1 |
50 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: ufifo.v
|
4 |
|
|
//
|
5 |
|
|
// Project: wbuart32, a full featured UART with simulator
|
6 |
|
|
//
|
7 |
|
|
// Purpose:
|
8 |
|
|
//
|
9 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
10 |
|
|
// Gisselquist Technology, LLC
|
11 |
|
|
//
|
12 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
13 |
|
|
//
|
14 |
|
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
15 |
|
|
//
|
16 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
17 |
|
|
// modify it under the terms of the GNU General Public License as published
|
18 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
19 |
|
|
// your option) any later version.
|
20 |
|
|
//
|
21 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
22 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
23 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
24 |
|
|
// for more details.
|
25 |
|
|
//
|
26 |
|
|
// You should have received a copy of the GNU General Public License along
|
27 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
28 |
|
|
// target there if the PDF file isn't present.) If not, see
|
29 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
30 |
|
|
//
|
31 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
32 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
33 |
|
|
//
|
34 |
|
|
//
|
35 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
36 |
|
|
//
|
37 |
|
|
//
|
38 |
|
|
module ufifo(i_clk, i_rst, i_wr, i_data, o_empty_n, i_rd, o_data, o_status, o_err);
|
39 |
|
|
parameter BW=8; // Byte/data width
|
40 |
|
|
parameter [3:0] LGFLEN=4;
|
41 |
|
|
parameter RXFIFO=1'b0;
|
42 |
|
|
input i_clk, i_rst;
|
43 |
|
|
input i_wr;
|
44 |
|
|
input [(BW-1):0] i_data;
|
45 |
|
|
output wire o_empty_n; // True if something is in FIFO
|
46 |
|
|
input i_rd;
|
47 |
|
|
output wire [(BW-1):0] o_data;
|
48 |
|
|
output wire [15:0] o_status;
|
49 |
|
|
output wire o_err;
|
50 |
|
|
|
51 |
|
|
localparam FLEN=(1<<LGFLEN);
|
52 |
|
|
|
53 |
|
|
reg [(BW-1):0] fifo[0:(FLEN-1)];
|
54 |
|
|
reg [(LGFLEN-1):0] r_first, r_last, r_next;
|
55 |
|
|
|
56 |
|
|
wire [(LGFLEN-1):0] w_first_plus_one, w_first_plus_two,
|
57 |
|
|
w_last_plus_one;
|
58 |
|
|
assign w_first_plus_two = r_first + {{(LGFLEN-2){1'b0}},2'b10};
|
59 |
|
|
assign w_first_plus_one = r_first + {{(LGFLEN-1){1'b0}},1'b1};
|
60 |
|
|
assign w_last_plus_one = r_next; // r_last + 1'b1;
|
61 |
|
|
|
62 |
|
|
reg will_overflow;
|
63 |
|
|
initial will_overflow = 1'b0;
|
64 |
|
|
always @(posedge i_clk)
|
65 |
|
|
if (i_rst)
|
66 |
|
|
will_overflow <= 1'b0;
|
67 |
|
|
else if (i_rd)
|
68 |
|
|
will_overflow <= (will_overflow)&&(i_wr);
|
69 |
|
|
else if (i_wr)
|
70 |
|
|
will_overflow <= (w_first_plus_two == r_last);
|
71 |
|
|
else if (w_first_plus_one == r_last)
|
72 |
|
|
will_overflow <= 1'b1;
|
73 |
|
|
|
74 |
|
|
// Write
|
75 |
|
|
reg r_ovfl;
|
76 |
|
|
initial r_first = 0;
|
77 |
|
|
initial r_ovfl = 0;
|
78 |
|
|
always @(posedge i_clk)
|
79 |
|
|
if (i_rst)
|
80 |
|
|
begin
|
81 |
|
|
r_ovfl <= 1'b0;
|
82 |
|
|
r_first <= { (LGFLEN){1'b0} };
|
83 |
|
|
end else if (i_wr)
|
84 |
|
|
begin // Cowardly refuse to overflow
|
85 |
|
|
if ((i_rd)||(!will_overflow)) // (r_first+1 != r_last)
|
86 |
|
|
r_first <= w_first_plus_one;
|
87 |
|
|
else
|
88 |
|
|
r_ovfl <= 1'b1;
|
89 |
|
|
end
|
90 |
|
|
always @(posedge i_clk)
|
91 |
|
|
if (i_wr) // Write our new value regardless--on overflow or not
|
92 |
|
|
fifo[r_first] <= i_data;
|
93 |
|
|
|
94 |
|
|
// Reads
|
95 |
|
|
// Following a read, the next sample will be available on the
|
96 |
|
|
// next clock
|
97 |
|
|
// Clock ReadCMD ReadAddr Output
|
98 |
|
|
// 0 0 0 fifo[0]
|
99 |
|
|
// 1 1 0 fifo[0]
|
100 |
|
|
// 2 0 1 fifo[1]
|
101 |
|
|
// 3 0 1 fifo[1]
|
102 |
|
|
// 4 1 1 fifo[1]
|
103 |
|
|
// 5 1 2 fifo[2]
|
104 |
|
|
// 6 0 3 fifo[3]
|
105 |
|
|
// 7 0 3 fifo[3]
|
106 |
|
|
reg will_underflow;
|
107 |
|
|
initial will_underflow = 1'b1;
|
108 |
|
|
always @(posedge i_clk)
|
109 |
|
|
if (i_rst)
|
110 |
|
|
will_underflow <= 1'b1;
|
111 |
|
|
else if (i_wr)
|
112 |
|
|
will_underflow <= (will_underflow)&&(i_rd);
|
113 |
|
|
else if (i_rd)
|
114 |
|
|
will_underflow <= (w_last_plus_one == r_first);
|
115 |
|
|
else
|
116 |
|
|
will_underflow <= (r_last == r_first);
|
117 |
|
|
|
118 |
|
|
//
|
119 |
|
|
// Don't report FIFO underflow errors. These'll be caught elsewhere
|
120 |
|
|
// in the system, and the logic below makes it hard to reset them.
|
121 |
|
|
// We'll still report FIFO overflow, however.
|
122 |
|
|
//
|
123 |
|
|
// reg r_unfl;
|
124 |
|
|
// initial r_unfl = 1'b0;
|
125 |
|
|
initial r_last = 0;
|
126 |
|
|
always @(posedge i_clk)
|
127 |
|
|
if (i_rst)
|
128 |
|
|
begin
|
129 |
|
|
r_last <= 0;
|
130 |
|
|
r_next <= { {(LGFLEN-1){1'b0}}, 1'b1 };
|
131 |
|
|
// r_unfl <= 1'b0;
|
132 |
|
|
end else if (i_rd)
|
133 |
|
|
begin
|
134 |
|
|
if ((i_wr)||(!will_underflow)) // (r_first != r_last)
|
135 |
|
|
begin
|
136 |
|
|
r_last <= r_next;
|
137 |
|
|
r_next <= r_last +{{(LGFLEN-2){1'b0}},2'b10};
|
138 |
|
|
// Last chases first
|
139 |
|
|
// Need to be prepared for a possible two
|
140 |
|
|
// reads in quick succession
|
141 |
|
|
// o_data <= fifo[r_last+1];
|
142 |
|
|
end
|
143 |
|
|
// else r_unfl <= 1'b1;
|
144 |
|
|
end
|
145 |
|
|
|
146 |
|
|
reg [7:0] fifo_here, fifo_next, r_data;
|
147 |
|
|
always @(posedge i_clk)
|
148 |
|
|
fifo_here <= fifo[r_last];
|
149 |
|
|
always @(posedge i_clk)
|
150 |
|
|
fifo_next <= fifo[r_next];
|
151 |
|
|
always @(posedge i_clk)
|
152 |
|
|
r_data <= i_data;
|
153 |
|
|
|
154 |
|
|
reg [1:0] osrc;
|
155 |
|
|
always @(posedge i_clk)
|
156 |
|
|
if (will_underflow)
|
157 |
|
|
// o_data <= i_data;
|
158 |
|
|
osrc <= 2'b00;
|
159 |
|
|
else if ((i_rd)&&(r_first == w_last_plus_one))
|
160 |
|
|
osrc <= 2'b01;
|
161 |
|
|
else if (i_rd)
|
162 |
|
|
osrc <= 2'b11;
|
163 |
|
|
else
|
164 |
|
|
osrc <= 2'b10;
|
165 |
|
|
assign o_data = (osrc[1]) ? ((osrc[0])?fifo_next:fifo_here) : r_data;
|
166 |
|
|
|
167 |
|
|
// wire [(LGFLEN-1):0] current_fill;
|
168 |
|
|
// assign current_fill = (r_first-r_last);
|
169 |
|
|
|
170 |
|
|
reg r_empty_n;
|
171 |
|
|
initial r_empty_n = 1'b0;
|
172 |
|
|
always @(posedge i_clk)
|
173 |
|
|
if (i_rst)
|
174 |
|
|
r_empty_n <= 1'b0;
|
175 |
|
|
else case({i_wr, i_rd})
|
176 |
|
|
2'b00: r_empty_n <= (r_first != r_last);
|
177 |
|
|
2'b11: r_empty_n <= (r_first != r_last);
|
178 |
|
|
2'b10: r_empty_n <= 1'b1;
|
179 |
|
|
2'b01: r_empty_n <= (r_first != w_last_plus_one);
|
180 |
|
|
endcase
|
181 |
|
|
|
182 |
|
|
wire w_full_n;
|
183 |
|
|
assign w_full_n = will_overflow;
|
184 |
|
|
|
185 |
|
|
//
|
186 |
|
|
// If this is a receive FIFO, the FIFO count that matters is the number
|
187 |
|
|
// of values yet to be read. If instead this is a transmit FIFO, then
|
188 |
|
|
// the FIFO count that matters is the number of empty positions that
|
189 |
|
|
// can still be filled before the FIFO is full.
|
190 |
|
|
//
|
191 |
|
|
// Adjust for these differences here.
|
192 |
|
|
reg [(LGFLEN-1):0] r_fill;
|
193 |
|
|
always @(posedge i_clk)
|
194 |
|
|
if (RXFIFO!=0) begin
|
195 |
|
|
// Calculate the number of elements in our FIFO
|
196 |
|
|
//
|
197 |
|
|
// Although used for receive, this is actually the more
|
198 |
|
|
// generic answer--should you wish to use the FIFO in
|
199 |
|
|
// another context.
|
200 |
|
|
if (i_rst)
|
201 |
|
|
r_fill <= 0;
|
202 |
|
|
else case({i_wr, i_rd})
|
203 |
|
|
2'b01: r_fill <= r_first - r_next;
|
204 |
|
|
2'b10: r_fill <= r_first - r_last + 1'b1;
|
205 |
|
|
default: r_fill <= r_first - r_last;
|
206 |
|
|
endcase
|
207 |
|
|
end else begin
|
208 |
|
|
// Calculate the number of elements that are empty and
|
209 |
|
|
// can be filled within our FIFO
|
210 |
|
|
if (i_rst)
|
211 |
|
|
r_fill <= { (LGFLEN){1'b1} };
|
212 |
|
|
else case({i_wr, i_rd})
|
213 |
|
|
2'b01: r_fill <= r_last - r_first;
|
214 |
|
|
2'b10: r_fill <= r_last - w_first_plus_two;
|
215 |
|
|
default: r_fill <= r_last - w_first_plus_one;
|
216 |
|
|
endcase
|
217 |
|
|
end
|
218 |
|
|
|
219 |
|
|
// We don't report underflow errors. These
|
220 |
|
|
assign o_err = (r_ovfl); // || (r_unfl);
|
221 |
|
|
|
222 |
|
|
wire [3:0] lglen;
|
223 |
|
|
assign lglen = LGFLEN;
|
224 |
|
|
|
225 |
|
|
wire [9:0] w_fill;
|
226 |
|
|
assign w_fill[(LGFLEN-1):0] = r_fill;
|
227 |
|
|
generate if (LGFLEN < 10)
|
228 |
|
|
assign w_fill[9:(LGFLEN)] = 0;
|
229 |
|
|
endgenerate
|
230 |
|
|
|
231 |
|
|
wire w_half_full;
|
232 |
|
|
assign w_half_full = r_fill[(LGFLEN-1)];
|
233 |
|
|
|
234 |
|
|
assign o_status = {
|
235 |
|
|
// Our status includes a 4'bit nibble telling anyone reading
|
236 |
|
|
// this the size of our FIFO. The size is then given by
|
237 |
|
|
// 2^(this value). Hence a 4'h4 in this position means that the
|
238 |
|
|
// FIFO has 2^4 or 16 values within it.
|
239 |
|
|
lglen,
|
240 |
|
|
// The FIFO fill--for a receive FIFO the number of elements
|
241 |
|
|
// left to be read, and for a transmit FIFO the number of
|
242 |
|
|
// empty elements within the FIFO that can yet be filled.
|
243 |
|
|
w_fill,
|
244 |
|
|
// A '1' here means a half FIFO length can be read (receive
|
245 |
|
|
// FIFO) or written to (not a receive FIFO).
|
246 |
|
|
// receive FIFO), or be written to (if it isn't).
|
247 |
|
|
(RXFIFO!=0)?w_half_full:w_half_full,
|
248 |
|
|
// A '1' here means the FIFO can be read from (if it is a
|
249 |
|
|
// receive FIFO), or be written to (if it isn't).
|
250 |
|
|
(RXFIFO!=0)?r_empty_n:w_full_n
|
251 |
|
|
};
|
252 |
|
|
|
253 |
|
|
assign o_empty_n = r_empty_n;
|
254 |
|
|
|
255 |
|
|
endmodule
|