1 |
3 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: rxuart.v
|
4 |
|
|
//
|
5 |
50 |
dgisselq |
// Project: wbuart32, a full featured UART with simulator
|
6 |
3 |
dgisselq |
//
|
7 |
|
|
// Purpose: Receive and decode inputs from a single UART line.
|
8 |
|
|
//
|
9 |
|
|
//
|
10 |
|
|
// To interface with this module, connect it to your system clock,
|
11 |
|
|
// pass it the 32 bit setup register (defined below) and the UART
|
12 |
|
|
// input. When data becomes available, the o_wr line will be asserted
|
13 |
|
|
// for one clock cycle. On parity or frame errors, the o_parity_err
|
14 |
|
|
// or o_frame_err lines will be asserted. Likewise, on a break
|
15 |
|
|
// condition, o_break will be asserted. These lines are self clearing.
|
16 |
|
|
//
|
17 |
|
|
// There is a synchronous reset line, logic high.
|
18 |
|
|
//
|
19 |
|
|
// Now for the setup register. The register is 32 bits, so that this
|
20 |
|
|
// UART may be set up over a 32-bit bus.
|
21 |
|
|
//
|
22 |
50 |
dgisselq |
// i_setup[30] True if we are not using hardware flow control. This bit
|
23 |
|
|
// is ignored within this module, as any receive hardware flow
|
24 |
|
|
// control will need to be implemented elsewhere.
|
25 |
|
|
//
|
26 |
3 |
dgisselq |
// i_setup[29:28] Indicates the number of data bits per word. This will
|
27 |
50 |
dgisselq |
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
|
28 |
|
|
// for a six bit word, or 2'b11 for a five bit word.
|
29 |
3 |
dgisselq |
//
|
30 |
|
|
// i_setup[27] Indicates whether or not to use one or two stop bits.
|
31 |
|
|
// Set this to one to expect two stop bits, zero for one.
|
32 |
|
|
//
|
33 |
|
|
// i_setup[26] Indicates whether or not a parity bit exists. Set this
|
34 |
|
|
// to 1'b1 to include parity.
|
35 |
|
|
//
|
36 |
|
|
// i_setup[25] Indicates whether or not the parity bit is fixed. Set
|
37 |
|
|
// to 1'b1 to include a fixed bit of parity, 1'b0 to allow the
|
38 |
|
|
// parity to be set based upon data. (Both assume the parity
|
39 |
|
|
// enable value is set.)
|
40 |
|
|
//
|
41 |
|
|
// i_setup[24] This bit is ignored if parity is not used. Otherwise,
|
42 |
|
|
// in the case of a fixed parity bit, this bit indicates whether
|
43 |
|
|
// mark (1'b1) or space (1'b0) parity is used. Likewise if the
|
44 |
|
|
// parity is not fixed, a 1'b1 selects even parity, and 1'b0
|
45 |
|
|
// selects odd.
|
46 |
|
|
//
|
47 |
|
|
// i_setup[23:0] Indicates the speed of the UART in terms of clocks.
|
48 |
|
|
// So, for example, if you have a 200 MHz clock and wish to
|
49 |
|
|
// run your UART at 9600 baud, you would take 200 MHz and divide
|
50 |
|
|
// by 9600 to set this value to 24'd20834. Likewise if you wished
|
51 |
|
|
// to run this serial port at 115200 baud from a 200 MHz clock,
|
52 |
|
|
// you would set the value to 24'd1736
|
53 |
|
|
//
|
54 |
|
|
// Thus, to set the UART for the common setting of an 8-bit word,
|
55 |
|
|
// one stop bit, no parity, and 115200 baud over a 200 MHz clock, you
|
56 |
|
|
// would want to set the setup value to:
|
57 |
|
|
//
|
58 |
|
|
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
|
59 |
|
|
// 32'h005161 // For 9600 baud, 8 bit, no parity
|
60 |
|
|
//
|
61 |
|
|
//
|
62 |
|
|
//
|
63 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
64 |
|
|
// Gisselquist Technology, LLC
|
65 |
|
|
//
|
66 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
67 |
|
|
//
|
68 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
69 |
|
|
//
|
70 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
71 |
|
|
// modify it under the terms of the GNU General Public License as published
|
72 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
73 |
|
|
// your option) any later version.
|
74 |
|
|
//
|
75 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
76 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
77 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
78 |
|
|
// for more details.
|
79 |
|
|
//
|
80 |
|
|
// You should have received a copy of the GNU General Public License along
|
81 |
50 |
dgisselq |
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
82 |
3 |
dgisselq |
// target there if the PDF file isn't present.) If not, see
|
83 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
84 |
|
|
//
|
85 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
86 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
87 |
|
|
//
|
88 |
|
|
//
|
89 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
90 |
|
|
//
|
91 |
|
|
//
|
92 |
|
|
// States: (@ baud counter == 0)
|
93 |
|
|
// 0 First bit arrives
|
94 |
|
|
// ..7 Bits arrive
|
95 |
|
|
// 8 Stop bit (x1)
|
96 |
|
|
// 9 Stop bit (x2)
|
97 |
50 |
dgisselq |
// c break condition
|
98 |
3 |
dgisselq |
// d Waiting for the channel to go high
|
99 |
|
|
// e Waiting for the reset to complete
|
100 |
|
|
// f Idle state
|
101 |
|
|
`define RXU_BIT_ZERO 4'h0
|
102 |
|
|
`define RXU_BIT_ONE 4'h1
|
103 |
|
|
`define RXU_BIT_TWO 4'h2
|
104 |
|
|
`define RXU_BIT_THREE 4'h3
|
105 |
|
|
`define RXU_BIT_FOUR 4'h4
|
106 |
|
|
`define RXU_BIT_FIVE 4'h5
|
107 |
|
|
`define RXU_BIT_SIX 4'h6
|
108 |
|
|
`define RXU_BIT_SEVEN 4'h7
|
109 |
|
|
`define RXU_PARITY 4'h8
|
110 |
|
|
`define RXU_STOP 4'h9
|
111 |
|
|
`define RXU_SECOND_STOP 4'ha
|
112 |
|
|
// Unused 4'hb
|
113 |
|
|
// Unused 4'hc
|
114 |
|
|
`define RXU_BREAK 4'hd
|
115 |
|
|
`define RXU_RESET_IDLE 4'he
|
116 |
|
|
`define RXU_IDLE 4'hf
|
117 |
|
|
|
118 |
50 |
dgisselq |
module rxuart(i_clk, i_reset, i_setup, i_uart_rx, o_wr, o_data, o_break,
|
119 |
3 |
dgisselq |
o_parity_err, o_frame_err, o_ck_uart);
|
120 |
50 |
dgisselq |
parameter [30:0] INITIAL_SETUP = 31'd868;
|
121 |
3 |
dgisselq |
// 8 data bits, no parity, (at least 1) stop bit
|
122 |
|
|
input i_clk, i_reset;
|
123 |
50 |
dgisselq |
input [30:0] i_setup;
|
124 |
|
|
input i_uart_rx;
|
125 |
3 |
dgisselq |
output reg o_wr;
|
126 |
|
|
output reg [7:0] o_data;
|
127 |
|
|
output reg o_break;
|
128 |
|
|
output reg o_parity_err, o_frame_err;
|
129 |
|
|
output wire o_ck_uart;
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
wire [27:0] clocks_per_baud, break_condition, half_baud;
|
133 |
|
|
wire [1:0] data_bits;
|
134 |
|
|
wire use_parity, parity_even, dblstop, fixd_parity;
|
135 |
|
|
reg [29:0] r_setup;
|
136 |
50 |
dgisselq |
reg [3:0] state;
|
137 |
|
|
|
138 |
3 |
dgisselq |
assign clocks_per_baud = { 4'h0, r_setup[23:0] };
|
139 |
50 |
dgisselq |
// assign hw_flow_control = !r_setup[30];
|
140 |
3 |
dgisselq |
assign data_bits = r_setup[29:28];
|
141 |
|
|
assign dblstop = r_setup[27];
|
142 |
|
|
assign use_parity = r_setup[26];
|
143 |
|
|
assign fixd_parity = r_setup[25];
|
144 |
|
|
assign parity_even = r_setup[24];
|
145 |
|
|
assign break_condition = { r_setup[23:0], 4'h0 };
|
146 |
50 |
dgisselq |
assign half_baud = { 5'h00, r_setup[23:1] }-28'h1;
|
147 |
|
|
reg [27:0] baud_counter;
|
148 |
|
|
reg zero_baud_counter;
|
149 |
3 |
dgisselq |
|
150 |
50 |
dgisselq |
|
151 |
|
|
// Since this is an asynchronous receiver, we need to register our
|
152 |
|
|
// input a couple of clocks over to avoid any problems with
|
153 |
|
|
// metastability. We do that here, and then ignore all but the
|
154 |
|
|
// ck_uart wire.
|
155 |
3 |
dgisselq |
reg q_uart, qq_uart, ck_uart;
|
156 |
|
|
initial q_uart = 1'b0;
|
157 |
|
|
initial qq_uart = 1'b0;
|
158 |
|
|
initial ck_uart = 1'b0;
|
159 |
|
|
always @(posedge i_clk)
|
160 |
|
|
begin
|
161 |
50 |
dgisselq |
q_uart <= i_uart_rx;
|
162 |
3 |
dgisselq |
qq_uart <= q_uart;
|
163 |
|
|
ck_uart <= qq_uart;
|
164 |
|
|
end
|
165 |
50 |
dgisselq |
|
166 |
|
|
// In case anyone else wants this clocked, stabilized value, we
|
167 |
|
|
// offer it on our output.
|
168 |
3 |
dgisselq |
assign o_ck_uart = ck_uart;
|
169 |
|
|
|
170 |
50 |
dgisselq |
// Keep track of the number of clocks since the last change.
|
171 |
|
|
//
|
172 |
|
|
// This is used to determine if we are in either a break or an idle
|
173 |
|
|
// condition, as discussed further below.
|
174 |
3 |
dgisselq |
reg [27:0] chg_counter;
|
175 |
|
|
initial chg_counter = 28'h00;
|
176 |
|
|
always @(posedge i_clk)
|
177 |
|
|
if (i_reset)
|
178 |
|
|
chg_counter <= 28'h00;
|
179 |
|
|
else if (qq_uart != ck_uart)
|
180 |
|
|
chg_counter <= 28'h00;
|
181 |
|
|
else if (chg_counter < break_condition)
|
182 |
|
|
chg_counter <= chg_counter + 1;
|
183 |
|
|
|
184 |
50 |
dgisselq |
// Are we in a break condition?
|
185 |
|
|
//
|
186 |
|
|
// A break condition exists if the line is held low for longer than
|
187 |
|
|
// a data word. Hence, we keep track of when the last change occurred.
|
188 |
|
|
// If it was more than break_condition clocks ago, and the current input
|
189 |
|
|
// value is a 0, then we're in a break--and nothing can be read until
|
190 |
|
|
// the line idles again.
|
191 |
3 |
dgisselq |
initial o_break = 1'b0;
|
192 |
|
|
always @(posedge i_clk)
|
193 |
|
|
o_break <= ((chg_counter >= break_condition)&&(~ck_uart))? 1'b1:1'b0;
|
194 |
50 |
dgisselq |
|
195 |
|
|
// Are we between characters?
|
196 |
|
|
//
|
197 |
|
|
// The opposite of a break condition is where the line is held high
|
198 |
|
|
// for more clocks than would be in a character. When this happens,
|
199 |
|
|
// we know we have synchronization--otherwise, we might be sampling
|
200 |
|
|
// from within a data word.
|
201 |
|
|
//
|
202 |
|
|
// This logic is used later to hold the RXUART in a reset condition
|
203 |
|
|
// until we know we are between data words. At that point, we should
|
204 |
|
|
// be able to hold on to our synchronization.
|
205 |
|
|
reg line_synch;
|
206 |
|
|
initial line_synch = 1'b0;
|
207 |
3 |
dgisselq |
always @(posedge i_clk)
|
208 |
|
|
line_synch <= ((chg_counter >= break_condition)&&(ck_uart));
|
209 |
|
|
|
210 |
50 |
dgisselq |
// Are we in the middle of a baud iterval? Specifically, are we
|
211 |
|
|
// in the middle of a start bit? Set this to high if so. We'll use
|
212 |
|
|
// this within our state machine to transition out of the IDLE
|
213 |
|
|
// state.
|
214 |
|
|
reg half_baud_time;
|
215 |
|
|
initial half_baud_time = 0;
|
216 |
|
|
always @(posedge i_clk)
|
217 |
|
|
half_baud_time <= (~ck_uart)&&(chg_counter >= half_baud);
|
218 |
|
|
|
219 |
|
|
|
220 |
|
|
// Allow our controlling processor to change our setup at any time
|
221 |
|
|
// outside of receiving/processing a character.
|
222 |
|
|
initial r_setup = INITIAL_SETUP[29:0];
|
223 |
|
|
always @(posedge i_clk)
|
224 |
|
|
if (state >= `RXU_RESET_IDLE)
|
225 |
|
|
r_setup <= i_setup[29:0];
|
226 |
|
|
|
227 |
|
|
|
228 |
|
|
// Our monster state machine. YIKES!
|
229 |
|
|
//
|
230 |
|
|
// Yeah, this may be more complicated than it needs to be. The basic
|
231 |
|
|
// progression is:
|
232 |
|
|
// RESET -> RESET_IDLE -> (when line is idle) -> IDLE
|
233 |
|
|
// IDLE -> bit 0 -> bit 1 -> bit_{ndatabits} ->
|
234 |
|
|
// (optional) PARITY -> STOP -> (optional) SECOND_STOP
|
235 |
|
|
// -> IDLE
|
236 |
|
|
// ANY -> (on break) BREAK -> IDLE
|
237 |
|
|
//
|
238 |
|
|
// There are 16 states, although all are not used. These are listed
|
239 |
|
|
// at the top of this file.
|
240 |
|
|
//
|
241 |
|
|
// Logic inputs (12): (I've tried to minimize this number)
|
242 |
|
|
// state (4)
|
243 |
|
|
// i_reset
|
244 |
|
|
// line_synch
|
245 |
|
|
// o_break
|
246 |
|
|
// ckuart
|
247 |
|
|
// half_baud_time
|
248 |
|
|
// zero_baud_counter
|
249 |
|
|
// use_parity
|
250 |
|
|
// dblstop
|
251 |
|
|
// Logic outputs (4):
|
252 |
|
|
// state
|
253 |
|
|
//
|
254 |
3 |
dgisselq |
initial state = `RXU_RESET_IDLE;
|
255 |
|
|
always @(posedge i_clk)
|
256 |
|
|
begin
|
257 |
|
|
if (i_reset)
|
258 |
|
|
state <= `RXU_RESET_IDLE;
|
259 |
50 |
dgisselq |
else if (state == `RXU_RESET_IDLE)
|
260 |
3 |
dgisselq |
begin
|
261 |
|
|
if (line_synch)
|
262 |
|
|
// Goto idle state from a reset
|
263 |
|
|
state <= `RXU_IDLE;
|
264 |
|
|
else // Otherwise, stay in this condition 'til reset
|
265 |
|
|
state <= `RXU_RESET_IDLE;
|
266 |
|
|
end else if (o_break)
|
267 |
|
|
begin // We are in a break condition
|
268 |
|
|
state <= `RXU_BREAK;
|
269 |
|
|
end else if (state == `RXU_BREAK)
|
270 |
|
|
begin // Goto idle state following return ck_uart going high
|
271 |
|
|
if (ck_uart)
|
272 |
|
|
state <= `RXU_IDLE;
|
273 |
|
|
else
|
274 |
|
|
state <= `RXU_BREAK;
|
275 |
|
|
end else if (state == `RXU_IDLE)
|
276 |
|
|
begin // Idle state, independent of baud counter
|
277 |
|
|
if ((~ck_uart)&&(half_baud_time))
|
278 |
|
|
begin
|
279 |
|
|
// We are in the center of a valid start bit
|
280 |
|
|
case (data_bits)
|
281 |
|
|
2'b00: state <= `RXU_BIT_ZERO;
|
282 |
|
|
2'b01: state <= `RXU_BIT_ONE;
|
283 |
|
|
2'b10: state <= `RXU_BIT_TWO;
|
284 |
|
|
2'b11: state <= `RXU_BIT_THREE;
|
285 |
|
|
endcase
|
286 |
|
|
end else // Otherwise, just stay here in idle
|
287 |
|
|
state <= `RXU_IDLE;
|
288 |
|
|
end else if (zero_baud_counter)
|
289 |
|
|
begin
|
290 |
|
|
if (state < `RXU_BIT_SEVEN)
|
291 |
|
|
// Data arrives least significant bit first.
|
292 |
|
|
// By the time this is clocked in, it's what
|
293 |
|
|
// you'll have.
|
294 |
|
|
state <= state + 1;
|
295 |
50 |
dgisselq |
else if (state == `RXU_BIT_SEVEN)
|
296 |
3 |
dgisselq |
state <= (use_parity) ? `RXU_PARITY:`RXU_STOP;
|
297 |
50 |
dgisselq |
else if (state == `RXU_PARITY)
|
298 |
3 |
dgisselq |
state <= `RXU_STOP;
|
299 |
50 |
dgisselq |
else if (state == `RXU_STOP)
|
300 |
3 |
dgisselq |
begin // Stop (or parity) bit(s)
|
301 |
50 |
dgisselq |
if (~ck_uart) // On frame error, wait 4 ch idle
|
302 |
3 |
dgisselq |
state <= `RXU_RESET_IDLE;
|
303 |
|
|
else if (dblstop)
|
304 |
|
|
state <= `RXU_SECOND_STOP;
|
305 |
|
|
else
|
306 |
|
|
state <= `RXU_IDLE;
|
307 |
|
|
end else // state must equal RX_SECOND_STOP
|
308 |
|
|
begin
|
309 |
50 |
dgisselq |
if (~ck_uart) // On frame error, wait 4 ch idle
|
310 |
3 |
dgisselq |
state <= `RXU_RESET_IDLE;
|
311 |
50 |
dgisselq |
else
|
312 |
3 |
dgisselq |
state <= `RXU_IDLE;
|
313 |
|
|
end
|
314 |
|
|
end
|
315 |
|
|
end
|
316 |
|
|
|
317 |
50 |
dgisselq |
// Data bit capture logic.
|
318 |
|
|
//
|
319 |
|
|
// This is drastically simplified from the state machine above, based
|
320 |
|
|
// upon: 1) it doesn't matter what it is until the end of a captured
|
321 |
|
|
// byte, and 2) the data register will flush itself of any invalid
|
322 |
|
|
// data in all other cases. Hence, let's keep it real simple.
|
323 |
|
|
// The only trick, though, is that if we have parity, then the data
|
324 |
|
|
// register needs to be held through that state without getting
|
325 |
|
|
// updated.
|
326 |
|
|
reg [7:0] data_reg;
|
327 |
|
|
always @(posedge i_clk)
|
328 |
|
|
if ((zero_baud_counter)&&(state != `RXU_PARITY))
|
329 |
|
|
data_reg <= { ck_uart, data_reg[7:1] };
|
330 |
|
|
|
331 |
|
|
// Parity calculation logic
|
332 |
|
|
//
|
333 |
|
|
// As with the data capture logic, all that must be known about this
|
334 |
|
|
// bit is that it is the exclusive-OR of all bits prior. The first
|
335 |
|
|
// of those will follow idle, so we set ourselves to zero on idle.
|
336 |
|
|
// Then, as we walk through the states of a bit, all will adjust this
|
337 |
|
|
// value up until the parity bit, where the value will be read. Setting
|
338 |
|
|
// it then or after will be irrelevant, so ... this should be good
|
339 |
|
|
// and simplified. Note--we don't need to adjust this on reset either,
|
340 |
|
|
// since the reset state will lead to the idle state where we'll be
|
341 |
|
|
// reset before any transmission takes place.
|
342 |
|
|
reg calc_parity;
|
343 |
|
|
always @(posedge i_clk)
|
344 |
|
|
if (state == `RXU_IDLE)
|
345 |
|
|
calc_parity <= 0;
|
346 |
|
|
else if (zero_baud_counter)
|
347 |
|
|
calc_parity <= calc_parity ^ ck_uart;
|
348 |
|
|
|
349 |
|
|
// Parity error logic
|
350 |
|
|
//
|
351 |
|
|
// Set during the parity bit interval, read during the last stop bit
|
352 |
|
|
// interval, cleared on BREAK, RESET_IDLE, or IDLE states.
|
353 |
|
|
initial o_parity_err = 1'b0;
|
354 |
|
|
always @(posedge i_clk)
|
355 |
|
|
if ((zero_baud_counter)&&(state == `RXU_PARITY))
|
356 |
|
|
begin
|
357 |
|
|
if (fixd_parity)
|
358 |
|
|
// Fixed parity bit--independent of any dat
|
359 |
|
|
// value.
|
360 |
|
|
o_parity_err <= (ck_uart ^ parity_even);
|
361 |
|
|
else if (parity_even)
|
362 |
|
|
// Parity even: The XOR of all bits including
|
363 |
|
|
// the parity bit must be zero.
|
364 |
|
|
o_parity_err <= (calc_parity != ck_uart);
|
365 |
|
|
else
|
366 |
|
|
// Parity odd: the parity bit must equal the
|
367 |
|
|
// XOR of all the data bits.
|
368 |
|
|
o_parity_err <= (calc_parity == ck_uart);
|
369 |
|
|
end else if (state >= `RXU_BREAK)
|
370 |
|
|
o_parity_err <= 1'b0;
|
371 |
|
|
|
372 |
|
|
// Frame error determination
|
373 |
|
|
//
|
374 |
|
|
// For the purpose of this controller, a frame error is defined as a
|
375 |
|
|
// stop bit (or second stop bit, if so enabled) not being high midway
|
376 |
|
|
// through the stop baud interval. The frame error value is
|
377 |
|
|
// immediately read, so we can clear it under all other circumstances.
|
378 |
|
|
// Specifically, we want it clear in RXU_BREAK, RXU_RESET_IDLE, and
|
379 |
|
|
// most importantly in RXU_IDLE.
|
380 |
|
|
initial o_frame_err = 1'b0;
|
381 |
|
|
always @(posedge i_clk)
|
382 |
|
|
if ((zero_baud_counter)&&((state == `RXU_STOP)
|
383 |
|
|
||(state == `RXU_SECOND_STOP)))
|
384 |
|
|
o_frame_err <= (o_frame_err)||(~ck_uart);
|
385 |
|
|
else if ((zero_baud_counter)||(state >= `RXU_BREAK))
|
386 |
|
|
o_frame_err <= 1'b0;
|
387 |
|
|
|
388 |
|
|
// Our data bit logic doesn't need nearly the complexity of all that
|
389 |
|
|
// work above. Indeed, we only need to know if we are at the end of
|
390 |
|
|
// a stop bit, in which case we copy the data_reg into our output
|
391 |
|
|
// data register, o_data.
|
392 |
|
|
//
|
393 |
|
|
// We would also set o_wr to be true when this is the case, but ... we
|
394 |
|
|
// won't know if there is a frame error on the second stop bit for
|
395 |
|
|
// another baud interval yet. So, instead, we set up the logic so that
|
396 |
|
|
// we know on the next zero baud counter that we can write out. That's
|
397 |
|
|
// the purpose of pre_wr.
|
398 |
|
|
initial o_data = 8'h00;
|
399 |
|
|
reg pre_wr;
|
400 |
|
|
initial pre_wr = 1'b0;
|
401 |
|
|
always @(posedge i_clk)
|
402 |
|
|
if (i_reset)
|
403 |
|
|
begin
|
404 |
|
|
pre_wr <= 1'b0;
|
405 |
|
|
o_data <= 8'h00;
|
406 |
|
|
end else if ((zero_baud_counter)&&(state == `RXU_STOP))
|
407 |
|
|
begin
|
408 |
|
|
pre_wr <= 1'b1;
|
409 |
|
|
case (data_bits)
|
410 |
|
|
2'b00: o_data <= data_reg;
|
411 |
|
|
2'b01: o_data <= { 1'b0, data_reg[7:1] };
|
412 |
|
|
2'b10: o_data <= { 2'b0, data_reg[7:2] };
|
413 |
|
|
2'b11: o_data <= { 3'b0, data_reg[7:3] };
|
414 |
|
|
endcase
|
415 |
|
|
end else if ((zero_baud_counter)||(state == `RXU_IDLE))
|
416 |
|
|
pre_wr <= 1'b0;
|
417 |
|
|
|
418 |
|
|
// Create an output strobe, true for one clock only, once we know
|
419 |
|
|
// all we need to know. o_data will be set on the last baud interval,
|
420 |
|
|
// o_parity_err on the last parity baud interval (if it existed,
|
421 |
|
|
// cleared otherwise, so ... we should be good to go here.)
|
422 |
|
|
initial o_wr = 1'b0;
|
423 |
|
|
always @(posedge i_clk)
|
424 |
|
|
if ((zero_baud_counter)||(state == `RXU_IDLE))
|
425 |
|
|
o_wr <= (pre_wr)&&(!i_reset);
|
426 |
|
|
else
|
427 |
|
|
o_wr <= 1'b0;
|
428 |
|
|
|
429 |
|
|
// The baud counter
|
430 |
|
|
//
|
431 |
|
|
// This is used as a "clock divider" if you will, but the clock needs
|
432 |
|
|
// to be reset before any byte can be decoded. In all other respects,
|
433 |
|
|
// we set ourselves up for clocks_per_baud counts between baud
|
434 |
|
|
// intervals.
|
435 |
|
|
always @(posedge i_clk)
|
436 |
|
|
if (i_reset)
|
437 |
|
|
baud_counter <= clocks_per_baud-28'h01;
|
438 |
|
|
else if (zero_baud_counter)
|
439 |
|
|
baud_counter <= clocks_per_baud-28'h01;
|
440 |
|
|
else case(state)
|
441 |
|
|
`RXU_RESET_IDLE:baud_counter <= clocks_per_baud-28'h01;
|
442 |
|
|
`RXU_BREAK: baud_counter <= clocks_per_baud-28'h01;
|
443 |
|
|
`RXU_IDLE: baud_counter <= clocks_per_baud-28'h01;
|
444 |
|
|
default: baud_counter <= baud_counter-28'h01;
|
445 |
|
|
endcase
|
446 |
|
|
|
447 |
|
|
// zero_baud_counter
|
448 |
|
|
//
|
449 |
|
|
// Rather than testing whether or not (baud_counter == 0) within our
|
450 |
|
|
// (already too complicated) state transition tables, we use
|
451 |
|
|
// zero_baud_counter to pre-charge that test on the clock
|
452 |
|
|
// before--cleaning up some otherwise difficult timing dependencies.
|
453 |
3 |
dgisselq |
initial zero_baud_counter = 1'b0;
|
454 |
|
|
always @(posedge i_clk)
|
455 |
50 |
dgisselq |
if (state == `RXU_IDLE)
|
456 |
|
|
zero_baud_counter <= 1'b0;
|
457 |
|
|
else
|
458 |
3 |
dgisselq |
zero_baud_counter <= (baud_counter == 28'h01);
|
459 |
|
|
|
460 |
|
|
|
461 |
|
|
endmodule
|
462 |
|
|
|
463 |
|
|
|