| 1 |
3 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: pfcache.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: Keeping our CPU fed with instructions, at one per clock and
|
| 8 |
|
|
// with no stalls. An unusual feature of this cache is the
|
| 9 |
|
|
// requirement that the entire cache may be cleared (if necessary).
|
| 10 |
|
|
//
|
| 11 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 12 |
|
|
// Gisselquist Technology, LLC
|
| 13 |
|
|
//
|
| 14 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 15 |
|
|
//
|
| 16 |
50 |
dgisselq |
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
| 17 |
3 |
dgisselq |
//
|
| 18 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 19 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 20 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 21 |
|
|
// your option) any later version.
|
| 22 |
|
|
//
|
| 23 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 24 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 25 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 26 |
|
|
// for more details.
|
| 27 |
|
|
//
|
| 28 |
50 |
dgisselq |
// You should have received a copy of the GNU General Public License along
|
| 29 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
| 30 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 31 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 32 |
|
|
//
|
| 33 |
3 |
dgisselq |
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 34 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 35 |
|
|
//
|
| 36 |
|
|
//
|
| 37 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 38 |
|
|
//
|
| 39 |
50 |
dgisselq |
//
|
| 40 |
3 |
dgisselq |
module pfcache(i_clk, i_rst, i_new_pc, i_clear_cache,
|
| 41 |
|
|
// i_early_branch, i_from_addr,
|
| 42 |
|
|
i_stall_n, i_pc, o_i, o_pc, o_v,
|
| 43 |
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
| 44 |
|
|
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data,
|
| 45 |
|
|
o_illegal);
|
| 46 |
|
|
parameter LGCACHELEN = 8, ADDRESS_WIDTH=24,
|
| 47 |
43 |
dgisselq |
LGLINES=5; // Log of the number of separate cache lines
|
| 48 |
|
|
localparam CACHELEN=(1<<LGCACHELEN); // Size of our cache memory
|
| 49 |
|
|
localparam CW=LGCACHELEN; // Short hand for LGCACHELEN
|
| 50 |
|
|
localparam PW=LGCACHELEN-LGLINES; // Size of a cache line
|
| 51 |
|
|
localparam BUSW = 32; // Number of data lines on the bus
|
| 52 |
|
|
localparam AW=ADDRESS_WIDTH; // Shorthand for ADDRESS_WIDTH
|
| 53 |
3 |
dgisselq |
input i_clk, i_rst, i_new_pc;
|
| 54 |
|
|
input i_clear_cache;
|
| 55 |
|
|
input i_stall_n;
|
| 56 |
|
|
input [(AW-1):0] i_pc;
|
| 57 |
|
|
output wire [(BUSW-1):0] o_i;
|
| 58 |
|
|
output wire [(AW-1):0] o_pc;
|
| 59 |
|
|
output wire o_v;
|
| 60 |
|
|
//
|
| 61 |
|
|
output reg o_wb_cyc, o_wb_stb;
|
| 62 |
|
|
output wire o_wb_we;
|
| 63 |
|
|
output reg [(AW-1):0] o_wb_addr;
|
| 64 |
|
|
output wire [(BUSW-1):0] o_wb_data;
|
| 65 |
|
|
//
|
| 66 |
|
|
input i_wb_ack, i_wb_stall, i_wb_err;
|
| 67 |
|
|
input [(BUSW-1):0] i_wb_data;
|
| 68 |
|
|
//
|
| 69 |
|
|
output reg o_illegal;
|
| 70 |
|
|
|
| 71 |
|
|
// Fixed bus outputs: we read from the bus only, never write.
|
| 72 |
|
|
// Thus the output data is ... irrelevant and don't care. We set it
|
| 73 |
|
|
// to zero just to set it to something.
|
| 74 |
|
|
assign o_wb_we = 1'b0;
|
| 75 |
|
|
assign o_wb_data = 0;
|
| 76 |
|
|
|
| 77 |
|
|
wire r_v;
|
| 78 |
|
|
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
|
| 79 |
43 |
dgisselq |
reg [(AW-CW-1):0] tags [0:((1<<(LGLINES))-1)];
|
| 80 |
|
|
reg [((1<<(LGLINES))-1):0] vmask;
|
| 81 |
3 |
dgisselq |
|
| 82 |
|
|
reg [(AW-1):0] lastpc;
|
| 83 |
|
|
reg [(CW-1):0] rdaddr;
|
| 84 |
|
|
reg [(AW-1):CW] tagvalipc, tagvallst;
|
| 85 |
|
|
wire [(AW-1):CW] tagval;
|
| 86 |
|
|
wire [(AW-1):PW] lasttag;
|
| 87 |
|
|
reg illegal_valid;
|
| 88 |
|
|
reg [(AW-1):PW] illegal_cache;
|
| 89 |
|
|
|
| 90 |
|
|
// initial o_i = 32'h76_00_00_00; // A NOOP instruction
|
| 91 |
|
|
// initial o_pc = 0;
|
| 92 |
|
|
reg [(BUSW-1):0] r_pc_cache, r_last_cache;
|
| 93 |
|
|
reg [(AW-1):0] r_pc, r_lastpc;
|
| 94 |
|
|
reg isrc;
|
| 95 |
|
|
always @(posedge i_clk)
|
| 96 |
|
|
begin
|
| 97 |
|
|
// We don't have the logic to select what to read, we must
|
| 98 |
|
|
// read both the value at i_pc and lastpc. cache[i_pc] is
|
| 99 |
|
|
// the value we return if the cache is good, cacne[lastpc] is
|
| 100 |
|
|
// the value we return if we've been stalled, weren't valid,
|
| 101 |
|
|
// or had to wait a clock or two. (Remember i_pc can't stop
|
| 102 |
|
|
// changing for a clock, so we need to keep track of the last
|
| 103 |
|
|
// one from before it stopped.)
|
| 104 |
|
|
//
|
| 105 |
|
|
// Here we keep track of which answer we want/need
|
| 106 |
|
|
isrc <= ((r_v)&&(i_stall_n))||(i_new_pc);
|
| 107 |
|
|
|
| 108 |
|
|
// Here we read both, and select which was write using isrc
|
| 109 |
|
|
// on the next clock.
|
| 110 |
|
|
r_pc_cache <= cache[i_pc[(CW-1):0]];
|
| 111 |
|
|
r_last_cache <= cache[lastpc[(CW-1):0]];
|
| 112 |
|
|
r_pc <= i_pc;
|
| 113 |
|
|
r_lastpc <= lastpc;
|
| 114 |
|
|
end
|
| 115 |
|
|
assign o_pc = (isrc) ? r_pc : r_lastpc;
|
| 116 |
|
|
assign o_i = (isrc) ? r_pc_cache : r_last_cache;
|
| 117 |
|
|
|
| 118 |
|
|
reg tagsrc;
|
| 119 |
|
|
always @(posedge i_clk)
|
| 120 |
|
|
// It may be possible to recover a clock once the cache line
|
| 121 |
|
|
// has been filled, but our prior attempt to do so has lead
|
| 122 |
|
|
// to a race condition, so we keep this logic simple.
|
| 123 |
|
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
| 124 |
|
|
tagsrc <= 1'b1;
|
| 125 |
|
|
else
|
| 126 |
|
|
tagsrc <= 1'b0;
|
| 127 |
|
|
initial tagvalipc = 0;
|
| 128 |
|
|
always @(posedge i_clk)
|
| 129 |
|
|
tagvalipc <= tags[i_pc[(CW-1):PW]];
|
| 130 |
|
|
initial tagvallst = 0;
|
| 131 |
|
|
always @(posedge i_clk)
|
| 132 |
|
|
tagvallst <= tags[lastpc[(CW-1):PW]];
|
| 133 |
|
|
assign tagval = (tagsrc)?tagvalipc : tagvallst;
|
| 134 |
|
|
|
| 135 |
|
|
// i_pc will only increment when everything else isn't stalled, thus
|
| 136 |
|
|
// we can set it without worrying about that. Doing this enables
|
| 137 |
|
|
// us to work in spite of stalls. For example, if the next address
|
| 138 |
|
|
// isn't valid, but the decoder is stalled, get the next address
|
| 139 |
|
|
// anyway.
|
| 140 |
|
|
initial lastpc = 0;
|
| 141 |
|
|
always @(posedge i_clk)
|
| 142 |
|
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
| 143 |
|
|
lastpc <= i_pc;
|
| 144 |
|
|
|
| 145 |
|
|
assign lasttag = lastpc[(AW-1):PW];
|
| 146 |
|
|
|
| 147 |
|
|
wire w_v_from_pc, w_v_from_last;
|
| 148 |
|
|
assign w_v_from_pc = ((i_pc[(AW-1):PW] == lasttag)
|
| 149 |
|
|
&&(tagvalipc == i_pc[(AW-1):CW])
|
| 150 |
|
|
&&(vmask[i_pc[(CW-1):PW]]));
|
| 151 |
|
|
assign w_v_from_last = (
|
| 152 |
|
|
//(lastpc[(AW-1):PW] == lasttag)&&
|
| 153 |
|
|
(tagval == lastpc[(AW-1):CW])
|
| 154 |
|
|
&&(vmask[lastpc[(CW-1):PW]]));
|
| 155 |
|
|
|
| 156 |
|
|
reg [1:0] delay;
|
| 157 |
|
|
|
| 158 |
|
|
initial delay = 2'h3;
|
| 159 |
|
|
reg rvsrc;
|
| 160 |
|
|
always @(posedge i_clk)
|
| 161 |
|
|
if ((i_rst)||(i_clear_cache)||(i_new_pc)||((r_v)&&(i_stall_n)))
|
| 162 |
|
|
begin
|
| 163 |
|
|
// r_v <= r_v_from_pc;
|
| 164 |
|
|
rvsrc <= 1'b1;
|
| 165 |
|
|
delay <= 2'h2;
|
| 166 |
|
|
end else if (~r_v) begin // Otherwise, r_v was true and we were
|
| 167 |
|
|
// stalled, hence only if ~r_v
|
| 168 |
|
|
rvsrc <= 1'b0;
|
| 169 |
|
|
if (o_wb_cyc)
|
| 170 |
|
|
delay <= 2'h2;
|
| 171 |
|
|
else if (delay != 0)
|
| 172 |
|
|
delay <= delay + 2'b11; // i.e. delay -= 1;
|
| 173 |
|
|
end
|
| 174 |
|
|
reg r_v_from_pc, r_v_from_last;
|
| 175 |
|
|
always @(posedge i_clk)
|
| 176 |
|
|
r_v_from_pc <= w_v_from_pc;
|
| 177 |
|
|
always @(posedge i_clk)
|
| 178 |
|
|
r_v_from_last <= w_v_from_last;
|
| 179 |
|
|
|
| 180 |
|
|
assign r_v = ((rvsrc)?(r_v_from_pc):(r_v_from_last));
|
| 181 |
|
|
assign o_v = (((rvsrc)?(r_v_from_pc):(r_v_from_last))
|
| 182 |
|
|
||((o_illegal)&&(~o_wb_cyc)))
|
| 183 |
|
|
&&(~i_new_pc)&&(~i_rst);
|
| 184 |
|
|
|
| 185 |
|
|
reg last_ack;
|
| 186 |
|
|
initial last_ack = 1'b0;
|
| 187 |
|
|
always @(posedge i_clk)
|
| 188 |
|
|
last_ack <= (o_wb_cyc)&&(
|
| 189 |
|
|
(rdaddr[(PW-1):1]=={(PW-1){1'b1}})
|
| 190 |
|
|
&&((rdaddr[0])||(i_wb_ack)));
|
| 191 |
|
|
|
| 192 |
|
|
reg needload;
|
| 193 |
|
|
initial needload = 1'b0;
|
| 194 |
|
|
always @(posedge i_clk)
|
| 195 |
|
|
needload <= ((~r_v)&&(delay==0)
|
| 196 |
|
|
&&((tagvallst != lastpc[(AW-1):CW])
|
| 197 |
|
|
||(~vmask[lastpc[(CW-1):PW]]))
|
| 198 |
|
|
&&((~illegal_valid)
|
| 199 |
|
|
||(lastpc[(AW-1):PW] != illegal_cache)));
|
| 200 |
|
|
|
| 201 |
|
|
reg last_addr;
|
| 202 |
|
|
initial last_addr = 1'b0;
|
| 203 |
|
|
always @(posedge i_clk)
|
| 204 |
|
|
last_addr <= (o_wb_cyc)&&(o_wb_addr[(PW-1):1] == {(PW-1){1'b1}})
|
| 205 |
|
|
&&((~i_wb_stall)|(o_wb_addr[0]));
|
| 206 |
|
|
|
| 207 |
|
|
initial o_wb_cyc = 1'b0;
|
| 208 |
|
|
initial o_wb_stb = 1'b0;
|
| 209 |
|
|
initial o_wb_addr = {(AW){1'b0}};
|
| 210 |
|
|
initial rdaddr = 0;
|
| 211 |
|
|
always @(posedge i_clk)
|
| 212 |
|
|
if ((i_rst)||(i_clear_cache))
|
| 213 |
|
|
begin
|
| 214 |
|
|
o_wb_cyc <= 1'b0;
|
| 215 |
|
|
o_wb_stb <= 1'b0;
|
| 216 |
|
|
end else if (o_wb_cyc)
|
| 217 |
|
|
begin
|
| 218 |
|
|
if (i_wb_err)
|
| 219 |
|
|
o_wb_stb <= 1'b0;
|
| 220 |
|
|
else if ((o_wb_stb)&&(~i_wb_stall)&&(last_addr))
|
| 221 |
|
|
o_wb_stb <= 1'b0;
|
| 222 |
|
|
|
| 223 |
|
|
if (((i_wb_ack)&&(last_ack))||(i_wb_err))
|
| 224 |
|
|
o_wb_cyc <= 1'b0;
|
| 225 |
|
|
|
| 226 |
|
|
// else if (rdaddr[(PW-1):1] == {(PW-1){1'b1}})
|
| 227 |
|
|
// tags[lastpc[(CW-1):PW]] <= lastpc[(AW-1):CW];
|
| 228 |
|
|
|
| 229 |
|
|
end else if (needload)
|
| 230 |
|
|
begin
|
| 231 |
|
|
o_wb_cyc <= 1'b1;
|
| 232 |
|
|
o_wb_stb <= 1'b1;
|
| 233 |
|
|
end
|
| 234 |
|
|
|
| 235 |
|
|
always @(posedge i_clk)
|
| 236 |
|
|
if (o_wb_cyc) // &&(i_wb_ack)
|
| 237 |
|
|
tags[o_wb_addr[(CW-1):PW]] <= o_wb_addr[(AW-1):CW];
|
| 238 |
|
|
always @(posedge i_clk)
|
| 239 |
|
|
if ((o_wb_cyc)&&(i_wb_ack))
|
| 240 |
|
|
rdaddr <= rdaddr + 1;
|
| 241 |
|
|
else if (~o_wb_cyc)
|
| 242 |
|
|
rdaddr <= { lastpc[(CW-1):PW], {(PW){1'b0}} };
|
| 243 |
|
|
|
| 244 |
|
|
always @(posedge i_clk)
|
| 245 |
|
|
if ((o_wb_stb)&&(~i_wb_stall)&&(~last_addr))
|
| 246 |
|
|
o_wb_addr[(PW-1):0] <= o_wb_addr[(PW-1):0]+1;
|
| 247 |
|
|
else if (~o_wb_cyc)
|
| 248 |
|
|
o_wb_addr <= { lastpc[(AW-1):PW], {(PW){1'b0}} };
|
| 249 |
|
|
|
| 250 |
|
|
// Can't initialize an array, so leave cache uninitialized
|
| 251 |
|
|
// We'll also never get an ack without sys being active, so skip
|
| 252 |
|
|
// that check. Or rather, let's just use o_wb_cyc instead. This
|
| 253 |
|
|
// will work because multiple writes to the same address, ending with
|
| 254 |
|
|
// a valid write, aren't a problem.
|
| 255 |
|
|
always @(posedge i_clk)
|
| 256 |
|
|
if (o_wb_cyc) // &&(i_wb_ack)
|
| 257 |
|
|
cache[rdaddr] <= i_wb_data;
|
| 258 |
|
|
|
| 259 |
|
|
// VMask ... is a section loaded?
|
| 260 |
|
|
// Note "svmask". It's purpose is to delay the vmask setting by one
|
| 261 |
|
|
// clock, so that we can insure the right value of the cache is loaded
|
| 262 |
|
|
// before declaring that the cache line is valid. Without this, the
|
| 263 |
|
|
// cache line would get read, and the instruction would read from the
|
| 264 |
|
|
// last cache line.
|
| 265 |
|
|
reg svmask;
|
| 266 |
|
|
initial vmask = 0;
|
| 267 |
|
|
initial svmask = 1'b0;
|
| 268 |
43 |
dgisselq |
reg [(LGLINES-1):0] saddr;
|
| 269 |
3 |
dgisselq |
always @(posedge i_clk)
|
| 270 |
|
|
if ((i_rst)||(i_clear_cache))
|
| 271 |
|
|
begin
|
| 272 |
|
|
vmask <= 0;
|
| 273 |
|
|
svmask<= 1'b0;
|
| 274 |
|
|
end
|
| 275 |
|
|
else begin
|
| 276 |
|
|
svmask <= ((o_wb_cyc)&&(i_wb_ack)&&(last_ack));
|
| 277 |
|
|
|
| 278 |
|
|
if (svmask)
|
| 279 |
|
|
vmask[saddr] <= 1'b1;
|
| 280 |
|
|
if ((~o_wb_cyc)&&(needload))
|
| 281 |
|
|
vmask[lastpc[(CW-1):PW]] <= 1'b0;
|
| 282 |
|
|
end
|
| 283 |
|
|
always @(posedge i_clk)
|
| 284 |
|
|
if ((o_wb_cyc)&&(i_wb_ack))
|
| 285 |
|
|
saddr <= rdaddr[(CW-1):PW];
|
| 286 |
|
|
|
| 287 |
|
|
initial illegal_cache = 0;
|
| 288 |
|
|
initial illegal_valid = 0;
|
| 289 |
|
|
always @(posedge i_clk)
|
| 290 |
|
|
if ((i_rst)||(i_clear_cache))
|
| 291 |
|
|
begin
|
| 292 |
|
|
illegal_cache <= 0;
|
| 293 |
|
|
illegal_valid <= 0;
|
| 294 |
|
|
end else if ((o_wb_cyc)&&(i_wb_err))
|
| 295 |
|
|
begin
|
| 296 |
|
|
illegal_cache <= o_wb_addr[(AW-1):PW];
|
| 297 |
|
|
illegal_valid <= 1'b1;
|
| 298 |
|
|
end
|
| 299 |
|
|
|
| 300 |
|
|
initial o_illegal = 1'b0;
|
| 301 |
|
|
always @(posedge i_clk)
|
| 302 |
|
|
if ((i_rst)||(i_clear_cache)||(o_wb_cyc))
|
| 303 |
|
|
o_illegal <= 1'b0;
|
| 304 |
|
|
else
|
| 305 |
|
|
o_illegal <= (illegal_valid)
|
| 306 |
|
|
&&(illegal_cache == i_pc[(AW-1):PW]);
|
| 307 |
|
|
|
| 308 |
|
|
endmodule
|