OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [cpu/] [zipcpuhs.v] - Blame information for rev 3

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 dgisselq
///////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    zipcpu.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7
// Purpose:     This is the top level module holding the core of the Zip CPU
8
//              together.  The Zip CPU is designed to be as simple as possible.
9
//      (actual implementation aside ...)  The instruction set is about as
10
//      RISC as you can get, there are only 16 instruction types supported.
11
//      Please see the accompanying spec.pdf file for a description of these
12
//      instructions.
13
//
14
//      All instructions are 32-bits wide.  All bus accesses, both address and
15
//      data, are 32-bits over a wishbone bus.
16
//
17
//      The Zip CPU is fully pipelined with the following pipeline stages:
18
//
19
//              1. Prefetch, returns the instruction from memory. 
20
//
21
//              2. Instruction Decode
22
//
23
//              3. Read Operands
24
//
25
//              4. Apply Instruction
26
//
27
//              4. Write-back Results
28
//
29
//      Further information about the inner workings of this CPU may be
30
//      found in the spec.pdf file.  (The documentation within this file
31
//      had become out of date and out of sync with the spec.pdf, so look
32
//      to the spec.pdf for accurate and up to date information.)
33
//
34
//
35
//      In general, the pipelining is controlled by three pieces of logic
36
//      per stage: _ce, _stall, and _valid.  _valid means that the stage
37
//      holds a valid instruction.  _ce means that the instruction from the
38
//      previous stage is to move into this one, and _stall means that the
39
//      instruction from the previous stage may not move into this one.
40
//      The difference between these control signals allows individual stages
41
//      to propagate instructions independently.  In general, the logic works
42
//      as:
43
//
44
//
45
//      assign  (n)_ce = (n-1)_valid && (~(n)_stall)
46
//
47
//
48
//      always @(posedge i_clk)
49
//              if ((i_rst)||(clear_pipeline))
50
//                      (n)_valid = 0
51
//              else if (n)_ce
52
//                      (n)_valid = 1
53
//              else if (n+1)_ce
54
//                      (n)_valid = 0
55
//
56
//      assign (n)_stall = (  (n-1)_valid && ( pipeline hazard detection )  )
57
//                      || (  (n)_valid && (n+1)_stall );
58
//
59
//      and ...
60
//
61
//      always @(posedge i_clk)
62
//              if (n)_ce
63
//                      (n)_variable = ... whatever logic for this stage
64
//
65
//      Note that a stage can stall even if no instruction is loaded into
66
//      it.
67
//
68
//
69
// Creator:     Dan Gisselquist, Ph.D.
70
//              Gisselquist Technology, LLC
71
//
72
///////////////////////////////////////////////////////////////////////////////
73
//
74
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
75
//
76
// This program is free software (firmware): you can redistribute it and/or
77
// modify it under the terms of  the GNU General Public License as published
78
// by the Free Software Foundation, either version 3 of the License, or (at
79
// your option) any later version.
80
//
81
// This program is distributed in the hope that it will be useful, but WITHOUT
82
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
83
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
84
// for more details.
85
//
86
// License:     GPL, v3, as defined and found on www.gnu.org,
87
//              http://www.gnu.org/licenses/gpl.html
88
//
89
//
90
///////////////////////////////////////////////////////////////////////////////
91
//
92
// We can either pipeline our fetches, or issue one fetch at a time.  Pipelined
93
// fetches are more complicated and therefore use more FPGA resources, while
94
// single fetches will cause the CPU to stall for about 5 stalls each 
95
// instruction cycle, effectively reducing the instruction count per clock to
96
// about 0.2.  However, the area cost may be worth it.  Consider:
97
//
98
//      Slice LUTs              ZipSystem       ZipCPU
99
//      Single Fetching         2521            1734
100
//      Pipelined fetching      2796            2046
101
//
102
//
103
//
104
`define CPU_CC_REG      4'he
105
`define CPU_PC_REG      4'hf
106
`define CPU_CLRCACHE_BIT 14     // Floating point error flag, set on error
107
`define CPU_PHASE_BIT   13      // Floating point error flag, set on error
108
`define CPU_FPUERR_BIT  12      // Floating point error flag, set on error
109
`define CPU_DIVERR_BIT  11      // Divide error flag, set on divide by zero
110
`define CPU_BUSERR_BIT  10      // Bus error flag, set on error
111
`define CPU_TRAP_BIT    9       // User TRAP has taken place
112
`define CPU_ILL_BIT     8       // Illegal instruction
113
`define CPU_BREAK_BIT   7
114
`define CPU_STEP_BIT    6       // Will step one or two (VLIW) instructions
115
`define CPU_GIE_BIT     5
116
`define CPU_SLEEP_BIT   4
117
// Compile time defines
118
//
119
`include "cpudefs.v"
120
//
121
//
122
module  zipcpuhs(i_clk, i_rst, i_interrupt,
123
                // Debug interface
124
                i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data,
125
                        o_dbg_stall, o_dbg_reg, o_dbg_cc,
126
                        o_break,
127
                // CPU interface to the wishbone bus
128
                o_wb_gbl_cyc, o_wb_gbl_stb,
129
                        o_wb_lcl_cyc, o_wb_lcl_stb,
130
                        o_wb_we, o_wb_addr, o_wb_data,
131
                        i_wb_ack, i_wb_stall, i_wb_data,
132
                        i_wb_err,
133
                // Accounting/CPU usage interface
134
                o_op_stall, o_pf_stall, o_i_count
135
`ifdef  DEBUG_SCOPE
136
                , o_debug
137
`endif
138
                );
139
        parameter       RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24,
140
                        LGICACHE=6;
141
`ifdef  OPT_MULTIPLY
142
        parameter       IMPLEMENT_MPY = `OPT_MULTIPLY;
143
`else
144
        parameter       IMPLEMENT_MPY = 0;
145
`endif
146
`ifdef  OPT_DIVIDE
147
        parameter       IMPLEMENT_DIVIDE = 1;
148
`else
149
        parameter       IMPLEMENT_DIVIDE = 0;
150
`endif
151
`ifdef  OPT_IMPLEMENT_FPU
152
        parameter       IMPLEMENT_FPU = 1,
153
`else
154
        parameter       IMPLEMENT_FPU = 0,
155
`endif
156
                        IMPLEMENT_LOCK=1;
157
`ifdef  OPT_EARLY_BRANCHING
158
        parameter       EARLY_BRANCHING = 1;
159
`else
160
        parameter       EARLY_BRANCHING = 0;
161
`endif
162
        parameter       AW=ADDRESS_WIDTH;
163
        input                   i_clk, i_rst, i_interrupt;
164
        // Debug interface -- inputs
165
        input                   i_halt, i_clear_pf_cache;
166
        input           [4:0]    i_dbg_reg;
167
        input                   i_dbg_we;
168
        input           [31:0]   i_dbg_data;
169
        // Debug interface -- outputs
170
        output  wire            o_dbg_stall;
171
        output  reg     [31:0]   o_dbg_reg;
172
        output  reg     [3:0]    o_dbg_cc;
173
        output  wire            o_break;
174
        // Wishbone interface -- outputs
175
        output  wire            o_wb_gbl_cyc, o_wb_gbl_stb;
176
        output  wire            o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we;
177
        output  wire    [(AW-1):0]       o_wb_addr;
178
        output  wire    [31:0]   o_wb_data;
179
        // Wishbone interface -- inputs
180
        input                   i_wb_ack, i_wb_stall;
181
        input           [31:0]   i_wb_data;
182
        input                   i_wb_err;
183
        // Accounting outputs ... to help us count stalls and usage
184
        output  wire            o_op_stall;
185
        output  wire            o_pf_stall;
186
        output  wire            o_i_count;
187
        //
188
`ifdef  DEBUG_SCOPE
189
        output  reg     [31:0]   o_debug;
190
`endif
191
 
192
 
193
        // Registers
194
        //
195
        //      The distributed RAM style comment is necessary on the
196
        // SPARTAN6 with XST to prevent XST from oversimplifying the register
197
        // set and in the process ruining everything else.  It basically
198
        // optimizes logic away, to where it no longer works.  The logic
199
        // as described herein will work, this just makes sure XST implements
200
        // that logic.
201
        //
202
        (* ram_style = "distributed" *)
203
        reg     [31:0]   regset [0:31];
204
 
205
        // Condition codes
206
        // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z
207
        reg     [3:0]    flags, iflags;
208
        wire    [14:0]   w_uflags, w_iflags;
209
        reg             trap, break_en, step, gie, sleep, r_halted,
210
                        break_pending;
211
        wire            w_clear_icache;
212
`ifdef  OPT_ILLEGAL_INSTRUCTION
213
        reg             ill_err_u, ill_err_i;
214
`else
215
        wire            ill_err_u, ill_err_i;
216
`endif
217
        reg             ubreak;
218
        reg             ibus_err_flag, ubus_err_flag;
219
        wire            idiv_err_flag, udiv_err_flag;
220
        wire            ifpu_err_flag, ufpu_err_flag;
221
        wire            ihalt_phase, uhalt_phase;
222
 
223
        // The master chip enable
224
        wire            master_ce;
225
 
226
        //
227
        //
228
        //      PIPELINE STAGE #1 :: Prefetch
229
        //              Variable declarations
230
        //
231
        reg     [(AW-1):0]       pf_pc;
232
        reg     new_pc;
233
        wire    clear_pipeline;
234
        assign  clear_pipeline = new_pc;
235
 
236
        wire            dcd_stalled;
237
        wire            pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err;
238
        wire    [(AW-1):0]       pf_addr;
239
        wire    [31:0]           pf_data;
240
        wire    [31:0]           instruction;
241
        wire    [(AW-1):0]       instruction_pc;
242
        wire    pf_valid, instruction_gie, pf_illegal;
243
 
244
        //
245
        //
246
        //      PIPELINE STAGE #2 :: Instruction Decode
247
        //              Variable declarations
248
        //
249
        //
250
        wire            op_stall, dcd_ce, dcd_phase;
251
        wire    [3:0]    dcdOp;
252
        wire    [4:0]    dcd_iA, dcd_iB, dcd_iR;
253
        wire            dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc, dcdR_cc, dcdR_pc;
254
        wire    [3:0]    dcdF;
255
        wire            dcd_wR, dcd_rA, dcd_rB,
256
                                dcdALU, dcdM, dcdDV, dcdFP,
257
                                dcdF_wr, dcd_gie, dcd_break, dcd_lock,
258
                                dcd_pipe, dcd_ljmp;
259
        reg     [1:0]    r_dcdvalid;
260
        wire            dcd_valid;
261
        wire    [(AW-1):0]       dcd_pc;
262
        wire    [31:0]   dcd_I;
263
        wire            dcd_zI; // true if dcdI == 0
264
        wire    dcdA_stall, dcdB_stall, dcdF_stall;
265
 
266
        wire    dcd_illegal;
267
        wire                    dcd_early_branch;
268
        wire    [(AW-1):0]       dcd_branch_pc;
269
 
270
 
271
        //
272
        //
273
        //      PIPELINE STAGE #3a :: Read Operands
274
        //              Variable declarations
275
        //
276
        //
277
        //
278
        // Now, let's read our operands
279
        reg             opa_valid, opa_DV, opa_FP, opa_ALU, opa_M,
280
                        opa_rA, opa_rB;
281
        reg     [4:0]    alu_reg;
282
        reg     [3:0]    opa_opn;
283
        reg     [4:0]    opa_R, opa_iA;
284
        reg     [31:0]   r_opa_B;
285
        reg     [(AW-1):0]       opa_pc;
286
        wire    [31:0]   opA_nowait, opa_Bnowait, opa_A, opa_B, opa_I;
287
        reg             opa_wR, opa_ccR, opa_wF, opa_gie;
288
        wire    [13:0]   opa_Fl;
289
        reg     [5:0]    r_opa_F;
290
        wire    [7:0]    opa_F;
291
        wire            opa_ce, opa_phase, opa_pipe;
292
        // Some pipeline control wires
293
        reg     opa_A_alu, opa_A_mem;
294
        reg     opa_B_alu, opa_B_mem;
295
`ifdef  OPT_ILLEGAL_INSTRUCTION
296
        reg     opa_illegal;
297
`else
298
        wire    opa_illegal;
299
        assign  opa_illegal = 1'b0;
300
`endif
301
        reg     opa_break;
302
        reg     opa_lock;
303
 
304
        //
305
        //
306
        //      PIPELINE STAGE #3b :: Read Operands
307
        //              Variable declarations
308
        //
309
        //
310
        //
311
        // Now, let's read our operands
312
        reg     [3:0]    opb_opn;
313
        reg             opb_valid, opb_valid_mem, opb_valid_alu;
314
        reg             opb_valid_div, opb_valid_fpu;
315
        reg     [4:0]    opb_R;
316
        reg     [31:0]   r_opb_A, r_opb_B;
317
        reg     [(AW-1):0]       opb_pc;
318
        wire    [31:0]   opb_A_nowait, opb_B_nowait, opb_A, opb_B;
319
        reg             opb_wR, opb_ccR, opb_wF, opb_gie;
320
        wire    [13:0]   opb_Fl;
321
        reg     [5:0]    r_opb_F;
322
        wire    [7:0]    opb_F;
323
        wire            opb_ce, opb_phase, opb_pipe;
324
        // Some pipeline control wires
325
        reg     opb_A_alu, opb_A_mem;
326
        reg     opb_B_alu, opb_B_mem;
327
`ifdef  OPT_ILLEGAL_INSTRUCTION
328
        reg     opb_illegal;
329
`else
330
        wire    opb_illegal;
331
        assign  opb_illegal = 1'b0;
332
`endif
333
        reg     opb_break;
334
        reg     opb_lock;
335
 
336
 
337
        //
338
        //
339
        //      PIPELINE STAGE #4 :: ALU / Memory / Divide
340
        //              Variable declarations
341
        //
342
        //
343
        reg     [(AW-1):0]       alu_pc;
344
        reg             r_alu_pc_valid, mem_pc_valid;
345
        wire            alu_pc_valid;
346
        wire            alu_phase;
347
        wire            alu_ce, alu_stall;
348
        wire    [31:0]   alu_result;
349
        wire    [3:0]    alu_flags;
350
        wire            alu_valid, alu_busy;
351
        wire            set_cond;
352
        reg             alu_wr, alF_wr, alu_gie;
353
        wire            alu_illegal_op;
354
        wire            alu_illegal;
355
 
356
 
357
 
358
        wire    mem_ce, mem_stalled;
359
        wire    mem_pipe_stalled;
360
        wire    mem_valid, mem_ack, mem_stall, mem_err, bus_err,
361
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we;
362
        wire    [4:0]            mem_wreg;
363
 
364
        wire                    mem_busy, mem_rdbusy;
365
        wire    [(AW-1):0]       mem_addr;
366
        wire    [31:0]           mem_data, mem_result;
367
 
368
        wire    div_ce, div_error, div_busy, div_valid;
369
        wire    [31:0]   div_result;
370
        wire    [3:0]    div_flags;
371
 
372
        assign  div_ce = (master_ce)&&(~clear_pipeline)&&(opb_valid_div)
373
                                &&(~stage_busy)&&(set_cond);
374
 
375
        wire    fpu_ce, fpu_error, fpu_busy, fpu_valid;
376
        wire    [31:0]   fpu_result;
377
        wire    [3:0]    fpu_flags;
378
 
379
        assign  fpu_ce = (master_ce)&&(~clear_pipeline)&&(opb_valid_fpu)
380
                                &&(~stage_busy)&&(set_cond);
381
 
382
        //
383
        //
384
        //      PIPELINE STAGE #5 :: Write-back
385
        //              Variable declarations
386
        //
387
        wire            wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc;
388
        wire    [4:0]    wr_reg_id;
389
        wire    [31:0]   wr_gpreg_vl, wr_spreg_vl;
390
        wire    w_switch_to_interrupt, w_release_from_interrupt;
391
        reg     [(AW-1):0]       upc, ipc;
392
 
393
 
394
 
395
        //
396
        //      MASTER: clock enable.
397
        //
398
        assign  master_ce = (~i_halt)&&(~o_break)&&(~sleep);
399
 
400
 
401
        //
402
        //      PIPELINE STAGE #1 :: Prefetch
403
        //              Calculate stall conditions
404
        //
405
        //      These are calculated externally, within the prefetch module.
406
        //
407
 
408
        //
409
        //      PIPELINE STAGE #2 :: Instruction Decode
410
        //              Calculate stall conditions
411
        assign          dcd_ce = ((~dcd_valid)||(~dcd_stalled))&&(~clear_pipeline);
412
 
413
        assign          dcd_stalled = (dcd_valid)&&(op_stall);
414
        //
415
        //      PIPELINE STAGE #3 :: Read Operands
416
        //              Calculate stall conditions
417
        wire    op_lock_stall;
418
        assign  op_stall = (opvalid)&&( // Only stall if we're loaded w/validins
419
                        // Stall if we're stopped, and not allowed to execute
420
                        // an instruction
421
                        // (~master_ce)         // Already captured in alu_stall
422
                        //
423
                        // Stall if going into the ALU and the ALU is stalled
424
                        //      i.e. if the memory is busy, or we are single
425
                        //      stepping.  This also includes our stalls for
426
                        //      op_break and op_lock, so we don't need to
427
                        //      include those as well here.
428
                        // This also includes whether or not the divide or
429
                        // floating point units are busy.
430
                        (alu_stall)
431
                        //
432
                        // Stall if we are going into memory with an operation
433
                        //      that cannot be pipelined, and the memory is
434
                        //      already busy
435
                        ||(mem_stalled) // &&(opvalid_mem) part of mem_stalled
436
                        )
437
                        ||(dcd_valid)&&(
438
                                // Stall if we need to wait for an operand A
439
                                // to be ready to read
440
                                (dcdA_stall)
441
                                // Likewise for B, also includes logic
442
                                // regarding immediate offset (register must
443
                                // be in register file if we need to add to
444
                                // an immediate)
445
                                ||(dcdB_stall)
446
                                // Or if we need to wait on flags to work on the
447
                                // CC register
448
                                ||(dcdF_stall)
449
                        );
450
        assign  opa_ce = ((dcd_valid)||(dcd_illegal))&&(~opa_stall);
451
 
452
        //
453
        //      PIPELINE STAGE #4 :: ALU / Memory
454
        //              Calculate stall conditions
455
        //
456
        // 1. Basic stall is if the previous stage is valid and the next is
457
        //      busy.  
458
        // 2. Also stall if the prior stage is valid and the master clock enable
459
        //      is de-selected
460
        // 3. Stall if someone on the other end is writing the CC register,
461
        //      since we don't know if it'll put us to sleep or not.
462
        // 4. Last case: Stall if we would otherwise move a break instruction
463
        //      through the ALU.  Break instructions are not allowed through
464
        //      the ALU.
465
        assign  alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(opvalid_alu)) //Case 1&2
466
                        // Old case #3--this isn't an ALU stall though ...
467
                        ||((opvalid_alu)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie)
468
                                &&(wr_write_cc)) // Case 3
469
                        ||((opvalid)&&(op_lock)&&(op_lock_stall))
470
                        ||((opvalid)&&(op_break))
471
                        ||(div_busy)||(fpu_busy);
472
        assign  alu_ce = (master_ce)&&(stage_ce)&&(opvalid_alu)&&(~clear_pipeline);
473
        assign  stage_ce = (~div_busy)&&(~alu_busy)&&(~mem_rdbusy)&&(~fpu_busy);
474
        //
475
 
476
        //
477
        // Note: if you change the conditions for mem_ce, you must also change
478
        // alu_pc_valid.
479
        //
480
        assign  mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled)
481
                        &&(~clear_pipeline);
482
        assign  mem_stalled = (~master_ce)||(alu_busy)||((opvalid_mem)&&(
483
                                (mem_pipe_stalled)
484
                                ||((~op_pipe)&&(mem_busy))
485
                                ||(div_busy)
486
                                ||(fpu_busy)
487
                                // Stall waiting for flags to be valid
488
                                // Or waiting for a write to the PC register
489
                                // Or CC register, since that can change the
490
                                //  PC as well
491
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
492
                                        &&((wr_write_pc)||(wr_write_cc)))));
493
 
494
 
495
        //
496
        //
497
        //      PIPELINE STAGE #1 :: Prefetch
498
        //
499
        //
500
        fastcache #(LGICACHE, ADDRESS_WIDTH)
501
                pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
502
                                        i_clear_pf_cache,
503
                                // dcd_pc,
504
                                ~dcd_stalled,
505
                                ((dcd_early_branch)&&(~clear_pipeline))
506
                                        ? dcd_branch_pc:pf_pc,
507
                                instruction, instruction_pc, pf_valid,
508
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
509
                                        pf_ack, pf_stall, pf_err, i_wb_data,
510
                                pf_illegal);
511
        assign  instruction_gie = gie;
512
 
513
        //
514
        // The ifastdec decoder takes two clocks to decode an instruction.
515
        // Therefore, to determine if a decoded instruction is valid, we
516
        // need to wait two clocks from pf_valid.  Hence, we dump this into
517
        // a pipeline below.
518
        //
519
        initial r_dcdvalid = 2'b00;
520
        always @(posedge i_clk)
521
                if ((i_rst)||(clear_pipeline)||(w_clear_icache))
522
                        r_dcdvalid <= 2'b00;
523
                else if (dcd_ce)
524
                        r_dcdvalid <= { r_dcdvalid[0], pf_valid };
525
                else if (opa_ce)
526
                        r_dcdvalid <= 1'b0;
527
        assign  dcd_valid = r_dcdvalid[1];
528
 
529
        ifastdec #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
530
                        IMPLEMENT_FPU)
531
                instruction_decoder(i_clk, (i_rst)||(clear_pipeline),
532
                        dcd_ce, dcd_stalled, instruction, instruction_gie,
533
                        instruction_pc, pf_valid, pf_illegal, dcd_phase,
534
                        dcd_illegal, dcd_pc, dcd_gie,
535
                        { dcdR_cc, dcdR_pc, dcd_iR },
536
                        { dcdA_cc, dcdA_pc, dcd_iA },
537
                        { dcdB_cc, dcdB_pc, dcd_iB },
538
                        dcd_I, dcd_zI, dcdF, dcdF_wr, dcdOp,
539
                        dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock,
540
                        dcd_wR,dcd_rA, dcd_rB,
541
                        dcd_early_branch,
542
                        dcd_branch_pc, dcd_ljmp,
543
                        dcd_pipe);
544
 
545
        reg             r_op_pipe;
546
 
547
        initial r_op_pipe = 1'b0;
548
        // To be a pipeable operation, there must be 
549
        //      two valid adjacent instructions
550
        //      Both must be memory instructions
551
        //      Both must be writes, or both must be reads
552
        //      Both operations must be to the same identical address,
553
        //              or at least a single (one) increment above that address
554
        //
555
        // However ... we need to know this before this clock, hence this is
556
        // calculated in the instruction decoder.
557
        always @(posedge i_clk)
558
                if (op_ce)
559
                        r_op_pipe <= dcd_pipe;
560
                else if (mem_ce) // Clear us any time an op_ is clocked in
561
                        r_op_pipe <= 1'b0;
562
        assign  op_pipe = r_op_pipe;
563
 
564
        //
565
        //
566
        //      PIPELINE STAGE #3 :: Read Operands (Registers)
567
        //
568
        //
569
        assign  w_opA = regset[dcd_iA];
570
        assign  w_opB = regset[dcd_iB];
571
 
572
        wire    [8:0]    w_cpu_info;
573
        assign  w_cpu_info = {
574
`ifdef  OPT_ILLEGAL_INSTRUCTION
575
        1'b1,
576
`else
577
        1'b0,
578
`endif
579
        1'b1,
580
`ifdef  OPT_DIVIDE
581
        1'b1,
582
`else
583
        1'b0,
584
`endif
585
`ifdef  OPT_IMPLEMENT_FPU
586
        1'b1,
587
`else
588
        1'b0,
589
`endif
590
        1'b1, 1'b1,
591
`ifdef  OPT_EARLY_BRANCHING
592
        1'b1,
593
`else
594
        1'b0,
595
`endif
596
        1'b1,
597
`ifdef  OPT_VLIW
598
        1'b1
599
`else
600
        1'b0
601
`endif
602
        };
603
 
604
        wire    [31:0]   w_pcA_v;
605
        generate
606
        if (AW < 32)
607
                assign  w_pcA_v = {{(32-AW){1'b0}}, (dcd_iA[4] == dcd_gie)?dcd_pc:upc };
608
        else
609
                assign  w_pcA_v = (dcd_iA[4] == dcd_gie)?dcd_pc:upc;
610
        endgenerate
611
 
612
        reg     [4:0]    opa_Aid, opa_Bid;
613
        reg             opa_Ard, opa_Brd;
614
        always @(posedge i_clk)
615
                if (opa_ce)
616
                begin
617
                        opa_iA <= dcd_iA;
618
                        opa_iB <= dcd_iB;
619
                        opa_rA <= dcd_rA;
620
                        opa_rB <= dcd_rB;
621
                end
622
 
623
        always @(posedge i_clk)
624
                if (opa_ce)
625
                begin
626
                        if ((wr_reg_ce)&&(wr_reg_id == dcd_iA))
627
                                r_opA <= wr_gpreg_vl;
628
                        else if (dcdA_pc)
629
                                r_opA <= w_pcA_v;
630
                        else if (dcdA_cc)
631
                                r_opA <= { w_cpu_info, w_opA[22:15], (dcd_iA[4])?w_uflags:w_iflags };
632
                        else
633
                                r_opA <= w_opA;
634
                end else if ((wr_reg_ce)&&(wr_reg_id == opa_iA)&&(opa_rA))
635
                                r_opA <= wr_gpreg_vl;
636
 
637
        wire    [31:0]   w_opBnI, w_pcB_v;
638
        generate
639
        if (AW < 32)
640
                assign  w_pcB_v = {{(32-AW){1'b0}}, (dcdB[4] == dcd_gie)?dcd_pc:upc };
641
        else
642
                assign  w_pcB_v = (dcdB[4] == dcd_gie)?dcd_pc:upc;
643
        endgenerate
644
 
645
        always @(posedge i_clk)
646
                if (opa_ce)
647
                begin
648
                        opa_B <= (~dcdB_rd) ? 32'h00
649
                        : (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_gpreg_vl
650
                        : ((dcdB_pc) ? w_pcB_v
651
                        : ((dcdB_cc) ? { w_cpu_info, w_opB[22:14], // w_opB[31:14],
652
                                (dcdB[4])?w_uflags:w_iflags}
653
                        : w_opB)));
654
                        opa_I <= dcd_I;
655
                end
656
 
657
//
658
//      B-Inflight
659
//
660
//      We cannot read the B register if it is "in-flight", that is if the
661
//      result register of any previous instruction still needs to be written.
662
//
663
//      reg     [31:0]  opa_b_inflight;
664
//      always @(posedge i_clk)
665
//              if ((i_reset)||(clear_pipeline))
666
//                      opa_b_inflight <= 32'h00;
667
//              else begin
668
//                      if (wr_reg_ce)
669
//                              opa_b_inflight[wr_reg_id] <= 1'b0;
670
//                      if (opb_ce)
671
//                              opa_b_inflight[opa_Rid] <= 1'b1;
672
//              end
673
//                      
674
//      always @(posedge i_clk)
675
//              if (opa_b_invalid)
676
//                      opa_b_invalid <= opa_b_inflight[opa_A];
677
//              else
678
//                      opa_b_invalid <= opa_b_inflight[dcd_iA];
679
//
680
 
681
        always @(posedge i_clk)
682
                if (opb_ce)
683
                        opb_B <= opa_B + opa_I;
684
                else if ((wr_reg_ce)&&(opa_Bid == wr_reg_id)&&(opa_Brd))
685
                        opb_B <= wr_gpreg_vl;
686
 
687
        always @(posedge i_clk)
688
                if (opa_ce)
689
                        opa_F <= dcdF;
690
        always @(posedge i_clk)
691
                if (opb_ce)
692
                begin
693
                        case(opa_F[2:0])
694
                        3'h0:   r_opb_F <= 6'h00;       // Always
695
                        // These were remapped as part of the new instruction
696
                        // set in order to make certain that the low order
697
                        // two bits contained the most commonly used 
698
                        // conditions: Always, LT, Z, and NZ.
699
                        3'h1:   r_opb_F <= 6'h24;       // LT
700
                        3'h2:   r_opb_F <= 6'h11;       // Z
701
                        3'h3:   r_opb_F <= 6'h10;       // NE
702
                        3'h4:   r_opb_F <= 6'h30;       // GT (!N&!Z)
703
                        3'h5:   r_opb_F <= 6'h20;       // GE (!N)
704
                        3'h6:   r_opb_F <= 6'h02;       // C
705
                        3'h7:   r_opb_F <= 6'h08;       // V
706
                        endcase
707
                end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
708
        assign  opb_F = { r_opb_F[3], r_opb_F[5], r_opb_F[1], r_opb_F[4:0] };
709
 
710
        wire    w_opa_valid;
711
        always @(posedge i_clk)
712
                if (i_rst)
713
                        opa_valid <= 1'b0;
714
                else if (opa_ce)
715
                        opa_valid <= ((dcd_valid)||(dcd_illegal))&&(~clear_pipeline);
716
 
717
        always @(posedge i_clk)
718
                if ((i_rst)||(clear_pipeline))
719
                begin
720
                        opa_valid <= 1'b0;
721
                end else if (opa_ce)
722
                begin
723
                        opa_valid <=(dcd_valid);
724
                        opa_M     <= (dcd_valid)&&(opa_M  )&&(~opa_illegal);
725
                        opa_DV    <= (dcd_valid)&&(opa_DV )&&(~opa_illegal);
726
                        opa_FP    <= (dcd_valid)&&(opa_FP )&&(~opa_illegal);
727
                end else if (opb_ce)
728
                        opa_valid <= 1'b0;
729
 
730
        initial opb_valid     = 1'b0;
731
        initial opb_valid_alu = 1'b0;
732
        initial opb_valid_mem = 1'b0;
733
        initial opb_valid_div = 1'b0;
734
        initial opb_valid_fpu = 1'b0;
735
        always @(posedge i_clk)
736
                if ((i_rst)||(clear_pipeline))
737
                begin
738
                        opb_valid     <= 1'b0;
739
                        opb_valid_alu <= 1'b0;
740
                        opb_valid_mem <= 1'b0;
741
                        opb_valid_div <= 1'b0;
742
                        opb_valid_fpu <= 1'b0;
743
                end else if (opb_ce)
744
                begin
745
                        // Do we have a valid instruction?
746
                        //   The decoder may vote to stall one of its
747
                        //   instructions based upon something we currently
748
                        //   have in our queue.  This instruction must then
749
                        //   move forward, and get a stall cycle inserted.
750
                        //   Hence, the test on dcd_stalled here.  If we must
751
                        //   wait until our operands are valid, then we aren't
752
                        //   valid yet until then.
753
                        opb_valid     <= (opa_valid);
754
                        opb_valid_alu <=(opa_valid)&&((opa_ALU)||(opa_illegal));
755
                        opb_valid_mem <= (opa_valid)&&(opa_M  )&&(~opa_illegal);
756
                        opb_valid_div <= (opa_valid)&&(opa_DV )&&(~opa_illegal);
757
                        opb_valid_fpu <= (opa_valid)&&(opa_FP )&&(~opa_illegal);
758
                end else if ((clear_pipeline)||(stage_ce))
759
                begin
760
                        opb_valid     <= 1'b0;
761
                        opb_valid_alu <= 1'b0;
762
                        opb_valid_mem <= 1'b0;
763
                        opb_valid_div <= 1'b0;
764
                        opb_valid_fpu <= 1'b0;
765
                end
766
 
767
        initial op_break = 1'b0;
768
        always @(posedge i_clk)
769
                if (i_rst)      opb_break <= 1'b0;
770
                else if (opb_ce)
771
                        opb_break <= (opa_break)&&((break_en)||(~opa_gie));
772
                else if ((clear_pipeline)||(~opb_valid))
773
                                opb_break <= 1'b0;
774
 
775
        reg     r_op_lock, r_op_lock_stall;
776
 
777
        initial r_op_lock_stall = 1'b0;
778
        always @(posedge i_clk)
779
                if (i_rst)
780
                        r_op_lock_stall <= 1'b0;
781
                else
782
                        r_op_lock_stall <= (~opvalid)||(~op_lock)
783
                                        ||(~dcd_valid)||(~pf_valid);
784
 
785
        assign  op_lock_stall = r_op_lock_stall;
786
 
787
        initial opa_lock = 1'b0;
788
        always @(posedge i_clk)
789
                if ((i_rst)||(clear_pipeline))
790
                        opa_lock <= 1'b0;
791
                else if (opa_ce)
792
                        opa_lock <= (dcd_lock)&&(~clear_pipeline);
793
        initial opb_lock = 1'b0;
794
        always @(posedge i_clk)
795
                if ((i_rst)||(clear_pipeline))
796
                        opb_lock <= 1'b0;
797
                else if (opb_ce)
798
                        opb_lock <= (opb_lock)&&(~clear_pipeline);
799
 
800
        initial opa_illegal = 1'b0;
801
        always @(posedge i_clk)
802
                if ((i_rst)||(clear_pipeline))
803
                        opa_illegal <= 1'b0;
804
                else if(opa_ce)
805
                        opa_illegal <=(dcd_illegal);
806
        initial opb_illegal = 1'b0;
807
        always @(posedge i_clk)
808
                if ((i_rst)||(clear_pipeline))
809
                        opb_illegal <= 1'b0;
810
                else if(opb_ce)
811
                        opb_illegal <=(opa_illegal);
812
 
813
        always @(posedge i_clk)
814
                if (opa_ce)
815
                begin
816
                        opa_wF <= (dcdF_wr)&&((~dcdR_cc)||(~dcd_wR))
817
                                &&(~dcd_early_branch)&&(~dcd_illegal);
818
                        opa_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal);
819
                end
820
        always @(posedge i_clk)
821
                if (opb_ce)
822
                begin
823
                        opb_wF <= opa_wF;
824
                        opb_wR <= opa_wR;
825
                end
826
 
827
        always @(posedge i_clk)
828
                if (opa_ce)
829
                begin
830
                        opa_opn  <= dcdOp;      // Which ALU operation?
831
                        opa_R    <= dcd_iR;
832
                        opa_ccR  <= (dcdR_cc)&&(dcd_wR)&&(dcd_iR[4]==dcd_gie);
833
                        opa_gie <= dcd_gie;
834
                        //
835
                        opa_pc  <= dcd_valid;
836
                        opa_rA  <= dcd_;
837
                        opa_rB  <= dcd_;
838
                end
839
        always @(posedge i_clk)
840
                if (opb_ce)
841
                begin
842
                        opb_opn  <= opa_opn;
843
                        opb_R    <= opa_R;
844
                        opb_ccR  <= opa_ccR;
845
                        opb_gie <= opa_gie;
846
                        //
847
                        opb_pc  <= opa_pc;
848
                end
849
        assign  opb_Fl = (opb_gie)?(w_uflags):(w_iflags);
850
 
851
        always @(posedge i_clk)
852
                if ((i_rst)||(clear_pipeline))
853
                        opa_phase <= 1'b0;
854
                else if (opa_ce)
855
                        opa_phase <= dcd_phase;
856
 
857
        always @(posedge i_clk)
858
                if ((i_rst)||(clear_pipeline))
859
                        opb_phase <= 1'b0;
860
                else if (opb_ce)
861
                        opb_phase <= opa_phase;
862
 
863
        assign  opA = r_opA;
864
 
865
        assign  dcdA_stall = (dcd_rA) // &&(dcdvalid) is checked for elsewhere
866
                                &&((opa_valid)||(mem_rdbusy)
867
                                        ||(div_busy)||(fpu_busy))
868
                                &&((opF_wr)&&(dcdA_cc));
869
 
870
        assign  dcdB_stall = (dcdB_rd)
871
                                &&((opa_valid)||(mem_rdbusy)
872
                                        ||(div_busy)||(fpu_busy)||(alu_busy))
873
                                &&(
874
                                // 1.
875
                                ((~dcd_zI)&&(
876
                                        ((opb_R == dcdB)&&(opb_wR))
877
                                        ||((mem_rdbusy)&&(~dcd_pipe))
878
                                        ))
879
                                // 2.
880
                                ||((opF_wr)&&(dcdB_cc))
881
                                );
882
        assign  dcdF_stall = ((~dcdF[3])
883
                                        ||((dcd_rA)&&(dcdA_cc))
884
                                        ||((dcd_rB)&&(dcdB_cc)))
885
                                        &&(opvalid)&&(opb_ccR);
886
        //
887
        //
888
        //      PIPELINE STAGE #4 :: Apply Instruction
889
        //
890
        //
891
        fastops fastalu(i_clk, i_rst, alu_ce,
892
                        (opb_valid_alu), opb_opn, opb_A, opb_B,
893
                        alu_result, alu_flags, alu_valid, alu_illegal_op,
894
                        alu_busy);
895
 
896
        div thedivide(i_clk, (i_rst)||(clear_pipeline), div_ce, opb_opn[0],
897
                        opb_A, opb_B, div_busy, div_valid, div_error, div_result,
898
                        div_flags);
899
 
900
        generate
901
        if (IMPLEMENT_FPU != 0)
902
        begin
903
                //
904
                // sfpu thefpu(i_clk, i_rst, fpu_ce,
905
                //      opA, opB, fpu_busy, fpu_valid, fpu_err, fpu_result,
906
                //      fpu_flags);
907
                //
908
                assign  fpu_error = 1'b0; // Must only be true if fpu_valid
909
                assign  fpu_busy  = 1'b0;
910
                assign  fpu_valid = 1'b0;
911
                assign  fpu_result= 32'h00;
912
                assign  fpu_flags = 4'h0;
913
        end else begin
914
                assign  fpu_error = 1'b0;
915
                assign  fpu_busy  = 1'b0;
916
                assign  fpu_valid = 1'b0;
917
                assign  fpu_result= 32'h00;
918
                assign  fpu_flags = 4'h0;
919
        end endgenerate
920
 
921
 
922
        assign  set_cond = ((opb_F[7:4]&opb_Fl[3:0])==opb_F[3:0]);
923
        initial alF_wr   = 1'b0;
924
        initial alu_wr   = 1'b0;
925
        always @(posedge i_clk)
926
                if (i_rst)
927
                begin
928
                        alu_wr   <= 1'b0;
929
                        alF_wr   <= 1'b0;
930
                end else if (alu_ce)
931
                begin
932
                        // alu_reg <= opR;
933
                        alu_wr  <= (opb_wR)&&(set_cond);
934
                        alF_wr  <= (opb_wF)&&(set_cond);
935
                end else if (~alu_busy) begin
936
                        // These are strobe signals, so clear them if not
937
                        // set for any particular clock
938
                        alu_wr <= (i_halt)&&(i_dbg_we);
939
                        alF_wr <= 1'b0;
940
                end
941
 
942
        initial alu_phase = 1'b0;
943
        always @(posedge i_clk)
944
                if (i_rst)
945
                        alu_phase <= 1'b0;
946
                else if ((adf_ce_unconditional)||(mem_ce))
947
                        alu_phase <= opb_phase;
948
 
949
        always @(posedge i_clk)
950
                if (adf_ce_unconditional)
951
                        alu_reg <= opb_R;
952
                else if ((i_halt)&&(i_dbg_we))
953
                        alu_reg <= i_dbg_reg;
954
 
955
        //
956
        // DEBUG Register write access starts here
957
        //
958
        reg             dbgv;
959
        initial dbgv = 1'b0;
960
        always @(posedge i_clk)
961
                dbgv <= (~i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted);
962
        reg     [31:0]   dbg_val;
963
        always @(posedge i_clk)
964
                dbg_val <= i_dbg_data;
965
        always @(posedge i_clk)
966
                if (stage_ce)
967
                        alu_gie  <= op_gie;
968
        always @(posedge i_clk)
969
                if (stage_ce)
970
                        alu_pc  <= opb_pc;
971
 
972
        initial alu_illegal = 0;
973
        always @(posedge i_clk)
974
                if (clear_pipeline)
975
                        alu_illegal <= 1'b0;
976
                else if (stage_ce)
977
                        alu_illegal <= opb_illegal;
978
 
979
        initial r_alu_pc_valid = 1'b0;
980
        initial mem_pc_valid = 1'b0;
981
        always @(posedge i_clk)
982
                if (i_rst)
983
                        r_alu_pc_valid <= 1'b0;
984
                else if (adf_ce_unconditional)//Includes&&(~alu_clear_pipeline)
985
                        r_alu_pc_valid <= 1'b1;
986
                else if (((~alu_busy)&&(~div_busy)&&(~fpu_busy))||(clear_pipeline))
987
                        r_alu_pc_valid <= 1'b0;
988
        assign  alu_pc_valid = (r_alu_pc_valid)&&((~alu_busy)&&(~div_busy)&&(~fpu_busy));
989
        always @(posedge i_clk)
990
                if (i_rst)
991
                        mem_pc_valid <= 1'b0;
992
                else
993
                        mem_pc_valid <= (mem_ce);
994
 
995
        wire    bus_lock;
996
 
997
        reg     [1:0]    r_bus_lock;
998
        initial r_bus_lock = 2'b00;
999
        always @(posedge i_clk)
1000
                if (i_rst)
1001
                        r_bus_lock <= 2'b00;
1002
                else if ((opb_ce)&&(opb_lock))
1003
                        r_bus_lock <= 2'b11;
1004
                else if ((|r_bus_lock)&&((~opb_valid_mem)||(~opb_ce)))
1005
                        r_bus_lock <= r_bus_lock + 2'b11; // r_bus_lock -= 1
1006
        assign  bus_lock = |r_bus_lock;
1007
 
1008
        pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
1009
                                (opb_opn[0]), opb_B, opb_A, opb_R,
1010
                                mem_busy, mem_pipe_stalled,
1011
                                mem_valid, bus_err, mem_wreg, mem_result,
1012
                        mem_cyc_gbl, mem_cyc_lcl,
1013
                                mem_stb_gbl, mem_stb_lcl,
1014
                                mem_we, mem_addr, mem_data,
1015
                                mem_ack, mem_stall, mem_err, i_wb_data);
1016
 
1017
        assign  mem_rdbusy = ((mem_busy)&&(~mem_we));
1018
 
1019
        // Either the prefetch or the instruction gets the memory bus, but 
1020
        // never both.
1021
        wbdblpriarb     #(32,AW) pformem(i_clk, i_rst,
1022
                // Memory access to the arbiter, priority position
1023
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl,
1024
                        mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err,
1025
                // Prefetch access to the arbiter
1026
                pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data,
1027
                        pf_ack, pf_stall, pf_err,
1028
                // Common wires, in and out, of the arbiter
1029
                o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb,
1030
                        o_wb_we, o_wb_addr, o_wb_data,
1031
                        i_wb_ack, i_wb_stall, i_wb_err);
1032
 
1033
 
1034
 
1035
        //
1036
        //
1037
        //
1038
        //
1039
        //
1040
        //
1041
        //
1042
        //
1043
        //      PIPELINE STAGE #5 :: Write-back results
1044
        //
1045
        //
1046
 
1047
        // Unlike previous versions of the writeback routine(s), this version
1048
        // requires that everything be registered and clocked as soon as it is
1049
        // valid.  So, let's start by clocking in our results.
1050
        reg     [4:0]    r_wr_reg;
1051
        reg     [31:0]   r_wr_val;
1052
        reg             r_wr_ce, r_wr_err;
1053
 
1054
        // 1. Will we need to write a register?
1055
        always @(posedge i_clk)
1056
                r_wr_ce <= (dbgv)||(mem_valid)
1057
                                ||((~clear_pipeline)&&(~alu_illegal)
1058
                                        &&(((alu_wr)&&(alu_valid))
1059
                                                ||(div_valid)||(fpu_valid)));
1060
        assign  wr_reg_ce = r_wr_ce;
1061
 
1062
        // 2. Did the ALU/MEM/DIV/FPU stage produce an error of any type?
1063
        //      a. Illegal instruction
1064
        //      b. Division by zero
1065
        //      c. Floating point error
1066
        //      d. Bus Error
1067
        // these will be causes for an interrupt on the next clock after this
1068
        // one.
1069
        always @(posedge i_clk)
1070
                r_wr_err <= ((div_valid)&&(div_error))
1071
                                ||((fpu_valid)&&(fpu_error))
1072
                                ||((alu_pc_valid)&&(alu_illegal))
1073
                                ||(bus_err);
1074
        reg     r_wr_illegal;
1075
        always @(posedge i_clk)
1076
                r_wr_illegal <= (alu_pc_valid)&&(alu_illegal);
1077
 
1078
        // Which register shall be written?
1079
        //      Note that the alu_reg is the register to write on a divide or
1080
        //      FPU operation.
1081
        always @(posedge i_clk)
1082
                r_wr_reg <= (alu_wr|div_valid|fpu_valid)?alu_reg:mem_wreg;
1083
        assign  wr_reg_id = r_wr_reg;
1084
 
1085
        // Are we writing to the CC register?
1086
        assign  wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG);
1087
        assign  wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG});
1088
        assign  wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG});
1089
        // Are we writing to the PC?
1090
        assign  wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG);
1091
 
1092
        // What value to write?
1093
        always @(posedge i_clk)
1094
                r_wr_val <= ((mem_valid) ? mem_result
1095
                                :((div_valid|fpu_valid))
1096
                                        ? ((div_valid) ? div_result:fpu_result)
1097
                                :((dbgv) ? dbg_val : alu_result));
1098
        assign  wr_gpreg_vl = r_wr_val;
1099
        assign  wr_spreg_vl = r_wr_val;
1100
 
1101
        // Do we write back our flags?
1102
        reg     r_wr_flags_ce;
1103
        initial r_wr_flags_ce = 1'b0;
1104
        always @(posedge i_clk)
1105
                r_wr_flags_ce <= ((alF_wr)||(div_valid)||(fpu_valid))
1106
                                        &&(~clear_pipeline)&&(~alu_illegal);
1107
        assign  wr_flags_ce = r_wr_flags_ce;
1108
 
1109
        reg     [3:0]    r_wr_newflags;
1110
        always @(posedge i_clk)
1111
                if (div_valid)
1112
                        r_wr_newflags <= div_flags;
1113
                else if (fpu_valid)
1114
                        r_wr_newflags <= fpu_flags;
1115
                else // if (alu_valid)
1116
                        r_wr_newflags <= alu_flags;
1117
 
1118
        reg     r_wr_gie;
1119
        always @(posedge i_clk)
1120
                r_wr_gie <= (~dbgv)&&(alu_gie);
1121
 
1122
        reg     r_wr_pc_valid;
1123
        initial r_wr_pc_valid = 1'b0;
1124
        always @(posedge i_clk)
1125
                r_wr_pc_valid <= ((alu_pc_valid)&&(~clear_pipeline))
1126
                                ||(mem_pc_valid);
1127
        reg     [(AW-1):0]       r_wr_pc;
1128
        always @(posedge i_clk)
1129
                r_wr_pc <= alu_pc; // (alu_pc_valid)?alu_pc : mem_pc;
1130
 
1131
        ////
1132
        //
1133
        //
1134
        // Write back, second clock
1135
        //
1136
        //
1137
        ////
1138
        always @(posedge i_clk)
1139
                if (wr_reg_ce)
1140
                        regset[wr_reg_id] <= wr_gpreg_vl;
1141
 
1142
 
1143
        assign  w_uflags = { uhalt_phase, ufpu_err_flag,
1144
                        udiv_err_flag, ubus_err_flag, trap, ill_err_u,
1145
                        1'b0, step, 1'b1, sleep,
1146
                        ((wr_flags_ce)&&(alu_gie))?r_wr_newflags:flags };
1147
        assign  w_iflags = { ihalt_phase, ifpu_err_flag,
1148
                        idiv_err_flag, ibus_err_flag, trap, ill_err_i,
1149
                        break_en, 1'b0, 1'b0, sleep,
1150
                        ((wr_flags_ce)&&(~alu_gie))?r_wr_newflags:iflags };
1151
 
1152
 
1153
        // What value to write?
1154
        always @(posedge i_clk)
1155
                // If explicitly writing the register itself
1156
                if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc))
1157
                        flags <= wr_gpreg_vl[3:0];
1158
                // Otherwise if we're setting the flags from an ALU operation
1159
                else if ((wr_flags_ce)&&(alu_gie))
1160
                        flags <= r_wr_newflags;
1161
 
1162
        always @(posedge i_clk)
1163
                if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
1164
                        iflags <= wr_gpreg_vl[3:0];
1165
                else if ((wr_flags_ce)&&(~alu_gie))
1166
                        iflags <= r_wr_newflags;
1167
 
1168
        // The 'break' enable  bit.  This bit can only be set from supervisor
1169
        // mode.  It control what the CPU does upon encountering a break
1170
        // instruction.
1171
        //
1172
        // The goal, upon encountering a break is that the CPU should stop and
1173
        // not execute the break instruction, choosing instead to enter into
1174
        // either interrupt mode or halt first.  
1175
        //      if ((break_en) AND (break_instruction)) // user mode or not
1176
        //              HALT CPU
1177
        //      else if (break_instruction) // only in user mode
1178
        //              set an interrupt flag, set the user break bit,
1179
        //              go to supervisor mode, allow supervisor to step the CPU.
1180
        //      Upon a CPU halt, any break condition will be reset.  The
1181
        //      external debugger will then need to deal with whatever
1182
        //      condition has taken place.
1183
        initial break_en = 1'b0;
1184
        always @(posedge i_clk)
1185
                if ((i_rst)||(i_halt))
1186
                        break_en <= 1'b0;
1187
                else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
1188
                        break_en <= wr_spreg_vl[`CPU_BREAK_BIT];
1189
 
1190
        reg     pipe_busy;
1191
        initial pipe_busy <= 1'b0;
1192
        always @(posedge i_clk)
1193
                pipe_busy <= ((mem_ce)||(alu_ce)||(div_ce)||(fpu_ce))
1194
                        ||((alu_busy)||(mem_busy)||(div_busy)||(fpu_busy));
1195
 
1196
        // pending_break <= ((break_en)||(~op_gie))&&(op_break)
1197
        assign  o_break = ((op_break)&&(~pipe_busy)&&(~clear_pipeline))
1198
                        ||((~r_wr_gie)&&(r_wr_err));
1199
 
1200
 
1201
        // The GIE register.  Only interrupts can disable the interrupt register
1202
        reg     slow_interrupt, fast_interrupt;
1203
        initial slow_interrupt = 1'b0;
1204
        // The key difference between a fast interrupt and a slow interrupt
1205
        // is that a fast interrupt requires the pipeline to be cleared,
1206
        // whereas a slow interrupt does not.
1207
        always @(posedge i_clk)
1208
                slow_interrupt <= (gie)&&(
1209
                                (i_interrupt)
1210
                        // If we encounter a break instruction, if the break
1211
                        // enable isn't set.  This is slow because pre
1212
                        // ALU logic will prevent the break from moving forward.
1213
                                ||((op_break)&&(~break_en)));
1214
        initial fast_interrupt = 1'b0;
1215
        always @(posedge i_clk) // 12 inputs
1216
                fast_interrupt <= ((gie)||(alu_gie))&&(
1217
                        ((r_wr_pc_valid)&&(step)&&(~alu_phase)&&(~bus_lock))
1218
                        // Or ... if we encountered some form of error in our
1219
                        // instruction ...
1220
                        ||(r_wr_err)
1221
                        // Or if we write to the CC register.
1222
                        ||((wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT])
1223
                                &&(wr_reg_id[4])&&(wr_write_cc)));
1224
 
1225
        assign  w_switch_to_interrupt = fast_interrupt;
1226
 
1227
        assign  w_release_from_interrupt = (~gie)&&(~i_interrupt)
1228
                        // Then if we write the CC register
1229
                        &&(((wr_reg_ce)&&(~r_wr_gie)&&(wr_spreg_vl[`CPU_GIE_BIT])
1230
                                &&(~wr_reg_id[4])&&(wr_write_cc))
1231
                        );
1232
        always @(posedge i_clk)
1233
                if (i_rst)
1234
                        gie <= 1'b0;
1235
                else if ((fast_interrupt)||(slow_interrupt))
1236
                        gie <= 1'b0;
1237
                else if (w_release_from_interrupt)
1238
                        gie <= 1'b1;
1239
 
1240
        initial trap = 1'b0;
1241
        always @(posedge i_clk)
1242
                if (i_rst)
1243
                        trap <= 1'b0;
1244
                else if (w_release_from_interrupt)
1245
                        trap <= 1'b0;
1246
                else if ((r_wr_gie)&&(wr_reg_ce)&&(wr_write_cc)
1247
                                &&(~wr_spreg_vl[`CPU_GIE_BIT]))
1248
                                // &&(wr_reg_id[4]) implied
1249
                        trap <= 1'b1;
1250
                else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_id[4]))
1251
                        trap <= wr_spreg_vl[`CPU_TRAP_BIT];
1252
 
1253
        // The sleep register.  Setting the sleep register causes the CPU to
1254
        // sleep until the next interrupt.  Setting the sleep register within
1255
        // interrupt mode causes the processor to halt until a reset.  This is
1256
        // a panic/fault halt.  The trick is that you cannot be allowed to
1257
        // set the sleep bit and switch to supervisor mode in the same 
1258
        // instruction: users are not allowed to halt the CPU.
1259
        always @(posedge i_clk)
1260
                if ((i_rst)||(slow_interrupt))
1261
                        sleep <= 1'b0;
1262
                else if ((wr_reg_ce)&&(wr_write_cc)&&(~r_wr_gie))
1263
                        // In supervisor mode, we have no protections.  The
1264
                        // supervisor can set the sleep bit however he wants.
1265
                        // Well ... not quite.  Switching to user mode and
1266
                        // sleep mode shouold only be possible if the interrupt
1267
                        // flag isn't set.
1268
                        //      Thus: if (i_interrupt)&&(wr_spreg_vl[GIE])
1269
                        //              don't set the sleep bit
1270
                        //      otherwise however it would o.w. be set
1271
                        sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT])
1272
                                &&((~i_interrupt)||(~wr_spreg_vl[`CPU_GIE_BIT]));
1273
                else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT]))
1274
                        // In user mode, however, you can only set the sleep
1275
                        // mode while remaining in user mode.  You can't switch
1276
                        // to sleep mode *and* supervisor mode at the same
1277
                        // time, lest you halt the CPU.
1278
                        sleep <= wr_spreg_vl[`CPU_SLEEP_BIT];
1279
 
1280
        always @(posedge i_clk)
1281
                if ((i_rst)||(fast_interrupt))
1282
                        step <= 1'b0;
1283
                else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc))
1284
                        step <= wr_spreg_vl[`CPU_STEP_BIT];
1285
                else if (((alu_pc_valid)||(mem_pc_valid))&&(step)&&(gie))
1286
                        step <= 1'b0;
1287
 
1288
 
1289
        initial ill_err_i = 1'b0;
1290
        always @(posedge i_clk)
1291
                if (i_rst)
1292
                        ill_err_i <= 1'b0;
1293
                // Only the debug interface can clear this bit
1294
                else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1295
                                &&(~wr_spreg_vl[`CPU_ILL_BIT]))
1296
                        ill_err_i <= 1'b0;
1297
                else if ((r_wr_illegal)&&(~r_wr_gie))
1298
                        ill_err_i <= 1'b1;
1299
        initial ill_err_u = 1'b0;
1300
        always @(posedge i_clk)
1301
                // The bit is automatically cleared on release from interrupt
1302
                // or reset
1303
                if ((i_rst)||(w_release_from_interrupt))
1304
                        ill_err_u <= 1'b0;
1305
                // If the supervisor writes to this register, clearing the
1306
                // bit, then clear it
1307
                else if ((~r_wr_gie)
1308
                                &&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_ILL_BIT])
1309
                                &&(wr_reg_id[4])&&(wr_write_cc))
1310
                        ill_err_u <= 1'b0;
1311
                else if ((r_wr_gie)&&(r_wr_illegal))
1312
                        ill_err_u <= 1'b1;
1313
        // Supervisor/interrupt bus error flag -- this will crash the CPU if
1314
        // ever set.
1315
        initial ibus_err_flag = 1'b0;
1316
        always @(posedge i_clk)
1317
                if (i_rst)
1318
                        ibus_err_flag <= 1'b0;
1319
                else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1320
                                &&(~wr_spreg_vl[`CPU_BUSERR_BIT]))
1321
                        ibus_err_flag <= 1'b0;
1322
                else if ((bus_err)&&(~alu_gie))
1323
                        ibus_err_flag <= 1'b1;
1324
        // User bus error flag -- if ever set, it will cause an interrupt to
1325
        // supervisor mode.  
1326
        initial ubus_err_flag = 1'b0;
1327
        always @(posedge i_clk)
1328
                if (i_rst)
1329
                        ubus_err_flag <= 1'b0;
1330
                else if (w_release_from_interrupt)
1331
                        ubus_err_flag <= 1'b0;
1332
                else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
1333
                                &&(~wr_spreg_vl[`CPU_BUSERR_BIT])
1334
                                &&(wr_reg_id[4])&&(wr_write_cc))
1335
                        ubus_err_flag <= 1'b0;
1336
                else if ((bus_err)&&(alu_gie))
1337
                        ubus_err_flag <= 1'b1;
1338
 
1339
        reg     r_idiv_err_flag, r_udiv_err_flag;
1340
 
1341
        // Supervisor/interrupt divide (by zero) error flag -- this will
1342
        // crash the CPU if ever set.  This bit is thus available for us
1343
        // to be able to tell if/why the CPU crashed.
1344
        initial r_idiv_err_flag = 1'b0;
1345
        always @(posedge i_clk)
1346
                if (i_rst)
1347
                        r_idiv_err_flag <= 1'b0;
1348
                else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1349
                                &&(~wr_spreg_vl[`CPU_DIVERR_BIT]))
1350
                        r_idiv_err_flag <= 1'b0;
1351
                else if ((div_error)&&(div_valid)&&(~r_wr_gie))
1352
                        r_idiv_err_flag <= 1'b1;
1353
        // User divide (by zero) error flag -- if ever set, it will
1354
        // cause a sudden switch interrupt to supervisor mode.  
1355
        initial r_udiv_err_flag = 1'b0;
1356
        always @(posedge i_clk)
1357
                if (i_rst)
1358
                        r_udiv_err_flag <= 1'b0;
1359
                else if (w_release_from_interrupt)
1360
                        r_udiv_err_flag <= 1'b0;
1361
                else if (((~r_wr_gie)||(dbgv))&&(wr_reg_ce)
1362
                                &&(~wr_spreg_vl[`CPU_DIVERR_BIT])
1363
                                &&(wr_reg_id[4])&&(wr_write_cc))
1364
                        r_udiv_err_flag <= 1'b0;
1365
                else if ((div_error)&&(r_wr_gie)&&(div_valid))
1366
                        r_udiv_err_flag <= 1'b1;
1367
 
1368
        assign  idiv_err_flag = r_idiv_err_flag;
1369
        assign  udiv_err_flag = r_udiv_err_flag;
1370
 
1371
        generate
1372
        if (IMPLEMENT_FPU !=0)
1373
        begin
1374
                // Supervisor/interrupt floating point error flag -- this will
1375
                // crash the CPU if ever set.
1376
                reg             r_ifpu_err_flag, r_ufpu_err_flag;
1377
                initial r_ifpu_err_flag = 1'b0;
1378
                always @(posedge i_clk)
1379
                        if (i_rst)
1380
                                r_ifpu_err_flag <= 1'b0;
1381
                        else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1382
                                        &&(~wr_spreg_vl[`CPU_FPUERR_BIT]))
1383
                                r_ifpu_err_flag <= 1'b0;
1384
                        else if ((fpu_error)&&(fpu_valid)&&(~r_wr_gie))
1385
                                r_ifpu_err_flag <= 1'b1;
1386
                // User floating point error flag -- if ever set, it will cause
1387
                // a sudden switch interrupt to supervisor mode.  
1388
                initial r_ufpu_err_flag = 1'b0;
1389
                always @(posedge i_clk)
1390
                        if (i_rst)
1391
                                r_ufpu_err_flag <= 1'b0;
1392
                        else if (w_release_from_interrupt)
1393
                                r_ufpu_err_flag <= 1'b0;
1394
                        else if (((~r_wr_gie)||(dbgv))&&(wr_reg_ce)
1395
                                        &&(~wr_spreg_vl[`CPU_FPUERR_BIT])
1396
                                        &&(wr_reg_id[4])&&(wr_write_cc))
1397
                                r_ufpu_err_flag <= 1'b0;
1398
                        else if ((fpu_error)&&(r_wr_gie)&&(fpu_valid))
1399
                                r_ufpu_err_flag <= 1'b1;
1400
 
1401
                assign  ifpu_err_flag = r_ifpu_err_flag;
1402
                assign  ufpu_err_flag = r_ufpu_err_flag;
1403
        end else begin
1404
                assign  ifpu_err_flag = 1'b0;
1405
                assign  ufpu_err_flag = 1'b0;
1406
        end endgenerate
1407
 
1408
`ifdef  OPT_VLIW
1409
        reg             r_ihalt_phase, r_uhalt_phase;
1410
 
1411
        initial r_ihalt_phase = 0;
1412
        initial r_uhalt_phase = 0;
1413
        always @(posedge i_clk)
1414
                if (i_rst)
1415
                        r_ihalt_phase <= 1'b0;
1416
                else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
1417
                        r_ihalt_phase <= alu_phase;
1418
        always @(posedge i_clk)
1419
                if (r_wr_gie)
1420
                        r_uhalt_phase <= alu_phase;
1421
                else if (w_release_from_interrupt)
1422
                        r_uhalt_phase <= 1'b0;
1423
 
1424
        assign  ihalt_phase = r_ihalt_phase;
1425
        assign  uhalt_phase = r_uhalt_phase;
1426
`else
1427
        assign  ihalt_phase = 1'b0;
1428
        assign  uhalt_phase = 1'b0;
1429
`endif
1430
 
1431
        //
1432
        // Write backs to the PC register, and general increments of it
1433
        //      We support two: upc and ipc.  If the instruction is normal,
1434
        // we increment upc, if interrupt level we increment ipc.  If
1435
        // the instruction writes the PC, we write whichever PC is appropriate.
1436
        //
1437
        // Do we need to all our partial results from the pipeline?
1438
        // What happens when the pipeline has gie and ~gie instructions within
1439
        // it?  Do we clear both?  What if a gie instruction tries to clear
1440
        // a non-gie instruction?
1441
        always @(posedge i_clk)
1442
                if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc))
1443
                        upc <= wr_spreg_vl[(AW-1):0];
1444
                else if ((r_wr_gie)&&
1445
                                (((alu_pc_valid)&&(~clear_pipeline))
1446
                                ||(mem_pc_valid)))
1447
                        upc <= alu_pc;
1448
 
1449
        always @(posedge i_clk)
1450
                if (i_rst)
1451
                        ipc <= RESET_ADDRESS;
1452
                else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc))
1453
                        ipc <= wr_spreg_vl[(AW-1):0];
1454
                else if ((~r_wr_gie)&&
1455
                                (((alu_pc_valid)&&(~clear_pipeline))
1456
                                ||(mem_pc_valid)))
1457
                        ipc <= alu_pc;
1458
 
1459
        always @(posedge i_clk)
1460
                if (i_rst)
1461
                        pf_pc <= RESET_ADDRESS;
1462
                else if ((w_switch_to_interrupt)||((~gie)&&(w_clear_icache)))
1463
                        pf_pc <= ipc;
1464
                else if ((w_release_from_interrupt)||((gie)&&(w_clear_icache)))
1465
                        pf_pc <= upc;
1466
                else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
1467
                        pf_pc <= wr_spreg_vl[(AW-1):0];
1468
`ifdef  OPT_PIPELINED
1469
                else if ((dcd_early_branch)&&(~clear_pipeline))
1470
                        pf_pc <= dcd_branch_pc + 1;
1471
                else if ((new_pc)||((~dcd_stalled)&&(pf_valid)))
1472
                        pf_pc <= pf_pc + {{(AW-1){1'b0}},1'b1};
1473
`else
1474
                else if ((alu_gie==gie)&&(
1475
                                ((alu_pc_valid)&&(~clear_pipeline))
1476
                                ||(mem_pc_valid)))
1477
                        pf_pc <= alu_pc;
1478
`endif
1479
 
1480
        initial new_pc = 1'b1;
1481
        always @(posedge i_clk)
1482
                if ((i_rst)||(i_clear_pf_cache))
1483
                        new_pc <= 1'b1;
1484
                else if (w_switch_to_interrupt)
1485
                        new_pc <= 1'b1;
1486
                else if (w_release_from_interrupt)
1487
                        new_pc <= 1'b1;
1488
                else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
1489
                        new_pc <= 1'b1;
1490
                else
1491
                        new_pc <= 1'b0;
1492
 
1493
`ifdef  OPT_PIPELINED
1494
        reg     r_clear_icache;
1495
        initial r_clear_icache = 1'b1;
1496
        always @(posedge i_clk)
1497
                if ((i_rst)||(i_clear_pf_cache))
1498
                        r_clear_icache <= 1'b1;
1499
                else if ((wr_reg_ce)&&(wr_write_scc))
1500
                        r_clear_icache <=  wr_spreg_vl[`CPU_CLRCACHE_BIT];
1501
                else
1502
                        r_clear_icache <= 1'b0;
1503
        assign  w_clear_icache = r_clear_icache;
1504
`else
1505
        assign  w_clear_icache = 1'b0;
1506
`endif
1507
 
1508
        //
1509
        // The debug interface
1510
        generate
1511
        if (AW<32)
1512
        begin
1513
                always @(posedge i_clk)
1514
                begin
1515
                        o_dbg_reg <= regset[i_dbg_reg];
1516
                        if (i_dbg_reg[3:0] == `CPU_PC_REG)
1517
                                o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc};
1518
                        else if (i_dbg_reg[3:0] == `CPU_CC_REG)
1519
                        begin
1520
                                o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
1521
                                o_dbg_reg[31:23] <= w_cpu_info;
1522
                                o_dbg_reg[`CPU_GIE_BIT] <= gie;
1523
                        end
1524
                end
1525
        end else begin
1526
                always @(posedge i_clk)
1527
                begin
1528
                        o_dbg_reg <= regset[i_dbg_reg];
1529
                        if (i_dbg_reg[3:0] == `CPU_PC_REG)
1530
                                o_dbg_reg <= (i_dbg_reg[4])?upc:ipc;
1531
                        else if (i_dbg_reg[3:0] == `CPU_CC_REG)
1532
                        begin
1533
                                o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
1534
                                o_dbg_reg[31:23] <= w_cpu_info;
1535
                                o_dbg_reg[`CPU_GIE_BIT] <= gie;
1536
                        end
1537
                end
1538
        end endgenerate
1539
 
1540
        always @(posedge i_clk)
1541
                o_dbg_cc <= { o_break, bus_err, gie, sleep };
1542
 
1543
        always @(posedge i_clk)
1544
                r_halted <= (i_halt)&&(
1545
                        // To be halted, any long lasting instruction must
1546
                        // be completed.
1547
                        (~pf_cyc)&&(~mem_busy)&&(~alu_busy)
1548
                                &&(~div_busy)&&(~fpu_busy)
1549
                        // Operations must either be valid, or illegal
1550
                        &&((opvalid)||(i_rst)||(dcd_illegal))
1551
                        // Decode stage must be either valid, in reset, or ill
1552
                        &&((dcdvalid)||(i_rst)||(pf_illegal)));
1553
        assign  o_dbg_stall = ~r_halted;
1554
 
1555
        //
1556
        //
1557
        // Produce accounting outputs: Account for any CPU stalls, so we can
1558
        // later evaluate how well we are doing.
1559
        //
1560
        //
1561
        assign  o_op_stall = (master_ce)&&(op_stall);
1562
        assign  o_pf_stall = (master_ce)&&(~pf_valid);
1563
        assign  o_i_count  = (alu_pc_valid)&&(~clear_pipeline);
1564
 
1565
`ifdef  DEBUG_SCOPE
1566
        always @(posedge i_clk)
1567
                o_debug <= {
1568
                /*
1569
                        o_break, i_wb_err, pf_pc[1:0],
1570
                        flags,
1571
                        pf_valid, dcdvalid, opvalid, alu_valid, mem_valid,
1572
                        op_ce, alu_ce, mem_ce,
1573
                        //
1574
                        master_ce, opvalid_alu, opvalid_mem,
1575
                        //
1576
                        alu_stall, mem_busy, op_pipe, mem_pipe_stalled,
1577
                        mem_we,
1578
                        // ((opvalid_alu)&&(alu_stall))
1579
                        // ||((opvalid_mem)&&(~op_pipe)&&(mem_busy))
1580
                        // ||((opvalid_mem)&&( op_pipe)&&(mem_pipe_stalled)));
1581
                        // opA[23:20], opA[3:0],
1582
                        gie, sleep, wr_reg_ce, wr_gpreg_vl[4:0]
1583
                */
1584
                /*
1585
                        i_rst, master_ce, (new_pc),
1586
                        ((dcd_early_branch)&&(dcdvalid)),
1587
                        pf_valid, pf_illegal,
1588
                        op_ce, dcd_ce, dcdvalid, dcd_stalled,
1589
                        pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err,
1590
                        pf_pc[7:0], pf_addr[7:0]
1591
                */
1592
 
1593
                        i_wb_err, gie, alu_illegal,
1594
                              (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
1595
                        mem_busy,
1596
                                (mem_busy)?{ (o_wb_gbl_stb|o_wb_lcl_stb), o_wb_we,
1597
                                        o_wb_addr[8:0] }
1598
                                        : { instruction[31:21] },
1599
                        pf_valid, (pf_valid) ? alu_pc[14:0]
1600
                                :{ pf_cyc, pf_stb, pf_pc[12:0] }
1601
 
1602
                /*
1603
                        i_wb_err, gie, new_pc, dcd_early_branch,        // 4
1604
                        pf_valid, pf_cyc, pf_stb, instruction_pc[0],    // 4
1605
                        instruction[30:27],                             // 4
1606
                        dcd_gie, mem_busy, o_wb_gbl_cyc, o_wb_gbl_stb,  // 4
1607
                        dcdvalid,
1608
                        ((dcd_early_branch)&&(~clear_pipeline))         // 15
1609
                                        ? dcd_branch_pc[14:0]:pf_pc[14:0]
1610
                */
1611
                        };
1612
`endif
1613
 
1614
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.