1 |
221 |
olivier.gi |
//----------------------------------------------------------------------------
|
2 |
|
|
// Copyright (C) 2009 , Olivier Girard
|
3 |
|
|
//
|
4 |
|
|
// Redistribution and use in source and binary forms, with or without
|
5 |
|
|
// modification, are permitted provided that the following conditions
|
6 |
|
|
// are met:
|
7 |
|
|
// * Redistributions of source code must retain the above copyright
|
8 |
|
|
// notice, this list of conditions and the following disclaimer.
|
9 |
|
|
// * Redistributions in binary form must reproduce the above copyright
|
10 |
|
|
// notice, this list of conditions and the following disclaimer in the
|
11 |
|
|
// documentation and/or other materials provided with the distribution.
|
12 |
|
|
// * Neither the name of the authors nor the names of its contributors
|
13 |
|
|
// may be used to endorse or promote products derived from this software
|
14 |
|
|
// without specific prior written permission.
|
15 |
|
|
//
|
16 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
17 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
18 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
19 |
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
20 |
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
21 |
|
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
22 |
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
23 |
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
24 |
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
25 |
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
26 |
|
|
// THE POSSIBILITY OF SUCH DAMAGE
|
27 |
|
|
//
|
28 |
|
|
//----------------------------------------------------------------------------
|
29 |
|
|
//
|
30 |
|
|
// *File Name: omsp_multiplier.v
|
31 |
|
|
//
|
32 |
|
|
// *Module Description:
|
33 |
|
|
// 16x16 Hardware multiplier.
|
34 |
|
|
//
|
35 |
|
|
// *Author(s):
|
36 |
|
|
// - Olivier Girard, olgirard@gmail.com
|
37 |
|
|
//
|
38 |
|
|
//----------------------------------------------------------------------------
|
39 |
|
|
// $Rev: 23 $
|
40 |
|
|
// $LastChangedBy: olivier.girard $
|
41 |
|
|
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
|
42 |
|
|
//----------------------------------------------------------------------------
|
43 |
|
|
`ifdef OMSP_NO_INCLUDE
|
44 |
|
|
`else
|
45 |
|
|
`include "openMSP430_defines.v"
|
46 |
|
|
`endif
|
47 |
|
|
|
48 |
|
|
module omsp_multiplier (
|
49 |
|
|
|
50 |
|
|
// OUTPUTs
|
51 |
|
|
per_dout, // Peripheral data output
|
52 |
|
|
|
53 |
|
|
// INPUTs
|
54 |
|
|
mclk, // Main system clock
|
55 |
|
|
per_addr, // Peripheral address
|
56 |
|
|
per_din, // Peripheral data input
|
57 |
|
|
per_en, // Peripheral enable (high active)
|
58 |
|
|
per_we, // Peripheral write enable (high active)
|
59 |
|
|
puc_rst, // Main system reset
|
60 |
|
|
scan_enable // Scan enable (active during scan shifting)
|
61 |
|
|
);
|
62 |
|
|
|
63 |
|
|
// OUTPUTs
|
64 |
|
|
//=========
|
65 |
|
|
output [15:0] per_dout; // Peripheral data output
|
66 |
|
|
|
67 |
|
|
// INPUTs
|
68 |
|
|
//=========
|
69 |
|
|
input mclk; // Main system clock
|
70 |
|
|
input [13:0] per_addr; // Peripheral address
|
71 |
|
|
input [15:0] per_din; // Peripheral data input
|
72 |
|
|
input per_en; // Peripheral enable (high active)
|
73 |
|
|
input [1:0] per_we; // Peripheral write enable (high active)
|
74 |
|
|
input puc_rst; // Main system reset
|
75 |
|
|
input scan_enable; // Scan enable (active during scan shifting)
|
76 |
|
|
|
77 |
|
|
|
78 |
|
|
//=============================================================================
|
79 |
|
|
// 1) PARAMETER/REGISTERS & WIRE DECLARATION
|
80 |
|
|
//=============================================================================
|
81 |
|
|
|
82 |
|
|
// Register base address (must be aligned to decoder bit width)
|
83 |
|
|
parameter [14:0] BASE_ADDR = 15'h0130;
|
84 |
|
|
|
85 |
|
|
// Decoder bit width (defines how many bits are considered for address decoding)
|
86 |
|
|
parameter DEC_WD = 4;
|
87 |
|
|
|
88 |
|
|
// Register addresses offset
|
89 |
|
|
parameter [DEC_WD-1:0] OP1_MPY = 'h0,
|
90 |
|
|
OP1_MPYS = 'h2,
|
91 |
|
|
OP1_MAC = 'h4,
|
92 |
|
|
OP1_MACS = 'h6,
|
93 |
|
|
OP2 = 'h8,
|
94 |
|
|
RESLO = 'hA,
|
95 |
|
|
RESHI = 'hC,
|
96 |
|
|
SUMEXT = 'hE;
|
97 |
|
|
|
98 |
|
|
// Register one-hot decoder utilities
|
99 |
|
|
parameter DEC_SZ = (1 << DEC_WD);
|
100 |
|
|
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
|
101 |
|
|
|
102 |
|
|
// Register one-hot decoder
|
103 |
|
|
parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY),
|
104 |
|
|
OP1_MPYS_D = (BASE_REG << OP1_MPYS),
|
105 |
|
|
OP1_MAC_D = (BASE_REG << OP1_MAC),
|
106 |
|
|
OP1_MACS_D = (BASE_REG << OP1_MACS),
|
107 |
|
|
OP2_D = (BASE_REG << OP2),
|
108 |
|
|
RESLO_D = (BASE_REG << RESLO),
|
109 |
|
|
RESHI_D = (BASE_REG << RESHI),
|
110 |
|
|
SUMEXT_D = (BASE_REG << SUMEXT);
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
// Wire pre-declarations
|
114 |
|
|
wire result_wr;
|
115 |
|
|
wire result_clr;
|
116 |
|
|
wire early_read;
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
//============================================================================
|
120 |
|
|
// 2) REGISTER DECODER
|
121 |
|
|
//============================================================================
|
122 |
|
|
|
123 |
|
|
// Local register selection
|
124 |
|
|
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
|
125 |
|
|
|
126 |
|
|
// Register local address
|
127 |
|
|
wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
|
128 |
|
|
|
129 |
|
|
// Register address decode
|
130 |
|
|
wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) |
|
131 |
|
|
(OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) |
|
132 |
|
|
(OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) |
|
133 |
|
|
(OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) |
|
134 |
|
|
(OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) |
|
135 |
|
|
(RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) |
|
136 |
|
|
(RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) |
|
137 |
|
|
(SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}});
|
138 |
|
|
|
139 |
|
|
// Read/Write probes
|
140 |
|
|
wire reg_write = |per_we & reg_sel;
|
141 |
|
|
wire reg_read = ~|per_we & reg_sel;
|
142 |
|
|
|
143 |
|
|
// Read/Write vectors
|
144 |
|
|
wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
|
145 |
|
|
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
|
146 |
|
|
|
147 |
|
|
// Masked input data for byte access
|
148 |
|
|
wire [15:0] per_din_msk = per_din & {{8{per_we[1]}}, 8'hff};
|
149 |
|
|
|
150 |
|
|
//============================================================================
|
151 |
|
|
// 3) REGISTERS
|
152 |
|
|
//============================================================================
|
153 |
|
|
|
154 |
|
|
// OP1 Register
|
155 |
|
|
//-----------------
|
156 |
|
|
reg [15:0] op1;
|
157 |
|
|
|
158 |
|
|
wire op1_wr = reg_wr[OP1_MPY] |
|
159 |
|
|
reg_wr[OP1_MPYS] |
|
160 |
|
|
reg_wr[OP1_MAC] |
|
161 |
|
|
reg_wr[OP1_MACS];
|
162 |
|
|
|
163 |
|
|
`ifdef CLOCK_GATING
|
164 |
|
|
wire mclk_op1;
|
165 |
|
|
omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1),
|
166 |
|
|
.clk (mclk), .enable(op1_wr), .scan_enable(scan_enable));
|
167 |
|
|
`else
|
168 |
|
|
wire UNUSED_scan_enable = scan_enable;
|
169 |
|
|
wire mclk_op1 = mclk;
|
170 |
|
|
`endif
|
171 |
|
|
|
172 |
|
|
always @ (posedge mclk_op1 or posedge puc_rst)
|
173 |
|
|
if (puc_rst) op1 <= 16'h0000;
|
174 |
|
|
`ifdef CLOCK_GATING
|
175 |
|
|
else op1 <= per_din_msk;
|
176 |
|
|
`else
|
177 |
|
|
else if (op1_wr) op1 <= per_din_msk;
|
178 |
|
|
`endif
|
179 |
|
|
|
180 |
|
|
wire [15:0] op1_rd = op1;
|
181 |
|
|
|
182 |
|
|
|
183 |
|
|
// OP2 Register
|
184 |
|
|
//-----------------
|
185 |
|
|
reg [15:0] op2;
|
186 |
|
|
|
187 |
|
|
wire op2_wr = reg_wr[OP2];
|
188 |
|
|
|
189 |
|
|
`ifdef CLOCK_GATING
|
190 |
|
|
wire mclk_op2;
|
191 |
|
|
omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2),
|
192 |
|
|
.clk (mclk), .enable(op2_wr), .scan_enable(scan_enable));
|
193 |
|
|
`else
|
194 |
|
|
wire mclk_op2 = mclk;
|
195 |
|
|
`endif
|
196 |
|
|
|
197 |
|
|
always @ (posedge mclk_op2 or posedge puc_rst)
|
198 |
|
|
if (puc_rst) op2 <= 16'h0000;
|
199 |
|
|
`ifdef CLOCK_GATING
|
200 |
|
|
else op2 <= per_din_msk;
|
201 |
|
|
`else
|
202 |
|
|
else if (op2_wr) op2 <= per_din_msk;
|
203 |
|
|
`endif
|
204 |
|
|
|
205 |
|
|
wire [15:0] op2_rd = op2;
|
206 |
|
|
|
207 |
|
|
|
208 |
|
|
// RESLO Register
|
209 |
|
|
//-----------------
|
210 |
|
|
reg [15:0] reslo;
|
211 |
|
|
|
212 |
|
|
wire [15:0] reslo_nxt;
|
213 |
|
|
wire reslo_wr = reg_wr[RESLO];
|
214 |
|
|
|
215 |
|
|
`ifdef CLOCK_GATING
|
216 |
|
|
wire reslo_en = reslo_wr | result_clr | result_wr;
|
217 |
|
|
wire mclk_reslo;
|
218 |
|
|
omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo),
|
219 |
|
|
.clk (mclk), .enable(reslo_en), .scan_enable(scan_enable));
|
220 |
|
|
`else
|
221 |
|
|
wire mclk_reslo = mclk;
|
222 |
|
|
`endif
|
223 |
|
|
|
224 |
|
|
always @ (posedge mclk_reslo or posedge puc_rst)
|
225 |
|
|
if (puc_rst) reslo <= 16'h0000;
|
226 |
|
|
else if (reslo_wr) reslo <= per_din_msk;
|
227 |
|
|
else if (result_clr) reslo <= 16'h0000;
|
228 |
|
|
`ifdef CLOCK_GATING
|
229 |
|
|
else reslo <= reslo_nxt;
|
230 |
|
|
`else
|
231 |
|
|
else if (result_wr) reslo <= reslo_nxt;
|
232 |
|
|
`endif
|
233 |
|
|
|
234 |
|
|
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
// RESHI Register
|
238 |
|
|
//-----------------
|
239 |
|
|
reg [15:0] reshi;
|
240 |
|
|
|
241 |
|
|
wire [15:0] reshi_nxt;
|
242 |
|
|
wire reshi_wr = reg_wr[RESHI];
|
243 |
|
|
|
244 |
|
|
`ifdef CLOCK_GATING
|
245 |
|
|
wire reshi_en = reshi_wr | result_clr | result_wr;
|
246 |
|
|
wire mclk_reshi;
|
247 |
|
|
omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi),
|
248 |
|
|
.clk (mclk), .enable(reshi_en), .scan_enable(scan_enable));
|
249 |
|
|
`else
|
250 |
|
|
wire mclk_reshi = mclk;
|
251 |
|
|
`endif
|
252 |
|
|
|
253 |
|
|
always @ (posedge mclk_reshi or posedge puc_rst)
|
254 |
|
|
if (puc_rst) reshi <= 16'h0000;
|
255 |
|
|
else if (reshi_wr) reshi <= per_din_msk;
|
256 |
|
|
else if (result_clr) reshi <= 16'h0000;
|
257 |
|
|
`ifdef CLOCK_GATING
|
258 |
|
|
else reshi <= reshi_nxt;
|
259 |
|
|
`else
|
260 |
|
|
else if (result_wr) reshi <= reshi_nxt;
|
261 |
|
|
`endif
|
262 |
|
|
|
263 |
|
|
wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi;
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
// SUMEXT Register
|
267 |
|
|
//-----------------
|
268 |
|
|
reg [1:0] sumext_s;
|
269 |
|
|
|
270 |
|
|
wire [1:0] sumext_s_nxt;
|
271 |
|
|
|
272 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
273 |
|
|
if (puc_rst) sumext_s <= 2'b00;
|
274 |
|
|
else if (op2_wr) sumext_s <= 2'b00;
|
275 |
|
|
else if (result_wr) sumext_s <= sumext_s_nxt;
|
276 |
|
|
|
277 |
|
|
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
|
278 |
|
|
wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s};
|
279 |
|
|
wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext;
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
//============================================================================
|
283 |
|
|
// 4) DATA OUTPUT GENERATION
|
284 |
|
|
//============================================================================
|
285 |
|
|
|
286 |
|
|
// Data output mux
|
287 |
|
|
wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] |
|
288 |
|
|
reg_rd[OP1_MPYS] |
|
289 |
|
|
reg_rd[OP1_MAC] |
|
290 |
|
|
reg_rd[OP1_MACS]}};
|
291 |
|
|
wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}};
|
292 |
|
|
wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}};
|
293 |
|
|
wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}};
|
294 |
|
|
wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}};
|
295 |
|
|
|
296 |
|
|
wire [15:0] per_dout = op1_mux |
|
297 |
|
|
op2_mux |
|
298 |
|
|
reslo_mux |
|
299 |
|
|
reshi_mux |
|
300 |
|
|
sumext_mux;
|
301 |
|
|
|
302 |
|
|
|
303 |
|
|
//============================================================================
|
304 |
|
|
// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
|
305 |
|
|
//============================================================================
|
306 |
|
|
|
307 |
|
|
// Multiplier configuration
|
308 |
|
|
//--------------------------
|
309 |
|
|
|
310 |
|
|
// Detect signed mode
|
311 |
|
|
reg sign_sel;
|
312 |
|
|
always @ (posedge mclk_op1 or posedge puc_rst)
|
313 |
|
|
if (puc_rst) sign_sel <= 1'b0;
|
314 |
|
|
`ifdef CLOCK_GATING
|
315 |
|
|
else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
|
316 |
|
|
`else
|
317 |
|
|
else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
|
318 |
|
|
`endif
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
// Detect accumulate mode
|
322 |
|
|
reg acc_sel;
|
323 |
|
|
always @ (posedge mclk_op1 or posedge puc_rst)
|
324 |
|
|
if (puc_rst) acc_sel <= 1'b0;
|
325 |
|
|
`ifdef CLOCK_GATING
|
326 |
|
|
else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
|
327 |
|
|
`else
|
328 |
|
|
else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
|
329 |
|
|
`endif
|
330 |
|
|
|
331 |
|
|
|
332 |
|
|
// Detect whenever the RESHI and RESLO registers should be cleared
|
333 |
|
|
assign result_clr = op2_wr & ~acc_sel;
|
334 |
|
|
|
335 |
|
|
// Combine RESHI & RESLO
|
336 |
|
|
wire [31:0] result = {reshi, reslo};
|
337 |
|
|
|
338 |
|
|
|
339 |
|
|
// 16x16 Multiplier (result computed in 1 clock cycle)
|
340 |
|
|
//-----------------------------------------------------
|
341 |
|
|
`ifdef MPY_16x16
|
342 |
|
|
|
343 |
|
|
// Detect start of a multiplication
|
344 |
|
|
reg cycle;
|
345 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
346 |
|
|
if (puc_rst) cycle <= 1'b0;
|
347 |
|
|
else cycle <= op2_wr;
|
348 |
|
|
|
349 |
|
|
assign result_wr = cycle;
|
350 |
|
|
|
351 |
|
|
// Expand the operands to support signed & unsigned operations
|
352 |
|
|
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
|
353 |
|
|
wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
// 17x17 signed multiplication
|
357 |
|
|
wire signed [33:0] product = op1_xp * op2_xp;
|
358 |
|
|
|
359 |
|
|
// Accumulate
|
360 |
|
|
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
|
361 |
|
|
|
362 |
|
|
|
363 |
|
|
// Next register values
|
364 |
|
|
assign reslo_nxt = result_nxt[15:0];
|
365 |
|
|
assign reshi_nxt = result_nxt[31:16];
|
366 |
|
|
assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
|
367 |
|
|
{1'b0, result_nxt[32]};
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
// Since the MAC is completed within 1 clock cycle,
|
371 |
|
|
// an early read can't happen.
|
372 |
|
|
assign early_read = 1'b0;
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
// 16x8 Multiplier (result computed in 2 clock cycles)
|
376 |
|
|
//-----------------------------------------------------
|
377 |
|
|
`else
|
378 |
|
|
|
379 |
|
|
// Detect start of a multiplication
|
380 |
|
|
reg [1:0] cycle;
|
381 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
382 |
|
|
if (puc_rst) cycle <= 2'b00;
|
383 |
|
|
else cycle <= {cycle[0], op2_wr};
|
384 |
|
|
|
385 |
|
|
assign result_wr = |cycle;
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
// Expand the operands to support signed & unsigned operations
|
389 |
|
|
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
|
390 |
|
|
wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
|
391 |
|
|
wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]};
|
392 |
|
|
wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp;
|
393 |
|
|
|
394 |
|
|
|
395 |
|
|
// 17x9 signed multiplication
|
396 |
|
|
wire signed [25:0] product = op1_xp * op2_xp;
|
397 |
|
|
|
398 |
|
|
wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
|
399 |
|
|
{{8{sign_sel & product[23]}}, product[23:0]};
|
400 |
|
|
|
401 |
|
|
// Accumulate
|
402 |
|
|
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]};
|
403 |
|
|
|
404 |
|
|
|
405 |
|
|
// Next register values
|
406 |
|
|
assign reslo_nxt = result_nxt[15:0];
|
407 |
|
|
assign reshi_nxt = result_nxt[31:16];
|
408 |
|
|
assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
|
409 |
|
|
{1'b0, result_nxt[32] | sumext_s[0]};
|
410 |
|
|
|
411 |
|
|
// Since the MAC is completed within 2 clock cycle,
|
412 |
|
|
// an early read can happen during the second cycle.
|
413 |
|
|
assign early_read = cycle[1];
|
414 |
|
|
|
415 |
|
|
`endif
|
416 |
|
|
|
417 |
|
|
|
418 |
|
|
endmodule // omsp_multiplier
|
419 |
|
|
|
420 |
|
|
`ifdef OMSP_NO_INCLUDE
|
421 |
|
|
`else
|
422 |
|
|
`include "openMSP430_undefines.v"
|
423 |
|
|
`endif
|