1 |
25 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: wbm2axisp.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Pipelined Wishbone to AXI converter
|
6 |
|
|
//
|
7 |
|
|
// Purpose: The B4 Wishbone SPEC allows transactions at a speed as fast as
|
8 |
|
|
// one per clock. The AXI bus allows transactions at a speed of
|
9 |
|
|
// one read and one write transaction per clock. These capabilities work
|
10 |
|
|
// by allowing requests to take place prior to responses, such that the
|
11 |
|
|
// requests might go out at once per clock and take several clocks, and
|
12 |
|
|
// the responses may start coming back several clocks later. In other
|
13 |
|
|
// words, both protocols allow multiple transactions to be "in flight" at
|
14 |
|
|
// the same time. Current wishbone to AXI converters, however, handle only
|
15 |
|
|
// one transaction at a time: initiating the transaction, and then waiting
|
16 |
|
|
// for the transaction to complete before initiating the next.
|
17 |
|
|
//
|
18 |
|
|
// The purpose of this core is to maintain the speed of both busses, while
|
19 |
|
|
// transiting from the Wishbone (as master) to the AXI bus (as slave) and
|
20 |
|
|
// back again.
|
21 |
|
|
//
|
22 |
|
|
// Since the AXI bus allows transactions to be reordered, whereas the
|
23 |
|
|
// wishbone does not, this core can be configured to reorder return
|
24 |
|
|
// transactions as well.
|
25 |
|
|
//
|
26 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
27 |
|
|
// Gisselquist Technology, LLC
|
28 |
|
|
//
|
29 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
30 |
|
|
//
|
31 |
|
|
// Copyright (C) 2016, Gisselquist Technology, LLC
|
32 |
|
|
//
|
33 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
34 |
|
|
// modify it under the terms of the GNU General Public License as published
|
35 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
36 |
|
|
// your option) any later version.
|
37 |
|
|
//
|
38 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
39 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
40 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
41 |
|
|
// for more details.
|
42 |
|
|
//
|
43 |
|
|
// You should have received a copy of the GNU General Public License along
|
44 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
45 |
|
|
// target there if the PDF file isn't present.) If not, see
|
46 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
47 |
|
|
//
|
48 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
49 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
50 |
|
|
//
|
51 |
|
|
//
|
52 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
53 |
|
|
//
|
54 |
|
|
//
|
55 |
|
|
module wbm2axisp #(
|
56 |
|
|
parameter C_AXI_ID_WIDTH = 6, // The AXI id width used for R&W
|
57 |
|
|
// This is an int between 1-16
|
58 |
|
|
parameter C_AXI_DATA_WIDTH = 128,// Width of the AXI R&W data
|
59 |
|
|
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width
|
60 |
|
|
parameter DW = 32, // Wishbone data width
|
61 |
|
|
parameter AW = 26, // Wishbone address width
|
62 |
|
|
parameter STRICT_ORDER = 0 // Reorder, or not? 0 -> Reorder
|
63 |
|
|
) (
|
64 |
|
|
input i_clk, // System clock
|
65 |
|
|
// input i_reset,// Wishbone reset signal--unused
|
66 |
|
|
|
67 |
|
|
// AXI write address channel signals
|
68 |
|
|
input i_axi_awready, // Slave is ready to accept
|
69 |
|
|
output reg [C_AXI_ID_WIDTH-1:0] o_axi_awid, // Write ID
|
70 |
|
|
output reg [C_AXI_ADDR_WIDTH-1:0] o_axi_awaddr, // Write address
|
71 |
|
|
output wire [7:0] o_axi_awlen, // Write Burst Length
|
72 |
|
|
output wire [2:0] o_axi_awsize, // Write Burst size
|
73 |
|
|
output wire [1:0] o_axi_awburst, // Write Burst type
|
74 |
|
|
output wire [0:0] o_axi_awlock, // Write lock type
|
75 |
|
|
output wire [3:0] o_axi_awcache, // Write Cache type
|
76 |
|
|
output wire [2:0] o_axi_awprot, // Write Protection type
|
77 |
|
|
output wire [3:0] o_axi_awqos, // Write Quality of Svc
|
78 |
|
|
output reg o_axi_awvalid, // Write address valid
|
79 |
|
|
|
80 |
|
|
// AXI write data channel signals
|
81 |
|
|
input i_axi_wready, // Write data ready
|
82 |
|
|
output reg [C_AXI_DATA_WIDTH-1:0] o_axi_wdata, // Write data
|
83 |
|
|
output reg [C_AXI_DATA_WIDTH/8-1:0] o_axi_wstrb, // Write strobes
|
84 |
|
|
output wire o_axi_wlast, // Last write transaction
|
85 |
|
|
output reg o_axi_wvalid, // Write valid
|
86 |
|
|
|
87 |
|
|
// AXI write response channel signals
|
88 |
|
|
input [C_AXI_ID_WIDTH-1:0] i_axi_bid, // Response ID
|
89 |
|
|
input [1:0] i_axi_bresp, // Write response
|
90 |
|
|
input i_axi_bvalid, // Write reponse valid
|
91 |
|
|
output wire o_axi_bready, // Response ready
|
92 |
|
|
|
93 |
|
|
// AXI read address channel signals
|
94 |
|
|
input i_axi_arready, // Read address ready
|
95 |
|
|
output wire [C_AXI_ID_WIDTH-1:0] o_axi_arid, // Read ID
|
96 |
|
|
output wire [C_AXI_ADDR_WIDTH-1:0] o_axi_araddr, // Read address
|
97 |
|
|
output wire [7:0] o_axi_arlen, // Read Burst Length
|
98 |
|
|
output wire [2:0] o_axi_arsize, // Read Burst size
|
99 |
|
|
output wire [1:0] o_axi_arburst, // Read Burst type
|
100 |
|
|
output wire [0:0] o_axi_arlock, // Read lock type
|
101 |
|
|
output wire [3:0] o_axi_arcache, // Read Cache type
|
102 |
|
|
output wire [2:0] o_axi_arprot, // Read Protection type
|
103 |
|
|
output wire [3:0] o_axi_arqos, // Read Protection type
|
104 |
|
|
output reg o_axi_arvalid, // Read address valid
|
105 |
|
|
|
106 |
|
|
// AXI read data channel signals
|
107 |
|
|
input [C_AXI_ID_WIDTH-1:0] i_axi_rid, // Response ID
|
108 |
|
|
input [1:0] i_axi_rresp, // Read response
|
109 |
|
|
input i_axi_rvalid, // Read reponse valid
|
110 |
|
|
input [C_AXI_DATA_WIDTH-1:0] i_axi_rdata, // Read data
|
111 |
|
|
input i_axi_rlast, // Read last
|
112 |
|
|
output wire o_axi_rready, // Read Response ready
|
113 |
|
|
|
114 |
|
|
// We'll share the clock and the reset
|
115 |
|
|
input i_wb_cyc,
|
116 |
|
|
input i_wb_stb,
|
117 |
|
|
input i_wb_we,
|
118 |
|
|
input [(AW-1):0] i_wb_addr,
|
119 |
|
|
input [(DW-1):0] i_wb_data,
|
120 |
|
|
input [(DW/8-1):0] i_wb_sel,
|
121 |
|
|
output reg o_wb_ack,
|
122 |
|
|
output wire o_wb_stall,
|
123 |
|
|
output reg [(DW-1):0] o_wb_data,
|
124 |
|
|
output reg o_wb_err,
|
125 |
|
|
|
126 |
|
|
output wire [31:0] o_dbg
|
127 |
|
|
);
|
128 |
|
|
|
129 |
|
|
//*****************************************************************************
|
130 |
|
|
// Parameter declarations
|
131 |
|
|
//*****************************************************************************
|
132 |
|
|
|
133 |
|
|
localparam CTL_SIG_WIDTH = 3; // Control signal width
|
134 |
|
|
localparam RD_STS_WIDTH = 16; // Read status signal width
|
135 |
|
|
localparam WR_STS_WIDTH = 16; // Write status signal width
|
136 |
|
|
|
137 |
|
|
//*****************************************************************************
|
138 |
|
|
// Internal register and wire declarations
|
139 |
|
|
//*****************************************************************************
|
140 |
|
|
|
141 |
|
|
// Things we're not changing ...
|
142 |
|
|
assign o_axi_awlen = 8'h0; // Burst length is one
|
143 |
|
|
assign o_axi_awsize = 3'b101; // maximum bytes per burst is 32
|
144 |
|
|
assign o_axi_awburst = 2'b01; // Incrementing address (ignored)
|
145 |
|
|
assign o_axi_arburst = 2'b01; // Incrementing address (ignored)
|
146 |
|
|
assign o_axi_awlock = 1'b0; // Normal signaling
|
147 |
|
|
assign o_axi_arlock = 1'b0; // Normal signaling
|
148 |
|
|
assign o_axi_awcache = 4'h2; // Normal: no cache, no buffer
|
149 |
|
|
assign o_axi_arcache = 4'h2; // Normal: no cache, no buffer
|
150 |
|
|
assign o_axi_awprot = 3'b010; // Unpriviledged, unsecure, data access
|
151 |
|
|
assign o_axi_arprot = 3'b010; // Unpriviledged, unsecure, data access
|
152 |
|
|
assign o_axi_awqos = 4'h0; // Lowest quality of service (unused)
|
153 |
|
|
assign o_axi_arqos = 4'h0; // Lowest quality of service (unused)
|
154 |
|
|
|
155 |
|
|
// Command logic
|
156 |
|
|
// Write address logic
|
157 |
|
|
|
158 |
|
|
always @(posedge i_clk)
|
159 |
|
|
o_axi_awvalid <= (!o_wb_stall)&&(i_wb_stb)&&(i_wb_we)
|
160 |
|
|
||(o_wb_stall)&&(o_axi_awvalid)&&(!i_axi_awready);
|
161 |
|
|
|
162 |
|
|
generate
|
163 |
|
|
if (DW == 32)
|
164 |
|
|
begin
|
165 |
|
|
always @(posedge i_clk)
|
166 |
|
|
if (!o_wb_stall) // 26 bit address becomes 28 bit ...
|
167 |
|
|
o_axi_awaddr <= { i_wb_addr[AW-1:2], 4'b00 };
|
168 |
|
|
end else if (DW == 128)
|
169 |
|
|
begin
|
170 |
|
|
always @(posedge i_clk)
|
171 |
|
|
if (!o_wb_stall) // 28 bit address ...
|
172 |
|
|
o_axi_awaddr <= { i_wb_addr[AW-1:0], 4'b00 };
|
173 |
|
|
end endgenerate
|
174 |
|
|
|
175 |
|
|
reg [5:0] transaction_id;
|
176 |
|
|
always @(posedge i_clk)
|
177 |
|
|
if (!i_wb_cyc)
|
178 |
|
|
transaction_id <= 6'h00;
|
179 |
|
|
else if ((i_wb_stb)&&(~o_wb_stall))
|
180 |
|
|
transaction_id <= transaction_id + 6'h01;
|
181 |
|
|
always @(posedge i_clk)
|
182 |
|
|
if ((i_wb_stb)&&(~o_wb_stall))
|
183 |
|
|
o_axi_awid <= transaction_id;
|
184 |
|
|
|
185 |
|
|
// Read address logic
|
186 |
|
|
assign o_axi_arid = o_axi_awid;
|
187 |
|
|
assign o_axi_araddr = o_axi_awaddr;
|
188 |
|
|
assign o_axi_arlen = o_axi_awlen;
|
189 |
|
|
assign o_axi_arsize = 3'b101; // maximum bytes per burst is 32
|
190 |
|
|
always @(posedge i_clk)
|
191 |
|
|
o_axi_arvalid <= (!o_wb_stall)&&(i_wb_stb)&&(!i_wb_we)
|
192 |
|
|
||(o_wb_stall)&&(o_axi_arvalid)&&(!i_axi_arready);
|
193 |
|
|
|
194 |
|
|
|
195 |
|
|
// Write data logic
|
196 |
|
|
generate
|
197 |
|
|
if (DW == 32)
|
198 |
|
|
begin
|
199 |
|
|
always @(posedge i_clk)
|
200 |
|
|
if (!o_wb_stall)
|
201 |
|
|
o_axi_wdata <= { i_wb_data, i_wb_data, i_wb_data, i_wb_data };
|
202 |
|
|
always @(posedge i_clk)
|
203 |
|
|
if (!o_wb_stall)
|
204 |
|
|
case(i_wb_addr[1:0])
|
205 |
|
|
2'b00:o_axi_wstrb<={ 4'h0, 4'h0, 4'h0,i_wb_sel};
|
206 |
|
|
2'b01:o_axi_wstrb<={ 4'h0, 4'h0,i_wb_sel, 4'h0};
|
207 |
|
|
2'b10:o_axi_wstrb<={ 4'h0,i_wb_sel, 4'h0, 4'h0};
|
208 |
|
|
2'b11:o_axi_wstrb<={i_wb_sel, 4'h0, 4'h0, 4'h0};
|
209 |
|
|
endcase
|
210 |
|
|
end else if (DW == 128)
|
211 |
|
|
begin
|
212 |
|
|
always @(posedge i_clk)
|
213 |
|
|
if (!o_wb_stall)
|
214 |
|
|
o_axi_wdata <= i_wb_data;
|
215 |
|
|
always @(posedge i_clk)
|
216 |
|
|
if (!o_wb_stall)
|
217 |
|
|
o_axi_wstrb <= i_wb_sel;
|
218 |
|
|
end endgenerate
|
219 |
|
|
|
220 |
|
|
assign o_axi_wlast = 1'b1;
|
221 |
|
|
always @(posedge i_clk)
|
222 |
|
|
o_axi_wvalid <= ((!o_wb_stall)&&(i_wb_stb)&&(i_wb_we))
|
223 |
|
|
||(o_wb_stall)&&(o_axi_wvalid)&&(!i_axi_wready);
|
224 |
|
|
|
225 |
|
|
// Read data channel / response logic
|
226 |
|
|
assign o_axi_rready = 1'b1;
|
227 |
|
|
assign o_axi_bready = 1'b1;
|
228 |
|
|
|
229 |
|
|
wire w_fifo_full;
|
230 |
|
|
generate
|
231 |
|
|
if (STRICT_ORDER == 0)
|
232 |
|
|
begin
|
233 |
|
|
// Reorder FIFO
|
234 |
|
|
//
|
235 |
|
|
localparam LGFIFOLN = C_AXI_ID_WIDTH;
|
236 |
|
|
localparam FIFOLN = (1<<LGFIFOLN);
|
237 |
|
|
// FIFO reorder buffer
|
238 |
|
|
reg [(LGFIFOLN-1):0] fifo_tail;
|
239 |
|
|
reg [(C_AXI_DATA_WIDTH-1):0] reorder_fifo_data [0:(FIFOLN-1)];
|
240 |
|
|
reg [(FIFOLN-1):0] reorder_fifo_valid;
|
241 |
|
|
reg [(FIFOLN-1):0] reorder_fifo_err;
|
242 |
|
|
|
243 |
|
|
initial reorder_fifo_valid = 0;
|
244 |
|
|
initial reorder_fifo_err = 0;
|
245 |
|
|
|
246 |
|
|
if (DW == 32)
|
247 |
|
|
begin
|
248 |
|
|
reg [1:0] reorder_fifo_addr [0:(FIFOLN-1)];
|
249 |
|
|
|
250 |
|
|
|
251 |
|
|
reg [1:0] low_addr;
|
252 |
|
|
always @(posedge i_clk)
|
253 |
|
|
if ((i_wb_stb)&&(!o_wb_stall))
|
254 |
|
|
low_addr <= i_wb_addr[1:0];
|
255 |
|
|
always @(posedge i_clk)
|
256 |
|
|
if ((o_axi_arvalid)&&(i_axi_arready))
|
257 |
|
|
reorder_fifo_addr[o_axi_arid] <= low_addr;
|
258 |
|
|
|
259 |
|
|
always @(posedge i_clk)
|
260 |
|
|
case(reorder_fifo_addr[fifo_tail][1:0])
|
261 |
|
|
2'b00: o_wb_data <=reorder_fifo_data[fifo_tail][ 31: 0];
|
262 |
|
|
2'b01: o_wb_data <=reorder_fifo_data[fifo_tail][ 63:32];
|
263 |
|
|
2'b10: o_wb_data <=reorder_fifo_data[fifo_tail][ 95:64];
|
264 |
|
|
2'b11: o_wb_data <=reorder_fifo_data[fifo_tail][127:96];
|
265 |
|
|
endcase
|
266 |
|
|
|
267 |
|
|
end else if (DW == 128)
|
268 |
|
|
begin
|
269 |
|
|
always @(posedge i_clk)
|
270 |
|
|
o_wb_data <= reorder_fifo_data[fifo_tail];
|
271 |
|
|
end
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
wire [(LGFIFOLN-1):0] fifo_head;
|
275 |
|
|
assign fifo_head = transaction_id;
|
276 |
|
|
|
277 |
|
|
// Let's do some math to figure out where the FIFO head will
|
278 |
|
|
// point to next, but let's also insist that it be LGFIFOLN
|
279 |
|
|
// bits in size as well. This'll be part of the fifo_full
|
280 |
|
|
// calculation below.
|
281 |
|
|
wire [(LGFIFOLN-1):0] n_fifo_head, nn_fifo_head;
|
282 |
|
|
assign n_fifo_head = fifo_head+1'b1;
|
283 |
|
|
assign nn_fifo_head = { fifo_head[(LGFIFOLN-1):1]+1'b1, fifo_head[0] };
|
284 |
|
|
|
285 |
|
|
always @(posedge i_clk)
|
286 |
|
|
begin
|
287 |
|
|
if ((i_axi_rvalid)&&(o_axi_rready))
|
288 |
|
|
reorder_fifo_data[i_axi_rid]<= i_axi_rdata;
|
289 |
|
|
if ((i_axi_rvalid)&&(o_axi_rready))
|
290 |
|
|
begin
|
291 |
|
|
reorder_fifo_valid[i_axi_rid] <= 1'b1;
|
292 |
|
|
reorder_fifo_err[i_axi_rid] <= i_axi_rresp[1];
|
293 |
|
|
end
|
294 |
|
|
if ((i_axi_bvalid)&&(o_axi_bready))
|
295 |
|
|
begin
|
296 |
|
|
reorder_fifo_valid[i_axi_bid] <= 1'b1;
|
297 |
|
|
reorder_fifo_err[i_axi_bid] <= i_axi_bresp[1];
|
298 |
|
|
end
|
299 |
|
|
|
300 |
|
|
if (reorder_fifo_valid[fifo_tail])
|
301 |
|
|
begin
|
302 |
|
|
o_wb_ack <= 1'b1;
|
303 |
|
|
o_wb_err <= reorder_fifo_err[fifo_tail];
|
304 |
|
|
fifo_tail <= fifo_tail + 6'h1;
|
305 |
|
|
reorder_fifo_valid[fifo_tail] <= 1'b0;
|
306 |
|
|
reorder_fifo_err[fifo_tail] <= 1'b0;
|
307 |
|
|
end else begin
|
308 |
|
|
o_wb_ack <= 1'b0;
|
309 |
|
|
o_wb_err <= 1'b0;
|
310 |
|
|
end
|
311 |
|
|
|
312 |
|
|
if (!i_wb_cyc)
|
313 |
|
|
begin
|
314 |
|
|
reorder_fifo_valid <= {(FIFOLN){1'b0}};
|
315 |
|
|
reorder_fifo_err <= {(FIFOLN){1'b0}};
|
316 |
|
|
fifo_tail <= 6'h0;
|
317 |
|
|
o_wb_err <= 1'b0;
|
318 |
|
|
o_wb_ack <= 1'b0;
|
319 |
|
|
end
|
320 |
|
|
end
|
321 |
|
|
|
322 |
32 |
dgisselq |
//
|
323 |
|
|
// The debug wires are set up for a 6-bit ID. In hind sight,
|
324 |
|
|
// I only ever needed 5-bit ID's. Hence, let's expand those
|
325 |
|
|
// five bit ID's for 6-bits so we can still fit nicely into
|
326 |
|
|
// our 32-bit words.
|
327 |
|
|
//
|
328 |
|
|
wire [5:0] six_head, six_tail, six_rid, six_bid;
|
329 |
|
|
assign six_head = {{(6-LGFIFOLN){1'b0}}, fifo_head };
|
330 |
|
|
assign six_tail = {{(6-LGFIFOLN){1'b0}}, fifo_tail };
|
331 |
|
|
assign six_rid = {{(6-LGFIFOLN){1'b0}}, i_axi_rid };
|
332 |
|
|
assign six_bid = {{(6-LGFIFOLN){1'b0}}, i_axi_bid };
|
333 |
|
|
|
334 |
25 |
dgisselq |
assign o_dbg = {
|
335 |
|
|
i_wb_stb, o_wb_stall, o_wb_ack, o_wb_err,
|
336 |
32 |
dgisselq |
six_head, six_tail, // 12 bits
|
337 |
|
|
{ ((i_axi_rvalid)&&(o_axi_rready)) ? six_rid
|
338 |
|
|
: ((i_axi_bvalid)&&(o_axi_bready)) ? six_bid
|
339 |
25 |
dgisselq |
: 6'hf }, // 6 bits
|
340 |
|
|
o_axi_arvalid, i_axi_arready,
|
341 |
|
|
o_axi_awvalid, i_axi_awready,
|
342 |
|
|
o_axi_wvalid, i_axi_wready, // 28 bits so far ...
|
343 |
|
|
i_axi_rvalid, i_axi_bvalid, 2'b00
|
344 |
|
|
};
|
345 |
|
|
|
346 |
|
|
|
347 |
|
|
reg r_fifo_full;
|
348 |
|
|
always @(posedge i_clk)
|
349 |
|
|
begin
|
350 |
|
|
if (!i_wb_cyc)
|
351 |
|
|
r_fifo_full <= 1'b0;
|
352 |
|
|
else if ((i_wb_stb)&&(~o_wb_stall)
|
353 |
|
|
&&(reorder_fifo_valid[fifo_tail]))
|
354 |
|
|
r_fifo_full <= (fifo_tail==n_fifo_head);
|
355 |
|
|
else if ((i_wb_stb)&&(~o_wb_stall))
|
356 |
|
|
r_fifo_full <= (fifo_tail==nn_fifo_head);
|
357 |
|
|
else if (reorder_fifo_valid[fifo_tail])
|
358 |
|
|
r_fifo_full <= 1'b0;
|
359 |
|
|
else
|
360 |
|
|
r_fifo_full <= (fifo_tail==n_fifo_head);
|
361 |
|
|
end
|
362 |
|
|
assign w_fifo_full = r_fifo_full;
|
363 |
|
|
end else begin
|
364 |
|
|
//
|
365 |
|
|
// Strict ordering, but can only read every fourth addresses
|
366 |
|
|
//
|
367 |
|
|
assign w_fifo_full = 1'b0;
|
368 |
|
|
always @(posedge i_clk)
|
369 |
|
|
o_wb_data <= i_axi_rdata[31:0];
|
370 |
|
|
always @(posedge i_clk)
|
371 |
|
|
o_wb_ack <= (i_wb_cyc)&&(
|
372 |
|
|
((i_axi_rvalid)&&(o_axi_rready))
|
373 |
|
|
||((i_axi_bvalid)&&(o_axi_bready)));
|
374 |
|
|
always @(posedge i_clk)
|
375 |
|
|
o_wb_err <= (i_wb_cyc)&&((o_wb_err)
|
376 |
|
|
||((i_axi_rvalid)&&(i_axi_rresp[1]))
|
377 |
|
|
||((i_axi_bvalid)&&(i_axi_bresp[1])));
|
378 |
|
|
|
379 |
|
|
assign o_dbg = {
|
380 |
|
|
i_wb_stb, o_wb_stall, o_wb_ack, o_wb_err,
|
381 |
|
|
12'h00, // 12 bits
|
382 |
|
|
{ ((i_axi_rvalid)&&(o_axi_rready)) ? i_axi_rid
|
383 |
|
|
: ((i_axi_bvalid)&&(o_axi_bready)) ? i_axi_bid
|
384 |
|
|
: 6'hf }, // 6 bits
|
385 |
|
|
o_axi_arvalid, i_axi_arready,
|
386 |
|
|
o_axi_awvalid, i_axi_awready,
|
387 |
|
|
o_axi_wvalid, i_axi_wready, // 28 bits so far ...
|
388 |
|
|
i_axi_rvalid, i_axi_bvalid, 2'b00
|
389 |
|
|
};
|
390 |
|
|
end endgenerate
|
391 |
|
|
|
392 |
|
|
|
393 |
|
|
// Now, the difficult signal ... the stall signal
|
394 |
|
|
// Let's build for a single cycle input ... and only stall if something
|
395 |
|
|
// outgoing is valid and nothing is ready.
|
396 |
|
|
assign o_wb_stall = (i_wb_cyc)&&(
|
397 |
|
|
(w_fifo_full)
|
398 |
|
|
||((o_axi_awvalid)&&(!i_axi_awready))
|
399 |
|
|
||((o_axi_wvalid )&&(!i_axi_wready ))
|
400 |
|
|
||((o_axi_arvalid)&&(!i_axi_arready)));
|
401 |
|
|
endmodule
|
402 |
|
|
|