
|
wire mpy;
|
133 |
|
|
assign mpy = (i_op[3:1] == 3'h5)||(i_op[3:0] != 4'h8);
|
134 |
|
|
|
135 |
|
|
// First clock, latch in the inputs
|
136 |
|
|
always @(posedge i_clk)
|
137 |
|
|
begin
|
138 |
|
|
if (i_op[0]) // i.e. if signed multiply
|
139 |
|
|
begin
|
140 |
|
|
r_mpy_a_input <= {(~i_a[31]),i_a[30:0]};
|
141 |
|
|
r_mpy_b_input <= {(~i_b[31]),i_b[30:0]};
|
142 |
|
|
end else begin
|
143 |
|
|
r_mpy_a_input <= i_a[31:0];
|
144 |
|
|
r_mpy_b_input <= i_b[31:0];
|
145 |
|
|
end
|
146 |
|
|
// The signed bit really only matters in the case of 64 bit
|
147 |
|
|
// multiply. We'll keep track of it, though, and pretend in
|
148 |
|
|
// all other cases.
|
149 |
|
|
r_mpy_signed <= i_op[0];
|
150 |
|
|
|
151 |
|
|
mpyhi = i_op[1];
|
152 |
|
|
end
|
153 |
|
|
|
154 |
|
|
// Second clock, do the multiplies, get the "partial products". Here,
|
155 |
|
|
// we break our input up into two halves,
|
156 |
|
|
//
|
157 |
|
|
// A = (2^16 ah + al)
|
158 |
|
|
// B = (2^16 bh + bl)
|
159 |
|
|
//
|
160 |
|
|
// and use these to compute partial products.
|
161 |
|
|
//
|
162 |
|
|
// AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl)
|
163 |
|
|
//
|
164 |
|
|
// Since we're following the FOIL algorithm to get here,
|
165 |
|
|
// we'll name these partial products according to FOIL.
|
166 |
|
|
//
|
167 |
|
|
// The trick is what happens if A or B is signed. In
|
168 |
|
|
// those cases, the real value of A will not be given by
|
169 |
|
|
// A = (2^16 ah + al)
|
170 |
|
|
// but rather
|
171 |
|
|
// A = (2^16 ah[31^] + al) - 2^31
|
172 |
|
|
// (where we have flipped the sign bit of A) and so ...
|
173 |
|
|
//
|
174 |
|
|
// AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31)
|
175 |
|
|
// = 2^32(ah*bh)
|
176 |
|
|
// +2^16 (ah*bl+al*bh)
|
177 |
|
|
// +(al*bl)
|
178 |
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al)
|
179 |
|
|
// - 2^62
|
180 |
|
|
// = 2^32(ah*bh)
|
181 |
|
|
// +2^16 (ah*bl+al*bh)
|
182 |
|
|
// +(al*bl)
|
183 |
|
|
// - 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31)
|
184 |
|
|
//
|
185 |
|
|
reg [31:0] pp_f, pp_o, pp_i, pp_l; // F, O, I and L from FOIL
|
186 |
|
|
reg [32:0] pp_s;
|
187 |
|
|
always @(posedge i_clk)
|
188 |
|
|
begin
|
189 |
|
|
pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16];
|
190 |
|
|
pp_o<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0];
|
191 |
|
|
pp_i<=r_mpy_a_input[15: 0]*r_mpy_b_input[31:16];
|
192 |
|
|
pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0];
|
193 |
|
|
// And a special one for the sign
|
194 |
|
|
if (r_mpy_signed)
|
195 |
|
|
pp_s <= 32'h8000_0000-( r_mpy_a_input[31:0]
|
196 |
|
|
+ r_mpy_b_input[31:0]);
|
197 |
|
|
else
|
198 |
|
|
pp_s <= 33'h0;
|
199 |
|
|
end
|
200 |
|
|
|
201 |
|
|
// Third clock, add the results and produce a product
|
202 |
|
|
// r_mpy_result[63:16] <=
|
203 |
|
|
// { 32'h00, pp_l[31:16] }
|
204 |
|
|
// + { 16'h00, pp_o }
|
205 |
|
|
// + { 16'h00, pp_i }
|
206 |
|
|
// + { pp_s, 15'h00 }
|
207 |
|
|
// + { pp_f, 16'h00 };
|
208 |
|
|
//
|
209 |
|
|
// 16'h00 16'h00 pp_l[31:16] ppl[15:]
|
210 |
|
|
// 16'h00 pp_o[31:16] pp_o[15:0] 16'h00
|
211 |
|
|
// 16'h00 pp_i[31:16] pp_i[15:0] 16'h00
|
212 |
|
|
// pp_s[32:17] pp_s[16:1] pp_s[0],15'h0 16'h00
|
213 |
|
|
// pp_f[31:16] pp_f[31:16] 16'h00 16'h00
|
214 |
|
|
//
|
215 |
|
|
// 16'h0 15'h0,lo[32] lo[31:16] lo[15:]
|
216 |
|
|
// 15'h0,oi[32] oi[31:16] oi[15:0] 16'h00
|
217 |
|
|
// hi[31:0] hi[15:0] 16'h00
|
218 |
|
|
//
|
219 |
|
|
//
|
220 |
|
|
reg [32:0] partial_mpy_oi, partial_mpy_lo;
|
221 |
|
|
reg [31:0] partial_mpy_hi;
|
222 |
|
|
always @(posedge i_clk)
|
223 |
|
|
begin
|
224 |
|
|
partial_mpy_lo[30:0]<= pp_l[30:0];
|
225 |
|
|
partial_mpy_lo[32:31]<= pp_s[0]+pp_l[31];
|
226 |
|
|
partial_mpy_oi[32:0]<= pp_o + pp_i;
|
227 |
|
|
partial_mpy_hi[31:0]<= pp_s[32:1] + pp_f;
|
228 |
|
|
end
|
229 |
|
|
reg partial_mpy_2cl, partial_mpy_2ch;
|
230 |
|
|
reg [31:0] partial_mpy_2lo, partial_mpy_2hi;
|
231 |
|
|
// Fourth clock -- Finish adding our partial results
|
232 |
|
|
always @(posedge i_clk)
|
233 |
|
|
begin
|
234 |
|
|
partial_mpy_2lo[15:0] <= partial_mpy_lo[15:0];
|
235 |
|
|
{ partial_mpy_2cl, partial_mpy_2lo[31:16] }
|
236 |
|
|
<= partial_mpy_oi[15:0] + partial_mpy_lo[31:16];
|
237 |
|
|
{ partial_mpy_2ch, partial_mpy_2hi[15:0] }
|
238 |
|
|
<= partial_mpy_oi[32:16] + partial_mpy_hi[16:0];
|
239 |
|
|
partial_mpy_2hi[31:17] <= partial_mpy_2hi[31:17];
|
240 |
|
|
end
|
241 |
|
|
// Fifth clock -- deal with final carries
|
242 |
|
|
always @(posedge i_clk)
|
243 |
|
|
begin
|
244 |
|
|
r_mpy_result[31:0] <= partial_mpy_2lo[31:0];
|
245 |
|
|
r_mpy_result[63:32] <= partial_mpy_2hi+
|
246 |
|
|
{ 14'h0,partial_mpy_2ch,15'h0, partial_mpy_2cl};
|
247 |
|
|
end
|
248 |
|
|
// Fifth clock -- results are available for writeback.
|
249 |
|
|
|
250 |
|
|
//
|
251 |
|
|
// The master ALU case statement
|
252 |
|
|
//
|
253 |
|
|
reg [3:0] r_op;
|
254 |
|
|
always @(posedge i_clk)
|
255 |
|
|
begin
|
256 |
|
|
r_op <= i_op;
|
257 |
|
|
pre_sign <= (i_a[31]);
|
258 |
|
|
c <= 1'b0;
|
259 |
|
|
casez(r_op)
|
260 |
|
|
4'b0000:{c,o_c } <= r_diff; // CMP/SUB
|
261 |
|
|
4'b00?1: o_c <= r_logical; // BTST/And/Or
|
262 |
|
|
4'b0010:{c,o_c } <= r_sum; // Add
|
263 |
|
|
4'b0100: o_c <= r_xor; // Xor
|
264 |
|
|
4'b0101:{o_c,c } <= r_lsr_result; // LSR
|
265 |
|
|
4'b0110:{c,o_c } <= r_lsl_result; // LSL
|
266 |
|
|
4'b0111:{o_c,c } <= r_asr_result; // ASR
|
267 |
|
|
4'b1000: o_c <= r_mpy_result[31:0]; // MPY
|
268 |
|
|
4'b1001: o_c <= r_ldilo; // LODILO
|
269 |
|
|
4'b1010: o_c <= r_mpy_result[63:32]; // MPYHU
|
270 |
|
|
4'b1011: o_c <= r_mpy_result[63:32]; // MPYHS
|
271 |
|
|
4'b1100: o_c <= r_brev_result; // BREV
|
272 |
|
|
4'b1101: o_c <= w_popc_result; // POPC
|
273 |
|
|
4'b1110: o_c <= r_rol_result; // ROL
|
274 |
|
|
default: o_c <= r_bypass; // MOV, LDI
|
275 |
|
|
endcase
|
276 |
|
|
end
|
277 |
|
|
|
278 |
|
|
// With the multiply implemented (as above), there are no illegal
|
279 |
|
|
// results.
|
280 |
|
|
assign o_illegal = 1'b0;
|
281 |
|
|
|
282 |
|
|
assign z = (o_c == 32'h0000); // This really costs us a clock ...
|
283 |
|
|
assign n = (o_c[31]);
|
284 |
|
|
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
|
285 |
|
|
|
286 |
|
|
assign o_f = { v, n, c, z };
|
287 |
|
|
|
288 |
|
|
reg [2:0] alu_pipe;
|
289 |
|
|
always @(posedge i_clk)
|
290 |
|
|
if (i_rst)
|
291 |
|
|
alu_pipe <= 3'h0;
|
292 |
|
|
else
|
293 |
|
|
alu_pipe <= { alu_pipe[1], (i_ce)&(~mpy)|alu_pipe[0],
|
294 |
|
|
(i_ce)&(mpy) };
|
295 |
|
|
//
|
296 |
|
|
// A longer pipeline would look like:
|
297 |
|
|
//
|
298 |
|
|
// alu_pipe <= { alu_pipe[2:1], (i_ce)&(~mpy)|alu_pipe[1], alu_pipe[0],
|
299 |
|
|
// (i_ce)&mpy;
|
300 |
|
|
// o_busy <= (|alu_pipe[1:0])
|
301 |
|
|
|
302 |
|
|
assign o_valid = alu_pipe[2];
|
303 |
|
|
assign o_busy = alu_pipe[0];
|
304 |
|
|
endmodule
|