| 1 |
3 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
//
|
| 4 |
|
|
// Filename: wbdmac.v
|
| 5 |
|
|
//
|
| 6 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 7 |
|
|
//
|
| 8 |
|
|
// Purpose: Wishbone DMA controller
|
| 9 |
|
|
//
|
| 10 |
|
|
// This module is controllable via the wishbone, and moves values from
|
| 11 |
|
|
// one location in the wishbone address space to another. The amount of
|
| 12 |
|
|
// memory moved at any given time can be up to 4kB, or equivalently 1kW.
|
| 13 |
|
|
// Four registers control this DMA controller: a control/status register,
|
| 14 |
|
|
// a length register, a source WB address and a destination WB address.
|
| 15 |
|
|
// These register may be read at any time, but they may only be written
|
| 16 |
|
|
// to when the controller is idle.
|
| 17 |
|
|
//
|
| 18 |
|
|
// The meanings of three of the setup registers should be self explanatory:
|
| 19 |
|
|
// - The length register controls the total number of words to
|
| 20 |
|
|
// transfer.
|
| 21 |
|
|
// - The source address register controls where the DMA controller
|
| 22 |
|
|
// reads from. This address may or may not be incremented
|
| 23 |
|
|
// after each read, depending upon the setting in the
|
| 24 |
|
|
// control/status register.
|
| 25 |
|
|
// - The destination address register, which controls where the DMA
|
| 26 |
|
|
// controller writes to. This address may or may not be
|
| 27 |
|
|
// incremented after each write, also depending upon the
|
| 28 |
|
|
// setting in the control/status register.
|
| 29 |
|
|
//
|
| 30 |
|
|
// It is the control/status register, at local address zero, that needs
|
| 31 |
|
|
// more definition:
|
| 32 |
|
|
//
|
| 33 |
|
|
// Bits:
|
| 34 |
|
|
// 31 R Write protect If this is set to one, it means the
|
| 35 |
|
|
// write protect bit is set and the controller
|
| 36 |
|
|
// is therefore idle. This bit will be set upon
|
| 37 |
|
|
// completing any transfer.
|
| 38 |
|
|
// 30 R Error. The controller stopped mid-transfer
|
| 39 |
|
|
// after receiving a bus error.
|
| 40 |
|
|
// 29 R/W inc_s_n If set to one, the source address
|
| 41 |
|
|
// will not increment from one read to the next.
|
| 42 |
|
|
// 28 R/W inc_d_n If set to one, the destination address
|
| 43 |
|
|
// will not increment from one write to the next.
|
| 44 |
|
|
// 27 R Always 0
|
| 45 |
|
|
// 26..16 R nread Indicates how many words have been read,
|
| 46 |
|
|
// and not necessarily written (yet). This
|
| 47 |
|
|
// combined with the cfg_len parameter should tell
|
| 48 |
|
|
// exactly where the controller is at mid-transfer.
|
| 49 |
|
|
// 27..16 W WriteProtect When a 12'h3db is written to these
|
| 50 |
|
|
// bits, the write protect bit will be cleared.
|
| 51 |
|
|
//
|
| 52 |
|
|
// 15 R/W on_dev_trigger When set to '1', the controller will
|
| 53 |
|
|
// wait for an external interrupt before starting.
|
| 54 |
|
|
// 14..10 R/W device_id This determines which external interrupt
|
| 55 |
|
|
// will trigger a transfer.
|
| 56 |
|
|
// 9..0 R/W transfer_len How many bytes to transfer at one time.
|
| 57 |
|
|
// The minimum transfer length is one, while zero
|
| 58 |
|
|
// is mapped to a transfer length of 1kW.
|
| 59 |
|
|
//
|
| 60 |
|
|
//
|
| 61 |
|
|
// To use this, follow this checklist:
|
| 62 |
|
|
// 1. Wait for any prior DMA operation to complete
|
| 63 |
|
|
// (Read address 0, wait 'till either top bit is set or cfg_len==0)
|
| 64 |
|
|
// 2. Write values into length, source and destination address.
|
| 65 |
|
|
// (writei(3, &vals) should be sufficient for this.)
|
| 66 |
|
|
// 3. Enable the DMAC interrupt in whatever interrupt controller is present
|
| 67 |
|
|
// on the system.
|
| 68 |
|
|
// 4. Write the final start command to the setup/control/status register:
|
| 69 |
|
|
// Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger,
|
| 70 |
|
|
// appropriately for your task
|
| 71 |
|
|
// Write 12'h3db to the upper word.
|
| 72 |
|
|
// Set the lower word to either all zeros, or a smaller transfer
|
| 73 |
|
|
// length if desired.
|
| 74 |
|
|
// 5. wait() for the interrupt and the operation to complete.
|
| 75 |
|
|
// Prior to completion, number of items successfully transferred
|
| 76 |
|
|
// be read from the length register. If the internal buffer is
|
| 77 |
|
|
// being used, then you can read how much has been read into that
|
| 78 |
|
|
// buffer by reading from bits 25..16 of this control/status
|
| 79 |
|
|
// register.
|
| 80 |
|
|
//
|
| 81 |
|
|
// Creator: Dan Gisselquist
|
| 82 |
|
|
// Gisselquist Technology, LLC
|
| 83 |
|
|
//
|
| 84 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 85 |
|
|
//
|
| 86 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
| 87 |
|
|
//
|
| 88 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 89 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 90 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 91 |
|
|
// your option) any later version.
|
| 92 |
|
|
//
|
| 93 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 94 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 95 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 96 |
|
|
// for more details.
|
| 97 |
|
|
//
|
| 98 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 99 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 100 |
|
|
//
|
| 101 |
|
|
//
|
| 102 |
|
|
///////////////////////////////////////////////////////////////////////////
|
| 103 |
|
|
//
|
| 104 |
|
|
//
|
| 105 |
|
|
`define DMA_IDLE 3'b000
|
| 106 |
|
|
`define DMA_WAIT 3'b001
|
| 107 |
|
|
`define DMA_READ_REQ 3'b010
|
| 108 |
|
|
`define DMA_READ_ACK 3'b011
|
| 109 |
|
|
`define DMA_PRE_WRITE 3'b100
|
| 110 |
|
|
`define DMA_WRITE_REQ 3'b101
|
| 111 |
|
|
`define DMA_WRITE_ACK 3'b110
|
| 112 |
|
|
|
| 113 |
|
|
module wbdmac(i_clk, i_rst,
|
| 114 |
|
|
i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data,
|
| 115 |
|
|
o_swb_ack, o_swb_stall, o_swb_data,
|
| 116 |
|
|
o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data,
|
| 117 |
|
|
i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err,
|
| 118 |
|
|
i_dev_ints,
|
| 119 |
|
|
o_interrupt);
|
| 120 |
|
|
parameter ADDRESS_WIDTH=32, LGMEMLEN = 10,
|
| 121 |
|
|
DW=32, LGDV=5,AW=ADDRESS_WIDTH;
|
| 122 |
|
|
input i_clk, i_rst;
|
| 123 |
|
|
// Slave/control wishbone inputs
|
| 124 |
|
|
input i_swb_cyc, i_swb_stb, i_swb_we;
|
| 125 |
|
|
input [1:0] i_swb_addr;
|
| 126 |
|
|
input [(DW-1):0] i_swb_data;
|
| 127 |
|
|
// Slave/control wishbone outputs
|
| 128 |
|
|
output reg o_swb_ack;
|
| 129 |
|
|
output wire o_swb_stall;
|
| 130 |
|
|
output reg [(DW-1):0] o_swb_data;
|
| 131 |
|
|
// Master/DMA wishbone control
|
| 132 |
|
|
output wire o_mwb_cyc, o_mwb_stb, o_mwb_we;
|
| 133 |
|
|
output reg [(AW-1):0] o_mwb_addr;
|
| 134 |
|
|
output reg [(DW-1):0] o_mwb_data;
|
| 135 |
|
|
// Master/DMA wishbone responses from the bus
|
| 136 |
|
|
input i_mwb_ack, i_mwb_stall;
|
| 137 |
|
|
input [(DW-1):0] i_mwb_data;
|
| 138 |
|
|
input i_mwb_err;
|
| 139 |
|
|
// The interrupt device interrupt lines
|
| 140 |
|
|
input [(DW-1):0] i_dev_ints;
|
| 141 |
|
|
// An interrupt to be set upon completion
|
| 142 |
|
|
output reg o_interrupt;
|
| 143 |
|
|
// Need to release the bus for a higher priority user
|
| 144 |
|
|
// This logic had lots of problems, so it is being
|
| 145 |
|
|
// removed. If you want to make sure the bus is available
|
| 146 |
|
|
// for a higher priority user, adjust the transfer length
|
| 147 |
|
|
// accordingly.
|
| 148 |
|
|
//
|
| 149 |
|
|
// input i_other_busmaster_requests_bus;
|
| 150 |
|
|
//
|
| 151 |
|
|
|
| 152 |
|
|
|
| 153 |
|
|
reg [2:0] dma_state;
|
| 154 |
|
|
reg cfg_err, cfg_len_nonzero;
|
| 155 |
|
|
reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len;
|
| 156 |
|
|
reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one;
|
| 157 |
|
|
reg cfg_incs, cfg_incd;
|
| 158 |
|
|
reg [(LGDV-1):0] cfg_dev_trigger;
|
| 159 |
|
|
reg cfg_on_dev_trigger;
|
| 160 |
|
|
|
| 161 |
|
|
// Single block operations: We'll read, then write, up to a single
|
| 162 |
|
|
// memory block here.
|
| 163 |
|
|
|
| 164 |
|
|
reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)];
|
| 165 |
|
|
reg [(LGMEMLEN):0] nread, nwritten, nwacks, nracks;
|
| 166 |
|
|
wire [(AW-1):0] bus_nracks;
|
| 167 |
|
|
assign bus_nracks = { {(AW-LGMEMLEN-1){1'b0}}, nracks };
|
| 168 |
|
|
|
| 169 |
|
|
reg last_read_request, last_read_ack,
|
| 170 |
|
|
last_write_request, last_write_ack;
|
| 171 |
|
|
reg trigger, abort;
|
| 172 |
|
|
|
| 173 |
|
|
initial dma_state = `DMA_IDLE;
|
| 174 |
|
|
initial o_interrupt = 1'b0;
|
| 175 |
|
|
initial cfg_len = {(AW){1'b0}};
|
| 176 |
|
|
initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}};
|
| 177 |
|
|
initial cfg_on_dev_trigger = 1'b0;
|
| 178 |
|
|
initial cfg_len_nonzero = 1'b0;
|
| 179 |
|
|
always @(posedge i_clk)
|
| 180 |
|
|
case(dma_state)
|
| 181 |
|
|
`DMA_IDLE: begin
|
| 182 |
|
|
o_mwb_addr <= cfg_raddr;
|
| 183 |
|
|
nwritten <= 0;
|
| 184 |
|
|
nread <= 0;
|
| 185 |
|
|
nracks <= 0;
|
| 186 |
|
|
nwacks <= 0;
|
| 187 |
|
|
cfg_len_nonzero <= (|cfg_len);
|
| 188 |
|
|
|
| 189 |
|
|
// When the slave wishbone writes, and we are in this
|
| 190 |
|
|
// (ready) configuration, then allow the DMA to be controlled
|
| 191 |
|
|
// and thus to start.
|
| 192 |
32 |
dgisselq |
if ((i_swb_stb)&&(i_swb_we))
|
| 193 |
3 |
dgisselq |
begin
|
| 194 |
|
|
case(i_swb_addr)
|
| 195 |
|
|
2'b00: begin
|
| 196 |
|
|
if ((i_swb_data[27:16] == 12'hfed)
|
| 197 |
|
|
&&(cfg_len_nonzero))
|
| 198 |
|
|
dma_state <= `DMA_WAIT;
|
| 199 |
|
|
cfg_blocklen_sub_one
|
| 200 |
|
|
<= i_swb_data[(LGMEMLEN-1):0]
|
| 201 |
|
|
+ {(LGMEMLEN){1'b1}};
|
| 202 |
|
|
// i.e. -1;
|
| 203 |
|
|
cfg_dev_trigger <= i_swb_data[14:10];
|
| 204 |
|
|
cfg_on_dev_trigger <= i_swb_data[15];
|
| 205 |
|
|
cfg_incs <= ~i_swb_data[29];
|
| 206 |
|
|
cfg_incd <= ~i_swb_data[28];
|
| 207 |
|
|
end
|
| 208 |
|
|
2'b01: begin
|
| 209 |
|
|
cfg_len <= i_swb_data[(AW-1):0];
|
| 210 |
|
|
cfg_len_nonzero <= (|i_swb_data[(AW-1):0]);
|
| 211 |
|
|
end
|
| 212 |
|
|
2'b10: cfg_raddr <= i_swb_data[(AW-1):0];
|
| 213 |
|
|
2'b11: cfg_waddr <= i_swb_data[(AW-1):0];
|
| 214 |
|
|
endcase
|
| 215 |
|
|
end end
|
| 216 |
|
|
`DMA_WAIT: begin
|
| 217 |
|
|
o_mwb_addr <= cfg_raddr;
|
| 218 |
|
|
nracks <= 0;
|
| 219 |
|
|
nwacks <= 0;
|
| 220 |
|
|
nwritten <= 0;
|
| 221 |
|
|
nread <= 0;
|
| 222 |
|
|
if (abort)
|
| 223 |
|
|
dma_state <= `DMA_IDLE;
|
| 224 |
|
|
else if (trigger)
|
| 225 |
|
|
dma_state <= `DMA_READ_REQ;
|
| 226 |
|
|
end
|
| 227 |
|
|
`DMA_READ_REQ: begin
|
| 228 |
|
|
nwritten <= 0;
|
| 229 |
|
|
|
| 230 |
|
|
if (~i_mwb_stall)
|
| 231 |
|
|
begin
|
| 232 |
|
|
// Number of read acknowledgements needed
|
| 233 |
|
|
nracks <= nracks+1;
|
| 234 |
|
|
if (last_read_request)
|
| 235 |
|
|
//((nracks == {1'b0, cfg_blocklen_sub_one})||(bus_nracks == cfg_len-1))
|
| 236 |
|
|
// Wishbone interruptus
|
| 237 |
|
|
dma_state <= `DMA_READ_ACK;
|
| 238 |
|
|
if (cfg_incs)
|
| 239 |
|
|
o_mwb_addr <= o_mwb_addr
|
| 240 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
| 241 |
|
|
end
|
| 242 |
|
|
|
| 243 |
|
|
if (i_mwb_err)
|
| 244 |
|
|
begin
|
| 245 |
|
|
cfg_len <= 0;
|
| 246 |
|
|
dma_state <= `DMA_IDLE;
|
| 247 |
|
|
end
|
| 248 |
|
|
if (abort)
|
| 249 |
|
|
dma_state <= `DMA_IDLE;
|
| 250 |
|
|
if (i_mwb_ack)
|
| 251 |
|
|
begin
|
| 252 |
|
|
nread <= nread+1;
|
| 253 |
|
|
if (cfg_incs)
|
| 254 |
|
|
cfg_raddr <= cfg_raddr
|
| 255 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
| 256 |
|
|
end end
|
| 257 |
|
|
`DMA_READ_ACK: begin
|
| 258 |
|
|
nwritten <= 0;
|
| 259 |
|
|
|
| 260 |
|
|
if (i_mwb_err)
|
| 261 |
|
|
begin
|
| 262 |
|
|
cfg_len <= 0;
|
| 263 |
|
|
dma_state <= `DMA_IDLE;
|
| 264 |
|
|
end else if (i_mwb_ack)
|
| 265 |
|
|
begin
|
| 266 |
|
|
nread <= nread+1;
|
| 267 |
|
|
if (last_read_ack) // (nread+1 == nracks)
|
| 268 |
|
|
dma_state <= `DMA_PRE_WRITE;
|
| 269 |
|
|
if (cfg_incs)
|
| 270 |
|
|
cfg_raddr <= cfg_raddr
|
| 271 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
| 272 |
|
|
end
|
| 273 |
|
|
if (abort)
|
| 274 |
|
|
dma_state <= `DMA_IDLE;
|
| 275 |
|
|
end
|
| 276 |
|
|
`DMA_PRE_WRITE: begin
|
| 277 |
|
|
o_mwb_addr <= cfg_waddr;
|
| 278 |
|
|
dma_state <= (abort)?`DMA_IDLE:`DMA_WRITE_REQ;
|
| 279 |
|
|
end
|
| 280 |
|
|
`DMA_WRITE_REQ: begin
|
| 281 |
|
|
if (~i_mwb_stall)
|
| 282 |
|
|
begin
|
| 283 |
|
|
nwritten <= nwritten+1;
|
| 284 |
|
|
if (last_write_request) // (nwritten == nread-1)
|
| 285 |
|
|
// Wishbone interruptus
|
| 286 |
|
|
dma_state <= `DMA_WRITE_ACK;
|
| 287 |
|
|
if (cfg_incd)
|
| 288 |
|
|
begin
|
| 289 |
|
|
o_mwb_addr <= o_mwb_addr
|
| 290 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
| 291 |
|
|
cfg_waddr <= cfg_waddr
|
| 292 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
| 293 |
|
|
end
|
| 294 |
|
|
end
|
| 295 |
|
|
|
| 296 |
|
|
if (i_mwb_err)
|
| 297 |
|
|
begin
|
| 298 |
|
|
cfg_len <= 0;
|
| 299 |
|
|
dma_state <= `DMA_IDLE;
|
| 300 |
|
|
end
|
| 301 |
|
|
if (i_mwb_ack)
|
| 302 |
|
|
begin
|
| 303 |
|
|
nwacks <= nwacks+1;
|
| 304 |
|
|
cfg_len <= cfg_len +{(AW){1'b1}}; // -1
|
| 305 |
|
|
end
|
| 306 |
|
|
if (abort)
|
| 307 |
|
|
dma_state <= `DMA_IDLE;
|
| 308 |
|
|
end
|
| 309 |
|
|
`DMA_WRITE_ACK: begin
|
| 310 |
|
|
if (i_mwb_err)
|
| 311 |
|
|
begin
|
| 312 |
|
|
cfg_len <= 0;
|
| 313 |
|
|
nread <= 0;
|
| 314 |
|
|
dma_state <= `DMA_IDLE;
|
| 315 |
|
|
end else if (i_mwb_ack)
|
| 316 |
|
|
begin
|
| 317 |
|
|
nwacks <= nwacks+1;
|
| 318 |
|
|
cfg_len <= cfg_len +{(AW){1'b1}};//cfg_len -= 1;
|
| 319 |
|
|
if (last_write_ack) // (nwacks+1 == nwritten)
|
| 320 |
|
|
begin
|
| 321 |
|
|
nread <= 0;
|
| 322 |
|
|
dma_state <= (cfg_len == 1)?`DMA_IDLE:`DMA_WAIT;
|
| 323 |
|
|
end
|
| 324 |
|
|
end
|
| 325 |
|
|
|
| 326 |
|
|
if (abort)
|
| 327 |
|
|
dma_state <= `DMA_IDLE;
|
| 328 |
|
|
end
|
| 329 |
|
|
default:
|
| 330 |
|
|
dma_state <= `DMA_IDLE;
|
| 331 |
|
|
endcase
|
| 332 |
|
|
|
| 333 |
|
|
initial o_interrupt = 1'b0;
|
| 334 |
|
|
always @(posedge i_clk)
|
| 335 |
|
|
o_interrupt <= (dma_state == `DMA_WRITE_ACK)&&(i_mwb_ack)
|
| 336 |
|
|
&&(last_write_ack)
|
| 337 |
|
|
&&(cfg_len == {{(AW-1){1'b0}},1'b1});
|
| 338 |
|
|
|
| 339 |
|
|
initial cfg_err = 1'b0;
|
| 340 |
|
|
always @(posedge i_clk)
|
| 341 |
|
|
if (dma_state == `DMA_IDLE)
|
| 342 |
|
|
begin
|
| 343 |
32 |
dgisselq |
if ((i_swb_stb)&&(i_swb_we)&&(i_swb_addr==2'b00))
|
| 344 |
3 |
dgisselq |
cfg_err <= 1'b0;
|
| 345 |
|
|
end else if (((i_mwb_err)&&(o_mwb_cyc))||(abort))
|
| 346 |
|
|
cfg_err <= 1'b1;
|
| 347 |
|
|
|
| 348 |
|
|
initial last_read_request = 1'b0;
|
| 349 |
|
|
always @(posedge i_clk)
|
| 350 |
|
|
if ((dma_state == `DMA_WAIT)||(dma_state == `DMA_READ_REQ))
|
| 351 |
|
|
begin
|
| 352 |
|
|
if ((~i_mwb_stall)&&(dma_state == `DMA_READ_REQ))
|
| 353 |
|
|
begin
|
| 354 |
|
|
last_read_request <=
|
| 355 |
|
|
(nracks + 1 == { 1'b0, cfg_blocklen_sub_one})
|
| 356 |
|
|
||(bus_nracks == cfg_len-2);
|
| 357 |
|
|
end else
|
| 358 |
|
|
last_read_request <=
|
| 359 |
|
|
(nracks== { 1'b0, cfg_blocklen_sub_one})
|
| 360 |
|
|
||(bus_nracks == cfg_len-1);
|
| 361 |
|
|
end else
|
| 362 |
|
|
last_read_request <= 1'b0;
|
| 363 |
|
|
|
| 364 |
|
|
initial last_read_ack = 1'b0;
|
| 365 |
|
|
always @(posedge i_clk)
|
| 366 |
|
|
if ((dma_state == `DMA_READ_REQ)||(dma_state == `DMA_READ_ACK))
|
| 367 |
|
|
begin
|
| 368 |
32 |
dgisselq |
if ((i_mwb_ack)&&((~o_mwb_stb)||(i_mwb_stall)))
|
| 369 |
3 |
dgisselq |
last_read_ack <= (nread+2 == nracks);
|
| 370 |
|
|
else
|
| 371 |
|
|
last_read_ack <= (nread+1 == nracks);
|
| 372 |
|
|
end else
|
| 373 |
|
|
last_read_ack <= 1'b0;
|
| 374 |
|
|
|
| 375 |
|
|
initial last_write_request = 1'b0;
|
| 376 |
|
|
always @(posedge i_clk)
|
| 377 |
|
|
if (dma_state == `DMA_PRE_WRITE)
|
| 378 |
|
|
last_write_request <= (nread <= 1);
|
| 379 |
|
|
else if (dma_state == `DMA_WRITE_REQ)
|
| 380 |
|
|
begin
|
| 381 |
|
|
if (i_mwb_stall)
|
| 382 |
|
|
last_write_request <= (nwritten >= nread-1);
|
| 383 |
|
|
else
|
| 384 |
|
|
last_write_request <= (nwritten >= nread-2);
|
| 385 |
|
|
end else
|
| 386 |
|
|
last_write_request <= 1'b0;
|
| 387 |
|
|
|
| 388 |
|
|
initial last_write_ack = 1'b0;
|
| 389 |
|
|
always @(posedge i_clk)
|
| 390 |
|
|
if((dma_state == `DMA_WRITE_REQ)||(dma_state == `DMA_WRITE_ACK))
|
| 391 |
|
|
begin
|
| 392 |
32 |
dgisselq |
if ((i_mwb_ack)&&((~o_mwb_stb)||(i_mwb_stall)))
|
| 393 |
3 |
dgisselq |
last_write_ack <= (nwacks+2 == nwritten);
|
| 394 |
|
|
else
|
| 395 |
|
|
last_write_ack <= (nwacks+1 == nwritten);
|
| 396 |
|
|
end else
|
| 397 |
|
|
last_write_ack <= 1'b0;
|
| 398 |
|
|
|
| 399 |
|
|
assign o_mwb_cyc = (dma_state == `DMA_READ_REQ)
|
| 400 |
|
|
||(dma_state == `DMA_READ_ACK)
|
| 401 |
|
|
||(dma_state == `DMA_WRITE_REQ)
|
| 402 |
|
|
||(dma_state == `DMA_WRITE_ACK);
|
| 403 |
|
|
|
| 404 |
|
|
assign o_mwb_stb = (dma_state == `DMA_READ_REQ)
|
| 405 |
|
|
||(dma_state == `DMA_WRITE_REQ);
|
| 406 |
|
|
|
| 407 |
|
|
assign o_mwb_we = (dma_state == `DMA_PRE_WRITE)
|
| 408 |
|
|
||(dma_state == `DMA_WRITE_REQ)
|
| 409 |
|
|
||(dma_state == `DMA_WRITE_ACK);
|
| 410 |
|
|
|
| 411 |
|
|
//
|
| 412 |
|
|
// This is tricky. In order for Vivado to consider dma_mem to be a
|
| 413 |
|
|
// proper memory, it must have a simple address fed into it. Hence
|
| 414 |
|
|
// the read_address (rdaddr) register. The problem is that this
|
| 415 |
|
|
// register must always be one greater than the address we actually
|
| 416 |
|
|
// want to read from, unless we are idling. So ... the math is touchy.
|
| 417 |
|
|
//
|
| 418 |
|
|
reg [(LGMEMLEN-1):0] rdaddr;
|
| 419 |
|
|
always @(posedge i_clk)
|
| 420 |
|
|
if((dma_state == `DMA_IDLE)||(dma_state == `DMA_WAIT)
|
| 421 |
|
|
||(dma_state == `DMA_WRITE_ACK))
|
| 422 |
|
|
rdaddr <= 0;
|
| 423 |
|
|
else if ((dma_state == `DMA_PRE_WRITE)
|
| 424 |
|
|
||((dma_state==`DMA_WRITE_REQ)&&(~i_mwb_stall)))
|
| 425 |
|
|
rdaddr <= rdaddr + {{(LGMEMLEN-1){1'b0}},1'b1};
|
| 426 |
|
|
always @(posedge i_clk)
|
| 427 |
|
|
if ((dma_state != `DMA_WRITE_REQ)||(~i_mwb_stall))
|
| 428 |
|
|
o_mwb_data <= dma_mem[rdaddr];
|
| 429 |
|
|
always @(posedge i_clk)
|
| 430 |
|
|
if((dma_state == `DMA_READ_REQ)||(dma_state == `DMA_READ_ACK))
|
| 431 |
|
|
dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
| 432 |
|
|
|
| 433 |
|
|
always @(posedge i_clk)
|
| 434 |
|
|
casez(i_swb_addr)
|
| 435 |
|
|
2'b00: o_swb_data <= { (dma_state != `DMA_IDLE), cfg_err,
|
| 436 |
|
|
~cfg_incs, ~cfg_incd,
|
| 437 |
|
|
1'b0, nread,
|
| 438 |
|
|
cfg_on_dev_trigger, cfg_dev_trigger,
|
| 439 |
|
|
cfg_blocklen_sub_one
|
| 440 |
|
|
};
|
| 441 |
|
|
2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len };
|
| 442 |
|
|
2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr};
|
| 443 |
|
|
2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr};
|
| 444 |
|
|
endcase
|
| 445 |
|
|
|
| 446 |
|
|
// This causes us to wait a minimum of two clocks before starting: One
|
| 447 |
|
|
// to go into the wait state, and then one while in the wait state to
|
| 448 |
|
|
// develop the trigger.
|
| 449 |
|
|
initial trigger = 1'b0;
|
| 450 |
|
|
always @(posedge i_clk)
|
| 451 |
|
|
trigger <= (dma_state == `DMA_WAIT)
|
| 452 |
|
|
&&((~cfg_on_dev_trigger)
|
| 453 |
|
|
||(i_dev_ints[cfg_dev_trigger]));
|
| 454 |
|
|
|
| 455 |
|
|
// Ack any access. We'll quietly ignore any access where we are busy,
|
| 456 |
|
|
// but ack it anyway. In other words, before writing to the device,
|
| 457 |
|
|
// double check that it isn't busy, and then write.
|
| 458 |
|
|
always @(posedge i_clk)
|
| 459 |
32 |
dgisselq |
o_swb_ack <= (i_swb_stb);
|
| 460 |
3 |
dgisselq |
|
| 461 |
|
|
assign o_swb_stall = 1'b0;
|
| 462 |
|
|
|
| 463 |
|
|
initial abort = 1'b0;
|
| 464 |
|
|
always @(posedge i_clk)
|
| 465 |
32 |
dgisselq |
abort <= (i_rst)||((i_swb_stb)&&(i_swb_we)
|
| 466 |
3 |
dgisselq |
&&(i_swb_addr == 2'b00)
|
| 467 |
|
|
&&(i_swb_data == 32'hffed0000));
|
| 468 |
|
|
|
| 469 |
|
|
endmodule
|
| 470 |
|
|
|