OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [wbddrsdram.v] - Blame information for rev 20

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 dgisselq
////////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    wbddrsdram.v
4
//
5
// Project:     OpenArty, an entirely open SoC based upon the Arty platform
6
//
7
// Purpose:     
8
//
9
// Creator:     Dan Gisselquist, Ph.D.
10
//              Gisselquist Technology, LLC
11
//
12
////////////////////////////////////////////////////////////////////////////////
13
//
14
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
15
//
16
// This program is free software (firmware): you can redistribute it and/or
17
// modify it under the terms of  the GNU General Public License as published
18
// by the Free Software Foundation, either version 3 of the License, or (at
19
// your option) any later version.
20
//
21
// This program is distributed in the hope that it will be useful, but WITHOUT
22
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
23
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
24
// for more details.
25
//
26
// You should have received a copy of the GNU General Public License along
27
// with this program.  (It's in the $(ROOT)/doc directory, run make with no
28
// target there if the PDF file isn't present.)  If not, see
29
// <http://www.gnu.org/licenses/> for a copy.
30
//
31
// License:     GPL, v3, as defined and found on www.gnu.org,
32
//              http://www.gnu.org/licenses/gpl.html
33
//
34
//
35
////////////////////////////////////////////////////////////////////////////////
36
//
37
//
38 17 dgisselq
 
39
// Possible commands to the DDR3 memory.  These consist of settings for the
40
// bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively.
41
`define DDR_MRSET       4'b0000
42
`define DDR_REFRESH     4'b0001
43
`define DDR_PRECHARGE   4'b0010
44
`define DDR_ACTIVATE    4'b0011
45
`define DDR_WRITE       4'b0100
46
`define DDR_READ        4'b0101
47
`define DDR_ZQS         4'b0110
48
`define DDR_NOOP        4'b0111
49
//`define       DDR_DESELECT    4'b1???
50
//
51
// In this controller, 24-bit commands tend to be passed around.  These 
52
// 'commands' are bit fields.  Here we specify the bits associated with
53
// the bit fields.
54
`define DDR_RSTDONE     24      // End the reset sequence?
55
`define DDR_RSTTIMER    23      // Does this reset command take multiple clocks?
56
`define DDR_RSTBIT      22      // Value to place on reset_n
57
`define DDR_CKEBIT      21      // Should this reset command set CKE?
58
//
59
// Refresh command bit fields
60
`define DDR_NEEDREFRESH 23
61
`define DDR_RFTIMER     22
62
`define DDR_RFBEGIN     21
63
//
64
`define DDR_CMDLEN      21
65
`define DDR_CSBIT       20
66
`define DDR_RASBIT      19
67
`define DDR_CASBIT      18
68
`define DDR_WEBIT       17
69
`define DDR_NOPTIMER    16      // Steal this from BA bits
70
`define DDR_BABITS      3       // BABITS are really from 18:16, they are 3 bits
71
`define DDR_ADDR_BITS   14
72
//
73
 
74
module  wbddrsdram(i_clk, i_reset,
75 3 dgisselq
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
76 17 dgisselq
                        o_wb_ack, o_wb_stall, o_wb_data,
77 3 dgisselq
                o_ddr_reset_n, o_ddr_cke,
78
                o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
79 17 dgisselq
                o_ddr_dqs, o_ddr_dm, o_ddr_odt, o_ddr_bus_oe,
80 3 dgisselq
                o_ddr_addr, o_ddr_ba, o_ddr_data, i_ddr_data);
81 17 dgisselq
        parameter       CKRBITS = 13, // Bits in CKREFI4
82
                        CKREFI  = 13'd1560, // 4 * 7.8us at 200 MHz clock
83
                        CKRFC = 320,
84
                        CKWR = 3,
85
                        CKRP = 11, // (=tRTP)Time from precharge to open command
86
                        CKCAS = 11, // CAS Latency, tCL
87
                        CKXPR = CKRFC+5+2, // Clocks per tXPR timeout
88
                        BUSREG= 2+CKCAS,
89
                        BUSNOW= 3+CKCAS;
90
        input                   i_clk, i_reset;
91 3 dgisselq
        // Wishbone inputs
92
        input                   i_wb_cyc, i_wb_stb, i_wb_we;
93
        input           [25:0]   i_wb_addr;
94
        input           [31:0]   i_wb_data;
95
        // Wishbone outputs
96
        output  reg             o_wb_ack;
97
        output  reg             o_wb_stall;
98
        output  reg     [31:0]   o_wb_data;
99
        // DDR3 RAM Controller
100 17 dgisselq
        output  reg             o_ddr_reset_n, o_ddr_cke;
101 3 dgisselq
        // Control outputs
102 17 dgisselq
        output  wire            o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n;
103 3 dgisselq
        // DQS outputs:set to 3'b010 when data is active, 3'b100 (i.e. 2'bzz) ow
104 17 dgisselq
        output  wire            o_ddr_dqs;
105
        output  reg             o_ddr_dm;
106
        output  reg             o_ddr_odt;
107
        output  wire            o_ddr_bus_oe;
108 3 dgisselq
        // Address outputs
109 17 dgisselq
        output  wire    [13:0]   o_ddr_addr;
110
        output  wire    [2:0]    o_ddr_ba;
111 3 dgisselq
        // And the data inputs and outputs
112
        output  reg     [31:0]   o_ddr_data;
113 17 dgisselq
        input           [31:0]   i_ddr_data;
114 3 dgisselq
 
115 17 dgisselq
        reg             drive_dqs;
116
 
117
        // The pending transaction
118
        reg     [31:0]   r_data;
119
        reg             r_pending, r_we;
120
        reg     [25:0]   r_addr;
121
        reg     [13:0]   r_row;
122
        reg     [2:0]    r_bank;
123
        reg     [9:0]    r_col;
124
        reg     [1:0]    r_sub;
125
        reg             r_move; // It was accepted, and can move to next stage
126
 
127
        // The pending transaction, one further into the pipeline.  This is
128
        // the stage where the read/write command is actually given to the
129
        // interface if we haven't stalled.
130
        reg     [31:0]   s_data;
131
        reg             s_pending, s_we; // , s_match;
132
        reg     [25:0]   s_addr;
133
        reg     [13:0]   s_row, s_nxt_row;
134
        reg     [2:0]    s_bank, s_nxt_bank;
135
        reg     [9:0]    s_col;
136
        reg     [1:0]    s_sub;
137
 
138
        // Can the pending transaction be satisfied with the current (ongoing)
139
        // transaction?
140
        reg             m_move, m_match, m_pending, m_we;
141
        reg     [25:0]   m_addr;
142
        reg     [13:0]   m_row;
143
        reg     [2:0]    m_bank;
144
        reg     [9:0]    m_col;
145
        reg     [1:0]    m_sub;
146
 
147
        // Can we preload the next bank?
148
        reg     [13:0]   r_nxt_row;
149
        reg     [2:0]    r_nxt_bank;
150
 
151
        reg     need_close_bank, need_close_this_bank,
152
                        last_close_bank, maybe_close_next_bank,
153
                        last_maybe_close,
154
                need_open_bank, last_open_bank, maybe_open_next_bank,
155
                        last_maybe_open,
156
                valid_bank, last_valid_bank;
157
        reg     [(`DDR_CMDLEN-1):0]      close_bank_cmd, activate_bank_cmd,
158
                                        maybe_close_cmd, maybe_open_cmd, rw_cmd;
159
        reg     [1:0]    rw_sub;
160
        reg             rw_we;
161
 
162
        wire    w_this_closing_bank, w_this_opening_bank,
163
                w_this_maybe_close, w_this_maybe_open,
164
                w_this_rw_move;
165
        reg     last_closing_bank, last_opening_bank;
166
        wire    w_need_close_this_bank, w_need_open_bank,
167
                w_r_valid, w_s_valid, w_s_match;
168 3 dgisselq
//
169
// tWTR = 7.5
170
// tRRD = 7.5
171
// tREFI= 7.8
172
// tFAW = 45
173
// tRTP = 7.5
174
// tCKE = 5.625
175
// tRFC = 160
176
// tRP  = 13.5
177
// tRAS = 36
178
// tRCD = 13.5
179
//
180
// RESET:
181
//      1. Hold o_reset_n = 1'b0; for 200 us, or 40,000 clocks (65536 perhaps?)
182
//              Hold cke low during this time as well
183
//              The clock should be free running into the chip during this time
184
//              Leave command in NOOP state: {cs,ras,cas,we} = 4'h7;
185
//              ODT must be held low
186
//      2. Hold cke low for another 500us, or 100,000 clocks
187
//      3. Raise CKE, continue outputting a NOOP for
188
//              tXPR, tDLLk, and tZQInit
189
//      4. Load MRS2, wait tMRD
190
//      4. Load MRS3, wait tMRD
191
//      4. Load MRS1, wait tMOD
192
// Before using the SDRAM, we'll need to program at least 3 of the mode
193
//      registers, if not all 4. 
194
//   tMOD clocks are required to program the mode registers, during which
195
//      time the RAM must be idle.
196
//
197
// NOOP: CS low, RAS, CAS, and WE high
198
 
199 17 dgisselq
//
200
// Reset logic should be simple, and is given as follows:
201
// note that it depends upon a ROM memory, reset_mem, and an address into that
202
// memory: reset_address.  Each memory location provides either a "command" to
203
// the DDR3 SDRAM, or a timer to wait until the next command.  Further, the
204
// timer commands indicate whether or not the command during the timer is to
205
// be set to idle, or whether the command is instead left as it was.
206
        reg             reset_override, reset_ztimer, maintenance_override;
207
        reg     [4:0]    reset_address;
208
        reg     [(`DDR_CMDLEN-1):0]      reset_cmd, cmd, refresh_cmd,
209
                                        maintenance_cmd;
210
        reg     [24:0]   reset_instruction;
211
        reg     [16:0]   reset_timer;
212
        initial reset_override = 1'b1;
213
        initial reset_address  = 5'h0;
214
        always @(posedge i_clk)
215
                if (i_reset)
216
                begin
217
                        reset_override <= 1'b1;
218
                        reset_cmd <= { `DDR_NOOP, reset_instruction[16:0]};
219
                end else if (reset_ztimer)
220
                begin
221
                        if (reset_instruction[`DDR_RSTDONE])
222
                                reset_override <= 1'b0;
223
                        reset_cmd <= reset_instruction[20:0];
224
                end
225
 
226
        initial reset_ztimer = 1'b0;    // Is the timer zero?
227
        initial reset_timer = 17'h02;
228
        always @(posedge i_clk)
229
                if (i_reset)
230
                begin
231
                        reset_ztimer <= 1'b0;
232
                        reset_timer <= 17'd2;
233
                end else if (!reset_ztimer)
234
                begin
235
                        reset_ztimer <= (reset_timer == 17'h01);
236
                        reset_timer <= reset_timer - 17'h01;
237
                end else if (reset_instruction[`DDR_RSTTIMER])
238
                begin
239
                        reset_ztimer <= 1'b0;
240
                        reset_timer <= reset_instruction[16:0];
241
                end
242
 
243
        wire    [16:0]   w_ckXPR, w_ckRST, w_ckRP,
244
                        w_ckRFC_first;
245
        wire    [2:0]    w_ckCAS_MR2, w_ckCAS_MR0, w_ckCAS, w_ckFIVE;
246
        wire    [13:0]   w_MR0, w_MR1, w_MR2;
247
        assign w_ckXPR = CKXPR;
248
        assign w_ckRST = 4;
249
        assign w_ckRP = CKRP-2;
250
        /* verilator lint_off WIDTH */
251
        assign w_ckCAS = CKCAS;
252
        /* verilator lint_on WIDTH */
253
        assign w_ckRFC_first = CKRFC-2-9+8;
254
        assign w_ckFIVE = 3'h5;
255
        assign w_ckCAS_MR2 = w_ckFIVE-3'h5; // w_ckCAS-3'h5;
256
        assign w_ckCAS_MR0 = w_ckFIVE-3'h4; // w_ckCAS-3'h4;
257
        assign w_MR2 = { 3'h0, 2'b00, 1'b0, 1'b0, 1'b1, w_ckCAS_MR2, 3'b0 };
258
        assign w_MR1 = {
259
                        1'h0, // Reserved for Future Use (RFU)
260
                        1'b0, // Qoff - output buffer enabled
261
                        1'b1, // TDQS ... enabled
262
                        1'b0, // RFU
263
                        1'b0, // High order bit, Rtt_Nom (3'b011)
264
                        1'b0, // RFU
265
                        //
266
                        1'b0, // Disable write-leveling
267
                        1'b1, // Mid order bit of Rtt_Nom
268
                        1'b0, // High order bit of Output Drvr Impedence Ctrl
269
                        2'b0, // Additive latency = 0
270
                        1'b1, // Low order bit of Rtt_Nom
271
                        1'b0, // DIC set to 2'b00
272
                        1'b0 // MRS1, DLL enable
273
                };
274
        assign w_MR0 = {
275
                        1'b0, // Reserved for future use
276
                        1'b0, // PPD control, (slow exit(DLL off))
277
                        3'b1, // Write recovery for auto precharge
278
                        1'b0, // DLL Reset (No)
279
                        //
280
                        1'b0, // TM mode normal
281
                        w_ckCAS_MR0, // High 3-bits, CAS latency (=4'b1110=4'd5,tCL=11)
282
                        //
283
                        1'b0, // Read burst type = nibble sequential
284
                        (CKCAS>11)? 1'b1:1'b0, // Low bit of cas latency
285
                        2'b0 // Burst length = 8 (Fixed)
286
                };
287
        always @(posedge i_clk)
288
                if (i_reset)
289
                        reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
290
                else if (reset_ztimer) case(reset_address) // RSTDONE, TIMER, CKE, ??
291
                // 1. Reset asserted (active low) for 200 us. (@200MHz)
292
                5'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
293
                // 2. Reset de-asserted, wait 500 us before asserting CKE
294
                5'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 17'd100_000 };
295
                // 3. Assert CKE, wait minimum of Reset CKE Exit time
296
                5'h2: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckXPR };
297
                // 4. Look MR2.  (1CK, no TIMER)
298
                5'h3: reset_instruction <= { 4'h3, `DDR_NOOP,  3'h2, w_MR2 };
299
                5'h4: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2, w_MR2 };
300
                5'h5: reset_instruction <= { 4'h3, `DDR_NOOP,  3'h2, w_MR2 };
301
                // 3. Wait 4 clocks (tMRD)
302
                5'h6: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h02 };
303
                // 5. Set MR1
304
                5'h7: reset_instruction <= { 4'h3, `DDR_NOOP,  3'h1, w_MR1 };
305
                5'h8: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1, w_MR1 };
306
                5'h9: reset_instruction <= { 4'h3, `DDR_NOOP,  3'h1, w_MR1 };
307
                // 7. Wait another 4 clocks
308
                5'ha: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h02 };
309
                // 8. Send MRS0
310
                5'hb: reset_instruction <= { 4'h3, `DDR_NOOP,  3'h0, w_MR0 };
311
                5'hc: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0, w_MR0 };
312
                5'hd: reset_instruction <= { 4'h3, `DDR_NOOP,  3'h0, w_MR0 };
313
                // 9. Wait tMOD, is max(12 clocks, 15ns)
314
                5'he: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h0a };
315
                // 10. Issue a ZQCL command to start ZQ calibration, A10 is high
316
                5'hf: reset_instruction <= { 4'h3, `DDR_ZQS, 6'h0, 1'b1, 10'h0};
317
                //11.Wait for both tDLLK and tZQinit completed, both are 512 cks
318
                5'h10: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd512 };
319
                // 12. Precharge all command
320
                5'h11: reset_instruction <= { 4'h3, `DDR_PRECHARGE, 6'h0, 1'b1, 10'h0 };
321
                // 13. Wait for the precharge to complete
322
                5'h12: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRP };
323
                // 14. A single Auto Refresh commands
324
                5'h13: reset_instruction <= { 4'h3, `DDR_REFRESH, 17'h00 };
325
                // 15. Wait for the auto refresh to complete
326
                5'h14: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRFC_first };
327
                // Two Auto Refresh commands
328
                default:
329
                        reset_instruction <={4'hb, `DDR_NOOP, 17'd00_000 };
330
                endcase
331
                // reset_instruction <= reset_mem[reset_address];
332
 
333
        initial reset_address = 5'h0;
334
        always @(posedge i_clk)
335
                if (i_reset)
336
                        reset_address <= 5'h1;
337
                else if ((reset_ztimer)&&(reset_override))
338
                        reset_address <= reset_address + 5'h1;
339
//
340
// initial reset_mem =
341
//       0.     !DONE, TIMER,RESET_N=0, CKE=0, CMD = NOOP, TIMER = 200us ( 40,000)
342
//       1.     !DONE, TIMER,RESET_N=1, CKE=0, CMD = NOOP, TIMER = 500us (100,000)
343
//       2.     !DONE, TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = (Look me up)
344
//       3.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS
345
//       4.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
346
//       5.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS3
347
//       6.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
348
//       7.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1
349
//       8.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
350
//       9.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1
351
//      10.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMOD
352
//      11.     !DONE,!TIMER,RESET_N=1, CKE=1, (Pre-charge all)
353
//      12.     !DONE,!TIMER,RESET_N=1, CKE=1, (wait)
354
//      13.     !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh)
355
//      14.     !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh)
356
//      15.     !DONE,!TIMER,RESET_N=1, CKE=1, (wait)
357
 
358
 
359
//
360
//
361
// Let's keep track of any open banks.  There are 8 of them to keep track of.
362
//
363
//      A precharge requires 3 clocks at 200MHz to complete, 2 clocks at 100MHz.
364
//      
365
//
366
//
367
        reg     need_refresh;
368
 
369
        wire    w_precharge_all;
370
        reg     [CKRP:0] bank_status     [0:7];
371
        reg     [13:0]   bank_address    [0:7];
372
        reg     [3:0]    bank_wr_ck      [0:7]; // tWTR
373
        reg             bank_wr_ckzro   [0:7]; // tWTR
374
        reg     [7:0]    bank_open;
375
        reg     [7:0]    bank_closed;
376
 
377
        wire    [3:0]    write_recycle_clocks;
378
        assign  write_recycle_clocks = CKWR+4+4;
379
 
380
        initial bank_open   = 0;
381
        initial bank_closed = 8'hff;
382
        always @(posedge i_clk)
383
        begin
384
                bank_status[0] <= { bank_status[0][(CKRP-1):0], bank_status[0][0] };
385
                bank_status[1] <= { bank_status[1][(CKRP-1):0], bank_status[1][0] };
386
                bank_status[2] <= { bank_status[2][(CKRP-1):0], bank_status[2][0] };
387
                bank_status[3] <= { bank_status[3][(CKRP-1):0], bank_status[3][0] };
388
                bank_status[4] <= { bank_status[4][(CKRP-1):0], bank_status[4][0] };
389
                bank_status[5] <= { bank_status[5][(CKRP-1):0], bank_status[5][0] };
390
                bank_status[6] <= { bank_status[6][(CKRP-1):0], bank_status[6][0] };
391
                bank_status[7] <= { bank_status[7][(CKRP-1):0], bank_status[7][0] };
392
 
393
                bank_wr_ck[0] <= (|bank_wr_ck[0])?(bank_wr_ck[0]-4'h1):4'h0;
394
                bank_wr_ck[1] <= (|bank_wr_ck[1])?(bank_wr_ck[1]-4'h1):4'h0;
395
                bank_wr_ck[2] <= (|bank_wr_ck[2])?(bank_wr_ck[2]-4'h1):4'h0;
396
                bank_wr_ck[3] <= (|bank_wr_ck[3])?(bank_wr_ck[3]-4'h1):4'h0;
397
                bank_wr_ck[4] <= (|bank_wr_ck[4])?(bank_wr_ck[4]-4'h1):4'h0;
398
                bank_wr_ck[5] <= (|bank_wr_ck[5])?(bank_wr_ck[5]-4'h1):4'h0;
399
                bank_wr_ck[6] <= (|bank_wr_ck[6])?(bank_wr_ck[6]-4'h1):4'h0;
400
                bank_wr_ck[7] <= (|bank_wr_ck[7])?(bank_wr_ck[7]-4'h1):4'h0;
401
 
402
                bank_wr_ckzro[0] <= (bank_wr_ck[0][3:1]==3'b00);
403
                bank_wr_ckzro[1] <= (bank_wr_ck[1][3:1]==3'b00);
404
                bank_wr_ckzro[2] <= (bank_wr_ck[2][3:1]==3'b00);
405
                bank_wr_ckzro[3] <= (bank_wr_ck[3][3:1]==3'b00);
406
                bank_wr_ckzro[4] <= (bank_wr_ck[4][3:1]==3'b00);
407
                bank_wr_ckzro[5] <= (bank_wr_ck[5][3:1]==3'b00);
408
                bank_wr_ckzro[6] <= (bank_wr_ck[6][3:1]==3'b00);
409
                bank_wr_ckzro[7] <= (bank_wr_ck[7][3:1]==3'b00);
410
 
411
                bank_open[0] <= (bank_status[0][(CKRP-2):0] =={(CKRP-1){1'b1}});
412
                bank_open[1] <= (bank_status[1][(CKRP-2):0] =={(CKRP-1){1'b1}});
413
                bank_open[2] <= (bank_status[2][(CKRP-2):0] =={(CKRP-1){1'b1}});
414
                bank_open[3] <= (bank_status[3][(CKRP-2):0] =={(CKRP-1){1'b1}});
415
                bank_open[4] <= (bank_status[4][(CKRP-2):0] =={(CKRP-1){1'b1}});
416
                bank_open[5] <= (bank_status[5][(CKRP-2):0] =={(CKRP-1){1'b1}});
417
                bank_open[6] <= (bank_status[6][(CKRP-2):0] =={(CKRP-1){1'b1}});
418
                bank_open[7] <= (bank_status[7][(CKRP-2):0] =={(CKRP-1){1'b1}});
419
 
420
                bank_closed[0] <= (bank_status[0][(CKRP-3):0] == 0);
421
                bank_closed[1] <= (bank_status[1][(CKRP-3):0] == 0);
422
                bank_closed[2] <= (bank_status[2][(CKRP-3):0] == 0);
423
                bank_closed[3] <= (bank_status[3][(CKRP-3):0] == 0);
424
                bank_closed[4] <= (bank_status[4][(CKRP-3):0] == 0);
425
                bank_closed[5] <= (bank_status[5][(CKRP-3):0] == 0);
426
                bank_closed[6] <= (bank_status[6][(CKRP-3):0] == 0);
427
                bank_closed[7] <= (bank_status[7][(CKRP-3):0] == 0);
428
 
429
                if (w_this_rw_move)
430
                        bank_wr_ck[rw_cmd[16:14]] <= (rw_cmd[`DDR_WEBIT])? 4'h0
431
                                : write_recycle_clocks;
432
 
433
                if (maintenance_override)
434
                begin
435
                        bank_status[0][0] <= 1'b0;
436
                        bank_status[1][0] <= 1'b0;
437
                        bank_status[2][0] <= 1'b0;
438
                        bank_status[3][0] <= 1'b0;
439
                        bank_status[4][0] <= 1'b0;
440
                        bank_status[5][0] <= 1'b0;
441
                        bank_status[6][0] <= 1'b0;
442
                        bank_status[7][0] <= 1'b0;
443
                        bank_open   <= 0;
444
                        bank_closed <= 8'hff;
445
                end else if (need_close_bank)
446
                begin
447
                        bank_status[close_bank_cmd[16:14]]
448
                                <= { bank_status[close_bank_cmd[16:14]][(CKRP-1):0], 1'b0 };
449
                        bank_open[close_bank_cmd[16:14]] <= 1'b0;
450
                        // bank_status[close_bank_cmd[16:14]][0] <= 1'b0;
451
                end else if (need_open_bank)
452
                begin
453
                        bank_status[activate_bank_cmd[16:14]]
454
                                <= { bank_status[activate_bank_cmd[16:14]][(CKRP-1):0], 1'b1 };
455
                        // bank_status[activate_bank_cmd[16:14]][0] <= 1'b1;
456
                        bank_closed[activate_bank_cmd[16:14]] <= 1'b0;
457
                end else if (valid_bank)
458
                        ;
459
                else if (maybe_close_next_bank)
460
                begin
461
                        bank_status[maybe_close_cmd[16:14]]
462
                                <= { bank_status[maybe_close_cmd[16:14]][(CKRP-1):0], 1'b0 };
463
                        bank_open[maybe_close_cmd[16:14]] <= 1'b0;
464
                end else if (maybe_open_next_bank)
465
                begin
466
                        bank_status[maybe_open_cmd[16:14]]
467
                                <= { bank_status[maybe_open_cmd[16:14]][(CKRP-1):0], 1'b1 };
468
                        // bank_status[activate_bank_cmd[16:14]][0] <= 1'b1;
469
                        bank_closed[maybe_open_cmd[16:14]] <= 1'b0;
470
                end
471
        end
472
 
473
        always @(posedge i_clk)
474
                // if (cmd[22:19] == `DDR_ACTIVATE)
475
                if (w_this_opening_bank)
476
                        bank_address[activate_bank_cmd[16:14]]
477
                                <= activate_bank_cmd[13:0];
478
                else if (!w_this_maybe_open)
479
                        bank_address[maybe_open_cmd[16:14]]
480
                                <= maybe_open_cmd[13:0];
481
 
482
//
483
//
484
// Okay, let's investigate when we need to do a refresh.  Our plan will be to
485
// do 4 refreshes every tREFI*4 seconds.  tREFI = 7.8us, but its a parameter
486
// in the number of clocks so that we can handle both 100MHz and 200MHz clocks.
487
//
488
// Note that 160ns are needed between refresh commands (JEDEC, p172), or
489
// 320 clocks @200MHz, or equivalently 160 clocks @100MHz.  Thus to issue 4
490
// of these refresh cycles will require 4*320=1280 clocks@200 MHz.  After this
491
// time, no more refreshes will be needed for 6240 clocks.
492
//
493
// Let's think this through:
494
//      REFRESH_COST = (n*(320)+24)/(n*1560)
495
// 
496
//
497
//
498
        reg             refresh_ztimer;
499
        reg     [16:0]   refresh_counter;
500
        reg     [2:0]    refresh_addr;
501
        reg     [23:0]   refresh_instruction;
502
        always @(posedge i_clk)
503
                if (reset_override)
504
                        refresh_addr <= 3'hf;
505
                else if (refresh_ztimer)
506
                        refresh_addr <= refresh_addr + 3'h1;
507
                else if (refresh_instruction[`DDR_RFBEGIN])
508
                        refresh_addr <= 3'h0;
509
 
510
        always @(posedge i_clk)
511
                if (reset_override)
512
                begin
513
                        refresh_ztimer <= 1'b1;
514
                        refresh_counter <= 17'd0;
515
                end else if (!refresh_ztimer)
516
                begin
517
                        refresh_ztimer <= (refresh_counter == 17'h1);
518
                        refresh_counter <= (refresh_counter - 17'h1);
519
                end else if (refresh_instruction[`DDR_RFTIMER])
520
                begin
521
                        refresh_ztimer <= 1'b0;
522
                        refresh_counter <= refresh_instruction[16:0];
523
                end
524
 
525
`ifdef  QUADRUPLE_REFRESH
526
        // REFI4 = 13'd6240
527
        wire    [16:0]   w_ckREFIn, w_ckREFRst, w_wait_for_idle,
528
                        w_precharge_to_refresh;
529
        assign  w_wait_for_idle = 5+CKCAS;
530
        assign  w_precharge_to_refresh = CKRP-1;
531
        assign  w_ckREFIn[(CKRBITS-1): 0] = CKREFI4-5*CKRFC-2-10;
532
        assign  w_ckREFIn[ 16:(CKRBITS)] = 0;
533
        assign  w_ckREFRst = CKRFC-2-12;
534
 
535
        always @(posedge i_clk)
536
        if (refresh_ztimer)
537
                case(refresh_addr)//NEED-RFC, HAVE-TIMER, 
538
                4'h0: refresh_instruction <= { 3'h2, `DDR_NOOP, w_ckREFIn };
539
                // 17'd10 = time to complete write, plus write recovery time
540
                //              minus two (cause we can't count zero or one)
541
                //      = WL+4+tWR-2 = 10
542
                //      = 5+4+3-2 = 10
543
                4'h1: refresh_instruction <= { 3'h6, `DDR_NOOP, w_wait_for_idle };
544
                4'h2: refresh_instruction <= { 3'h4, `DDR_PRECHARGE, 17'h0400 };
545
                4'h3: refresh_instruction <= { 3'h6, `DDR_NOOP, w_precharge_to_refresh };
546
                4'h4: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 };
547
                4'h5: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC };
548
                4'h6: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 };
549
                4'h7: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC };
550
                4'h8: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 };
551
                4'h9: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC };
552
                4'ha: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 };
553
                4'hb: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC };
554
                4'hc: refresh_instruction <= { 3'h2, `DDR_NOOP, w_ckREFRst };
555
                default:
556
                        refresh_instruction <= { 3'h1, `DDR_NOOP, 17'h00 };
557
                endcase
558
`else
559
        wire    [16:0]   w_ckREFI_left, w_ckRFC_nxt, w_wait_for_idle,
560
                        w_precharge_to_refresh;
561
        assign  w_wait_for_idle = 5+CKCAS;
562
        assign  w_precharge_to_refresh = CKRP-2;
563
        assign  w_ckREFI_left[16:0] = { 4'h0, CKREFI }-CKRFC-9
564
                                -w_wait_for_idle
565
                                -w_precharge_to_refresh;
566
        // assign       w_ckREFI_left[16:13] = 0;
567
        assign  w_ckRFC_nxt[8:0] = CKRFC+9'h2;
568
        assign  w_ckRFC_nxt[16:9] = 0;
569
 
570
        always @(posedge i_clk)
571
        if (refresh_ztimer)
572
                case(refresh_addr)//NEED-REFRESH, HAVE-TIMER, BEGIN(start-over)
573
                3'h0: refresh_instruction <= { 3'h2, `DDR_NOOP, w_ckREFI_left };
574
                3'h1: refresh_instruction <= { 3'h6, `DDR_NOOP, w_wait_for_idle };
575
                3'h2: refresh_instruction <= { 3'h4, `DDR_PRECHARGE, 17'h0400 };
576
                3'h3: refresh_instruction <= { 3'h6, `DDR_NOOP, w_precharge_to_refresh };
577
                3'h4: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 };
578
                3'h5: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC_nxt };
579
                default:
580
                        refresh_instruction <= { 3'h1, `DDR_NOOP, 17'h00 };
581
                endcase
582
`endif
583
 
584
        always @(posedge i_clk)
585
                if (reset_override)
586
                        refresh_cmd <= { `DDR_NOOP, w_ckREFI_left };
587
                else if (refresh_ztimer)
588
                        refresh_cmd <= refresh_instruction[20:0];
589
        always @(posedge i_clk)
590
                if (reset_override)
591
                        need_refresh <= 1'b0;
592
                else if (refresh_ztimer)
593
                        need_refresh <= refresh_instruction[`DDR_NEEDREFRESH];
594
 
595
 
596
//
597
//
598
//      Let's track: when will our bus be active?  When will we be reading or
599
//      writing?
600
//
601
//
602
        reg     [BUSNOW:0]       bus_active, bus_read, bus_new, bus_ack;
603
        reg     [1:0]    bus_subaddr     [BUSNOW:0];
604
        initial bus_active = 0;
605
        initial bus_ack = 0;
606
        always @(posedge i_clk)
607
        begin
608
                bus_active[BUSNOW:0] <= { bus_active[(BUSNOW-1):0], 1'b0 };
609
                bus_read[BUSNOW:0]   <= { bus_read[(BUSNOW-1):0], 1'b0 }; // Drive the d-bus?
610
                // Is this a new command?  i.e., the start of a transaction?
611
                bus_new[BUSNOW:0]   <= { bus_new[(BUSNOW-1):0], 1'b0 };
612
                // Will this position on the bus get a wishbone acknowledgement?
613
                bus_ack[BUSNOW:0]   <= { bus_ack[(BUSNOW-1):0], 1'b0 };
614
                //bus_mask[8:0] <= { bus_mask[7:0], 1'b1 }; // Write this value?
615
                bus_subaddr[8]  <= bus_subaddr[7];
616
                bus_subaddr[7]  <= bus_subaddr[6];
617
                bus_subaddr[6]  <= bus_subaddr[5];
618
                bus_subaddr[5]  <= bus_subaddr[4];
619
                bus_subaddr[4]  <= bus_subaddr[3];
620
                bus_subaddr[3]  <= bus_subaddr[2];
621
                bus_subaddr[2]  <= bus_subaddr[1];
622
                bus_subaddr[1]  <= bus_subaddr[0];
623
                bus_subaddr[0]  <= 2'h3;
624
 
625
                bus_ack[5] <= (bus_ack[4])&&
626
                                ((bus_subaddr[5] != bus_subaddr[4])
627
                                        ||(bus_new[4]));
628
                if (w_this_rw_move)
629
                begin
630
                        bus_active[3:0]<= 4'hf; // Once per clock
631
                        bus_subaddr[3] <= 2'h0;
632
                        bus_subaddr[2] <= 2'h1;
633
                        bus_subaddr[1] <= 2'h2;
634
                        bus_new[{ 2'b0, rw_sub }] <= 1'b1;
635
                        bus_ack[3:0] <= 4'h0;
636
                        bus_ack[{ 2'b0, rw_sub }] <= 1'b1;
637
 
638
                        bus_read[3:0] <= (rw_we)? 4'h0:4'hf;
639
                end else if ((s_pending)&&(!pipe_stall))
640
                begin
641
                        if (bus_subaddr[3] == s_sub)
642
                                bus_ack[4] <= 1'b1;
643
                        if (bus_subaddr[2] == s_sub)
644
                                bus_ack[3] <= 1'b1;
645
                        if (bus_subaddr[1] == s_sub)
646
                                bus_ack[2] <= 1'b1;
647
                        if (bus_subaddr[0] == s_sub)
648
                                bus_ack[1] <= 1'b1;
649
                end
650
        end
651
 
652 3 dgisselq
        // Need to set o_wb_dqs high one clock prior to any read.
653 17 dgisselq
        always @(posedge i_clk)
654
                drive_dqs <= (|bus_active[BUSREG:(BUSREG-1)])
655
                        &&(~(|bus_read[BUSREG:(BUSREG-1)]));
656
 
657
//
658
//
659
// Now, let's see, can we issue a read command?
660
//
661
//
662
        reg     pre_valid;
663
        always @(posedge i_clk)
664
                if ((refresh_ztimer)&&(refresh_instruction[`DDR_NEEDREFRESH]))
665
                        pre_valid <= 1'b0;
666
                else if (need_refresh)
667
                        pre_valid <= 1'b0;
668
                else if (w_this_rw_move)
669
                        pre_valid <= 1'b0;
670
                else if (bus_active[0])
671
                        pre_valid <= 1'b0;
672
                else
673
                        pre_valid <= 1'b1;
674
 
675
        assign  w_r_valid = (pre_valid)&&(r_pending)
676
                        &&(bank_status[r_bank][(CKRP-2)])
677
                        &&(bank_address[r_bank]==r_row)
678
                        &&((r_we)||(bank_wr_ckzro[r_bank]));
679
        assign  w_s_valid = (pre_valid)&&(s_pending)
680
                        &&(bank_status[s_bank][(CKRP-2)])
681
                        &&(bank_address[s_bank]==s_row)
682
                        &&((s_we)||(bank_wr_ckzro[s_bank]));
683
        assign  w_s_match = (s_pending)&&(r_pending)&&(r_we == s_we)
684
                                &&(r_row == s_row)&&(r_bank == s_bank)
685
                                &&(r_col == s_col)
686
                                &&(r_sub > s_sub);
687
 
688
        reg     pipe_stall;
689
        always @(posedge i_clk)
690
        begin
691
                r_pending <= (i_wb_stb)&&(~o_wb_stall)
692
                                ||(r_pending)&&(pipe_stall);
693
                if (~pipe_stall)
694
                        s_pending <= r_pending;
695
                if (~pipe_stall)
696
                begin
697
                        pipe_stall <= (r_pending)&&(((!w_r_valid)||(valid_bank))&&(!w_s_match));
698
                        o_wb_stall <= (r_pending)&&(((!w_r_valid)||(valid_bank))&&(!w_s_match));
699
                end else begin // if (pipe_stall)
700
                        pipe_stall <= (s_pending)&&((!w_s_valid)||(valid_bank)||(r_move)||(last_valid_bank));
701
                        o_wb_stall <= (s_pending)&&((!w_s_valid)||(valid_bank)||(r_move)||(last_valid_bank));
702
                end
703
                if (need_refresh)
704
                        o_wb_stall <= 1'b1;
705
 
706
                if (~pipe_stall)
707
                begin
708
                        r_we   <= i_wb_we;
709
                        r_addr <= i_wb_addr;
710
                        r_data <= i_wb_data;
711
                        r_row  <= i_wb_addr[25:12];
712
                        r_bank <= i_wb_addr[11:9];
713
                        r_col  <= { i_wb_addr[8:2], 3'b000 }; // 9:2
714
                        r_sub  <= i_wb_addr[1:0];
715
 
716
                        // pre-emptive work
717
                        r_nxt_row  <= (i_wb_addr[11:9]==3'h7)?i_wb_addr[25:12]+14'h1:i_wb_addr[25:12];
718
                        r_nxt_bank <= i_wb_addr[11:9]+3'h1;
719
                end
720
 
721
                if (~pipe_stall)
722
                begin
723
                        // Moving one down the pipeline
724
                        s_we   <= r_we;
725
                        s_addr <= r_addr;
726
                        s_data <= r_data;
727
                        s_row  <= r_row;
728
                        s_bank <= r_bank;
729
                        s_col  <= r_col;
730
                        s_sub  <= r_sub;
731
 
732
                        // pre-emptive work
733
                        s_nxt_row  <= r_nxt_row;
734
                        s_nxt_bank <= r_nxt_bank;
735
 
736
                        // s_match <= w_s_match;
737
                end
738
        end
739
 
740
        assign  w_need_close_this_bank = (r_pending)
741
                        &&(bank_open[r_bank])
742
                        &&(bank_wr_ckzro[r_bank])
743
                        &&(r_row != bank_address[r_bank])
744
                        ||(pipe_stall)&&(s_pending)&&(bank_open[s_bank])
745
                                &&(s_row != bank_address[s_bank]);
746
        assign  w_need_open_bank = (r_pending)&&(bank_closed[r_bank])
747
                        ||(pipe_stall)&&(s_pending)&&(bank_closed[s_bank]);
748
 
749
        always @(posedge i_clk)
750
        begin
751
                need_close_bank <= (w_need_close_this_bank)
752
                                &&(!need_open_bank)
753
                                &&(!need_close_bank)
754
                                &&(!w_this_closing_bank);
755
 
756
                maybe_close_next_bank <= (s_pending)
757
                        &&(bank_open[s_nxt_bank])
758
                        &&(bank_wr_ckzro[s_nxt_bank])
759
                        &&(s_nxt_row != bank_address[s_nxt_bank])
760
                        &&(!w_this_maybe_close)&&(!last_maybe_close);
761
 
762
                close_bank_cmd <= { `DDR_PRECHARGE, r_bank, r_row[13:11], 1'b0, r_row[9:0] };
763
                maybe_close_cmd <= { `DDR_PRECHARGE, r_nxt_bank, r_nxt_row[13:11], 1'b0, r_nxt_row[9:0] };
764
 
765
 
766
                need_open_bank <= (w_need_open_bank)
767
                                &&(!w_this_opening_bank);
768
                last_open_bank <= (w_this_opening_bank);
769
 
770
                maybe_open_next_bank <= (s_pending)
771
                        &&(!need_close_bank)
772
                        &&(!need_open_bank)
773
                        &&(bank_closed[s_nxt_bank])
774
                        &&(!w_this_maybe_open); // &&(!last_maybe_open);
775
 
776
                activate_bank_cmd<= { `DDR_ACTIVATE,  r_bank,     r_row[13:0] };
777
                maybe_open_cmd <= { `DDR_ACTIVATE,r_nxt_bank, r_nxt_row[13:0] };
778
 
779
 
780
 
781
                valid_bank <= ((w_r_valid)||((pipe_stall)&&(w_s_valid)))
782
                                &&(!last_valid_bank)&&(!r_move)
783
                                &&(!w_this_rw_move);
784
                last_valid_bank <= r_move;
785
 
786
                if ((s_pending)&&(pipe_stall))
787
                        rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (s_we)?`DDR_WRITE:`DDR_READ;
788
                else if (r_pending)
789
                        rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (r_we)?`DDR_WRITE:`DDR_READ;
790
                else
791
                        rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= `DDR_NOOP;
792
                if ((s_pending)&&(pipe_stall))
793
                        rw_cmd[`DDR_WEBIT-1:0] <= { s_bank, 3'h0, 1'b0, s_col };
794
                else
795
                        rw_cmd[`DDR_WEBIT-1:0] <= { r_bank, 3'h0, 1'b0, r_col };
796
                if ((s_pending)&&(pipe_stall))
797
                        rw_sub <= 2'b11 - s_sub;
798
                else
799
                        rw_sub <= 2'b11 - r_sub;
800
                if ((s_pending)&&(pipe_stall))
801
                        rw_we <= s_we;
802
                else
803
                        rw_we <= r_we;
804
 
805
        end
806
 
807
//
808
//
809
// Okay, let's look at the last assignment in our chain.  It should look
810
// something like:
811
        always @(posedge i_clk)
812
                if (i_reset)
813
                        o_ddr_reset_n <= 1'b0;
814
                else if (reset_ztimer)
815
                        o_ddr_reset_n <= reset_instruction[`DDR_RSTBIT];
816
        always @(posedge i_clk)
817
                if (i_reset)
818
                        o_ddr_cke <= 1'b0;
819
                else if (reset_ztimer)
820
                        o_ddr_cke <= reset_instruction[`DDR_CKEBIT];
821
 
822
        always @(posedge i_clk)
823
                if (i_reset)
824
                        maintenance_override <= 1'b1;
825
                else
826
                        maintenance_override <= (reset_override)||(need_refresh);
827
 
828
        initial maintenance_cmd = { `DDR_NOOP, 17'h00 };
829
        always @(posedge i_clk)
830
                if (i_reset)
831
                        maintenance_cmd <= { `DDR_NOOP, 17'h00 };
832
                else
833
                        maintenance_cmd <= (reset_override)?reset_cmd:refresh_cmd;
834
 
835
        assign  w_this_closing_bank = (!maintenance_override)
836
                                &&(need_close_bank);
837
        assign  w_this_opening_bank = (!maintenance_override)
838
                                &&(!need_close_bank)&&(need_open_bank);
839
        assign  w_this_rw_move = (!maintenance_override)
840
                                &&(!need_close_bank)&&(!need_open_bank)
841
                                &&(valid_bank);
842
        assign  w_this_maybe_close = (!maintenance_override)
843
                                &&(!need_close_bank)&&(!need_open_bank)
844
                                &&(!valid_bank)
845
                                &&(maybe_close_next_bank);
846
        assign  w_this_maybe_open = (!maintenance_override)
847
                                &&(!need_close_bank)&&(!need_open_bank)
848
                                &&(!valid_bank)
849
                                &&(!maybe_close_next_bank)
850
                                &&(maybe_open_next_bank);
851
        always @(posedge i_clk)
852
        begin
853
                last_opening_bank <= 1'b0;
854
                last_closing_bank <= 1'b0;
855
                last_maybe_open   <= 1'b0;
856
                last_maybe_close  <= 1'b0;
857
                r_move <= 1'b0;
858
                if (maintenance_override) // Command from either reset or
859
                        cmd <= maintenance_cmd; // refresh logic
860
                else if (need_close_bank)
861
                begin
862
                        cmd <= close_bank_cmd;
863
                        last_closing_bank <= 1'b1;
864
                end else if (need_open_bank)
865
                begin
866
                        cmd <= activate_bank_cmd;
867
                        last_opening_bank <= 1'b1;
868
                end else if (valid_bank)
869
                begin
870
                        cmd <= rw_cmd;
871
                        r_move <= 1'b1;
872
                end else if (maybe_close_next_bank)
873
                begin
874
                        cmd <= maybe_close_cmd;
875
                        last_maybe_close <= 1'b1;
876
                end else if (maybe_open_next_bank)
877
                begin
878
                        cmd <= maybe_open_cmd;
879
                        last_maybe_open <= 1'b1;
880
                end else
881
                        cmd <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] };
882
        end
883
 
884
`define LGFIFOLN        4
885
`define FIFOLEN         16
886
        reg     [(`LGFIFOLN-1):0]        bus_fifo_head, bus_fifo_tail;
887
        reg     [31:0]   bus_fifo_data   [0:(`FIFOLEN-1)];
888
        reg     [1:0]    bus_fifo_sub    [0:(`FIFOLEN-1)];
889
        reg             bus_fifo_new    [0:(`FIFOLEN-1)];
890
        reg             pre_ack;
891
 
892
        // The bus R/W FIFO
893
        wire    w_bus_fifo_read_next_transaction;
894
        assign  w_bus_fifo_read_next_transaction = (bus_ack[BUSREG]);
895
        always @(posedge i_clk)
896
        begin
897
                pre_ack <= 1'b0;
898
                o_ddr_dm <= 1'b0;
899
                if (reset_override)
900
                begin
901
                        bus_fifo_head <= {(`LGFIFOLN){1'b0}};
902
                        bus_fifo_tail <= {(`LGFIFOLN){1'b0}};
903
                        o_ddr_dm <= 1'b0;
904
                end else begin
905
                        if ((s_pending)&&(!pipe_stall))
906
                                bus_fifo_head <= bus_fifo_head + 1'b1;
907
 
908
                        o_ddr_dm <= (bus_active[BUSREG])&&(!bus_read[BUSREG]);
909
                        if (w_bus_fifo_read_next_transaction)
910
                        begin
911
                                bus_fifo_tail <= bus_fifo_tail + 1'b1;
912
                                pre_ack <= 1'b1;
913
                                o_ddr_dm <= 1'b0;
914
                        end
915
                end
916
                bus_fifo_data[bus_fifo_head] <= s_data;
917
                bus_fifo_sub[bus_fifo_head] <= s_sub;
918
                bus_fifo_new[bus_fifo_head] <= w_this_rw_move;
919
 
920
                //
921
                // if ((s_pending)&&(!pipe_stall)&&(!nxt_valid))
922
                //   nxt_fifo_data <= s_data;
923
                //   nxt_fifo_sub <= s_sub;
924
                //   nxt_fifo_new <= w_this_rw_move;
925
                //   nxt_valid <= 1'b1;
926
                //   bus_fifo_head <= bus_fifo_head+1;
927
                //   bus_fifo_tail <= bus_fifo_tail+1;
928
                // else if (w_bus_fifo_read_next_transaction)
929
                //   nxt_fifo_data <= bus_fifo_data[bus_fifo_tail]
930
                //   nxt_fifo_sub <= bus_fifo_data[bus_fifo_tail]
931
                //   nxt_fifo_new <= bus_fifo_data[bus_fifo_tail]
932
                //   nxt_valid <= (bus_fifo_tail+1 == bus_fifo_head);
933
                // 
934
                // if ((!valid)||(w_bus_fifo_next_read_transaction))
935
                //      nxt_ <= bus_fifo_x
936
        end
937
 
938
 
939
        assign  o_ddr_cs_n  = cmd[`DDR_CSBIT];
940
        assign  o_ddr_ras_n = cmd[`DDR_RASBIT];
941
        assign  o_ddr_cas_n = cmd[`DDR_CASBIT];
942
        assign  o_ddr_we_n  = cmd[`DDR_WEBIT];
943
        assign  o_ddr_dqs   = drive_dqs;
944
        assign  o_ddr_addr  = cmd[(`DDR_ADDR_BITS-1):0];
945
        assign  o_ddr_ba    = cmd[(`DDR_BABITS+`DDR_ADDR_BITS-1):`DDR_ADDR_BITS];
946
        always @(posedge i_clk)
947
                o_ddr_data  <= bus_fifo_data[bus_fifo_tail];
948
        assign  w_precharge_all = (cmd[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE)
949
                                &&(o_ddr_addr[10]); // 5 bits
950
 
951
        assign  o_ddr_bus_oe = drive_dqs; // ~bus_read[BUSNOW];
952
 
953
        // ODT must be in high impedence while reset_n=0, then it can be set
954
        // to low or high.  As per spec, ODT = 0 during reads
955
        always @(posedge i_clk)
956
                o_ddr_odt <= (bus_active[BUSREG-3])&&(!bus_read[BUSREG-3])
957
                        ||(bus_active[BUSREG-4])&&(!bus_read[BUSREG-4])
958
                        ||((w_this_rw_move)&&(rw_we)&&(CKCAS<4))
959
                        ||(CKCAS>3)&&(bus_active[BUSREG-5])&&(!bus_read[BUSREG-5]);
960
 
961
        always @(posedge i_clk)
962
                o_wb_ack <= pre_ack;
963
        always @(posedge i_clk)
964
                o_wb_data <= i_ddr_data;
965
 
966 3 dgisselq
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.