1 |
3 |
dgisselq |
///////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: idecode.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This RTL file specifies how instructions are to be decoded
|
8 |
|
|
// into their underlying meanings. This is specifically a version
|
9 |
|
|
// designed to support a "Next Generation", or "Version 2" instruction
|
10 |
|
|
// set as (currently) activated by the OPT_NEW_INSTRUCTION_SET option
|
11 |
|
|
// in cpudefs.v.
|
12 |
|
|
//
|
13 |
|
|
// I expect to (eventually) retire the old instruction set, at which point
|
14 |
|
|
// this will become the default instruction set decoder.
|
15 |
|
|
//
|
16 |
|
|
//
|
17 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
18 |
|
|
// Gisselquist Technology, LLC
|
19 |
|
|
//
|
20 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
21 |
|
|
//
|
22 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
23 |
|
|
//
|
24 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
25 |
|
|
// modify it under the terms of the GNU General Public License as published
|
26 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
27 |
|
|
// your option) any later version.
|
28 |
|
|
//
|
29 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
30 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
31 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
32 |
|
|
// for more details.
|
33 |
|
|
//
|
34 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
35 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
36 |
|
|
//
|
37 |
|
|
//
|
38 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
39 |
|
|
//
|
40 |
|
|
//
|
41 |
|
|
//
|
42 |
|
|
`define CPU_CC_REG 4'he
|
43 |
|
|
`define CPU_PC_REG 4'hf
|
44 |
|
|
//
|
45 |
|
|
`include "cpudefs.v"
|
46 |
|
|
//
|
47 |
|
|
//
|
48 |
|
|
//
|
49 |
|
|
module idecode(i_clk, i_rst, i_ce, i_stalled,
|
50 |
|
|
i_instruction, i_gie, i_pc, i_pf_valid,
|
51 |
|
|
i_illegal,
|
52 |
|
|
o_phase, o_illegal,
|
53 |
|
|
o_pc, o_gie,
|
54 |
|
|
o_dcdR, o_dcdA, o_dcdB, o_I, o_zI,
|
55 |
|
|
o_cond, o_wF,
|
56 |
|
|
o_op, o_ALU, o_M, o_DV, o_FP, o_break, o_lock,
|
57 |
|
|
o_wR, o_rA, o_rB,
|
58 |
|
|
o_early_branch, o_branch_pc, o_ljmp,
|
59 |
|
|
o_pipe
|
60 |
|
|
);
|
61 |
|
|
parameter ADDRESS_WIDTH=24, IMPLEMENT_MPY=1, EARLY_BRANCHING=1,
|
62 |
|
|
IMPLEMENT_DIVIDE=1, IMPLEMENT_FPU=0, AW = ADDRESS_WIDTH;
|
63 |
|
|
input i_clk, i_rst, i_ce, i_stalled;
|
64 |
|
|
input [31:0] i_instruction;
|
65 |
|
|
input i_gie;
|
66 |
|
|
input [(AW-1):0] i_pc;
|
67 |
|
|
input i_pf_valid, i_illegal;
|
68 |
|
|
output wire o_phase;
|
69 |
|
|
output reg o_illegal;
|
70 |
|
|
output reg [(AW-1):0] o_pc;
|
71 |
|
|
output reg o_gie;
|
72 |
|
|
output reg [6:0] o_dcdR, o_dcdA, o_dcdB;
|
73 |
|
|
output wire [31:0] o_I;
|
74 |
|
|
output reg o_zI;
|
75 |
|
|
output reg [3:0] o_cond;
|
76 |
|
|
output reg o_wF;
|
77 |
|
|
output reg [3:0] o_op;
|
78 |
|
|
output reg o_ALU, o_M, o_DV, o_FP, o_break;
|
79 |
|
|
output wire o_lock;
|
80 |
|
|
output reg o_wR, o_rA, o_rB;
|
81 |
|
|
output wire o_early_branch;
|
82 |
|
|
output wire [(AW-1):0] o_branch_pc;
|
83 |
|
|
output wire o_ljmp;
|
84 |
|
|
output wire o_pipe;
|
85 |
|
|
|
86 |
|
|
wire dcdA_stall, dcdB_stall, dcdF_stall;
|
87 |
|
|
wire o_dcd_early_branch;
|
88 |
|
|
wire [(AW-1):0] o_dcd_branch_pc;
|
89 |
|
|
reg o_dcdI, o_dcdIz;
|
90 |
|
|
`ifdef OPT_PIPELINED
|
91 |
|
|
reg r_lock;
|
92 |
|
|
`endif
|
93 |
|
|
`ifdef OPT_PIPELINED_BUS_ACCESS
|
94 |
|
|
reg r_pipe;
|
95 |
|
|
`endif
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
wire [4:0] w_op;
|
99 |
49 |
dgisselq |
wire w_ldi, w_mov, w_cmptst, w_ldilo, w_ALU, w_brev, w_noop,
|
100 |
|
|
w_mpy;
|
101 |
3 |
dgisselq |
wire [4:0] w_dcdR, w_dcdB, w_dcdA;
|
102 |
|
|
wire w_dcdR_pc, w_dcdR_cc;
|
103 |
|
|
wire w_dcdA_pc, w_dcdA_cc;
|
104 |
|
|
wire w_dcdB_pc, w_dcdB_cc;
|
105 |
|
|
wire [3:0] w_cond;
|
106 |
49 |
dgisselq |
wire w_wF, w_dcdM, w_dcdDV, w_dcdFP, w_sto;
|
107 |
3 |
dgisselq |
wire w_wR, w_rA, w_rB, w_wR_n;
|
108 |
|
|
wire w_ljmp, w_ljmp_dly;
|
109 |
|
|
wire [31:0] iword;
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
`ifdef OPT_VLIW
|
113 |
|
|
reg [16:0] r_nxt_half;
|
114 |
|
|
assign iword = (o_phase)
|
115 |
|
|
// set second half as a NOOP ... but really
|
116 |
|
|
// shouldn't matter
|
117 |
|
|
? { r_nxt_half[16:7], 1'b0, r_nxt_half[6:0], 5'b11000, 3'h7, 6'h00 }
|
118 |
|
|
: i_instruction;
|
119 |
|
|
`else
|
120 |
|
|
assign iword = { 1'b0, i_instruction[30:0] };
|
121 |
|
|
`endif
|
122 |
|
|
|
123 |
|
|
generate
|
124 |
|
|
if (EARLY_BRANCHING != 0)
|
125 |
|
|
assign w_ljmp = (iword == 32'h7c87c000);
|
126 |
|
|
else
|
127 |
|
|
assign w_ljmp = 1'b0;
|
128 |
|
|
endgenerate
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
assign w_op= iword[26:22];
|
132 |
|
|
assign w_mov = (w_op == 5'h0f);
|
133 |
|
|
assign w_ldi = (w_op[4:1] == 4'hb);
|
134 |
|
|
assign w_brev = (w_op == 5'hc);
|
135 |
|
|
assign w_cmptst = (w_op[4:1] == 4'h8);
|
136 |
|
|
assign w_ldilo = (w_op[4:0] == 5'h9);
|
137 |
49 |
dgisselq |
assign w_mpy = ((w_op[4:1]==4'h5)||(w_op[4:0]==5'h08));
|
138 |
3 |
dgisselq |
assign w_ALU = (~w_op[4]);
|
139 |
|
|
|
140 |
|
|
// 4 LUTs
|
141 |
|
|
//
|
142 |
|
|
// Two parts to the result register: the register set, given for
|
143 |
49 |
dgisselq |
// moves in iword[18] but only for the supervisor, and the other
|
144 |
3 |
dgisselq |
// four bits encoded in the instruction.
|
145 |
|
|
//
|
146 |
49 |
dgisselq |
`ifdef OPT_NO_USERMODE
|
147 |
|
|
assign w_dcdR = { 1'b0, iword[30:27] };
|
148 |
|
|
`else
|
149 |
3 |
dgisselq |
assign w_dcdR = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[18]:i_gie,
|
150 |
|
|
iword[30:27] };
|
151 |
49 |
dgisselq |
`endif
|
152 |
3 |
dgisselq |
// 2 LUTs
|
153 |
|
|
//
|
154 |
|
|
// If the result register is either CC or PC, and this would otherwise
|
155 |
|
|
// be a floating point instruction with floating point opcode of 0,
|
156 |
|
|
// then this is a NOOP.
|
157 |
|
|
assign w_noop = (w_op[4:0] == 5'h18)&&(
|
158 |
|
|
((IMPLEMENT_FPU>0)&&(w_dcdR[3:1] == 3'h7))
|
159 |
|
|
||(IMPLEMENT_FPU==0));
|
160 |
|
|
|
161 |
49 |
dgisselq |
`ifdef OPT_NO_USERMODE
|
162 |
|
|
assign w_dcdB = { 1'b0, iword[17:14] };
|
163 |
|
|
`else
|
164 |
3 |
dgisselq |
// 4 LUTs
|
165 |
|
|
assign w_dcdB = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[13]:i_gie,
|
166 |
|
|
iword[17:14] };
|
167 |
49 |
dgisselq |
`endif
|
168 |
3 |
dgisselq |
|
169 |
|
|
// 0 LUTs
|
170 |
|
|
assign w_dcdA = w_dcdR;
|
171 |
|
|
// 2 LUTs, 1 delay each
|
172 |
|
|
assign w_dcdR_pc = (w_dcdR == {i_gie, `CPU_PC_REG});
|
173 |
|
|
assign w_dcdR_cc = (w_dcdR == {i_gie, `CPU_CC_REG});
|
174 |
|
|
// 0 LUTs
|
175 |
|
|
assign w_dcdA_pc = w_dcdR_pc;
|
176 |
|
|
assign w_dcdA_cc = w_dcdR_cc;
|
177 |
|
|
// 2 LUTs, 1 delays each
|
178 |
|
|
assign w_dcdB_pc = (w_dcdB[3:0] == `CPU_PC_REG);
|
179 |
|
|
assign w_dcdB_cc = (w_dcdB[3:0] == `CPU_CC_REG);
|
180 |
|
|
|
181 |
|
|
// Under what condition will we execute this
|
182 |
|
|
// instruction? Only the load immediate instruction
|
183 |
|
|
// is completely unconditional.
|
184 |
|
|
//
|
185 |
|
|
// 3+4 LUTs
|
186 |
|
|
assign w_cond = (w_ldi) ? 4'h8 :
|
187 |
|
|
(iword[31])?{(iword[20:19]==2'b00),
|
188 |
|
|
1'b0,iword[20:19]}
|
189 |
|
|
: { (iword[21:19]==3'h0), iword[21:19] };
|
190 |
|
|
|
191 |
|
|
// 1 LUT
|
192 |
|
|
assign w_dcdM = (w_op[4:1] == 4'h9);
|
193 |
49 |
dgisselq |
assign w_sto = (w_dcdM)&&(w_op[0]);
|
194 |
3 |
dgisselq |
// 1 LUT
|
195 |
|
|
assign w_dcdDV = (w_op[4:1] == 4'ha);
|
196 |
|
|
// 1 LUT
|
197 |
|
|
assign w_dcdFP = (w_op[4:3] == 2'b11)&&(w_dcdR[3:1] != 3'h7);
|
198 |
|
|
// 4 LUT's--since it depends upon FP/NOOP condition (vs 1 before)
|
199 |
|
|
// Everything reads A but ... NOOP/BREAK/LOCK, LDI, LOD, MOV
|
200 |
|
|
assign w_rA = (w_dcdFP)
|
201 |
|
|
// Divide's read A
|
202 |
|
|
||(w_dcdDV)
|
203 |
|
|
// ALU read's A, unless it's a MOV to A
|
204 |
|
|
// This includes LDIHI/LDILO
|
205 |
49 |
dgisselq |
||((~w_op[4])&&(w_op[3:0]!=4'hf)&&(!w_brev))
|
206 |
3 |
dgisselq |
// STO's read A
|
207 |
|
|
||((w_dcdM)&&(w_op[0]))
|
208 |
|
|
// Test/compares
|
209 |
49 |
dgisselq |
||(w_cmptst);
|
210 |
3 |
dgisselq |
// 1 LUTs -- do we read a register for operand B? Specifically, do
|
211 |
|
|
// we need to stall if the register is not (yet) ready?
|
212 |
|
|
assign w_rB = (w_mov)||((iword[18])&&(~w_ldi));
|
213 |
|
|
// 1 LUT: All but STO, NOOP/BREAK/LOCK, and CMP/TST write back to w_dcdR
|
214 |
49 |
dgisselq |
assign w_wR_n = (w_sto)||(w_cmptst)
|
215 |
|
|
||((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7));
|
216 |
3 |
dgisselq |
assign w_wR = ~w_wR_n;
|
217 |
|
|
//
|
218 |
|
|
// 1-output bit (5 Opcode bits, 4 out-reg bits, 3 condition bits)
|
219 |
|
|
//
|
220 |
|
|
// This'd be 4 LUTs, save that we have the carve out for NOOPs
|
221 |
|
|
// and writes to the PC/CC register(s).
|
222 |
|
|
assign w_wF = (w_cmptst)
|
223 |
|
|
||((w_cond[3])&&((w_dcdFP)||(w_dcdDV)
|
224 |
|
|
||((w_ALU)&&(~w_mov)&&(~w_ldilo)&&(~w_brev)
|
225 |
|
|
&&(iword[30:28] != 3'h7))));
|
226 |
|
|
|
227 |
|
|
// Bottom 13 bits: no LUT's
|
228 |
|
|
// w_dcd[12: 0] -- no LUTs
|
229 |
|
|
// w_dcd[ 13] -- 2 LUTs
|
230 |
|
|
// w_dcd[17:14] -- (5+i0+i1) = 3 LUTs, 1 delay
|
231 |
|
|
// w_dcd[22:18] : 5 LUTs, 1 delay (assuming high bit is o/w determined)
|
232 |
|
|
reg [22:0] r_I;
|
233 |
|
|
wire [22:0] w_I, w_fullI;
|
234 |
|
|
wire w_Iz;
|
235 |
|
|
|
236 |
|
|
assign w_fullI = (w_ldi) ? { iword[22:0] } // LDI
|
237 |
|
|
:((w_mov) ?{ {(23-13){iword[12]}}, iword[12:0] } // Move
|
238 |
|
|
:((~iword[18]) ? { {(23-18){iword[17]}}, iword[17:0] }
|
239 |
|
|
: { {(23-14){iword[13]}}, iword[13:0] }
|
240 |
|
|
));
|
241 |
|
|
|
242 |
|
|
`ifdef OPT_VLIW
|
243 |
|
|
wire [5:0] w_halfI;
|
244 |
|
|
assign w_halfI = (w_ldi) ? iword[5:0]
|
245 |
|
|
:((iword[5]) ? 6'h00 : {iword[4],iword[4:0]});
|
246 |
|
|
assign w_I = (iword[31])? {{(23-6){w_halfI[5]}}, w_halfI }:w_fullI;
|
247 |
|
|
`else
|
248 |
|
|
assign w_I = w_fullI;
|
249 |
|
|
`endif
|
250 |
|
|
assign w_Iz = (w_I == 0);
|
251 |
|
|
|
252 |
|
|
|
253 |
|
|
`ifdef OPT_VLIW
|
254 |
|
|
//
|
255 |
|
|
// The o_phase parameter is special. It needs to let the software
|
256 |
|
|
// following know that it cannot break/interrupt on an o_phase asserted
|
257 |
|
|
// instruction, lest the break take place between the first and second
|
258 |
|
|
// half of a VLIW instruction. To do this, o_phase must be asserted
|
259 |
|
|
// when the first instruction half is valid, but not asserted on either
|
260 |
|
|
// a 32-bit instruction or the second half of a 2x16-bit instruction.
|
261 |
|
|
reg r_phase;
|
262 |
|
|
initial r_phase = 1'b0;
|
263 |
|
|
always @(posedge i_clk)
|
264 |
|
|
if ((i_rst) // When no instruction is in the pipe, phase is zero
|
265 |
|
|
||(o_early_branch)||(w_ljmp_dly))
|
266 |
|
|
r_phase <= 1'b0;
|
267 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
268 |
|
|
r_phase <= (o_phase)? 1'b0:(i_instruction[31]);
|
269 |
|
|
// Phase is '1' on the first instruction of a two-part set
|
270 |
|
|
// But, due to the delay in processing, it's '1' when our output is
|
271 |
|
|
// valid for that first part, but that'll be the same time we
|
272 |
|
|
// are processing the second part ... so it may look to us like a '1'
|
273 |
|
|
// on the second half of processing.
|
274 |
|
|
|
275 |
|
|
assign o_phase = r_phase;
|
276 |
|
|
`else
|
277 |
|
|
assign o_phase = 1'b0;
|
278 |
|
|
`endif
|
279 |
|
|
|
280 |
|
|
|
281 |
|
|
initial o_illegal = 1'b0;
|
282 |
|
|
always @(posedge i_clk)
|
283 |
|
|
if (i_rst)
|
284 |
|
|
o_illegal <= 1'b0;
|
285 |
|
|
else if (i_ce)
|
286 |
|
|
begin
|
287 |
|
|
`ifdef OPT_VLIW
|
288 |
|
|
o_illegal <= (i_illegal);
|
289 |
|
|
`else
|
290 |
|
|
o_illegal <= ((i_illegal) || (i_instruction[31]));
|
291 |
|
|
`endif
|
292 |
49 |
dgisselq |
if ((IMPLEMENT_MPY==0)&&(w_mpy))
|
293 |
3 |
dgisselq |
o_illegal <= 1'b1;
|
294 |
|
|
|
295 |
|
|
if ((IMPLEMENT_DIVIDE==0)&&(w_dcdDV))
|
296 |
|
|
o_illegal <= 1'b1;
|
297 |
|
|
else if ((IMPLEMENT_DIVIDE!=0)&&(w_dcdDV)&&(w_dcdR[3:1]==3'h7))
|
298 |
|
|
o_illegal <= 1'b1;
|
299 |
|
|
|
300 |
|
|
|
301 |
|
|
if ((IMPLEMENT_FPU!=0)&&(w_dcdFP)&&(w_dcdR[3:1]==3'h7))
|
302 |
|
|
o_illegal <= 1'b1;
|
303 |
|
|
else if ((IMPLEMENT_FPU==0)&&(w_dcdFP))
|
304 |
|
|
o_illegal <= 1'b1;
|
305 |
|
|
|
306 |
|
|
if ((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)
|
307 |
|
|
&&(
|
308 |
|
|
(w_op[2:0] != 3'h1) // BREAK
|
309 |
|
|
`ifdef OPT_PIPELINED
|
310 |
|
|
&&(w_op[2:0] != 3'h2) // LOCK
|
311 |
|
|
`endif
|
312 |
|
|
&&(w_op[2:0] != 3'h0))) // NOOP
|
313 |
|
|
o_illegal <= 1'b1;
|
314 |
|
|
end
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
always @(posedge i_clk)
|
318 |
|
|
if (i_ce)
|
319 |
|
|
begin
|
320 |
|
|
`ifdef OPT_VLIW
|
321 |
|
|
if (~o_phase)
|
322 |
|
|
begin
|
323 |
|
|
o_gie<= i_gie;
|
324 |
|
|
// i.e. dcd_pc+1
|
325 |
|
|
o_pc <= i_pc+{{(AW-1){1'b0}},1'b1};
|
326 |
|
|
end
|
327 |
|
|
`else
|
328 |
|
|
o_gie<= i_gie;
|
329 |
|
|
o_pc <= i_pc+{{(AW-1){1'b0}},1'b1};
|
330 |
|
|
`endif
|
331 |
|
|
|
332 |
|
|
// Under what condition will we execute this
|
333 |
|
|
// instruction? Only the load immediate instruction
|
334 |
|
|
// is completely unconditional.
|
335 |
|
|
o_cond <= w_cond;
|
336 |
|
|
// Don't change the flags on conditional instructions,
|
337 |
|
|
// UNLESS: the conditional instruction was a CMP
|
338 |
|
|
// or TST instruction.
|
339 |
|
|
o_wF <= w_wF;
|
340 |
|
|
|
341 |
|
|
// Record what operation/op-code (4-bits) we are doing
|
342 |
|
|
// Note that LDI magically becomes a MOV
|
343 |
|
|
// instruction here. That way it's a pass through
|
344 |
|
|
// the ALU. Likewise, the two compare instructions
|
345 |
|
|
// CMP and TST becomes SUB and AND here as well.
|
346 |
|
|
// We keep only the bottom four bits, since we've
|
347 |
|
|
// already done the rest of the decode necessary to
|
348 |
|
|
// settle between the other instructions. For example,
|
349 |
|
|
// o_FP plus these four bits uniquely defines the FP
|
350 |
|
|
// instruction, o_DV plus the bottom of these defines
|
351 |
|
|
// the divide, etc.
|
352 |
|
|
o_op <= (w_ldi)||(w_noop)? 4'hf:w_op[3:0];
|
353 |
|
|
|
354 |
|
|
// Default values
|
355 |
|
|
o_dcdR <= { w_dcdR_cc, w_dcdR_pc, w_dcdR};
|
356 |
|
|
o_dcdA <= { w_dcdA_cc, w_dcdA_pc, w_dcdA};
|
357 |
|
|
o_dcdB <= { w_dcdB_cc, w_dcdB_pc, w_dcdB};
|
358 |
|
|
o_wR <= w_wR;
|
359 |
|
|
o_rA <= w_rA;
|
360 |
|
|
o_rB <= w_rB;
|
361 |
|
|
r_I <= w_I;
|
362 |
|
|
o_zI <= w_Iz;
|
363 |
|
|
|
364 |
|
|
// Turn a NOOP into an ALU operation--subtract in
|
365 |
|
|
// particular, although it doesn't really matter as long
|
366 |
|
|
// as it doesn't take longer than one clock. Note
|
367 |
|
|
// also that this depends upon not setting any registers
|
368 |
|
|
// or flags, which should already be true.
|
369 |
|
|
o_ALU <= (w_ALU)||(w_ldi)||(w_cmptst)||(w_noop); // 2 LUT
|
370 |
|
|
o_M <= w_dcdM;
|
371 |
|
|
o_DV <= w_dcdDV;
|
372 |
|
|
o_FP <= w_dcdFP;
|
373 |
|
|
|
374 |
|
|
o_break <= (w_op[4:0]==5'b11001)&&(
|
375 |
|
|
((IMPLEMENT_FPU>0)&&(w_dcdR[3:1]==3'h7))
|
376 |
|
|
||(IMPLEMENT_FPU==0));
|
377 |
|
|
`ifdef OPT_PIPELINED
|
378 |
|
|
r_lock <= (w_op[4:0]==5'b11010)&&(
|
379 |
|
|
((IMPLEMENT_FPU>0)&&(w_dcdR[3:1]==3'h7))
|
380 |
|
|
||(IMPLEMENT_FPU==0));
|
381 |
|
|
`endif
|
382 |
|
|
`ifdef OPT_VLIW
|
383 |
|
|
r_nxt_half <= { iword[31], iword[13:5],
|
384 |
|
|
((iword[21])? iword[20:19] : 2'h0),
|
385 |
|
|
iword[4:0] };
|
386 |
|
|
`endif
|
387 |
|
|
end
|
388 |
|
|
|
389 |
|
|
`ifdef OPT_PIPELINED
|
390 |
|
|
assign o_lock = r_lock;
|
391 |
|
|
`else
|
392 |
|
|
assign o_lock = 1'b0;
|
393 |
|
|
`endif
|
394 |
|
|
|
395 |
|
|
generate
|
396 |
|
|
if (EARLY_BRANCHING!=0)
|
397 |
|
|
begin
|
398 |
|
|
reg r_early_branch, r_ljmp;
|
399 |
|
|
reg [(AW-1):0] r_branch_pc;
|
400 |
|
|
|
401 |
|
|
initial r_ljmp = 1'b0;
|
402 |
|
|
always @(posedge i_clk)
|
403 |
|
|
if (i_rst)
|
404 |
|
|
r_ljmp <= 1'b0;
|
405 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
406 |
|
|
r_ljmp <= (w_ljmp);
|
407 |
|
|
assign o_ljmp = r_ljmp;
|
408 |
|
|
|
409 |
|
|
always @(posedge i_clk)
|
410 |
|
|
if (i_rst)
|
411 |
|
|
r_early_branch <= 1'b0;
|
412 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
413 |
|
|
begin
|
414 |
|
|
if (r_ljmp)
|
415 |
|
|
// LOD (PC),PC
|
416 |
|
|
r_early_branch <= 1'b1;
|
417 |
|
|
else if ((~iword[31])&&(iword[30:27]==`CPU_PC_REG)&&(w_cond[3]))
|
418 |
|
|
begin
|
419 |
|
|
if (w_op[4:1] == 4'hb) // LDI to PC
|
420 |
|
|
// LDI x,PC
|
421 |
|
|
r_early_branch <= 1'b1;
|
422 |
|
|
else if ((w_op[4:0]==5'h02)&&(~iword[18]))
|
423 |
|
|
// Add x,PC
|
424 |
|
|
r_early_branch <= 1'b1;
|
425 |
|
|
else begin
|
426 |
|
|
r_early_branch <= 1'b0;
|
427 |
|
|
end
|
428 |
|
|
end else
|
429 |
|
|
r_early_branch <= 1'b0;
|
430 |
|
|
end else if (i_ce)
|
431 |
|
|
r_early_branch <= 1'b0;
|
432 |
|
|
|
433 |
|
|
always @(posedge i_clk)
|
434 |
|
|
if (i_ce)
|
435 |
|
|
begin
|
436 |
|
|
if (r_ljmp)
|
437 |
|
|
r_branch_pc <= iword[(AW-1):0];
|
438 |
49 |
dgisselq |
else if (w_ldi) // LDI
|
439 |
3 |
dgisselq |
r_branch_pc <= {{(AW-23){iword[22]}},iword[22:0]};
|
440 |
|
|
else // Add x,PC
|
441 |
|
|
r_branch_pc <= i_pc
|
442 |
|
|
+ {{(AW-17){iword[17]}},iword[16:0]}
|
443 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
444 |
|
|
end
|
445 |
|
|
|
446 |
|
|
assign w_ljmp_dly = r_ljmp;
|
447 |
|
|
assign o_early_branch = r_early_branch;
|
448 |
|
|
assign o_branch_pc = r_branch_pc;
|
449 |
|
|
end else begin
|
450 |
|
|
assign w_ljmp_dly = 1'b0;
|
451 |
|
|
assign o_early_branch = 1'b0;
|
452 |
|
|
assign o_branch_pc = {(AW){1'b0}};
|
453 |
|
|
assign o_ljmp = 1'b0;
|
454 |
|
|
end endgenerate
|
455 |
|
|
|
456 |
|
|
|
457 |
|
|
// To be a pipeable operation there must be ...
|
458 |
|
|
// 1. Two valid adjacent instructions
|
459 |
|
|
// 2. Both must be memory operations, of the same time (both lods
|
460 |
|
|
// or both stos)
|
461 |
|
|
// 3. Both must use the same register base address
|
462 |
|
|
// 4. Both must be to the same address, or the address incremented
|
463 |
|
|
// by one
|
464 |
|
|
// Note that we're not using iword here ... there's a lot of logic
|
465 |
|
|
// taking place, and it's only valid if the new word is not compressed.
|
466 |
|
|
//
|
467 |
|
|
reg r_valid;
|
468 |
|
|
`ifdef OPT_PIPELINED_BUS_ACCESS
|
469 |
|
|
initial r_pipe = 1'b0;
|
470 |
|
|
always @(posedge i_clk)
|
471 |
|
|
if (i_ce)
|
472 |
|
|
r_pipe <= (r_valid)&&(i_pf_valid)&&(~i_instruction[31])
|
473 |
|
|
&&(w_dcdM)&&(o_M)&&(o_op[0] ==i_instruction[22])
|
474 |
|
|
&&(i_instruction[17:14] == o_dcdB[3:0])
|
475 |
|
|
&&(i_instruction[17:14] != o_dcdA[3:0])
|
476 |
|
|
&&(i_gie == o_gie)
|
477 |
|
|
&&((i_instruction[21:19]==o_cond[2:0])
|
478 |
|
|
||(o_cond[2:0] == 3'h0))
|
479 |
|
|
&&((i_instruction[13:0]==r_I[13:0])
|
480 |
|
|
||({1'b0, i_instruction[13:0]}==(r_I[13:0]+14'h1)));
|
481 |
|
|
assign o_pipe = r_pipe;
|
482 |
|
|
`else
|
483 |
|
|
assign o_pipe = 1'b0;
|
484 |
|
|
`endif
|
485 |
|
|
|
486 |
|
|
always @(posedge i_clk)
|
487 |
|
|
if (i_rst)
|
488 |
|
|
r_valid <= 1'b0;
|
489 |
|
|
else if ((i_ce)&&(o_ljmp))
|
490 |
|
|
r_valid <= 1'b0;
|
491 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
492 |
|
|
r_valid <= 1'b1;
|
493 |
|
|
else if (~i_stalled)
|
494 |
|
|
r_valid <= 1'b0;
|
495 |
|
|
|
496 |
|
|
|
497 |
|
|
assign o_I = { {(32-22){r_I[22]}}, r_I[21:0] };
|
498 |
|
|
|
499 |
|
|
endmodule
|