OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [cpu/] [zipsystem.v] - Blame information for rev 38

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 dgisselq
///////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    zipsystem.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7
// Purpose:     This portion of the ZIP CPU implements a number of soft
8
//              peripherals to the CPU nearby its CORE.  The functionality
9
//              sits on the data bus, and does not include any true
10
//              external hardware peripherals.  The peripherals included here
11
//              include:
12
//
13
//
14
//      Local interrupt controller--for any/all of the interrupts generated
15
//              here.  This would include a pin for interrupts generated
16
//              elsewhere, so this interrupt controller could be a master
17
//              handling all interrupts.  My interrupt controller would work
18
//              for this purpose.
19
//
20
//              The ZIP-CPU supports only one interrupt because, as I understand
21
//              modern systems (Linux), they tend to send all interrupts to the
22
//              same interrupt vector anyway.  Hence, that's what we do here.
23
//
24
//      Bus Error interrupts -- generates an interrupt any time the wishbone
25
//              bus produces an error on a given access, for whatever purpose
26
//              also records the address on the bus at the time of the error.
27
//
28
//      Trap instructions
29
//              Writing to this "register" will always create an interrupt.
30
//              After the interrupt, this register may be read to see what
31
//              value had been written to it.
32
//
33
//      Bit reverse register ... ?
34
//
35
//      (Potentially an eventual floating point co-processor ...)
36
//
37
//      Real-time clock
38
//
39
//      Interval timer(s) (Count down from fixed value, and either stop on
40
//              zero, or issue an interrupt and restart automatically on zero)
41
//              These can be implemented as watchdog timers if desired--the
42
//              only difference is that a watchdog timer's interrupt feeds the
43
//              reset line instead of the processor interrupt line.
44
//
45
//      Watch-dog timer: this is the same as an interval timer, only it's
46
//              interrupt/time-out line is wired to the reset line instead of
47
//              the interrupt line of the CPU.
48
//
49
//      ROM Memory map
50
//              Set a register to control this map, and a DMA will begin to
51
//              fill this memory from a slower FLASH.  Once filled, accesses
52
//              will be from this memory instead of 
53
//
54
//
55
//      Doing some market comparison, let's look at what peripherals a TI
56
//      MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
57
//      Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
58
//      brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
59
//      Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
60
//      watchdog-timers,
61
//
62
// Creator:     Dan Gisselquist, Ph.D.
63
//              Gisselquist Technology, LLC
64
//
65
///////////////////////////////////////////////////////////////////////////
66
//
67
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
68
//
69
// This program is free software (firmware): you can redistribute it and/or
70
// modify it under the terms of  the GNU General Public License as published
71
// by the Free Software Foundation, either version 3 of the License, or (at
72
// your option) any later version.
73
//
74
// This program is distributed in the hope that it will be useful, but WITHOUT
75
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
76
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
77
// for more details.
78
//
79
// License:     GPL, v3, as defined and found on www.gnu.org,
80
//              http://www.gnu.org/licenses/gpl.html
81
//
82
//
83
///////////////////////////////////////////////////////////////////////////
84
//
85
`include "cpudefs.v"
86
//
87
// While I hate adding delays to any bus access, this next delay is required
88
// to make timing close in my Basys-3 design.
89
`define DELAY_DBG_BUS
90
// On my previous version, I needed to add a delay to access the external
91
// bus.  Activate the define below and that delay will be put back into place.
92
// This particular version no longer needs the delay in order to run at 
93
// 100 MHz.  Timing indicates I may even run this at 250 MHz without the
94
// delay too, so we're doing better.  To get rid of this, I placed the logic
95
// determining whether or not I was accessing the local system bus one clock
96
// earlier, or into the memops.v file.  This also required my wishbone bus
97
// arbiter to maintain the bus selection as well, so that got updated ...
98
// you get the picture.  But, the bottom line is that I no longer need this
99
// delay.
100
//
101
// `define      DELAY_EXT_BUS   // Required no longer!
102
//
103
//
104
// If space is tight, you might not wish to have your performance and
105
// accounting counters, so let's make those optional here
106
//      Without this flag, Slice LUT count is 3315 (ZipSystem),2432 (ZipCPU)
107
//      When including counters, 
108
//              Slice LUTs      ZipSystem       ZipCPU
109
//      With Counters           3315            2432
110
//      Without Counters        2796            2046
111
 
112
//
113
// Now, where am I placing all of my peripherals?
114
`define PERIPHBASE      32'hc0000000
115
`define INTCTRL         5'h0    // 
116
`define WATCHDOG        5'h1    // Interrupt generates reset signal
117
`define BUSWATCHDOG     5'h2    // Sets IVEC[0]
118
`define CTRINT          5'h3    // Sets IVEC[5]
119
`define TIMER_A         5'h4    // Sets IVEC[4]
120
`define TIMER_B         5'h5    // Sets IVEC[3]
121
`define TIMER_C         5'h6    // Sets IVEC[2]
122
`define JIFFIES         5'h7    // Sets IVEC[1]
123
 
124
 
125
`ifdef  INCLUDE_ACCOUNTING_COUNTERS
126
`define MSTR_TASK_CTR   5'h08
127
`define MSTR_MSTL_CTR   5'h09
128
`define MSTR_PSTL_CTR   5'h0a
129
`define MSTR_INST_CTR   5'h0b
130
`define USER_TASK_CTR   5'h0c
131
`define USER_MSTL_CTR   5'h0d
132
`define USER_PSTL_CTR   5'h0e
133
`define USER_INST_CTR   5'h0f
134
`endif
135
 
136
// Although I have a hole at 5'h2, the DMA controller requires four wishbone
137
// addresses, therefore we place it by itself and expand our address bus
138
// width here by another bit.
139
`define DMAC            5'h10
140
 
141
// `define      RTC_CLOCK       32'hc0000008    // A global something
142
// `define      BITREV          32'hc0000003
143
//
144
//      DBGCTRL
145
//              10 HALT
146
//               9 HALT(ED)
147
//               8 STEP (W=1 steps, and returns to halted)
148
//               7 INTERRUPT-FLAG
149
//               6 RESET_FLAG
150
//              ADDRESS:
151
//               5      PERIPHERAL-BIT
152
//              [4:0]   REGISTER-ADDR
153
//      DBGDATA
154
//              read/writes internal registers
155
//
156
//
157
//
158
module  zipsystem(i_clk, i_rst,
159
                // Wishbone master interface from the CPU
160
                o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
161
                        i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
162
                // Incoming interrupts
163
                i_ext_int,
164
                // Our one outgoing interrupt
165
                o_ext_int,
166
                // Wishbone slave interface for debugging purposes
167
                i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
168
                        o_dbg_ack, o_dbg_stall, o_dbg_data
169
`ifdef  DEBUG_SCOPE
170
                , o_cpu_debug
171
`endif
172
                );
173
        parameter       RESET_ADDRESS=24'h0100000, ADDRESS_WIDTH=24,
174
                        LGICACHE=10, START_HALTED=1, EXTERNAL_INTERRUPTS=1,
175
`ifdef  OPT_MULTIPLY
176
                        IMPLEMENT_MPY = `OPT_MULTIPLY,
177
`else
178
                        IMPLEMENT_MPY = 0,
179
`endif
180
`ifdef  OPT_DIVIDE
181
                        IMPLEMENT_DIVIDE=1,
182
`else
183
                        IMPLEMENT_DIVIDE=0,
184
`endif
185
`ifdef  OPT_IMPLEMENT_FPU
186
                        IMPLEMENT_FPU=1,
187
`else
188
                        IMPLEMENT_FPU=0,
189
`endif
190
                        IMPLEMENT_LOCK=1,
191
                        HIGHSPEED_CPU=0,
192
                        // Derived parameters
193
                        AW=ADDRESS_WIDTH;
194
        input   i_clk, i_rst;
195
        // Wishbone master
196
        output  wire            o_wb_cyc, o_wb_stb, o_wb_we;
197
        output  wire    [(AW-1):0]       o_wb_addr;
198
        output  wire    [31:0]   o_wb_data;
199
        input                   i_wb_ack, i_wb_stall;
200
        input           [31:0]   i_wb_data;
201
        input                   i_wb_err;
202
        // Incoming interrupts
203
        input           [(EXTERNAL_INTERRUPTS-1):0]      i_ext_int;
204
        // Outgoing interrupt
205
        output  wire            o_ext_int;
206
        // Wishbone slave
207
        input                   i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
208
        input           [31:0]   i_dbg_data;
209
        output  wire            o_dbg_ack;
210
        output  wire            o_dbg_stall;
211
        output  wire    [31:0]   o_dbg_data;
212
        //
213
`ifdef  DEBUG_SCOPE
214
        output  wire    [31:0]   o_cpu_debug;
215
`endif
216
 
217
        wire    [31:0]   ext_idata;
218
 
219
        // Handle our interrupt vector generation/coordination
220
        wire    [14:0]   main_int_vector, alt_int_vector;
221
        wire            ctri_int, tma_int, tmb_int, tmc_int, jif_int, dmac_int;
222
        wire            mtc_int, moc_int, mpc_int, mic_int,
223
                        utc_int, uoc_int, upc_int, uic_int;
224
        generate
225
        if (EXTERNAL_INTERRUPTS < 9)
226
                assign  main_int_vector = { {(9-EXTERNAL_INTERRUPTS){1'b0}},
227
                                        i_ext_int, ctri_int,
228
                                        tma_int, tmb_int, tmc_int,
229
                                        jif_int, dmac_int };
230
        else
231
                assign  main_int_vector = { i_ext_int[8:0], ctri_int,
232
                                        tma_int, tmb_int, tmc_int,
233
                                        jif_int, dmac_int };
234
        endgenerate
235
        generate
236
        if (EXTERNAL_INTERRUPTS <= 9)
237
`ifdef  INCLUDE_ACCOUNTING_COUNTERS
238
                assign  alt_int_vector = { 7'h00,
239
                                        mtc_int, moc_int, mpc_int, mic_int,
240
                                        utc_int, uoc_int, upc_int, uic_int };
241
`else
242
                assign  alt_int_vector = { 15'h00 };
243
`endif
244
        else
245
`ifdef  INCLUDE_ACCOUNTING_COUNTERS
246
                assign  alt_int_vector = { {(7-(EXTERNAL_INTERRUPTS-9)){1'b0}},
247
                                        i_ext_int[(EXTERNAL_INTERRUPTS-1):9],
248
                                        mtc_int, moc_int, mpc_int, mic_int,
249
                                        utc_int, uoc_int, upc_int, uic_int };
250
`else
251
                assign  alt_int_vector = { {(15-(EXTERNAL_INTERRUPTS-9)){1'b0}},
252
                                        i_ext_int[(EXTERNAL_INTERRUPTS-1):9] };
253
`endif
254
        endgenerate
255
 
256
 
257
        // Delay the debug port by one clock, to meet timing requirements
258
        wire            dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
259
        wire    [31:0]   dbg_idata, dbg_odata;
260
        reg             dbg_ack;
261
`ifdef  DELAY_DBG_BUS
262
        wire            dbg_err, no_dbg_err;
263
        assign          dbg_err = 1'b0;
264
        busdelay #(1,32) wbdelay(i_clk,
265
                i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
266
                        o_dbg_ack, o_dbg_stall, o_dbg_data, no_dbg_err,
267
                dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata,
268
                        dbg_ack, dbg_stall, dbg_odata, dbg_err);
269
`else
270
        assign  dbg_cyc     = i_dbg_cyc;
271
        assign  dbg_stb     = i_dbg_stb;
272
        assign  dbg_we      = i_dbg_we;
273
        assign  dbg_addr    = i_dbg_addr;
274
        assign  dbg_idata   = i_dbg_data;
275
        assign  o_dbg_ack   = dbg_ack;
276
        assign  o_dbg_stall = dbg_stall;
277
        assign  o_dbg_data  = dbg_odata;
278
`endif
279
 
280
        // 
281
        //
282
        //
283
        wire    sys_cyc, sys_stb, sys_we;
284
        wire    [4:0]    sys_addr;
285
        wire    [(AW-1):0]       cpu_addr;
286
        wire    [31:0]   sys_data;
287
        wire            sys_ack, sys_stall;
288
 
289
        //
290
        // The external debug interface
291
        //
292
        // We offer only a limited interface here, requiring a pre-register
293
        // write to set the local address.  This interface allows access to
294
        // the Zip System on a debug basis only, and not to the rest of the
295
        // wishbone bus.  Further, to access these registers, the control
296
        // register must first be accessed to both stop the CPU and to 
297
        // set the following address in question.  Hence all accesses require
298
        // two accesses: write the address to the control register (and halt
299
        // the CPU if not halted), then read/write the data from the data
300
        // register.
301
        //
302
        wire            cpu_break, dbg_cmd_write;
303
        reg             cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache;
304
        reg     [5:0]    cmd_addr;
305
        wire    [3:0]    cpu_dbg_cc;
306
        assign  dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr);
307
        //
308
        initial cmd_reset = 1'b1;
309
        always @(posedge i_clk)
310
                cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6]));
311
        //
312
        initial cmd_halt  = START_HALTED;
313
        always @(posedge i_clk)
314
                if (i_rst)
315
                        cmd_halt <= (START_HALTED == 1)? 1'b1 : 1'b0;
316
                else if (dbg_cmd_write)
317
                        cmd_halt <= ((dbg_idata[10])||(dbg_idata[8]));
318
                else if ((cmd_step)||(cpu_break))
319
                        cmd_halt  <= 1'b1;
320
 
321
        initial cmd_clear_pf_cache = 1'b0;
322
        always @(posedge i_clk)
323
                cmd_clear_pf_cache = (~i_rst)&&(dbg_cmd_write)
324
                                        &&((dbg_idata[11])||(dbg_idata[6]));
325
        //
326
        initial cmd_step  = 1'b0;
327
        always @(posedge i_clk)
328
                cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]);
329
        //
330
        always @(posedge i_clk)
331
                if (dbg_cmd_write)
332
                        cmd_addr <= dbg_idata[5:0];
333
 
334
        wire    cpu_reset;
335
        assign  cpu_reset = (cmd_reset)||(wdt_reset)||(i_rst);
336
 
337
        wire    cpu_halt, cpu_dbg_stall;
338
        assign  cpu_halt = (i_rst)||((cmd_halt)&&(~cmd_step));
339
        wire    [31:0]   pic_data;
340
        wire    [31:0]   cmd_data;
341
        // Values:
342
        //      0x0003f -> cmd_addr mask
343
        //      0x00040 -> reset
344
        //      0x00080 -> PIC interrrupt pending
345
        //      0x00100 -> cmd_step
346
        //      0x00200 -> cmd_stall
347
        //      0x00400 -> cmd_halt
348
        //      0x00800 -> cmd_clear_pf_cache
349
        //      0x01000 -> cc.sleep
350
        //      0x02000 -> cc.gie
351
        //      0x04000 -> External (PIC) interrupt line is high
352
        //      Other external interrupts follow
353
        generate
354
        if (EXTERNAL_INTERRUPTS < 16)
355
                assign  cmd_data = { {(16-EXTERNAL_INTERRUPTS){1'b0}},
356
                                        i_ext_int,
357
                                cpu_dbg_cc,     // 4 bits
358
                                1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
359
                                pic_data[15], cpu_reset, cmd_addr };
360
        else
361
                assign  cmd_data = { i_ext_int[15:0], cpu_dbg_cc,
362
                                1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
363
                                pic_data[15], cpu_reset, cmd_addr };
364
        endgenerate
365
 
366
        wire    cpu_gie;
367
        assign  cpu_gie = cpu_dbg_cc[1];
368
 
369
        //
370
        // The WATCHDOG Timer
371
        //
372
        wire            wdt_ack, wdt_stall, wdt_reset;
373
        wire    [31:0]   wdt_data;
374
        ziptimer #(32,31,0)
375
                watchdog(i_clk, cpu_reset, ~cmd_halt,
376
                        sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
377
                                sys_data,
378
                        wdt_ack, wdt_stall, wdt_data, wdt_reset);
379
 
380
        //
381
        // Position two, a second watchdog timer--this time for the wishbone
382
        // bus, in order to tell/find wishbone bus lockups.  In its current
383
        // configuration, it cannot be configured and all bus accesses must
384
        // take less than the number written to this register.
385
        //
386
        reg     wdbus_ack;
387
        reg     [(AW-1):0]       r_wdbus_data;
388
        wire    [31:0]           wdbus_data;
389
        wire    [14:0]   wdbus_ignored_data;
390
        wire    reset_wdbus_timer, wdbus_int;
391
        assign  reset_wdbus_timer = ((o_wb_cyc)&&((o_wb_stb)||(i_wb_ack)));
392
        wbwatchdog #(14) watchbus(i_clk,(cpu_reset)||(reset_wdbus_timer),
393
                        o_wb_cyc, 14'h2000, wdbus_int);
394
        initial r_wdbus_data = 0;
395
        always @(posedge i_clk)
396
                if ((wdbus_int)||(cpu_ext_err))
397
                        r_wdbus_data = o_wb_addr;
398
        assign  wdbus_data = { {(32-AW){1'b0}}, r_wdbus_data };
399
        initial wdbus_ack = 1'b0;
400
        always @(posedge i_clk)
401
                wdbus_ack <= ((sys_cyc)&&(sys_stb)&&(sys_addr == 5'h02));
402
 
403
        // Counters -- for performance measurement and accounting
404
        //
405
        // Here's the stuff we'll be counting ....
406
        //
407
        wire            cpu_op_stall, cpu_pf_stall, cpu_i_count;
408
 
409
`ifdef  INCLUDE_ACCOUNTING_COUNTERS
410
        //
411
        // The master counters will, in general, not be reset.  They'll be used
412
        // for an overall counter.
413
        //
414
        // Master task counter
415
        wire            mtc_ack, mtc_stall;
416
        wire    [31:0]   mtc_data;
417
        zipcounter      mtask_ctr(i_clk, (~cpu_halt), sys_cyc,
418
                                (sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
419
                                        sys_we, sys_data,
420
                                mtc_ack, mtc_stall, mtc_data, mtc_int);
421
 
422
        // Master Operand Stall counter
423
        wire            moc_ack, moc_stall;
424
        wire    [31:0]   moc_data;
425
        zipcounter      mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
426
                                (sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
427
                                        sys_we, sys_data,
428
                                moc_ack, moc_stall, moc_data, moc_int);
429
 
430
        // Master PreFetch-Stall counter
431
        wire            mpc_ack, mpc_stall;
432
        wire    [31:0]   mpc_data;
433
        zipcounter      mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
434
                                (sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
435
                                        sys_we, sys_data,
436
                                mpc_ack, mpc_stall, mpc_data, mpc_int);
437
 
438
        // Master Instruction counter
439
        wire            mic_ack, mic_stall;
440
        wire    [31:0]   mic_data;
441
        zipcounter      mins_ctr(i_clk,(cpu_i_count), sys_cyc,
442
                                (sys_stb)&&(sys_addr == `MSTR_INST_CTR),
443
                                        sys_we, sys_data,
444
                                mic_ack, mic_stall, mic_data, mic_int);
445
 
446
        //
447
        // The user counters are different from those of the master.  They will
448
        // be reset any time a task is given control of the CPU.
449
        //
450
        // User task counter
451
        wire            utc_ack, utc_stall;
452
        wire    [31:0]   utc_data;
453
        zipcounter      utask_ctr(i_clk,(~cpu_halt)&&(cpu_gie), sys_cyc,
454
                                (sys_stb)&&(sys_addr == `USER_TASK_CTR),
455
                                        sys_we, sys_data,
456
                                utc_ack, utc_stall, utc_data, utc_int);
457
 
458
        // User Op-Stall counter
459
        wire            uoc_ack, uoc_stall;
460
        wire    [31:0]   uoc_data;
461
        zipcounter      umstall_ctr(i_clk,(cpu_op_stall)&&(cpu_gie), sys_cyc,
462
                                (sys_stb)&&(sys_addr == `USER_MSTL_CTR),
463
                                        sys_we, sys_data,
464
                                uoc_ack, uoc_stall, uoc_data, uoc_int);
465
 
466
        // User PreFetch-Stall counter
467
        wire            upc_ack, upc_stall;
468
        wire    [31:0]   upc_data;
469
        zipcounter      upstall_ctr(i_clk,(cpu_pf_stall)&&(cpu_gie), sys_cyc,
470
                                (sys_stb)&&(sys_addr == `USER_PSTL_CTR),
471
                                        sys_we, sys_data,
472
                                upc_ack, upc_stall, upc_data, upc_int);
473
 
474
        // User instruction counter
475
        wire            uic_ack, uic_stall;
476
        wire    [31:0]   uic_data;
477
        zipcounter      uins_ctr(i_clk,(cpu_i_count)&&(cpu_gie), sys_cyc,
478
                                (sys_stb)&&(sys_addr == `USER_INST_CTR),
479
                                        sys_we, sys_data,
480
                                uic_ack, uic_stall, uic_data, uic_int);
481
 
482
        // A little bit of pre-cleanup (actr = accounting counters)
483
        wire            actr_ack, actr_stall;
484
        wire    [31:0]   actr_data;
485
        assign  actr_ack = ((mtc_ack | moc_ack | mpc_ack | mic_ack)
486
                                |(utc_ack | uoc_ack | upc_ack | uic_ack));
487
        assign  actr_stall = ((mtc_stall | moc_stall | mpc_stall | mic_stall)
488
                                |(utc_stall | uoc_stall | upc_stall|uic_stall));
489
        assign  actr_data = ((mtc_ack) ? mtc_data
490
                                : ((moc_ack) ? moc_data
491
                                : ((mpc_ack) ? mpc_data
492
                                : ((mic_ack) ? mic_data
493
                                : ((utc_ack) ? utc_data
494
                                : ((uoc_ack) ? uoc_data
495
                                : ((upc_ack) ? upc_data
496
                                : uic_data)))))));
497
`else //        INCLUDE_ACCOUNTING_COUNTERS
498
        reg             actr_ack;
499
        wire            actr_stall;
500
        wire    [31:0]   actr_data;
501
        assign  actr_stall = 1'b0;
502
        assign  actr_data = 32'h0000;
503
 
504
        assign  mtc_int = 1'b0;
505
        assign  moc_int = 1'b0;
506
        assign  mpc_int = 1'b0;
507
        assign  mic_int = 1'b0;
508
        assign  utc_int = 1'b0;
509
        assign  uoc_int = 1'b0;
510
        assign  upc_int = 1'b0;
511
        assign  uic_int = 1'b0;
512
 
513
        always @(posedge i_clk)
514
                actr_ack <= (sys_stb)&&(sys_addr[4:3] == 2'b01);
515
`endif  //      INCLUDE_ACCOUNTING_COUNTERS
516
 
517
        //
518
        // The DMA Controller
519
        //
520
        wire            dmac_stb, dc_err;
521
        wire    [31:0]   dmac_data;
522
        wire            dmac_ack, dmac_stall;
523
        wire            dc_cyc, dc_stb, dc_we, dc_ack, dc_stall;
524
        wire    [31:0]   dc_data;
525
        wire    [(AW-1):0]       dc_addr;
526
        wire            cpu_gbl_cyc;
527
        assign  dmac_stb = (sys_stb)&&(sys_addr[4]);
528
`ifdef  INCLUDE_DMA_CONTROLLER
529
        wbdmac  #(AW) dma_controller(i_clk, cpu_reset,
530
                                sys_cyc, dmac_stb, sys_we,
531
                                        sys_addr[1:0], sys_data,
532
                                        dmac_ack, dmac_stall, dmac_data,
533
                                // Need the outgoing DMAC wishbone bus
534
                                dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
535
                                        dc_ack, dc_stall, ext_idata, dc_err,
536
                                // External device interrupts
537
                                { 1'b0, alt_int_vector, 1'b0,
538
                                        main_int_vector[14:1], 1'b0 },
539
                                // DMAC interrupt, for upon completion
540
                                dmac_int);
541
`else
542
        reg     r_dmac_ack;
543
        always @(posedge i_clk)
544
                r_dmac_ack <= (sys_cyc)&&(dmac_stb);
545
        assign  dmac_ack = r_dmac_ack;
546
        assign  dmac_data = 32'h000;
547
        assign  dmac_stall = 1'b0;
548
 
549
        assign  dc_cyc  = 1'b0;
550
        assign  dc_stb  = 1'b0;
551
        assign  dc_we   = 1'b0;
552
        assign  dc_addr = { (AW) {1'b0} };
553
        assign  dc_data = 32'h00;
554
 
555
        assign  dmac_int = 1'b0;
556
`endif
557
 
558
        wire            ctri_sel, ctri_stall;
559
        reg             ctri_ack;
560
        wire    [31:0]   ctri_data;
561 32 dgisselq
        assign  ctri_sel = (sys_stb)&&(sys_addr == `CTRINT);
562 3 dgisselq
        always @(posedge i_clk)
563
                ctri_ack <= ctri_sel;
564
        assign  ctri_stall = 1'b0;
565
`ifdef  INCLUDE_ACCOUNTING_COUNTERS
566
        //
567
        // Counter Interrupt controller
568
        //
569
        generate
570
        if (EXTERNAL_INTERRUPTS <= 9)
571
        begin
572
                icontrol #(8)   ctri(i_clk, cpu_reset, (ctri_sel),
573
                                        sys_data, ctri_data, alt_int_vector[7:0],
574
                                        ctri_int);
575
        end else begin
576
                icontrol #(8+(EXTERNAL_INTERRUPTS-9))
577
                                ctri(i_clk, cpu_reset, (ctri_sel),
578
                                        sys_data, ctri_data,
579
                                        alt_int_vector[(EXTERNAL_INTERRUPTS-2):0],
580
                                        ctri_int);
581
        end endgenerate
582
 
583
`else   //      INCLUDE_ACCOUNTING_COUNTERS
584
 
585
        generate
586
        if (EXTERNAL_INTERRUPTS <= 9)
587
        begin
588
                assign  ctri_stall = 1'b0;
589
                assign  ctri_data  = 32'h0000;
590
                assign  ctri_int   = 1'b0;
591
        end else begin
592
                icontrol #(EXTERNAL_INTERRUPTS-9)
593
                                ctri(i_clk, cpu_reset, (ctri_sel),
594
                                        sys_data, ctri_data,
595
                                alt_int_vector[(EXTERNAL_INTERRUPTS-10):0],
596
                                        ctri_int);
597
        end endgenerate
598
`endif  //      INCLUDE_ACCOUNTING_COUNTERS
599
 
600
 
601
        //
602
        // Timer A
603
        //
604
        wire            tma_ack, tma_stall;
605
        wire    [31:0]   tma_data;
606
        ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
607
                        sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
608
                                sys_data,
609
                        tma_ack, tma_stall, tma_data, tma_int);
610
 
611
        //
612
        // Timer B
613
        //
614
        wire            tmb_ack, tmb_stall;
615
        wire    [31:0]   tmb_data;
616
        ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
617
                        sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
618
                                sys_data,
619
                        tmb_ack, tmb_stall, tmb_data, tmb_int);
620
 
621
        //
622
        // Timer C
623
        //
624
        wire            tmc_ack, tmc_stall;
625
        wire    [31:0]   tmc_data;
626
        ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
627
                        sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
628
                                sys_data,
629
                        tmc_ack, tmc_stall, tmc_data, tmc_int);
630
 
631
        //
632
        // JIFFIES
633
        //
634
        wire            jif_ack, jif_stall;
635
        wire    [31:0]   jif_data;
636
        zipjiffies jiffies(i_clk, ~cmd_halt,
637
                        sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
638
                                sys_data,
639
                        jif_ack, jif_stall, jif_data, jif_int);
640
 
641
        //
642
        // The programmable interrupt controller peripheral
643
        //
644
        wire            pic_interrupt;
645
        generate
646
        if (EXTERNAL_INTERRUPTS < 9)
647
        begin
648
                icontrol #(6+EXTERNAL_INTERRUPTS)       pic(i_clk, cpu_reset,
649
                                        (sys_cyc)&&(sys_stb)&&(sys_we)
650
                                                &&(sys_addr==`INTCTRL),
651
                                        sys_data, pic_data,
652
                                        main_int_vector[(6+EXTERNAL_INTERRUPTS-1):0], pic_interrupt);
653
        end else begin
654
                icontrol #(15)  pic(i_clk, cpu_reset,
655
                                        (sys_cyc)&&(sys_stb)&&(sys_we)
656
                                                &&(sys_addr==`INTCTRL),
657
                                        sys_data, pic_data,
658
                                        main_int_vector[14:0], pic_interrupt);
659
        end endgenerate
660
 
661
        wire    pic_stall;
662
        assign  pic_stall = 1'b0;
663
        reg     pic_ack;
664
        always @(posedge i_clk)
665 32 dgisselq
                pic_ack <= (sys_stb)&&(sys_addr == `INTCTRL);
666 3 dgisselq
 
667
        //
668
        // The CPU itself
669
        //
670
        wire            cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb,
671
                        cpu_we, cpu_dbg_we;
672
        wire    [31:0]   cpu_data, wb_data;
673
        wire            cpu_ack, cpu_stall, cpu_err;
674
        wire    [31:0]   cpu_dbg_data;
675
        assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
676
                                        &&(dbg_we)&&(dbg_addr));
677
 
678
        generate
679
        if (HIGHSPEED_CPU==0)
680
        begin
681
        zipcpu  #(
682
                        .RESET_ADDRESS(RESET_ADDRESS),
683
                        .ADDRESS_WIDTH(ADDRESS_WIDTH),
684
                        .LGICACHE(LGICACHE),
685
                        .IMPLEMENT_MPY(IMPLEMENT_MPY),
686
                        .IMPLEMENT_DIVIDE(IMPLEMENT_DIVIDE),
687
                        .IMPLEMENT_FPU(IMPLEMENT_FPU),
688
                        .IMPLEMENT_LOCK(IMPLEMENT_LOCK)
689
                )
690
                thecpu(i_clk, cpu_reset, pic_interrupt,
691
                        cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
692
                                dbg_idata, cpu_dbg_stall, cpu_dbg_data,
693
                                cpu_dbg_cc, cpu_break,
694
                        cpu_gbl_cyc, cpu_gbl_stb,
695
                                cpu_lcl_cyc, cpu_lcl_stb,
696
                                cpu_we, cpu_addr, cpu_data,
697
                                cpu_ack, cpu_stall, wb_data,
698
                                cpu_err,
699
                        cpu_op_stall, cpu_pf_stall, cpu_i_count
700
`ifdef  DEBUG_SCOPE
701
                        , o_cpu_debug
702
`endif
703
                        );
704
        end else begin
705
        zipcpu  #(
706
                        .RESET_ADDRESS(RESET_ADDRESS),
707
                        .ADDRESS_WIDTH(ADDRESS_WIDTH),
708
                        .LGICACHE(LGICACHE),
709
                        .IMPLEMENT_MPY(IMPLEMENT_MPY),
710
                        .IMPLEMENT_DIVIDE(IMPLEMENT_DIVIDE),
711
                        .IMPLEMENT_FPU(IMPLEMENT_FPU),
712
                        .IMPLEMENT_LOCK(IMPLEMENT_LOCK)
713
                )
714
                thecpu(i_clk, cpu_reset, pic_interrupt,
715
                        cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
716
                                dbg_idata, cpu_dbg_stall, cpu_dbg_data,
717
                                cpu_dbg_cc, cpu_break,
718
                        cpu_gbl_cyc, cpu_gbl_stb,
719
                                cpu_lcl_cyc, cpu_lcl_stb,
720
                                cpu_we, cpu_addr, cpu_data,
721
                                cpu_ack, cpu_stall, wb_data,
722
                                cpu_err,
723
                        cpu_op_stall, cpu_pf_stall, cpu_i_count
724
`ifdef  DEBUG_SCOPE
725
                        , o_cpu_debug
726
`endif
727
                        );
728
        end endgenerate
729
 
730
        // Now, arbitrate the bus ... first for the local peripherals
731
        // For the debugger to have access to the local system bus, the
732
        // following must be true:
733
        //      (dbg_cyc)       The debugger must request the bus
734
        //      (~cpu_lcl_cyc)  The CPU cannot be using it (CPU gets priority)
735
        //      (dbg_addr)      The debugger must be requesting its data
736
        //                              register, not just the control register
737
        // and one of two other things.  Either
738
        //      ((cpu_halt)&&(~cpu_dbg_stall))  the CPU is completely halted,
739
        // or
740
        //      (~cmd_addr[5])          we are trying to read a CPU register
741
        //                      while in motion.  Let the user beware that,
742
        //                      by not waiting for the CPU to fully halt,
743
        //                      his results may not be what he expects.
744
        //
745
        wire    sys_dbg_cyc = ((dbg_cyc)&&(~cpu_lcl_cyc)&&(dbg_addr))
746
                                &&(((cpu_halt)&&(~cpu_dbg_stall))
747
                                        ||(~cmd_addr[5]));
748
        assign  sys_cyc = (cpu_lcl_cyc)||(sys_dbg_cyc);
749
        assign  sys_stb = (cpu_lcl_cyc)
750
                                ? (cpu_lcl_stb)
751
                                : ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
752
 
753
        assign  sys_we  = (cpu_lcl_cyc) ? cpu_we : dbg_we;
754
        assign  sys_addr= (cpu_lcl_cyc) ? cpu_addr[4:0] : cmd_addr[4:0];
755
        assign  sys_data= (cpu_lcl_cyc) ? cpu_data : dbg_idata;
756
 
757
        // Return debug response values
758
        assign  dbg_odata = (~dbg_addr)?cmd_data
759
                                :((~cmd_addr[5])?cpu_dbg_data : wb_data);
760
        initial dbg_ack = 1'b0;
761
        always @(posedge i_clk)
762
                dbg_ack <= (dbg_cyc)&&(dbg_stb)&&(~dbg_stall);
763
        assign  dbg_stall=(dbg_cyc)&&((~sys_dbg_cyc)||(sys_stall))&&(dbg_addr);
764
 
765
        // Now for the external wishbone bus
766
        //      Need to arbitrate between the flash cache and the CPU
767
        // The way this works, though, the CPU will stall once the flash 
768
        // cache gets access to the bus--the CPU will be stuck until the 
769
        // flash cache is finished with the bus.
770
        wire            ext_cyc, ext_stb, ext_we, ext_err;
771
        wire            cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall,
772
                                cpu_ext_err;
773
        wire    [(AW-1):0]       ext_addr;
774
        wire    [31:0]           ext_odata;
775
        wbpriarbiter #(32,AW) dmacvcpu(i_clk,
776
                        cpu_gbl_cyc, cpu_gbl_stb, cpu_we, cpu_addr, cpu_data,
777
                                cpu_ext_ack, cpu_ext_stall, cpu_ext_err,
778
                        dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
779
                                        dc_ack, dc_stall, dc_err,
780
                        ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
781
                                ext_ack, ext_stall, ext_err);
782
 
783
`ifdef  DELAY_EXT_BUS
784
        busdelay #(AW,32) extbus(i_clk,
785
                        ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
786
                                ext_ack, ext_stall, ext_idata, ext_err,
787
                        o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
788
                                i_wb_ack, i_wb_stall, i_wb_data, (i_wb_err)||(wdbus_int));
789
`else
790
        assign  o_wb_cyc   = ext_cyc;
791
        assign  o_wb_stb   = ext_stb;
792
        assign  o_wb_we    = ext_we;
793
        assign  o_wb_addr  = ext_addr;
794
        assign  o_wb_data  = ext_odata;
795
        assign  ext_ack    = i_wb_ack;
796
        assign  ext_stall  = i_wb_stall;
797
        assign  ext_idata  = i_wb_data;
798
        assign  ext_err    = (i_wb_err)||(wdbus_int);
799
`endif
800
 
801
        wire            tmr_ack;
802
        assign  tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack);
803
        wire    [31:0]   tmr_data;
804
        assign  tmr_data = (tma_ack)?tma_data
805
                                :(tmb_ack ? tmb_data
806
                                :(tmc_ack ? tmc_data
807
                                :jif_data));
808
        assign  wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
809
                        :((actr_ack|dmac_ack)?((actr_ack)?actr_data:dmac_data)
810
                        :((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
811
                        :((wdbus_ack)?wdbus_data:(ext_idata))));
812
 
813
        assign  sys_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
814
                                | wdt_stall | ctri_stall | actr_stall
815 32 dgisselq
                                | pic_stall | dmac_stall); // Always 1'b0!
816 3 dgisselq
        assign  cpu_stall = (sys_stall)|(cpu_ext_stall);
817
        assign  sys_ack = (tmr_ack|wdt_ack|ctri_ack|actr_ack|pic_ack|dmac_ack|wdbus_ack);
818
        assign  cpu_ack = (sys_ack)||(cpu_ext_ack);
819
        assign  cpu_err = (cpu_ext_err)&&(cpu_gbl_cyc);
820
 
821
        assign  o_ext_int = (cmd_halt) && (~cpu_stall);
822
 
823
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.