OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [wbscope.v] - Blame information for rev 53

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 30 dgisselq
////////////////////////////////////////////////////////////////////////////////
2 3 dgisselq
//
3
// Filename:    wbscope.v
4
//
5 50 dgisselq
// Project:     WBScope, a wishbone hosted scope
6 3 dgisselq
//
7
// Purpose:     This is a generic/library routine for providing a bus accessed
8 50 dgisselq
//      'scope' or (perhaps more appropriately) a bus accessed logic analyzer.
9
//      The general operation is such that this 'scope' can record and report
10
//      on any 32 bit value transiting through the FPGA.  Once started and
11
//      reset, the scope records a copy of the input data every time the clock
12
//      ticks with the circuit enabled.  That is, it records these values up
13
//      until the trigger.  Once the trigger goes high, the scope will record
14
//      for bw_holdoff more counts before stopping.  Values may then be read
15
//      from the buffer, oldest to most recent.  After reading, the scope may
16
//      then be reset for another run.
17 3 dgisselq
//
18 50 dgisselq
//      In general, therefore, operation happens in this fashion:
19 3 dgisselq
//              1. A reset is issued.
20
//              2. Recording starts, in a circular buffer, and continues until
21
//              3. The trigger line is asserted.
22
//                      The scope registers the asserted trigger by setting
23
//                      the 'o_triggered' output flag.
24
//              4. A counter then ticks until the last value is written
25
//                      The scope registers that it has stopped recording by
26
//                      setting the 'o_stopped' output flag.
27
//              5. The scope recording is then paused until the next reset.
28
//              6. While stopped, the CPU can read the data from the scope
29
//              7. -- oldest to most recent
30
//              8. -- one value per i_rd&i_clk
31
//              9. Writes to the data register reset the address to the
32
//                      beginning of the buffer
33
//
34
//      Although the data width DW is parameterized, it is not very changable,
35
//      since the width is tied to the width of the data bus, as is the 
36
//      control word.  Therefore changing the data width would require changing
37
//      the interface.  It's doable, but it would be a change to the interface.
38
//
39
//      The SYNCHRONOUS parameter turns on and off meta-stability
40
//      synchronization.  Ideally a wishbone scope able to handle one or two
41
//      clocks would have a changing number of ports as this SYNCHRONOUS
42
//      parameter changed.  Other than running another script to modify
43
//      this, I don't know how to do that so ... we'll just leave it running
44
//      off of two clocks or not.
45
//
46
//
47
//      Internal to this routine, registers and wires are named with one of the
48
//      following prefixes:
49
//
50
//      i_      An input port to the routine
51
//      o_      An output port of the routine
52
//      br_     A register, controlled by the bus clock
53
//      dr_     A register, controlled by the data clock
54
//      bw_     A wire/net, controlled by the bus clock
55
//      dw_     A wire/net, controlled by the data clock
56
//
57
// Creator:     Dan Gisselquist, Ph.D.
58
//              Gisselquist Technology, LLC
59
//
60 30 dgisselq
////////////////////////////////////////////////////////////////////////////////
61 3 dgisselq
//
62 50 dgisselq
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
63 3 dgisselq
//
64
// This program is free software (firmware): you can redistribute it and/or
65
// modify it under the terms of  the GNU General Public License as published
66
// by the Free Software Foundation, either version 3 of the License, or (at
67
// your option) any later version.
68
//
69
// This program is distributed in the hope that it will be useful, but WITHOUT
70
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
71
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
72
// for more details.
73
//
74
// You should have received a copy of the GNU General Public License along
75 50 dgisselq
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
76 3 dgisselq
// target there if the PDF file isn't present.)  If not, see
77
// <http://www.gnu.org/licenses/> for a copy.
78
//
79
// License:     GPL, v3, as defined and found on www.gnu.org,
80
//              http://www.gnu.org/licenses/gpl.html
81
//
82
//
83 30 dgisselq
////////////////////////////////////////////////////////////////////////////////
84
//
85
//
86 3 dgisselq
module wbscope(i_clk, i_ce, i_trigger, i_data,
87
        i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
88
        o_wb_ack, o_wb_stall, o_wb_data,
89
        o_interrupt);
90 30 dgisselq
        parameter       LGMEM = 5'd10, BUSW = 32, SYNCHRONOUS=1,
91
                        DEFAULT_HOLDOFF = ((1<<(LGMEM-1))-4);
92 3 dgisselq
        // The input signals that we wish to record
93
        input                           i_clk, i_ce, i_trigger;
94
        input           [(BUSW-1):0]     i_data;
95
        // The WISHBONE bus for reading and configuring this scope
96
        input                           i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we;
97
        input                           i_wb_addr; // One address line only
98
        input           [(BUSW-1):0]     i_wb_data;
99
        output  wire                    o_wb_ack, o_wb_stall;
100
        output  reg     [(BUSW-1):0]     o_wb_data;
101
        // And, finally, for a final flair --- offer to interrupt the CPU after
102
        // our trigger has gone off.  This line is equivalent to the scope 
103
        // being stopped.  It is not maskable here.
104
        output  wire                    o_interrupt;
105
 
106
        reg     [(LGMEM-1):0]    raddr;
107
        reg     [(BUSW-1):0]     mem[0:((1<<LGMEM)-1)];
108
 
109
        // Our status/config register
110
        wire            bw_reset_request, bw_manual_trigger,
111
                        bw_disable_trigger, bw_reset_complete;
112
        reg     [22:0]   br_config;
113
        wire    [19:0]   bw_holdoff;
114 30 dgisselq
        initial br_config = DEFAULT_HOLDOFF;
115 3 dgisselq
        always @(posedge i_wb_clk)
116 50 dgisselq
                if ((i_wb_stb)&&(~i_wb_addr))
117 3 dgisselq
                begin
118 25 dgisselq
                        if (i_wb_we)
119
                                br_config <= { i_wb_data[31],
120
                                        (i_wb_data[27]),
121
                                        i_wb_data[26],
122
                                        i_wb_data[19:0] };
123 3 dgisselq
                end else if (bw_reset_complete)
124
                        br_config[22] <= 1'b1;
125
        assign  bw_reset_request   = (~br_config[22]);
126
        assign  bw_manual_trigger  = (br_config[21]);
127
        assign  bw_disable_trigger = (br_config[20]);
128
        assign  bw_holdoff         = br_config[19:0];
129
 
130
        wire    dw_reset, dw_manual_trigger, dw_disable_trigger;
131
        generate
132
        if (SYNCHRONOUS > 0)
133
        begin
134
                assign  dw_reset = bw_reset_request;
135
                assign  dw_manual_trigger = bw_manual_trigger;
136
                assign  dw_disable_trigger = bw_disable_trigger;
137
                assign  bw_reset_complete = bw_reset_request;
138
        end else begin
139
                reg             r_reset_complete;
140 30 dgisselq
                (* ASYNC_REG = "TRUE" *) reg    [2:0]    q_iflags;
141
                reg     [2:0]    r_iflags;
142 3 dgisselq
 
143
                // Resets are synchronous to the bus clock, not the data clock
144
                // so do a clock transfer here
145
                initial q_iflags = 3'b000;
146
                initial r_reset_complete = 1'b0;
147
                always @(posedge i_clk)
148
                begin
149
                        q_iflags <= { bw_reset_request, bw_manual_trigger, bw_disable_trigger };
150
                        r_iflags <= q_iflags;
151
                        r_reset_complete <= (dw_reset);
152
                end
153
 
154
                assign  dw_reset = r_iflags[2];
155
                assign  dw_manual_trigger = r_iflags[1];
156
                assign  dw_disable_trigger = r_iflags[0];
157
 
158 30 dgisselq
                (* ASYNC_REG = "TRUE" *) reg    q_reset_complete;
159
                reg     qq_reset_complete;
160 3 dgisselq
                // Pass an acknowledgement back from the data clock to the bus
161
                // clock that the reset has been accomplished
162
                initial q_reset_complete = 1'b0;
163
                initial qq_reset_complete = 1'b0;
164
                always @(posedge i_wb_clk)
165
                begin
166
                        q_reset_complete  <= r_reset_complete;
167
                        qq_reset_complete <= q_reset_complete;
168
                end
169
 
170
                assign bw_reset_complete = qq_reset_complete;
171
        end endgenerate
172
 
173
        //
174
        // Set up the trigger
175
        //
176
        //
177
        // Write with the i-clk, or input clock.  All outputs read with the
178
        // WISHBONE-clk, or i_wb_clk clock.
179
        reg     dr_triggered, dr_primed;
180
        wire    dw_trigger;
181
        assign  dw_trigger = (dr_primed)&&(
182
                                ((i_trigger)&&(~dw_disable_trigger))
183
                                ||(dr_triggered)
184
                                ||(dw_manual_trigger));
185
        initial dr_triggered = 1'b0;
186
        always @(posedge i_clk)
187
                if (dw_reset)
188
                        dr_triggered <= 1'b0;
189
                else if ((i_ce)&&(dw_trigger))
190
                        dr_triggered <= 1'b1;
191
 
192
        //
193
        // Determine when memory is full and capture is complete
194
        //
195
        // Writes take place on the data clock
196 25 dgisselq
        reg             dr_stopped;
197 30 dgisselq
        (* ASYNC_REG="TRUE" *) reg      [19:0]   counter;// This is unsigned
198 3 dgisselq
        initial dr_stopped = 1'b0;
199
        initial counter = 20'h0000;
200
        always @(posedge i_clk)
201
                if (dw_reset)
202
                        counter <= 0;
203 50 dgisselq
                else if ((i_ce)&&(dr_triggered)&&(~dr_stopped))
204 3 dgisselq
                begin // MUST BE a < and not <=, so that we can keep this w/in
205
                        // 20 bits.  Else we'd need to add a bit to comparison 
206
                        // here.
207 50 dgisselq
                        counter <= counter + 20'h01;
208 3 dgisselq
                end
209 50 dgisselq
        always @(posedge i_clk)
210
                if ((~dr_triggered)||(dw_reset))
211
                        dr_stopped <= 1'b0;
212
                else if (i_ce)
213
                        dr_stopped <= (counter+20'd1 >= bw_holdoff);
214
                else
215
                        dr_stopped <= (counter >= bw_holdoff);
216 3 dgisselq
 
217
        //
218
        //      Actually do our writes to memory.  Record, via 'primed' when
219
        //      the memory is full.
220
        //
221
        //      The 'waddr' address that we are using really crosses two clock
222
        //      domains.  While writing and changing, it's in the data clock
223
        //      domain.  Once stopped, it becomes part of the bus clock domain.
224
        //      The clock transfer on the stopped line handles the clock
225
        //      transfer for these signals.
226
        //
227
        reg     [(LGMEM-1):0]    waddr;
228
        initial waddr = {(LGMEM){1'b0}};
229
        initial dr_primed = 1'b0;
230
        always @(posedge i_clk)
231
                if (dw_reset) // For simulation purposes, supply a valid value
232
                begin
233
                        waddr <= 0; // upon reset.
234
                        dr_primed <= 1'b0;
235 50 dgisselq
                end else if ((i_ce)&&((~dr_triggered)||(!dr_stopped)))
236 3 dgisselq
                begin
237
                        // mem[waddr] <= i_data;
238
                        waddr <= waddr + {{(LGMEM-1){1'b0}},1'b1};
239
                        dr_primed <= (dr_primed)||(&waddr);
240
                end
241
        always @(posedge i_clk)
242 50 dgisselq
                if ((i_ce)&&((~dr_triggered)||(!dr_stopped)))
243 3 dgisselq
                        mem[waddr] <= i_data;
244
 
245
        //
246
        // Clock transfer of the status signals
247
        //
248
        wire    bw_stopped, bw_triggered, bw_primed;
249
        generate
250
        if (SYNCHRONOUS > 0)
251
        begin
252
                assign  bw_stopped   = dr_stopped;
253
                assign  bw_triggered = dr_triggered;
254
                assign  bw_primed    = dr_primed;
255
        end else begin
256
                // These aren't a problem, since none of these are strobe
257
                // signals.  They goes from low to high, and then stays high
258
                // for many clocks.  Swapping is thus easy--two flip flops to
259
                // protect against meta-stability and we're done.
260
                //
261 30 dgisselq
                (* ASYNC_REG = "TRUE" *) reg    [2:0]    q_oflags;
262
                reg     [2:0]    r_oflags;
263 3 dgisselq
                initial q_oflags = 3'h0;
264
                initial r_oflags = 3'h0;
265
                always @(posedge i_wb_clk)
266
                        if (bw_reset_request)
267
                        begin
268
                                q_oflags <= 3'h0;
269
                                r_oflags <= 3'h0;
270
                        end else begin
271
                                q_oflags <= { dr_stopped, dr_triggered, dr_primed };
272
                                r_oflags <= q_oflags;
273
                        end
274
 
275
                assign  bw_stopped   = r_oflags[2];
276
                assign  bw_triggered = r_oflags[1];
277
                assign  bw_primed    = r_oflags[0];
278
        end endgenerate
279
 
280
        // Reads use the bus clock
281 25 dgisselq
        reg     br_wb_ack;
282 3 dgisselq
        initial br_wb_ack = 1'b0;
283 25 dgisselq
        wire    bw_cyc_stb;
284 50 dgisselq
        assign  bw_cyc_stb = (i_wb_stb);
285 3 dgisselq
        always @(posedge i_wb_clk)
286 25 dgisselq
        begin
287
                if ((bw_reset_request)
288
                        ||((bw_cyc_stb)&&(i_wb_addr)&&(i_wb_we)))
289 3 dgisselq
                        raddr <= 0;
290 25 dgisselq
                else if ((bw_cyc_stb)&&(i_wb_addr)&&(~i_wb_we)&&(bw_stopped))
291 3 dgisselq
                        raddr <= raddr + {{(LGMEM-1){1'b0}},1'b1}; // Data read, when stopped
292
 
293 25 dgisselq
                if ((bw_cyc_stb)&&(~i_wb_we))
294
                begin // Read from the bus
295
                        br_wb_ack <= 1'b1;
296
                end else if ((bw_cyc_stb)&&(i_wb_we))
297
                        // We did this write above
298
                        br_wb_ack <= 1'b1;
299
                else // Do nothing if either i_wb_cyc or i_wb_stb are low
300
                        br_wb_ack <= 1'b0;
301 3 dgisselq
        end
302
 
303
        reg     [31:0]   nxt_mem;
304
        always @(posedge i_wb_clk)
305 25 dgisselq
                nxt_mem <= mem[raddr+waddr+
306
                        (((bw_cyc_stb)&&(i_wb_addr)&&(~i_wb_we)) ?
307
                                {{(LGMEM-1){1'b0}},1'b1} : { (LGMEM){1'b0}} )];
308 3 dgisselq
 
309
        wire    [4:0]    bw_lgmem;
310
        assign          bw_lgmem = LGMEM;
311
        always @(posedge i_wb_clk)
312 25 dgisselq
                if (~i_wb_addr) // Control register read
313 3 dgisselq
                        o_wb_data <= { bw_reset_request,
314
                                        bw_stopped,
315
                                        bw_triggered,
316
                                        bw_primed,
317
                                        bw_manual_trigger,
318
                                        bw_disable_trigger,
319
                                        (raddr == {(LGMEM){1'b0}}),
320
                                        bw_lgmem,
321
                                        bw_holdoff  };
322
                else if (~bw_stopped) // read, prior to stopping
323
                        o_wb_data <= i_data;
324
                else // if (i_wb_addr) // Read from FIFO memory
325
                        o_wb_data <= nxt_mem; // mem[raddr+waddr];
326
 
327
        assign  o_wb_stall = 1'b0;
328 25 dgisselq
        assign  o_wb_ack = (i_wb_cyc)&&(br_wb_ack);
329 3 dgisselq
 
330
        reg     br_level_interrupt;
331
        initial br_level_interrupt = 1'b0;
332
        assign  o_interrupt = (bw_stopped)&&(~bw_disable_trigger)
333
                                        &&(~br_level_interrupt);
334
        always @(posedge i_wb_clk)
335
                if ((bw_reset_complete)||(bw_reset_request))
336
                        br_level_interrupt<= 1'b0;
337
                else
338
                        br_level_interrupt<= (bw_stopped)&&(~bw_disable_trigger);
339
 
340
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.