OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [core/] [rtl/] [verilog/] [omsp_multiplier.v] - Blame information for rev 117

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 67 olivier.gi
//----------------------------------------------------------------------------
2 117 olivier.gi
// Copyright (C) 2009 , Olivier Girard
3 67 olivier.gi
//
4 117 olivier.gi
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions
6
// are met:
7
//     * Redistributions of source code must retain the above copyright
8
//       notice, this list of conditions and the following disclaimer.
9
//     * Redistributions in binary form must reproduce the above copyright
10
//       notice, this list of conditions and the following disclaimer in the
11
//       documentation and/or other materials provided with the distribution.
12
//     * Neither the name of the authors nor the names of its contributors
13
//       may be used to endorse or promote products derived from this software
14
//       without specific prior written permission.
15 67 olivier.gi
//
16 117 olivier.gi
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
20
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
21
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26
// THE POSSIBILITY OF SUCH DAMAGE
27 67 olivier.gi
//
28
//----------------------------------------------------------------------------
29
//
30
// *File Name: omsp_multiplier.v
31
// 
32
// *Module Description:
33
//                       16x16 Hardware multiplier.
34
//
35
// *Author(s):
36
//              - Olivier Girard,    olgirard@gmail.com
37
//
38
//----------------------------------------------------------------------------
39
// $Rev: 23 $
40
// $LastChangedBy: olivier.girard $
41
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
42
//----------------------------------------------------------------------------
43 103 olivier.gi
`ifdef OMSP_NO_INCLUDE
44
`else
45 67 olivier.gi
`include "openMSP430_defines.v"
46 103 olivier.gi
`endif
47 67 olivier.gi
 
48
module  omsp_multiplier (
49
 
50
// OUTPUTs
51
    per_dout,                       // Peripheral data output
52
 
53
// INPUTs
54
    mclk,                           // Main system clock
55
    per_addr,                       // Peripheral address
56
    per_din,                        // Peripheral data input
57
    per_en,                         // Peripheral enable (high active)
58 106 olivier.gi
    per_we,                         // Peripheral write enable (high active)
59 111 olivier.gi
    puc_rst                         // Main system reset
60 67 olivier.gi
);
61
 
62
// OUTPUTs
63
//=========
64
output       [15:0] per_dout;       // Peripheral data output
65
 
66
// INPUTs
67
//=========
68
input               mclk;           // Main system clock
69 111 olivier.gi
input        [13:0] per_addr;       // Peripheral address
70 67 olivier.gi
input        [15:0] per_din;        // Peripheral data input
71
input               per_en;         // Peripheral enable (high active)
72 106 olivier.gi
input         [1:0] per_we;         // Peripheral write enable (high active)
73 111 olivier.gi
input               puc_rst;        // Main system reset
74 67 olivier.gi
 
75
 
76
//=============================================================================
77
// 1)  PARAMETER/REGISTERS & WIRE DECLARATION
78
//=============================================================================
79
 
80 111 olivier.gi
// Register base address (must be aligned to decoder bit width)
81
parameter       [14:0] BASE_ADDR   = 15'h0130;
82 67 olivier.gi
 
83 111 olivier.gi
// Decoder bit width (defines how many bits are considered for address decoding)
84
parameter              DEC_WD      =  4;
85 67 olivier.gi
 
86 111 olivier.gi
// Register addresses offset
87
parameter [DEC_WD-1:0] OP1_MPY     = 'h0,
88
                       OP1_MPYS    = 'h2,
89
                       OP1_MAC     = 'h4,
90
                       OP1_MACS    = 'h6,
91
                       OP2         = 'h8,
92
                       RESLO       = 'hA,
93
                       RESHI       = 'hC,
94
                       SUMEXT      = 'hE;
95
 
96
// Register one-hot decoder utilities
97
parameter              DEC_SZ      =  2**DEC_WD;
98
parameter [DEC_SZ-1:0] BASE_REG    =  {{DEC_SZ-1{1'b0}}, 1'b1};
99
 
100 67 olivier.gi
// Register one-hot decoder
101 111 olivier.gi
parameter [DEC_SZ-1:0] OP1_MPY_D   = (BASE_REG << OP1_MPY),
102
                       OP1_MPYS_D  = (BASE_REG << OP1_MPYS),
103
                       OP1_MAC_D   = (BASE_REG << OP1_MAC),
104
                       OP1_MACS_D  = (BASE_REG << OP1_MACS),
105
                       OP2_D       = (BASE_REG << OP2),
106
                       RESLO_D     = (BASE_REG << RESLO),
107
                       RESHI_D     = (BASE_REG << RESHI),
108
                       SUMEXT_D    = (BASE_REG << SUMEXT);
109 67 olivier.gi
 
110
 
111
// Wire pre-declarations
112
wire  result_wr;
113
wire  result_clr;
114
wire  early_read;
115
 
116
 
117
//============================================================================
118
// 2)  REGISTER DECODER
119
//============================================================================
120
 
121 111 olivier.gi
// Local register selection
122
wire              reg_sel   =  per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
123
 
124
// Register local address
125
wire [DEC_WD-1:0] reg_addr  =  {per_addr[DEC_WD-2:0], 1'b0};
126
 
127 67 olivier.gi
// Register address decode
128 111 olivier.gi
wire [DEC_SZ-1:0] reg_dec   =  (OP1_MPY_D   &  {DEC_SZ{(reg_addr == OP1_MPY  )}})  |
129
                               (OP1_MPYS_D  &  {DEC_SZ{(reg_addr == OP1_MPYS )}})  |
130
                               (OP1_MAC_D   &  {DEC_SZ{(reg_addr == OP1_MAC  )}})  |
131
                               (OP1_MACS_D  &  {DEC_SZ{(reg_addr == OP1_MACS )}})  |
132
                               (OP2_D       &  {DEC_SZ{(reg_addr == OP2      )}})  |
133
                               (RESLO_D     &  {DEC_SZ{(reg_addr == RESLO    )}})  |
134
                               (RESHI_D     &  {DEC_SZ{(reg_addr == RESHI    )}})  |
135
                               (SUMEXT_D    &  {DEC_SZ{(reg_addr == SUMEXT   )}});
136
 
137 67 olivier.gi
// Read/Write probes
138 111 olivier.gi
wire              reg_write =  |per_we & reg_sel;
139
wire              reg_read  = ~|per_we & reg_sel;
140 67 olivier.gi
 
141
// Read/Write vectors
142 111 olivier.gi
wire [DEC_SZ-1:0] reg_wr    = reg_dec & {DEC_SZ{reg_write}};
143
wire [DEC_SZ-1:0] reg_rd    = reg_dec & {DEC_SZ{reg_read}};
144 67 olivier.gi
 
145
 
146
//============================================================================
147
// 3) REGISTERS
148
//============================================================================
149
 
150
// OP1 Register
151
//-----------------   
152
reg  [15:0] op1;
153
 
154
wire        op1_wr = reg_wr[OP1_MPY]  |
155
                     reg_wr[OP1_MPYS] |
156
                     reg_wr[OP1_MAC]  |
157
                     reg_wr[OP1_MACS];
158
 
159 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
160
  if (puc_rst)      op1 <=  16'h0000;
161 67 olivier.gi
  else if (op1_wr)  op1 <=  per_din;
162
 
163
wire [15:0] op1_rd  = op1;
164
 
165
 
166
// OP2 Register
167
//-----------------   
168
reg  [15:0] op2;
169
 
170
wire        op2_wr = reg_wr[OP2];
171
 
172 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
173
  if (puc_rst)      op2 <=  16'h0000;
174 67 olivier.gi
  else if (op2_wr)  op2 <=  per_din;
175
 
176
wire [15:0] op2_rd  = op2;
177
 
178
 
179
// RESLO Register
180
//-----------------   
181
reg  [15:0] reslo;
182
 
183
wire [15:0] reslo_nxt;
184
wire        reslo_wr = reg_wr[RESLO];
185
 
186 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
187
  if (puc_rst)         reslo <=  16'h0000;
188 67 olivier.gi
  else if (reslo_wr)   reslo <=  per_din;
189
  else if (result_clr) reslo <=  16'h0000;
190
  else if (result_wr)  reslo <=  reslo_nxt;
191
 
192
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
193
 
194
 
195
// RESHI Register
196
//-----------------   
197
reg  [15:0] reshi;
198
 
199
wire [15:0] reshi_nxt;
200
wire        reshi_wr = reg_wr[RESHI];
201
 
202 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
203
  if (puc_rst)         reshi <=  16'h0000;
204 67 olivier.gi
  else if (reshi_wr)   reshi <=  per_din;
205
  else if (result_clr) reshi <=  16'h0000;
206
  else if (result_wr)  reshi <=  reshi_nxt;
207
 
208
wire [15:0] reshi_rd = early_read ? reshi_nxt  : reshi;
209
 
210
 
211
// SUMEXT Register
212
//-----------------   
213
reg  [1:0] sumext_s;
214
 
215
wire [1:0] sumext_s_nxt;
216
 
217 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
218
  if (puc_rst)         sumext_s <=  2'b00;
219 67 olivier.gi
  else if (op2_wr)     sumext_s <=  2'b00;
220
  else if (result_wr)  sumext_s <=  sumext_s_nxt;
221
 
222
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
223
wire [15:0] sumext     = {{14{sumext_s[1]}},     sumext_s};
224
wire [15:0] sumext_rd  = early_read ? sumext_nxt : sumext;
225
 
226
 
227
//============================================================================
228
// 4) DATA OUTPUT GENERATION
229
//============================================================================
230
 
231
// Data output mux
232
wire [15:0] op1_mux    = op1_rd     & {16{reg_rd[OP1_MPY]  |
233
                                          reg_rd[OP1_MPYS] |
234
                                          reg_rd[OP1_MAC]  |
235
                                          reg_rd[OP1_MACS]}};
236
wire [15:0] op2_mux    = op2_rd     & {16{reg_rd[OP2]}};
237
wire [15:0] reslo_mux  = reslo_rd   & {16{reg_rd[RESLO]}};
238
wire [15:0] reshi_mux  = reshi_rd   & {16{reg_rd[RESHI]}};
239
wire [15:0] sumext_mux = sumext_rd  & {16{reg_rd[SUMEXT]}};
240
 
241
wire [15:0] per_dout   = op1_mux    |
242
                         op2_mux    |
243
                         reslo_mux  |
244
                         reshi_mux  |
245
                         sumext_mux;
246
 
247
 
248
//============================================================================
249
// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
250
//============================================================================
251
 
252
// Multiplier configuration
253
//--------------------------
254
 
255
// Detect signed mode
256
reg sign_sel;
257 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
258
  if (puc_rst)     sign_sel <=  1'b0;
259 67 olivier.gi
  else if (op1_wr) sign_sel <=  reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
260
 
261
 
262
// Detect accumulate mode
263
reg acc_sel;
264 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
265
  if (puc_rst)     acc_sel  <=  1'b0;
266 67 olivier.gi
  else if (op1_wr) acc_sel  <=  reg_wr[OP1_MAC]  | reg_wr[OP1_MACS];
267
 
268
 
269
// Detect whenever the RESHI and RESLO registers should be cleared
270
assign      result_clr = op2_wr & ~acc_sel;
271
 
272
// Combine RESHI & RESLO 
273
wire [31:0] result     = {reshi, reslo};
274
 
275
 
276
// 16x16 Multiplier (result computed in 1 clock cycle)
277
//-----------------------------------------------------
278
`ifdef MPY_16x16
279
 
280
// Detect start of a multiplication
281
reg cycle;
282 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
283
  if (puc_rst) cycle <=  1'b0;
284
  else         cycle <=  op2_wr;
285 67 olivier.gi
 
286
assign result_wr = cycle;
287
 
288
// Expand the operands to support signed & unsigned operations
289
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
290
wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
291
 
292
 
293
// 17x17 signed multiplication
294
wire signed [33:0] product = op1_xp * op2_xp;
295
 
296
// Accumulate
297
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
298
 
299
 
300
// Next register values
301
assign reslo_nxt    = result_nxt[15:0];
302
assign reshi_nxt    = result_nxt[31:16];
303
assign sumext_s_nxt =  sign_sel ? {2{result_nxt[31]}} :
304
                                  {1'b0, result_nxt[32]};
305
 
306
 
307
// Since the MAC is completed within 1 clock cycle,
308
// an early read can't happen.
309
assign early_read   = 1'b0;
310
 
311
 
312
// 16x8 Multiplier (result computed in 2 clock cycles)
313
//-----------------------------------------------------
314
`else
315
 
316
// Detect start of a multiplication
317
reg [1:0] cycle;
318 111 olivier.gi
always @ (posedge mclk or posedge puc_rst)
319
  if (puc_rst) cycle <=  2'b00;
320
  else         cycle <=  {cycle[0], op2_wr};
321 67 olivier.gi
 
322
assign result_wr = |cycle;
323
 
324
 
325
// Expand the operands to support signed & unsigned operations
326
wire signed [16:0] op1_xp    = {sign_sel & op1[15], op1};
327
wire signed  [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
328
wire signed  [8:0] op2_lo_xp = {              1'b0, op2[7:0]};
329
wire signed  [8:0] op2_xp    = cycle[0] ? op2_hi_xp : op2_lo_xp;
330
 
331
 
332
// 17x9 signed multiplication
333
wire signed [25:0] product    = op1_xp * op2_xp;
334
 
335
wire        [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
336
                                           {{8{sign_sel & product[23]}}, product[23:0]};
337
 
338
// Accumulate
339
wire [32:0] result_nxt  = {1'b0, result} + {1'b0, product_xp[31:0]};
340
 
341
 
342
// Next register values
343
assign reslo_nxt    = result_nxt[15:0];
344
assign reshi_nxt    = result_nxt[31:16];
345
assign sumext_s_nxt =  sign_sel ? {2{result_nxt[31]}} :
346
                                  {1'b0, result_nxt[32] | sumext_s[0]};
347
 
348
// Since the MAC is completed within 2 clock cycle,
349
// an early read can happen during the second cycle.
350
assign early_read   = cycle[1];
351
 
352
`endif
353
 
354
 
355
endmodule // omsp_multiplier
356
 
357 103 olivier.gi
`ifdef OMSP_NO_INCLUDE
358
`else
359 67 olivier.gi
`include "openMSP430_undefines.v"
360 103 olivier.gi
`endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.