1 |
3 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: rtcgps.v
|
4 |
|
|
//
|
5 |
|
|
// Project: OpenArty, an entirely open SoC based upon the Arty platform
|
6 |
|
|
//
|
7 |
|
|
// Purpose: Implement a real time clock, including alarm, count--down
|
8 |
|
|
// timer, stopwatch, variable time frequency, and more.
|
9 |
|
|
//
|
10 |
|
|
// This particular version has hooks for a GPS 1PPS, as well as a
|
11 |
|
|
// finely tracked clock speed output, to allow for fine clock precision
|
12 |
|
|
// and good freewheeling even if/when GPS is lost.
|
13 |
|
|
//
|
14 |
|
|
//
|
15 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
16 |
|
|
// Gisselquist Technology, LLC
|
17 |
|
|
//
|
18 |
|
|
///////////////////////////////////////////////////////////////////////////
|
19 |
|
|
//
|
20 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
21 |
|
|
//
|
22 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
23 |
|
|
// modify it under the terms of the GNU General Public License as published
|
24 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
25 |
|
|
// your option) any later version.
|
26 |
|
|
//
|
27 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
28 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
29 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
30 |
|
|
// for more details.
|
31 |
|
|
//
|
32 |
|
|
// You should have received a copy of the GNU General Public License along
|
33 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
34 |
|
|
// target there if the PDF file isn't present.) If not, see
|
35 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
36 |
|
|
//
|
37 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
38 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
39 |
|
|
//
|
40 |
|
|
//
|
41 |
|
|
///////////////////////////////////////////////////////////////////////////
|
42 |
|
|
module rtcgps(i_clk,
|
43 |
|
|
// Wishbone interface
|
44 |
|
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
45 |
|
|
// o_wb_ack, o_wb_stb, o_wb_data, // no reads here
|
46 |
|
|
// Output registers
|
47 |
|
|
o_data, // multiplexed based upon i_wb_addr
|
48 |
|
|
// Output controls
|
49 |
|
|
o_interrupt,
|
50 |
|
|
// A once-per-day strobe on the last clock of the day
|
51 |
|
|
o_ppd,
|
52 |
|
|
// GPS interface
|
53 |
|
|
i_gps_valid, i_gps_pps, i_gps_ckspeed,
|
54 |
|
|
// Our personal timing, for debug purposes
|
55 |
|
|
o_rtc_pps);
|
56 |
|
|
parameter DEFAULT_SPEED = 32'd2814750; //2af31e = 2^48 / 100e6 MHz
|
57 |
|
|
input i_clk;
|
58 |
|
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
59 |
|
|
input [1:0] i_wb_addr;
|
60 |
|
|
input [31:0] i_wb_data;
|
61 |
|
|
// input i_btn;
|
62 |
|
|
output reg [31:0] o_data;
|
63 |
|
|
output wire o_interrupt, o_ppd;
|
64 |
|
|
// GPS interface
|
65 |
|
|
input i_gps_valid, i_gps_pps;
|
66 |
|
|
input [31:0] i_gps_ckspeed;
|
67 |
|
|
// Personal PPS
|
68 |
|
|
output wire o_rtc_pps;
|
69 |
|
|
|
70 |
|
|
reg [21:0] clock;
|
71 |
|
|
reg [31:0] stopwatch, ckspeed;
|
72 |
|
|
reg [25:0] timer;
|
73 |
|
|
|
74 |
|
|
reg ck_wr, tm_wr, sw_wr, al_wr, r_data_zero_byte;
|
75 |
|
|
reg [25:0] r_data;
|
76 |
|
|
always @(posedge i_clk)
|
77 |
|
|
begin
|
78 |
|
|
ck_wr <= ((i_wb_stb)&&(i_wb_addr==2'b00)&&(i_wb_we));
|
79 |
|
|
tm_wr <= ((i_wb_stb)&&(i_wb_addr==2'b01)&&(i_wb_we));
|
80 |
|
|
sw_wr <= ((i_wb_stb)&&(i_wb_addr==2'b10)&&(i_wb_we));
|
81 |
|
|
al_wr <= ((i_wb_stb)&&(i_wb_addr==2'b11)&&(i_wb_we));
|
82 |
|
|
r_data <= i_wb_data[25:0];
|
83 |
|
|
r_data_zero_byte <= (i_wb_data[7:0] == 8'h00);
|
84 |
|
|
end
|
85 |
|
|
|
86 |
|
|
reg [39:0] ck_counter;
|
87 |
|
|
reg ck_carry, ck_sub_carry;
|
88 |
|
|
always @(posedge i_clk)
|
89 |
|
|
if ((i_gps_valid)&&(i_gps_pps))
|
90 |
|
|
begin
|
91 |
|
|
ck_carry <= 0;
|
92 |
|
|
// Start our counter 2 clocks into the future.
|
93 |
|
|
// Why? Because if we hit the PPS, we'll be delayed
|
94 |
|
|
// one clock from true time. This (hopefully) locks
|
95 |
|
|
// us back onto true time. Further, if we end up
|
96 |
|
|
// off (i.e., go off before the GPS tick ...) then
|
97 |
|
|
// the GPS tick will put us back on track ... likewise
|
98 |
|
|
// we've got code following that should keep us from
|
99 |
|
|
// ever producing two PPS's per second.
|
100 |
|
|
ck_counter <= { 7'h00, ckspeed, 1'b0 };
|
101 |
|
|
ck_sub_carry <= ckspeed[31];
|
102 |
|
|
end else begin
|
103 |
|
|
{ ck_sub_carry, ck_counter[31:0] }
|
104 |
|
|
<= ck_counter[31:0] + ckspeed;
|
105 |
|
|
{ ck_carry, ck_counter[39:32] }
|
106 |
|
|
<= ck_counter[39:32] + { 7'h0, ck_sub_carry };
|
107 |
|
|
end
|
108 |
|
|
|
109 |
|
|
reg ck_pps;
|
110 |
|
|
reg ck_ppm, ck_pph, ck_ppd;
|
111 |
|
|
reg [7:0] ck_sub;
|
112 |
|
|
initial clock = 22'h00000000;
|
113 |
|
|
always @(posedge i_clk)
|
114 |
|
|
if ((i_gps_pps)&&(i_gps_valid)&&(ck_sub[7]))
|
115 |
|
|
ck_pps <= 1'b1;
|
116 |
|
|
else if ((ck_carry)&&(ck_sub == 8'hff))
|
117 |
|
|
ck_pps <= 1'b1;
|
118 |
|
|
else
|
119 |
|
|
ck_pps <= 1'b0;
|
120 |
|
|
|
121 |
|
|
reg [6:0] next_clock_secs;
|
122 |
|
|
always @(posedge i_clk)
|
123 |
|
|
begin
|
124 |
|
|
next_clock_secs[3:0] <= (clock[3:0] >= 4'h9) ? 4'h0 // clk 1
|
125 |
|
|
: (clock[3:0] + 4'h1);
|
126 |
|
|
next_clock_secs[6:4] <= (ck_ppm) ? 3'h0 // clk 2
|
127 |
|
|
: (clock[3:0] >= 4'h9)
|
128 |
|
|
? (clock[6:4] + 3'h1)
|
129 |
|
|
: clock[6:4];
|
130 |
|
|
end
|
131 |
|
|
|
132 |
|
|
reg [6:0] next_clock_mins;
|
133 |
|
|
always @(posedge i_clk)
|
134 |
|
|
begin
|
135 |
|
|
next_clock_mins[3:0] <= (clock[11:8] >= 4'h9) ? 4'h0
|
136 |
|
|
: (clock[11:8] + 4'h1);
|
137 |
|
|
next_clock_mins[6:4] <= (ck_pph) ? 3'h0
|
138 |
|
|
: (clock[11:8] >= 4'h9)
|
139 |
|
|
? (clock[14:12] + 3'h1)
|
140 |
|
|
: clock[14:12];
|
141 |
|
|
end
|
142 |
|
|
|
143 |
|
|
reg [5:0] next_clock_hrs;
|
144 |
|
|
always @(posedge i_clk)
|
145 |
|
|
begin
|
146 |
|
|
next_clock_hrs[3:0] <= (clock[19:16] >= 4'h9) ? 4'h0
|
147 |
|
|
: (clock[19:16] + 4'h1);
|
148 |
|
|
next_clock_hrs[5:4] <= (ck_ppd) ? 2'h0
|
149 |
|
|
: (clock[19:16] >= 4'h9)
|
150 |
|
|
? (clock[21:20] + 2'h1)
|
151 |
|
|
: (clock[21:20]);
|
152 |
|
|
end
|
153 |
|
|
|
154 |
|
|
reg [4:0] ck_pending;
|
155 |
|
|
assign o_rtc_pps = ck_pps;
|
156 |
|
|
always @(posedge i_clk)
|
157 |
|
|
begin
|
158 |
|
|
if ((i_gps_valid)&&(i_gps_pps))
|
159 |
|
|
ck_sub <= 0;
|
160 |
|
|
else if (ck_carry)
|
161 |
|
|
ck_sub <= ck_sub + 1;
|
162 |
|
|
|
163 |
|
|
if ((ck_pps)&&(~ck_pending[4])) // advance the seconds
|
164 |
|
|
clock[6:0] <= next_clock_secs;
|
165 |
|
|
clock[7] <= 1'b0;
|
166 |
|
|
ck_ppm <= (clock[6:0] == 7'h59);
|
167 |
|
|
|
168 |
|
|
if ((ck_pps)&&(ck_ppm)&&(~ck_pending[4])) // advance the minutes
|
169 |
|
|
clock[14:8] <= next_clock_mins;
|
170 |
|
|
clock[15] <= 1'b0;
|
171 |
|
|
ck_pph <= (clock[14:8] == 7'h59)&&(ck_ppm);
|
172 |
|
|
|
173 |
|
|
if ((ck_pps)&&(ck_pph)&&(~ck_pending[4])) // advance the hours
|
174 |
|
|
clock[21:16] <= next_clock_hrs;
|
175 |
|
|
ck_ppd <= (clock[21:16] == 6'h23)&&(ck_pph);
|
176 |
|
|
|
177 |
|
|
clock[ 7] <= 1'b0;
|
178 |
|
|
clock[15] <= 1'b0;
|
179 |
|
|
|
180 |
|
|
if (ck_wr)
|
181 |
|
|
begin
|
182 |
|
|
if (~r_data[7])
|
183 |
|
|
clock[6:0] <= i_wb_data[6:0];
|
184 |
|
|
if (~r_data[15])
|
185 |
|
|
clock[14:8] <= i_wb_data[14:8];
|
186 |
|
|
if (~r_data[22])
|
187 |
|
|
clock[21:16] <= i_wb_data[21:16];
|
188 |
|
|
if ((~i_gps_valid)&&(r_data_zero_byte))
|
189 |
|
|
ck_sub <= 8'h00;
|
190 |
|
|
ck_pending <= 5'h1f;
|
191 |
|
|
end else
|
192 |
|
|
ck_pending <= { ck_pending[3:0], 1'b0 };
|
193 |
|
|
end
|
194 |
|
|
|
195 |
|
|
reg [21:0] ck_last_clock;
|
196 |
|
|
always @(posedge i_clk)
|
197 |
|
|
ck_last_clock <= clock[21:0];
|
198 |
|
|
|
199 |
|
|
|
200 |
|
|
|
201 |
|
|
//
|
202 |
|
|
reg [23:0] next_timer;
|
203 |
|
|
reg ztimer;
|
204 |
|
|
reg [4:0] tmr_carry;
|
205 |
|
|
always @(posedge i_clk)
|
206 |
|
|
begin
|
207 |
|
|
tmr_carry[0] <= (timer[ 3: 0]== 4'h0);
|
208 |
|
|
tmr_carry[1] <= (timer[ 6: 4]== 3'h0)&&(tmr_carry[0]);
|
209 |
|
|
tmr_carry[2] <= (timer[11: 8]== 4'h0)&&(tmr_carry[1]);
|
210 |
|
|
tmr_carry[3] <= (timer[14:12]== 3'h0)&&(tmr_carry[2]);
|
211 |
|
|
tmr_carry[4] <= (timer[19:16]== 4'h0)&&(tmr_carry[3]);
|
212 |
|
|
ztimer <= (timer[23:0]== 24'h0);
|
213 |
|
|
|
214 |
|
|
// Keep unused bits at zero
|
215 |
|
|
next_timer <= 24'h00;
|
216 |
|
|
// Seconds
|
217 |
|
|
next_timer[ 3: 0] <= (tmr_carry[0])? 4'h9: (timer[ 3: 0]-4'h1);
|
218 |
|
|
next_timer[ 6: 4] <= (tmr_carry[1])? 3'h5: (timer[ 6: 4]-3'h1);
|
219 |
|
|
// Minutes
|
220 |
|
|
next_timer[11: 8] <= (tmr_carry[2])? 4'h9: (timer[11: 8]-4'h1);
|
221 |
|
|
next_timer[14:12] <= (tmr_carry[3])? 3'h5: (timer[14:12]-3'h1);
|
222 |
|
|
// Hours
|
223 |
|
|
next_timer[19:16] <= (tmr_carry[4])? 4'h9: (timer[19:16]-4'h1);
|
224 |
|
|
next_timer[23:20] <= (timer[23:20]-4'h1);
|
225 |
|
|
end
|
226 |
|
|
|
227 |
|
|
reg new_timer, new_timer_set, new_timer_last, tm_pending_start;
|
228 |
|
|
reg [23:0] new_timer_val;
|
229 |
|
|
|
230 |
|
|
reg tm_pps, tm_ppm, tm_int;
|
231 |
|
|
wire tm_stopped, tm_running, tm_alarm;
|
232 |
|
|
assign tm_stopped = ~timer[24];
|
233 |
|
|
assign tm_running = timer[24];
|
234 |
|
|
assign tm_alarm = timer[25];
|
235 |
|
|
reg [23:0] tm_start;
|
236 |
|
|
reg [7:0] tm_sub;
|
237 |
|
|
initial tm_start = 24'h00;
|
238 |
|
|
initial timer = 26'h00;
|
239 |
|
|
initial tm_int = 1'b0;
|
240 |
|
|
initial tm_pps = 1'b0;
|
241 |
|
|
initial tm_pending_start = 1'b0;
|
242 |
|
|
always @(posedge i_clk)
|
243 |
|
|
begin
|
244 |
|
|
if (ck_carry)
|
245 |
|
|
begin
|
246 |
|
|
tm_sub <= tm_sub + 1;
|
247 |
|
|
tm_pps <= (tm_sub == 8'hff);
|
248 |
|
|
end else
|
249 |
|
|
tm_pps <= 1'b0;
|
250 |
|
|
|
251 |
|
|
if (new_timer_set) // Conclude a write
|
252 |
|
|
timer[23:0] <= new_timer_val;
|
253 |
|
|
else if ((~tm_alarm)&&(tm_running)&&(tm_pps))
|
254 |
|
|
begin // Otherwise, if we are running ...
|
255 |
|
|
timer[25] <= 1'b0; // Clear any alarm
|
256 |
|
|
if (ztimer) // unless we've hit zero
|
257 |
|
|
timer[25] <= 1'b1;
|
258 |
|
|
else if (~new_timer)
|
259 |
|
|
timer[23:0] <= next_timer;
|
260 |
|
|
end
|
261 |
|
|
|
262 |
|
|
tm_int <= (tm_running)&&(tm_pps)&&(~tm_alarm)&&(ztimer);
|
263 |
|
|
|
264 |
|
|
if (tm_alarm) // Stop the timer on an alarm
|
265 |
|
|
timer[24] <= 1'b0;
|
266 |
|
|
|
267 |
|
|
new_timer <= 1'b0;
|
268 |
|
|
tm_pending_start <= 1'b0;
|
269 |
|
|
if ((tm_wr)&&(tm_running)) // Writes while running
|
270 |
|
|
// Only allow the timer to stop, nothing more
|
271 |
|
|
timer[24] <= r_data[24];
|
272 |
|
|
else if ((tm_wr)&&(tm_stopped)) // Writes while off
|
273 |
|
|
begin
|
274 |
|
|
// We're going to pipeline this change by a couple
|
275 |
|
|
// of clocks, to get it right
|
276 |
|
|
new_timer <= 1'b1;
|
277 |
|
|
new_timer_val <= r_data[23:0];
|
278 |
|
|
tm_pending_start <= r_data[24];
|
279 |
|
|
|
280 |
|
|
// Still ... any write clears the alarm
|
281 |
|
|
timer[25] <= 1'b0;
|
282 |
|
|
end
|
283 |
|
|
|
284 |
|
|
new_timer_set <= (new_timer)&&(new_timer_val != 24'h000);
|
285 |
|
|
new_timer_last <= (new_timer)&&(new_timer_val == 24'h000);
|
286 |
|
|
if (new_timer_last)
|
287 |
|
|
begin
|
288 |
|
|
new_timer_val <= tm_start;
|
289 |
|
|
tm_sub <= 8'h00;
|
290 |
|
|
new_timer_set <= 1'b1;
|
291 |
|
|
tm_pending_start <= 1'b1;
|
292 |
|
|
end else if (new_timer_set)
|
293 |
|
|
begin
|
294 |
|
|
tm_start <= new_timer_val;
|
295 |
|
|
tm_sub <= 8'h00;
|
296 |
|
|
tm_pending_start <= 1'b1;
|
297 |
|
|
timer[24] <= 1'b1;
|
298 |
|
|
end
|
299 |
|
|
end
|
300 |
|
|
|
301 |
|
|
//
|
302 |
|
|
// Stopwatch functionality
|
303 |
|
|
//
|
304 |
|
|
// Setting bit '0' starts the stop watch, clearing it stops it.
|
305 |
|
|
// Writing to the register with bit '1' high will clear the stopwatch,
|
306 |
|
|
// and return it to zero provided that the stopwatch is stopped either
|
307 |
|
|
// before or after the write. Hence, writing a '2' to the device
|
308 |
|
|
// will always stop and clear it, whereas writing a '3' to the device
|
309 |
|
|
// will only clear it if it was already stopped.
|
310 |
|
|
reg [6:0] next_sw_secs;
|
311 |
|
|
always @(posedge i_clk)
|
312 |
|
|
begin
|
313 |
|
|
next_sw_secs[3:0] <= (stopwatch[11:8] >= 4'h9) ? 4'h0
|
314 |
|
|
: (stopwatch[11:8] + 4'h1);
|
315 |
|
|
next_sw_secs[6:4] <= (stopwatch[14:8] == 7'h59) ? 3'h0
|
316 |
|
|
: (stopwatch[11:8] == 4'h9)
|
317 |
|
|
? (stopwatch[14:12]+3'h1)
|
318 |
|
|
: stopwatch[14:12];
|
319 |
|
|
end
|
320 |
|
|
|
321 |
|
|
reg [6:0] next_sw_mins;
|
322 |
|
|
always @(posedge i_clk)
|
323 |
|
|
begin
|
324 |
|
|
next_sw_mins[3:0] <= (stopwatch[19:16] >= 4'h9) ? 4'h0
|
325 |
|
|
: (stopwatch[19:16] + 4'h1);
|
326 |
|
|
next_sw_mins[6:4] <= (stopwatch[22:16] == 7'h59) ? 3'h0
|
327 |
|
|
: (stopwatch[19:16]==4'h9)
|
328 |
|
|
? (stopwatch[22:20]+3'h1)
|
329 |
|
|
: stopwatch[22:20];
|
330 |
|
|
end
|
331 |
|
|
|
332 |
|
|
reg [5:0] next_sw_hrs;
|
333 |
|
|
always @(posedge i_clk)
|
334 |
|
|
begin
|
335 |
|
|
next_sw_hrs[3:0] <= (stopwatch[27:24] >= 4'h9) ? 4'h0
|
336 |
|
|
: (stopwatch[27:24] + 4'h1);
|
337 |
|
|
next_sw_hrs[5:4] <= (stopwatch[29:24] >= 6'h23) ? 2'h0
|
338 |
|
|
: (stopwatch[27:24]==4'h9)
|
339 |
|
|
? (stopwatch[29:28]+2'h1)
|
340 |
|
|
: stopwatch[29:28];
|
341 |
|
|
end
|
342 |
|
|
|
343 |
|
|
reg sw_pps, sw_ppm, sw_pph;
|
344 |
|
|
reg [7:0] sw_sub;
|
345 |
|
|
wire sw_running;
|
346 |
|
|
assign sw_running = stopwatch[0];
|
347 |
|
|
initial stopwatch = 32'h00000;
|
348 |
|
|
always @(posedge i_clk)
|
349 |
|
|
begin
|
350 |
|
|
sw_pps <= 1'b0;
|
351 |
|
|
if ((sw_running)&&(ck_carry))
|
352 |
|
|
begin
|
353 |
|
|
sw_sub <= sw_sub + 1;
|
354 |
|
|
sw_pps <= (sw_sub == 8'hff);
|
355 |
|
|
end
|
356 |
|
|
|
357 |
|
|
stopwatch[7:1] <= sw_sub[7:1];
|
358 |
|
|
|
359 |
|
|
if (sw_pps) // Second hand
|
360 |
|
|
stopwatch[14:8] <= next_sw_secs;
|
361 |
|
|
sw_ppm <= (stopwatch[14:8] == 7'h59);
|
362 |
|
|
|
363 |
|
|
if ((sw_pps)&&(sw_ppm)) // Minutes
|
364 |
|
|
stopwatch[22:16] <= next_sw_mins;
|
365 |
|
|
sw_pph <= (stopwatch[23:16] == 8'h59)&&(sw_ppm);
|
366 |
|
|
|
367 |
|
|
if ((sw_pps)&&(sw_pph)) // And hours
|
368 |
|
|
stopwatch[29:24] <= next_sw_hrs;
|
369 |
|
|
|
370 |
|
|
if (sw_wr)
|
371 |
|
|
begin
|
372 |
|
|
stopwatch[0] <= r_data[0];
|
373 |
|
|
if((r_data[1])&&((~stopwatch[0])||(~r_data[0])))
|
374 |
|
|
begin
|
375 |
|
|
stopwatch[31:1] <= 31'h00;
|
376 |
|
|
sw_sub <= 8'h00;
|
377 |
|
|
sw_pps <= 1'b0;
|
378 |
|
|
sw_ppm <= 1'b0;
|
379 |
|
|
sw_pph <= 1'b0;
|
380 |
|
|
end
|
381 |
|
|
end
|
382 |
|
|
end
|
383 |
|
|
|
384 |
|
|
//
|
385 |
|
|
// The alarm code
|
386 |
|
|
//
|
387 |
|
|
// Set the alarm register to the time you wish the board to "alarm".
|
388 |
|
|
// The "alarm" will take place once per day at that time. At that
|
389 |
|
|
// time, the RTC code will generate a clock interrupt, and the CPU/host
|
390 |
|
|
// can come and see that the alarm tripped.
|
391 |
|
|
//
|
392 |
|
|
//
|
393 |
|
|
reg [21:0] alarm_time;
|
394 |
|
|
reg al_int, // The alarm interrupt line
|
395 |
|
|
al_enabled, // Whether the alarm is enabled
|
396 |
|
|
al_tripped; // Whether the alarm has tripped
|
397 |
|
|
initial al_enabled= 1'b0;
|
398 |
|
|
initial al_tripped= 1'b0;
|
399 |
|
|
always @(posedge i_clk)
|
400 |
|
|
begin
|
401 |
|
|
if (al_wr)
|
402 |
|
|
begin
|
403 |
|
|
// Only adjust the alarm hours if the requested hours
|
404 |
|
|
// are valid. This allows writes to the register,
|
405 |
|
|
// without a prior read, to leave these configuration
|
406 |
|
|
// bits alone.
|
407 |
|
|
if (r_data[21:20] != 2'h3)
|
408 |
|
|
alarm_time[21:16] <= i_wb_data[21:16];
|
409 |
|
|
// Here's the same thing for the minutes: only adjust
|
410 |
|
|
// the alarm minutes if the new bits are not all 1's.
|
411 |
|
|
if (~r_data[15])
|
412 |
|
|
alarm_time[15:8] <= i_wb_data[15:8];
|
413 |
|
|
// Here's the same thing for the seconds: only adjust
|
414 |
|
|
// the alarm seconds if the new bits are not all 1's.
|
415 |
|
|
if (~r_data[7])
|
416 |
|
|
alarm_time[7:0] <= i_wb_data[7:0];
|
417 |
|
|
al_enabled <= i_wb_data[24];
|
418 |
|
|
// Reset the alarm if a '1' is written to the tripped
|
419 |
|
|
// register, or if the alarm is disabled.
|
420 |
|
|
if ((r_data[25])||(~r_data[24]))
|
421 |
|
|
al_tripped <= 1'b0;
|
422 |
|
|
end
|
423 |
|
|
|
424 |
|
|
al_int <= ((ck_last_clock != alarm_time)
|
425 |
|
|
&&(clock[21:0] == alarm_time)&&(al_enabled));
|
426 |
|
|
if (al_int)
|
427 |
|
|
al_tripped <= 1'b1;
|
428 |
|
|
end
|
429 |
|
|
|
430 |
|
|
//
|
431 |
|
|
// The ckspeed register is equal to 2^48 divded by the number of
|
432 |
|
|
// clock ticks you expect per second. Adjust high for a slower
|
433 |
|
|
// clock, lower for a faster clock. In this fashion, a single
|
434 |
|
|
// real time clock RTL file can handle tracking the clock in any
|
435 |
|
|
// device. Further, because this is only the lower 32 bits of a
|
436 |
|
|
// 48 bit counter per seconds, the clock jitter is kept below
|
437 |
|
|
// 1 part in 65 thousand.
|
438 |
|
|
//
|
439 |
|
|
initial ckspeed = DEFAULT_SPEED;
|
440 |
|
|
// In the case of verilator, comment the above and uncomment the line
|
441 |
|
|
// below. The clock constant below is "close" to simulation time,
|
442 |
|
|
// meaning that my verilator simulation is running about 300x slower
|
443 |
|
|
// than board time.
|
444 |
|
|
// initial ckspeed = 32'd786432000;
|
445 |
|
|
always @(posedge i_clk)
|
446 |
|
|
if (i_gps_valid)
|
447 |
|
|
ckspeed <= i_gps_ckspeed;
|
448 |
|
|
|
449 |
|
|
assign o_interrupt = tm_int || al_int;
|
450 |
|
|
|
451 |
|
|
// A once-per day strobe, on the last second of the day so that the
|
452 |
|
|
// the next clock is the first clock of the day. This is useful for
|
453 |
|
|
// connecting this module to a year/month/date date/calendar module.
|
454 |
|
|
assign o_ppd = (ck_ppd)&&(ck_pps);
|
455 |
|
|
|
456 |
|
|
always @(posedge i_clk)
|
457 |
|
|
case(i_wb_addr)
|
458 |
|
|
2'b00: o_data <= { ~i_gps_valid, 7'h0, 2'b00, clock[21:0] };
|
459 |
|
|
2'b01: o_data <= { 6'h00, timer };
|
460 |
|
|
2'b10: o_data <= stopwatch;
|
461 |
|
|
2'b11: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
|
462 |
|
|
endcase
|
463 |
|
|
|
464 |
|
|
endmodule
|