1 |
52 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: simple-ping.c
|
4 |
|
|
//
|
5 |
|
|
// Project: OpenArty, an entirely open SoC based upon the Arty platform
|
6 |
|
|
//
|
7 |
|
|
// Purpose: To exercise the network port by ...
|
8 |
|
|
//
|
9 |
|
|
// 1. Pinging another system, at 1PPS
|
10 |
|
|
// 2. Replying to ARP requests
|
11 |
|
|
// 3. Replying to external 'pings' requests
|
12 |
|
|
//
|
13 |
|
|
// To configure this for your network, you will need to adjust the
|
14 |
|
|
// following constants within this file:
|
15 |
|
|
//
|
16 |
|
|
// my_ip_addr
|
17 |
|
|
// This is the (fixed) IP address of your Arty board. The first
|
18 |
|
|
// octet of the IP address is kept in the high order word.
|
19 |
|
|
//
|
20 |
|
|
// my_mac_addr (unsigned long, 64 bits)
|
21 |
|
|
// This is the fixed MAC address of your Arty board. The first
|
22 |
|
|
// two octets appear in bits 47:32 (MSB #s are high), and the other
|
23 |
|
|
// four in bits 31:0. Since the Arty PHY does not come with a
|
24 |
|
|
// designated MAC address, I generated one for my PHY using
|
25 |
|
|
// /dev/rand. The key to this, though, is that the second nibble
|
26 |
|
|
// (bits 8..12) in my_mac_addr[0] must be set to 4'h2 to reflect
|
27 |
|
|
// this fact.
|
28 |
|
|
//
|
29 |
|
|
// ping_ip_addr
|
30 |
|
|
// This is the IP address of the computer you wish to ping.
|
31 |
|
|
//
|
32 |
|
|
// my_ip_router
|
33 |
|
|
// In case the computer you wish to ping is not your
|
34 |
|
|
// router/gateway, and worse that it is not on your network, then
|
35 |
|
|
// you will need to fill this value in with the IP address of a
|
36 |
|
|
// gateway server that is accessable from this network. Place
|
37 |
|
|
// that IP address into this variable.
|
38 |
|
|
//
|
39 |
|
|
// my_ip_mask
|
40 |
|
|
// The IP mask is used to determine what is on your subnet, versus
|
41 |
|
|
// what needs to be sent to your router/gateway. Set this mask
|
42 |
|
|
// such that a '1' is placed in every network bit of your IP
|
43 |
|
|
// address, and '0' in every host bit. For me, I am using a
|
44 |
|
|
// network of 192.168.10.x, where x is the computer on the network,
|
45 |
|
|
// so I set this to 0xffffff00.
|
46 |
|
|
//
|
47 |
|
|
//
|
48 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
49 |
|
|
// Gisselquist Technology, LLC
|
50 |
|
|
//
|
51 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
52 |
|
|
//
|
53 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
54 |
|
|
//
|
55 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
56 |
|
|
// modify it under the terms of the GNU General Public License as published
|
57 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
58 |
|
|
// your option) any later version.
|
59 |
|
|
//
|
60 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
61 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
62 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
63 |
|
|
// for more details.
|
64 |
|
|
//
|
65 |
|
|
// You should have received a copy of the GNU General Public License along
|
66 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
67 |
|
|
// target there if the PDF file isn't present.) If not, see
|
68 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
69 |
|
|
//
|
70 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
71 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
72 |
|
|
//
|
73 |
|
|
//
|
74 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
75 |
|
|
//
|
76 |
|
|
//
|
77 |
|
|
#include "artyboard.h"
|
78 |
|
|
#include "zipcpu.h"
|
79 |
|
|
#include "zipsys.h"
|
80 |
|
|
#define KTRAPID_SENDPKT 0
|
81 |
|
|
#include "etcnet.h"
|
82 |
|
|
#include "protoconst.h"
|
83 |
|
|
#include "ledcolors.h"
|
84 |
|
|
#include "ipcksum.h"
|
85 |
|
|
#include "arp.h"
|
86 |
|
|
|
87 |
|
|
#define sys _sys
|
88 |
|
|
|
89 |
|
|
unsigned pkts_received = 0, replies_received=0, arp_requests_received=0,
|
90 |
|
|
arp_pkt_count =0, arp_pkt_invalid =0,
|
91 |
|
|
arp_missed_ip = 0, arp_non_broadcast = 0,
|
92 |
|
|
ip_pkts_received = 0, ip_pkts_invalid = 0,
|
93 |
|
|
icmp_echo_requests=0, icmp_invalid= 0,
|
94 |
|
|
ping_reply_address_not_found = 0, ping_replies_sent = 0,
|
95 |
|
|
ping_reply_err = 0, user_tx_packets = 0,
|
96 |
|
|
user_heartbeats = 0;
|
97 |
|
|
|
98 |
|
|
unsigned long ping_mac_addr;
|
99 |
|
|
|
100 |
|
|
// These two numbers will allow us to keep track of how many ping's we've
|
101 |
|
|
// sent and how many we've received the returns for.
|
102 |
|
|
unsigned ping_tx_count = 0, ping_rx_count = 0;
|
103 |
|
|
|
104 |
|
|
// This is a cheater's approach to knowing what IP to ping: we pre-load the
|
105 |
|
|
// program with both the IP address to ping, as well as the MAC address
|
106 |
|
|
// associated with that IP address. Future implementations will need to
|
107 |
|
|
// 1. Look up the MAC address of the device we wish to ping (assuming our
|
108 |
|
|
// subnet), or
|
109 |
|
|
// 2. Later, check if the IP address is not on our subnet, and if not then
|
110 |
|
|
// look up the MAC address of the router and use that MAC address when
|
111 |
|
|
// sending (no change to the IP)
|
112 |
|
|
unsigned ping_ip_addr = IPADDR(192,168,10,1);
|
113 |
|
|
unsigned long ping_mac_addr = 0;
|
114 |
|
|
|
115 |
|
|
// My network ID. The 192.168.10 part comes from the fact that this is a
|
116 |
|
|
// local network. The .22 (last octet) is due to the fact that this is
|
117 |
|
|
// an unused ID on my network.
|
118 |
|
|
unsigned my_ip_addr = DEFAULTIP;
|
119 |
|
|
// Something from /dev/rand
|
120 |
|
|
// Only ... the second nibble must be two. Hence we start with d(2)d8.
|
121 |
|
|
unsigned long my_mac_addr = DEFAULTMAC, router_mac_addr = 0;
|
122 |
|
|
unsigned my_ip_mask = LCLNETMASK,
|
123 |
|
|
my_ip_router = DEFAULT_ROUTERIP;
|
124 |
|
|
|
125 |
|
|
unsigned pkt_id = 0;
|
126 |
|
|
|
127 |
|
|
///////////
|
128 |
|
|
//
|
129 |
|
|
//
|
130 |
|
|
// User tasks and functions (excluding ARP)
|
131 |
|
|
//
|
132 |
|
|
//
|
133 |
|
|
///////////
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
//
|
137 |
|
|
// We'll give our user 64kW of global variables
|
138 |
|
|
//
|
139 |
|
|
#define USER_STACK_SIZE 4096
|
140 |
|
|
int user_stack[USER_STACK_SIZE];
|
141 |
|
|
const int *user_sp = &user_stack[USER_STACK_SIZE];
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
void uping_reply(unsigned ipaddr, unsigned *icmp_request) {
|
145 |
|
|
unsigned pkt[2048];
|
146 |
|
|
unsigned long hwaddr;
|
147 |
|
|
int maxsz = 2048;
|
148 |
|
|
|
149 |
|
|
maxsz = 1<<((sys->io_enet.n_rxcmd>>24)&0x0f);
|
150 |
|
|
if (maxsz > 2048)
|
151 |
|
|
maxsz = 2048;
|
152 |
|
|
int pktln = (icmp_request[0] & 0x0ffff)+8, pktlnw = (pktln+3)>>2;
|
153 |
|
|
|
154 |
|
|
if (arp_lookup(ipaddr, &hwaddr)!=0) {
|
155 |
|
|
// Couldn't find the address -- don't reply, but send an arp
|
156 |
|
|
// request.
|
157 |
|
|
//
|
158 |
|
|
// ARP request is automatic when the address isn't found,
|
159 |
|
|
// and done by the arp_lookup.
|
160 |
|
|
ping_reply_address_not_found++;
|
161 |
|
|
} else if ((pktlnw < maxsz)
|
162 |
|
|
&&((icmp_request[0]>>24)==0x045)) {
|
163 |
|
|
int id;
|
164 |
|
|
|
165 |
|
|
pkt[0] = (unsigned)(hwaddr>>16);
|
166 |
|
|
pkt[1] = ((unsigned)(hwaddr<<16))|ETHERTYPE_IP;
|
167 |
|
|
pkt[2] = icmp_request[0] & 0xff00ffff;
|
168 |
|
|
id = pkt_id + sys->io_b.i_tim.sub;
|
169 |
|
|
pkt[3] = (id&0x0ffff)<<16; // no fragments
|
170 |
|
|
pkt[4] = 0xff010000;//No flags,frag offset=0,ttl=0,proto=1(ICMP)
|
171 |
|
|
pkt[5] = icmp_request[4]; // Swap sender and receiver
|
172 |
|
|
pkt[6] = icmp_request[3];
|
173 |
|
|
for(int k=7; k<pktlnw; k++)
|
174 |
|
|
pkt[k] = icmp_request[k-2];
|
175 |
|
|
pkt[7] = 0;
|
176 |
|
|
|
177 |
|
|
if ((pktln & 3)!=0)
|
178 |
|
|
pkt[pktlnw-1] &= ~((1<<((4-(pktln&3))<<3))-1);
|
179 |
|
|
|
180 |
|
|
// Now, let's go fill in the IP and ICMP checksums
|
181 |
|
|
pkt[4] |= ipcksum(5, &pkt[2]);
|
182 |
|
|
|
183 |
|
|
pkt[7] &= 0xffff0000;
|
184 |
|
|
pkt[7] |= ipcksum(pktlnw-7, &pkt[7]);
|
185 |
|
|
|
186 |
|
|
ping_replies_sent++;
|
187 |
|
|
|
188 |
|
|
syscall(KTRAPID_SENDPKT,0,(unsigned)pkt, pktln);
|
189 |
|
|
} else
|
190 |
|
|
ping_reply_err ++;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
unsigned rxpkt[2048];
|
194 |
|
|
void user_task(void) {
|
195 |
|
|
unsigned rtc = sys->io_rtc.r_clock;
|
196 |
|
|
|
197 |
|
|
while(1) {
|
198 |
|
|
do {
|
199 |
|
|
unsigned long mac;
|
200 |
|
|
|
201 |
|
|
// Rate limit our ARP searching to one Hz
|
202 |
|
|
rtc = sys->io_rtc.r_clock;
|
203 |
|
|
|
204 |
|
|
if (arp_lookup(ping_ip_addr, &ping_mac_addr) == 0)
|
205 |
|
|
arp_lookup(my_ip_router, &mac);
|
206 |
|
|
|
207 |
|
|
while(((sys->io_enet.n_rxcmd & ENET_RXAVAIL)==0)
|
208 |
|
|
&&(sys->io_rtc.r_clock == rtc))
|
209 |
|
|
user_heartbeats++;
|
210 |
|
|
} while((sys->io_enet.n_rxcmd & ENET_RXAVAIL)==0);
|
211 |
|
|
|
212 |
|
|
// Okay, now we have a receive packet ... let's process it
|
213 |
|
|
int etype = sys->io_enet_rx[1] & 0x0ffff;
|
214 |
|
|
unsigned *epayload; // = (unsigned *)&sys->io_enet_rx[2];
|
215 |
|
|
int invalid = 0;
|
216 |
|
|
int ln, rxcmd = sys->io_enet.n_rxcmd;
|
217 |
|
|
|
218 |
|
|
ln = sys->io_enet.n_rxcmd & 0x07ff;
|
219 |
|
|
for(int k=0; k<(ln+3)>>2; k++)
|
220 |
|
|
rxpkt[k] = sys->io_enet_rx[k];
|
221 |
|
|
epayload = &rxpkt[2];
|
222 |
|
|
sys->io_enet.n_rxcmd = ENET_RXCLR|ENET_RXCLRERR;
|
223 |
|
|
|
224 |
|
|
pkts_received++;
|
225 |
|
|
|
226 |
|
|
if (etype == ETHERTYPE_IP) {
|
227 |
|
|
unsigned *ip = epayload,
|
228 |
|
|
*ippayload = &ip[(ip[0]>>24)&0x0f];
|
229 |
|
|
|
230 |
|
|
if (((ip[0]>>28)&15)!=4)
|
231 |
|
|
invalid = 1;
|
232 |
|
|
else if (ip[1] & 0x0bfff)
|
233 |
|
|
// Packet is fragmented--toss it out
|
234 |
|
|
invalid = 1;
|
235 |
|
|
else if (ip[4] != my_ip_addr)
|
236 |
|
|
invalid = 1;
|
237 |
|
|
|
238 |
|
|
ip_pkts_received += (invalid^1);
|
239 |
|
|
ip_pkts_invalid += (invalid);
|
240 |
|
|
|
241 |
|
|
unsigned ipproto = (ip[2]>>16)&0x0ff;
|
242 |
|
|
if((invalid==0)&&(ipproto == IPPROTO_ICMP)) {
|
243 |
|
|
unsigned icmp_type = ippayload[0]>>24;
|
244 |
|
|
if (icmp_type == ICMP_ECHOREPLY) {
|
245 |
|
|
// We got our ping response
|
246 |
|
|
sys->io_b.i_clrled[3] = LEDC_GREEN;
|
247 |
|
|
sys->io_b.i_leds = 0x80;
|
248 |
|
|
ping_rx_count++;
|
249 |
|
|
} else if (icmp_type == ICMP_ECHO) {
|
250 |
|
|
// Someone is pinging us
|
251 |
|
|
uping_reply(ip[3],ip);
|
252 |
|
|
icmp_echo_requests++;
|
253 |
|
|
} else
|
254 |
|
|
icmp_invalid++;
|
255 |
|
|
}
|
256 |
|
|
} else if (etype == ETHERTYPE_ARP) {
|
257 |
|
|
arp_pkt_count++;
|
258 |
|
|
if (epayload[0] != 0x010800) {
|
259 |
|
|
invalid = 1;
|
260 |
|
|
arp_pkt_invalid++;
|
261 |
|
|
} else if ((epayload[1] == 0x06040001)
|
262 |
|
|
&&(rxcmd & ENET_RXBROADCAST)
|
263 |
|
|
&&(epayload[6] == my_ip_addr))
|
264 |
|
|
{ // ARP Request
|
265 |
|
|
unsigned sha[2], // Senders HW address
|
266 |
|
|
sip, // Senders IP address
|
267 |
|
|
dip; // Desired IP address
|
268 |
|
|
sha[0] = epayload[2];
|
269 |
|
|
sha[1] = epayload[3]>>16;
|
270 |
|
|
sha[1] |= sha[0]<<16;
|
271 |
|
|
sha[0] >>= 16;
|
272 |
|
|
sip = (epayload[3]<<16)|(epayload[4]>>16);
|
273 |
|
|
arp_requests_received++;
|
274 |
|
|
send_arp_reply(sha[0], sha[1], sip);
|
275 |
|
|
} else if ((epayload[1] == 0x06040002) // Reply
|
276 |
|
|
&&((rxcmd & ENET_RXBROADCAST)==0)
|
277 |
|
|
&&(epayload[6] == my_ip_addr)) {
|
278 |
|
|
unsigned sip;
|
279 |
|
|
unsigned long sha;
|
280 |
|
|
|
281 |
|
|
sha = *(unsigned long *)(&epayload[2]);
|
282 |
|
|
sha >>= 16;
|
283 |
|
|
sip = (epayload[3]<<16)|(epayload[4]>>16);
|
284 |
|
|
if (sip == ping_ip_addr)
|
285 |
|
|
ping_mac_addr = sha;
|
286 |
|
|
arp_table_add(sip, sha);
|
287 |
|
|
}
|
288 |
|
|
}
|
289 |
|
|
}
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
///////////
|
294 |
|
|
//
|
295 |
|
|
//
|
296 |
|
|
// Supervisor tasks and functions
|
297 |
|
|
//
|
298 |
|
|
//
|
299 |
|
|
///////////
|
300 |
|
|
|
301 |
|
|
|
302 |
|
|
void send_ping(void) {
|
303 |
|
|
unsigned *pkt;
|
304 |
|
|
|
305 |
|
|
// If we don't know our destination MAC address yet, just return
|
306 |
|
|
if (ping_mac_addr==0) {
|
307 |
|
|
sys->io_b.i_clrled[1] = LEDC_YELLOW;
|
308 |
|
|
return;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
// If the network is busy transmitting, wait for it to finish
|
312 |
|
|
if (sys->io_enet.n_txcmd & ENET_TXBUSY) {
|
313 |
|
|
while(sys->io_enet.n_txcmd & ENET_TXBUSY)
|
314 |
|
|
;
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
// Form a packet to transmit
|
318 |
|
|
pkt = (unsigned *)&sys->io_enet_tx;
|
319 |
|
|
pkt[0] = (ping_mac_addr>>16);
|
320 |
|
|
pkt[1] = ((unsigned)(ping_mac_addr<<16))|ETHERTYPE_IP;
|
321 |
|
|
pkt[2] = 0x4500001c;
|
322 |
|
|
pkt_id += BIG_PRIME; // A BIG prime number
|
323 |
|
|
pkt[3] = (pkt_id&0x0ffff)<<16;;
|
324 |
|
|
pkt[4] = 0x80010000; // No flags, ragment offset = 0, ttl=0, proto=1(ICMP)
|
325 |
|
|
pkt[5] = my_ip_addr;
|
326 |
|
|
pkt[6] = ping_ip_addr;
|
327 |
|
|
// Ping payload: type = 0x08 (PING, the response will be zero)
|
328 |
|
|
// CODE = 0
|
329 |
|
|
// Checksum will be filled in later
|
330 |
|
|
pkt[7] = 0x08000000;
|
331 |
|
|
pkt_id += BIG_PRIME;
|
332 |
|
|
pkt[8] = (pkt_id + BIG_PRIME);
|
333 |
|
|
|
334 |
|
|
// Calculate the IP header checksum
|
335 |
|
|
pkt[4] |= ipcksum(5, &pkt[2]);
|
336 |
|
|
|
337 |
|
|
// Calculate the PING payload checksum
|
338 |
|
|
pkt[7] &= 0xffff0000;
|
339 |
|
|
pkt[7] |= ipcksum(2, &pkt[7]);
|
340 |
|
|
|
341 |
|
|
// Finally, send the packet -- 9*4 = our total number of octets
|
342 |
|
|
sys->io_enet.n_txcmd = ENET_TXCMD(9*4);
|
343 |
|
|
|
344 |
|
|
ping_tx_count++;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
|
348 |
|
|
int heartbeats = 0, subbeats = 0, gbl_picv = 0;
|
349 |
|
|
int main(int argc, char **argv) {
|
350 |
|
|
unsigned user_context[16];
|
351 |
|
|
int lastpps;
|
352 |
|
|
|
353 |
|
|
for(int i=0; i<16; i++)
|
354 |
|
|
user_context[i] = 0;
|
355 |
|
|
user_context[13] = (unsigned)user_sp;
|
356 |
|
|
user_context[15] = (unsigned)user_task;
|
357 |
|
|
restore_context(user_context);
|
358 |
|
|
|
359 |
|
|
init_arp_table();
|
360 |
|
|
|
361 |
|
|
for(int i=0; i<4; i++)
|
362 |
|
|
sys->io_b.i_clrled[i] = LEDC_BRIGHTRED;
|
363 |
|
|
sys->io_b.i_leds = 0x0ff;
|
364 |
|
|
|
365 |
|
|
// Start up the network interface
|
366 |
|
|
if ((sys->io_enet.n_txcmd & ENET_RESET)!=0)
|
367 |
|
|
sys->io_enet.n_txcmd = 0; // Turn on all our features
|
368 |
|
|
{
|
369 |
|
|
volatile unsigned long *emac = (volatile unsigned long *)&sys->io_enet.n_mac;
|
370 |
|
|
*emac = my_mac_addr;
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
// Turn off our right-hand LED, first part of startup is complete
|
374 |
|
|
sys->io_b.i_leds = 0x010;
|
375 |
|
|
// Turn our first CLR LED green as well
|
376 |
|
|
sys->io_b.i_clrled[0] = LEDC_GREEN;
|
377 |
|
|
|
378 |
|
|
// Set our timer to have us send a ping 1/sec
|
379 |
|
|
zip->z_tma = CLOCKFREQ_HZ | TMR_INTERVAL;
|
380 |
|
|
|
381 |
|
|
sys->io_enet.n_rxcmd = ENET_RXCLRERR|ENET_RXCLR;
|
382 |
|
|
|
383 |
|
|
while(1) {
|
384 |
|
|
unsigned picv, bmsr;
|
385 |
|
|
|
386 |
|
|
heartbeats++;
|
387 |
|
|
|
388 |
|
|
// Wait while the link is being negotiated
|
389 |
|
|
// --- Read the MDIO status register
|
390 |
|
|
bmsr = sys->io_netmdio.e_v[MDIO_BMSR];
|
391 |
|
|
if ((bmsr & 4)==0) {
|
392 |
|
|
// Link is down, do nothing this time through
|
393 |
|
|
sys->io_b.i_clrled[1] = LEDC_BRIGHTRED;
|
394 |
|
|
sys->io_b.i_clrled[2] = LEDC_BRIGHTRED;
|
395 |
|
|
sys->io_b.i_clrled[3] = LEDC_BRIGHTRED;
|
396 |
|
|
} else {
|
397 |
|
|
sys->io_b.i_leds = 0x020;
|
398 |
|
|
sys->io_b.i_clrled[1] = LEDC_GREEN;
|
399 |
|
|
send_ping();
|
400 |
|
|
sys->io_b.i_clrled[2] = LEDC_BRIGHTRED; // Have we received a response?
|
401 |
|
|
sys->io_b.i_clrled[3] = LEDC_BRIGHTRED; // Was it our ping response?
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
// Clear any timer or PPS interrupts, disable all others
|
405 |
|
|
zip->z_pic = DALLPIC;
|
406 |
|
|
zip->z_pic = EINT(SYSINT_TMA|SYSINT_PPS|SYSINT_ENETRX);
|
407 |
|
|
do {
|
408 |
|
|
if ((zip->z_pic & INTNOW)==0)
|
409 |
|
|
zip_rtu();
|
410 |
|
|
subbeats++;
|
411 |
|
|
|
412 |
|
|
picv = zip->z_pic;
|
413 |
|
|
gbl_picv = picv;
|
414 |
|
|
|
415 |
|
|
// Clear the ints we just saw. Warning, though, we'll
|
416 |
|
|
// need to re-enable them later
|
417 |
|
|
zip->z_pic = (picv & 0x0ffff);
|
418 |
|
|
|
419 |
|
|
if (zip_ucc() & CC_FAULT) {
|
420 |
|
|
sys->io_b.i_leds = 0x0ff;
|
421 |
|
|
sys->io_b.i_clrled[0] = LEDC_BRIGHTRED;
|
422 |
|
|
sys->io_b.i_clrled[1] = LEDC_BRIGHTRED;
|
423 |
|
|
sys->io_b.i_clrled[2] = LEDC_BRIGHTRED;
|
424 |
|
|
sys->io_b.i_clrled[3] = LEDC_BRIGHTRED;
|
425 |
|
|
zip_halt();
|
426 |
|
|
} else if (zip_ucc() & CC_TRAP) {
|
427 |
|
|
save_context((int *)user_context);
|
428 |
|
|
// R0 = return address
|
429 |
|
|
// R1 = Trap ID, write or send
|
430 |
|
|
// R2 = FD, or socketFD
|
431 |
|
|
// R3 = buffer
|
432 |
|
|
// R4 = count
|
433 |
|
|
// R5 = (flags, i socket)
|
434 |
|
|
unsigned *sptr = (void *)user_context[3], ln;
|
435 |
|
|
ln = user_context[4];
|
436 |
|
|
while(sys->io_enet.n_txcmd & ENET_TXBUSY)
|
437 |
|
|
;
|
438 |
|
|
if (ln < 1400) {
|
439 |
|
|
for(int i=0; i<(ln+3)>>2; i++)
|
440 |
|
|
sys->io_enet_tx[i] = *sptr++;
|
441 |
|
|
sys->io_enet.n_txcmd = ENET_TXCMD(ln);
|
442 |
|
|
|
443 |
|
|
user_tx_packets++;
|
444 |
|
|
// (Re-)Enable the transmit complete
|
445 |
|
|
// interrupt
|
446 |
|
|
//
|
447 |
|
|
// At this point, we are also ready to
|
448 |
|
|
// receive another packet
|
449 |
|
|
zip->z_pic = EINT(SYSINT_ENETTX|SYSINT_ENETRX);
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
user_context[14] &= ~CC_TRAP;
|
453 |
|
|
restore_context(user_context);
|
454 |
|
|
} else if ((picv & INTNOW)==0) {
|
455 |
|
|
sys->io_b.i_leds = 0x0ff;
|
456 |
|
|
sys->io_b.i_clrled[0] = LEDC_BRIGHTRED;
|
457 |
|
|
sys->io_b.i_clrled[1] = LEDC_WHITE;
|
458 |
|
|
sys->io_b.i_clrled[2] = LEDC_BRIGHTRED;
|
459 |
|
|
sys->io_b.i_clrled[3] = LEDC_BRIGHTRED;
|
460 |
|
|
zip_halt();
|
461 |
|
|
} else if ((picv & DINT(SYSINT_TMA))==0) {
|
462 |
|
|
sys->io_b.i_leds = 0x0ff;
|
463 |
|
|
sys->io_b.i_clrled[0] = LEDC_BRIGHTRED;
|
464 |
|
|
sys->io_b.i_clrled[1] = LEDC_BRIGHTRED;
|
465 |
|
|
sys->io_b.i_clrled[2] = LEDC_WHITE;
|
466 |
|
|
sys->io_b.i_clrled[3] = LEDC_BRIGHTRED;
|
467 |
|
|
zip_halt();
|
468 |
|
|
} else if ((picv & DINT(SYSINT_PPS))==0) {
|
469 |
|
|
sys->io_b.i_leds = 0x0ff;
|
470 |
|
|
sys->io_b.i_clrled[0] = LEDC_BRIGHTRED;
|
471 |
|
|
sys->io_b.i_clrled[1] = LEDC_BRIGHTRED;
|
472 |
|
|
sys->io_b.i_clrled[2] = LEDC_BRIGHTRED;
|
473 |
|
|
sys->io_b.i_clrled[3] = LEDC_WHITE;
|
474 |
|
|
zip_halt();
|
475 |
|
|
} if (picv & SYSINT_ENETRX) {
|
476 |
|
|
// This will not clear until the packet has
|
477 |
|
|
// been removed and the interface reset. For
|
478 |
|
|
// now, just double check that the interrupt
|
479 |
|
|
// has been disabled.
|
480 |
|
|
if (picv&(DINT(SYSINT_ENETRX))) {
|
481 |
|
|
zip->z_pic = DINT(SYSINT_ENETRX);
|
482 |
|
|
sys->io_b.i_leds = 0x040;
|
483 |
|
|
sys->io_b.i_clrled[2] = LEDC_GREEN;
|
484 |
|
|
}
|
485 |
|
|
} else
|
486 |
|
|
zip->z_pic = EINT(SYSINT_ENETRX);
|
487 |
|
|
if (picv & SYSINT_ENETTX) {
|
488 |
|
|
// This will also likewise not clear until a
|
489 |
|
|
// packet has been queued up for transmission.
|
490 |
|
|
// Hence, let's just disable the interrupt.
|
491 |
|
|
if (picv&(DINT(SYSINT_ENETTX)))
|
492 |
|
|
zip->z_pic = DINT(SYSINT_ENETTX);
|
493 |
|
|
} else
|
494 |
|
|
zip->z_pic = EINT(SYSINT_ENETTX);
|
495 |
|
|
// Make certain interrupts remain enabled
|
496 |
|
|
zip->z_pic = EINT(SYSINT_TMA|SYSINT_PPS);
|
497 |
|
|
|
498 |
|
|
if (picv & SYSINT_TMA) {
|
499 |
|
|
if (lastpps==1)
|
500 |
|
|
lastpps = 2;
|
501 |
|
|
else {
|
502 |
|
|
picv &= ~SYSINT_TMA;
|
503 |
|
|
lastpps = 0;
|
504 |
|
|
}
|
505 |
|
|
}
|
506 |
|
|
} while((picv & (SYSINT_TMA|SYSINT_PPS))==0);
|
507 |
|
|
if (picv & SYSINT_PPS) {
|
508 |
|
|
lastpps = 1;
|
509 |
|
|
zip->z_tma = CLOCKFREQ_HZ | TMR_INTERVAL;
|
510 |
|
|
}
|
511 |
|
|
}
|
512 |
|
|
}
|
513 |
|
|
|