OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [cpu/] [zipjiffies.v] - Blame information for rev 10

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 dgisselq
////////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    zipjiffies.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7
// Purpose:     This peripheral is motivated by the Linux use of 'jiffies'.
8
//      A process, in Linux, can request to be put to sleep until a certain
9
//      number of 'jiffies' have elapsed.  Using this interface, the CPU can
10
//      read the number of 'jiffies' from this peripheral (it only has the
11
//      one location in address space), add the sleep length to it, and
12
//      write the result back to the peripheral.  The zipjiffies peripheral
13
//      will record the value written to it only if it is nearer the current
14
//      counter value than the last current waiting interrupt time.  If no
15
//      other interrupts are waiting, and this time is in the future, it will
16
//      be enabled.  (There is currrently no way to disable a jiffie interrupt
17
//      once set.)  The processor may then place this sleep request into a
18
//      list among other sleep requests.  Once the timer expires, it would
19
//      write the next jiffy request to the peripheral and wake up the process
20
//      whose timer had expired.
21
//
22
//      Quite elementary, really.
23
//
24
// Interface:
25
//      This peripheral contains one register: a counter.  Reads from the
26
//      register return the current value of the counter.  Writes within
27
//      the (N-1) bit space following the current time set an interrupt.
28
//      Writes of values that occurred in the last 2^(N-1) ticks will be
29
//      ignored.  The timer then interrupts when it's value equals that time. 
30
//      Multiple writes cause the jiffies timer to select the nearest possible
31
//      interrupt.  Upon an interrupt, the next interrupt time/value is cleared
32
//      and will need to be reset if the CPU wants to get notified again.  With
33
//      only the single interface, there is no way of knowing when the next
34
//      interrupt is scheduled for, neither is there any way to slow down the
35
//      interrupt timer in case you don't want it overflowing as often and you
36
//      wish to wait more jiffies than it supports.  Thus, currently, if you
37
//      have a timer you wish to wait upon that is more than 2^31 into the
38
//      future, you would need to set timers along the way, wake up on those
39
//      timers, and set further timer's until you finally get to your
40
//      destination.
41
//
42
//
43
// Creator:     Dan Gisselquist, Ph.D.
44
//              Gisselquist Technology, LLC
45
//
46
////////////////////////////////////////////////////////////////////////////////
47
//
48
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
49
//
50
// This program is free software (firmware): you can redistribute it and/or
51
// modify it under the terms of  the GNU General Public License as published
52
// by the Free Software Foundation, either version 3 of the License, or (at
53
// your option) any later version.
54
//
55
// This program is distributed in the hope that it will be useful, but WITHOUT
56
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
57
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
58
// for more details.
59
//
60
// License:     GPL, v3, as defined and found on www.gnu.org,
61
//              http://www.gnu.org/licenses/gpl.html
62
//
63
//
64
////////////////////////////////////////////////////////////////////////////////
65
//
66
module  zipjiffies(i_clk, i_ce,
67
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
68
                        o_wb_ack, o_wb_stall, o_wb_data,
69
                o_int);
70
        parameter       BW = 32;
71
        input                           i_clk, i_ce;
72
        // Wishbone inputs
73
        input                           i_wb_cyc, i_wb_stb, i_wb_we;
74
        input           [(BW-1):0]       i_wb_data;
75
        // Wishbone outputs
76
        output  reg                     o_wb_ack;
77
        output  wire                    o_wb_stall;
78
        output  wire    [(BW-1):0]       o_wb_data;
79
        // Interrupt line
80
        output  reg                     o_int;
81
 
82
        //
83
        // Our counter logic: The counter is always counting up--it cannot
84
        // be stopped or altered.  It's really quite simple.  Okay, not quite.
85
        // We still support the clock enable line.  We do this in order to
86
        // support debugging, so that if we get everything running inside a
87
        // debugger, the timer's all slow down so that everything can be stepped
88
        // together, one clock at a time.
89
        //
90
        reg     [(BW-1):0]       r_counter;
91
        always @(posedge i_clk)
92
                if (i_ce)
93
                        r_counter <= r_counter+1;
94
 
95
        //
96
        // Writes to the counter set an interrupt--but only if they are in the
97
        // future as determined by the signed result of an unsigned subtract.
98
        //
99
        reg                             int_set,  new_set;
100
        reg             [(BW-1):0]       int_when, new_when;
101
        wire    signed  [(BW-1):0]       till_when, till_wb;
102
        assign  till_when = int_when-r_counter;
103
        assign  till_wb   = new_when-r_counter;
104
 
105
        initial new_set = 1'b0;
106
        always @(posedge i_clk)
107
        begin
108
                // Delay things by a clock to simplify our logic
109
                new_set <= ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we));
110
                // new_when is a don't care when new_set = 0, so don't worry
111
                // about setting it at all times.
112
                new_when<= i_wb_data;
113
        end
114
 
115
        initial o_int   = 1'b0;
116
        initial int_set = 1'b0;
117
        always @(posedge i_clk)
118
        begin
119
                o_int <= 1'b0;
120
                if ((i_ce)&&(int_set)&&(r_counter == int_when))
121
                        // Interrupts are self-clearing
122
                        o_int <= 1'b1;  // Set the interrupt flag for one clock
123
                else if ((new_set)&&(till_wb <= 0))
124
                        o_int <= 1'b1;
125
 
126
                if ((new_set)&&(till_wb > 0))
127
                        int_set <= 1'b1;
128
                else if ((i_ce)&&(r_counter == int_when))
129
                        int_set <= 1'b0;
130
 
131
                if ((new_set)&&(till_wb > 0)&&((till_wb<till_when)||(~int_set)))
132
                        int_when <= new_when;
133
        end
134
 
135
        //
136
        // Acknowledge any wishbone accesses -- everything we did took only
137
        // one clock anyway.
138
        //
139
        always @(posedge i_clk)
140
                o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
141
 
142
        assign  o_wb_data = r_counter;
143
        assign  o_wb_stall = 1'b0;
144
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.