1 |
157 |
olivier.gi |
//----------------------------------------------------------------------------
|
2 |
|
|
// Copyright (C) 2009 , Olivier Girard
|
3 |
|
|
//
|
4 |
|
|
// Redistribution and use in source and binary forms, with or without
|
5 |
|
|
// modification, are permitted provided that the following conditions
|
6 |
|
|
// are met:
|
7 |
|
|
// * Redistributions of source code must retain the above copyright
|
8 |
|
|
// notice, this list of conditions and the following disclaimer.
|
9 |
|
|
// * Redistributions in binary form must reproduce the above copyright
|
10 |
|
|
// notice, this list of conditions and the following disclaimer in the
|
11 |
|
|
// documentation and/or other materials provided with the distribution.
|
12 |
|
|
// * Neither the name of the authors nor the names of its contributors
|
13 |
|
|
// may be used to endorse or promote products derived from this software
|
14 |
|
|
// without specific prior written permission.
|
15 |
|
|
//
|
16 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
17 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
18 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
19 |
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
20 |
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
21 |
|
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
22 |
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
23 |
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
24 |
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
25 |
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
26 |
|
|
// THE POSSIBILITY OF SUCH DAMAGE
|
27 |
|
|
//
|
28 |
|
|
//----------------------------------------------------------------------------
|
29 |
|
|
//
|
30 |
|
|
// *File Name: omsp_frontend.v
|
31 |
202 |
olivier.gi |
//
|
32 |
157 |
olivier.gi |
// *Module Description:
|
33 |
|
|
// openMSP430 Instruction fetch and decode unit
|
34 |
|
|
//
|
35 |
|
|
// *Author(s):
|
36 |
|
|
// - Olivier Girard, olgirard@gmail.com
|
37 |
|
|
//
|
38 |
|
|
//----------------------------------------------------------------------------
|
39 |
202 |
olivier.gi |
// $Rev: 103 $
|
40 |
157 |
olivier.gi |
// $LastChangedBy: olivier.girard $
|
41 |
202 |
olivier.gi |
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
|
42 |
157 |
olivier.gi |
//----------------------------------------------------------------------------
|
43 |
|
|
`ifdef OMSP_NO_INCLUDE
|
44 |
|
|
`else
|
45 |
|
|
`include "openMSP430_defines.v"
|
46 |
|
|
`endif
|
47 |
|
|
|
48 |
|
|
module omsp_frontend (
|
49 |
|
|
|
50 |
|
|
// OUTPUTs
|
51 |
202 |
olivier.gi |
cpu_halt_st, // Halt/Run status from CPU
|
52 |
|
|
decode_noirq, // Frontend decode instruction
|
53 |
|
|
e_state, // Execution state
|
54 |
|
|
exec_done, // Execution completed
|
55 |
|
|
inst_ad, // Decoded Inst: destination addressing mode
|
56 |
|
|
inst_as, // Decoded Inst: source addressing mode
|
57 |
|
|
inst_alu, // ALU control signals
|
58 |
|
|
inst_bw, // Decoded Inst: byte width
|
59 |
|
|
inst_dest, // Decoded Inst: destination (one hot)
|
60 |
|
|
inst_dext, // Decoded Inst: destination extended instruction word
|
61 |
|
|
inst_irq_rst, // Decoded Inst: Reset interrupt
|
62 |
|
|
inst_jmp, // Decoded Inst: Conditional jump
|
63 |
|
|
inst_mov, // Decoded Inst: mov instruction
|
64 |
|
|
inst_sext, // Decoded Inst: source extended instruction word
|
65 |
|
|
inst_so, // Decoded Inst: Single-operand arithmetic
|
66 |
|
|
inst_src, // Decoded Inst: source (one hot)
|
67 |
|
|
inst_type, // Decoded Instruction type
|
68 |
|
|
irq_acc, // Interrupt request accepted (one-hot signal)
|
69 |
|
|
mab, // Frontend Memory address bus
|
70 |
|
|
mb_en, // Frontend Memory bus enable
|
71 |
|
|
mclk_dma_enable, // DMA Sub-System Clock enable
|
72 |
|
|
mclk_dma_wkup, // DMA Sub-System Clock wake-up (asynchronous)
|
73 |
|
|
mclk_enable, // Main System Clock enable
|
74 |
|
|
mclk_wkup, // Main System Clock wake-up (asynchronous)
|
75 |
|
|
nmi_acc, // Non-Maskable interrupt request accepted
|
76 |
|
|
pc, // Program counter
|
77 |
|
|
pc_nxt, // Next PC value (for CALL & IRQ)
|
78 |
157 |
olivier.gi |
|
79 |
|
|
// INPUTs
|
80 |
202 |
olivier.gi |
cpu_en_s, // Enable CPU code execution (synchronous)
|
81 |
|
|
cpu_halt_cmd, // Halt CPU command
|
82 |
|
|
cpuoff, // Turns off the CPU
|
83 |
|
|
dbg_reg_sel, // Debug selected register for rd/wr access
|
84 |
|
|
dma_en, // Direct Memory Access enable (high active)
|
85 |
|
|
dma_wkup, // DMA Sub-System Wake-up (asynchronous and non-glitchy)
|
86 |
|
|
fe_pmem_wait, // Frontend wait for Instruction fetch
|
87 |
|
|
gie, // General interrupt enable
|
88 |
|
|
irq, // Maskable interrupts
|
89 |
|
|
mclk, // Main system clock
|
90 |
|
|
mdb_in, // Frontend Memory data bus input
|
91 |
|
|
nmi_pnd, // Non-maskable interrupt pending
|
92 |
|
|
nmi_wkup, // NMI Wakeup
|
93 |
|
|
pc_sw, // Program counter software value
|
94 |
|
|
pc_sw_wr, // Program counter software write
|
95 |
|
|
puc_rst, // Main system reset
|
96 |
|
|
scan_enable, // Scan enable (active during scan shifting)
|
97 |
|
|
wdt_irq, // Watchdog-timer interrupt
|
98 |
|
|
wdt_wkup, // Watchdog Wakeup
|
99 |
|
|
wkup // System Wake-up (asynchronous)
|
100 |
157 |
olivier.gi |
);
|
101 |
|
|
|
102 |
|
|
// OUTPUTs
|
103 |
|
|
//=========
|
104 |
202 |
olivier.gi |
output cpu_halt_st; // Halt/Run status from CPU
|
105 |
|
|
output decode_noirq; // Frontend decode instruction
|
106 |
|
|
output [3:0] e_state; // Execution state
|
107 |
|
|
output exec_done; // Execution completed
|
108 |
|
|
output [7:0] inst_ad; // Decoded Inst: destination addressing mode
|
109 |
|
|
output [7:0] inst_as; // Decoded Inst: source addressing mode
|
110 |
|
|
output [11:0] inst_alu; // ALU control signals
|
111 |
|
|
output inst_bw; // Decoded Inst: byte width
|
112 |
|
|
output [15:0] inst_dest; // Decoded Inst: destination (one hot)
|
113 |
|
|
output [15:0] inst_dext; // Decoded Inst: destination extended instruction word
|
114 |
|
|
output inst_irq_rst; // Decoded Inst: Reset interrupt
|
115 |
|
|
output [7:0] inst_jmp; // Decoded Inst: Conditional jump
|
116 |
|
|
output inst_mov; // Decoded Inst: mov instruction
|
117 |
|
|
output [15:0] inst_sext; // Decoded Inst: source extended instruction word
|
118 |
|
|
output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
|
119 |
|
|
output [15:0] inst_src; // Decoded Inst: source (one hot)
|
120 |
|
|
output [2:0] inst_type; // Decoded Instruction type
|
121 |
|
|
output [`IRQ_NR-3:0] irq_acc; // Interrupt request accepted (one-hot signal)
|
122 |
|
|
output [15:0] mab; // Frontend Memory address bus
|
123 |
|
|
output mb_en; // Frontend Memory bus enable
|
124 |
|
|
output mclk_dma_enable; // DMA Sub-System Clock enable
|
125 |
|
|
output mclk_dma_wkup; // DMA Sub-System Clock wake-up (asynchronous)
|
126 |
|
|
output mclk_enable; // Main System Clock enable
|
127 |
|
|
output mclk_wkup; // Main System Clock wake-up (asynchronous)
|
128 |
|
|
output nmi_acc; // Non-Maskable interrupt request accepted
|
129 |
|
|
output [15:0] pc; // Program counter
|
130 |
|
|
output [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
|
131 |
157 |
olivier.gi |
|
132 |
|
|
// INPUTs
|
133 |
|
|
//=========
|
134 |
202 |
olivier.gi |
input cpu_en_s; // Enable CPU code execution (synchronous)
|
135 |
|
|
input cpu_halt_cmd; // Halt CPU command
|
136 |
|
|
input cpuoff; // Turns off the CPU
|
137 |
|
|
input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access
|
138 |
|
|
input dma_en; // Direct Memory Access enable (high active)
|
139 |
|
|
input dma_wkup; // DMA Sub-System Wake-up (asynchronous and non-glitchy)
|
140 |
|
|
input fe_pmem_wait; // Frontend wait for Instruction fetch
|
141 |
|
|
input gie; // General interrupt enable
|
142 |
|
|
input [`IRQ_NR-3:0] irq; // Maskable interrupts
|
143 |
|
|
input mclk; // Main system clock
|
144 |
|
|
input [15:0] mdb_in; // Frontend Memory data bus input
|
145 |
|
|
input nmi_pnd; // Non-maskable interrupt pending
|
146 |
|
|
input nmi_wkup; // NMI Wakeup
|
147 |
|
|
input [15:0] pc_sw; // Program counter software value
|
148 |
|
|
input pc_sw_wr; // Program counter software write
|
149 |
|
|
input puc_rst; // Main system reset
|
150 |
|
|
input scan_enable; // Scan enable (active during scan shifting)
|
151 |
|
|
input wdt_irq; // Watchdog-timer interrupt
|
152 |
|
|
input wdt_wkup; // Watchdog Wakeup
|
153 |
|
|
input wkup; // System Wake-up (asynchronous)
|
154 |
157 |
olivier.gi |
|
155 |
|
|
|
156 |
|
|
//=============================================================================
|
157 |
|
|
// 1) UTILITY FUNCTIONS
|
158 |
|
|
//=============================================================================
|
159 |
|
|
|
160 |
193 |
olivier.gi |
// 64 bits one-hot decoder
|
161 |
|
|
function [63:0] one_hot64;
|
162 |
|
|
input [5:0] binary;
|
163 |
|
|
begin
|
164 |
|
|
one_hot64 = 64'h0000_0000_0000_0000;
|
165 |
|
|
one_hot64[binary] = 1'b1;
|
166 |
|
|
end
|
167 |
|
|
endfunction
|
168 |
|
|
|
169 |
157 |
olivier.gi |
// 16 bits one-hot decoder
|
170 |
|
|
function [15:0] one_hot16;
|
171 |
|
|
input [3:0] binary;
|
172 |
|
|
begin
|
173 |
|
|
one_hot16 = 16'h0000;
|
174 |
|
|
one_hot16[binary] = 1'b1;
|
175 |
|
|
end
|
176 |
|
|
endfunction
|
177 |
193 |
olivier.gi |
|
178 |
157 |
olivier.gi |
// 8 bits one-hot decoder
|
179 |
|
|
function [7:0] one_hot8;
|
180 |
|
|
input [2:0] binary;
|
181 |
|
|
begin
|
182 |
|
|
one_hot8 = 8'h00;
|
183 |
|
|
one_hot8[binary] = 1'b1;
|
184 |
|
|
end
|
185 |
|
|
endfunction
|
186 |
193 |
olivier.gi |
|
187 |
|
|
// Get IRQ number
|
188 |
|
|
function [5:0] get_irq_num;
|
189 |
|
|
input [62:0] irq_all;
|
190 |
|
|
integer ii;
|
191 |
|
|
begin
|
192 |
|
|
get_irq_num = 6'h3f;
|
193 |
|
|
for (ii = 62; ii >= 0; ii = ii - 1)
|
194 |
|
|
if (&get_irq_num & irq_all[ii]) get_irq_num = ii[5:0];
|
195 |
|
|
end
|
196 |
|
|
endfunction
|
197 |
157 |
olivier.gi |
|
198 |
202 |
olivier.gi |
|
199 |
157 |
olivier.gi |
//=============================================================================
|
200 |
|
|
// 2) PARAMETER DEFINITIONS
|
201 |
|
|
//=============================================================================
|
202 |
|
|
|
203 |
|
|
//
|
204 |
|
|
// 2.1) Instruction State machine definitons
|
205 |
|
|
//-------------------------------------------
|
206 |
|
|
|
207 |
|
|
parameter I_IRQ_FETCH = `I_IRQ_FETCH;
|
208 |
|
|
parameter I_IRQ_DONE = `I_IRQ_DONE;
|
209 |
|
|
parameter I_DEC = `I_DEC; // New instruction ready for decode
|
210 |
|
|
parameter I_EXT1 = `I_EXT1; // 1st Extension word
|
211 |
|
|
parameter I_EXT2 = `I_EXT2; // 2nd Extension word
|
212 |
|
|
parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode
|
213 |
|
|
|
214 |
|
|
//
|
215 |
|
|
// 2.2) Execution State machine definitons
|
216 |
|
|
//-------------------------------------------
|
217 |
|
|
|
218 |
|
|
parameter E_IRQ_0 = `E_IRQ_0;
|
219 |
|
|
parameter E_IRQ_1 = `E_IRQ_1;
|
220 |
|
|
parameter E_IRQ_2 = `E_IRQ_2;
|
221 |
|
|
parameter E_IRQ_3 = `E_IRQ_3;
|
222 |
|
|
parameter E_IRQ_4 = `E_IRQ_4;
|
223 |
|
|
parameter E_SRC_AD = `E_SRC_AD;
|
224 |
|
|
parameter E_SRC_RD = `E_SRC_RD;
|
225 |
|
|
parameter E_SRC_WR = `E_SRC_WR;
|
226 |
|
|
parameter E_DST_AD = `E_DST_AD;
|
227 |
|
|
parameter E_DST_RD = `E_DST_RD;
|
228 |
|
|
parameter E_DST_WR = `E_DST_WR;
|
229 |
|
|
parameter E_EXEC = `E_EXEC;
|
230 |
|
|
parameter E_JUMP = `E_JUMP;
|
231 |
|
|
parameter E_IDLE = `E_IDLE;
|
232 |
|
|
|
233 |
|
|
|
234 |
|
|
//=============================================================================
|
235 |
|
|
// 3) FRONTEND STATE MACHINE
|
236 |
|
|
//=============================================================================
|
237 |
|
|
|
238 |
|
|
// The wire "conv" is used as state bits to calculate the next response
|
239 |
|
|
reg [2:0] i_state;
|
240 |
|
|
reg [2:0] i_state_nxt;
|
241 |
|
|
|
242 |
|
|
reg [1:0] inst_sz;
|
243 |
|
|
wire [1:0] inst_sz_nxt;
|
244 |
|
|
wire irq_detect;
|
245 |
|
|
wire [2:0] inst_type_nxt;
|
246 |
|
|
wire is_const;
|
247 |
|
|
reg [15:0] sconst_nxt;
|
248 |
|
|
reg [3:0] e_state_nxt;
|
249 |
202 |
olivier.gi |
|
250 |
|
|
// CPU on/off through an external interface (debug or mstr) or cpu_en port
|
251 |
|
|
wire cpu_halt_req = cpu_halt_cmd | ~cpu_en_s;
|
252 |
|
|
|
253 |
157 |
olivier.gi |
// States Transitions
|
254 |
|
|
always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or
|
255 |
202 |
olivier.gi |
irq_detect or cpuoff or cpu_halt_req or e_state)
|
256 |
157 |
olivier.gi |
case(i_state)
|
257 |
202 |
olivier.gi |
I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_req) ? I_IRQ_FETCH :
|
258 |
|
|
(~cpuoff & ~cpu_halt_req) ? I_DEC : I_IDLE;
|
259 |
157 |
olivier.gi |
I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;
|
260 |
|
|
I_IRQ_DONE : i_state_nxt = I_DEC;
|
261 |
|
|
I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH :
|
262 |
202 |
olivier.gi |
(cpuoff | cpu_halt_req) & exec_done ? I_IDLE :
|
263 |
|
|
cpu_halt_req & (e_state==E_IDLE) ? I_IDLE :
|
264 |
157 |
olivier.gi |
pc_sw_wr ? I_DEC :
|
265 |
|
|
~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state
|
266 |
|
|
(inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed
|
267 |
202 |
olivier.gi |
I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC :
|
268 |
157 |
olivier.gi |
(inst_sz!=2'b01) ? I_EXT2 : I_DEC;
|
269 |
|
|
I_EXT2 : i_state_nxt = I_DEC;
|
270 |
|
|
// pragma coverage off
|
271 |
|
|
default : i_state_nxt = I_IRQ_FETCH;
|
272 |
|
|
// pragma coverage on
|
273 |
|
|
endcase
|
274 |
|
|
|
275 |
|
|
// State machine
|
276 |
|
|
always @(posedge mclk or posedge puc_rst)
|
277 |
|
|
if (puc_rst) i_state <= I_IRQ_FETCH;
|
278 |
|
|
else i_state <= i_state_nxt;
|
279 |
|
|
|
280 |
|
|
// Utility signals
|
281 |
|
|
wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE)));
|
282 |
|
|
wire decode = decode_noirq | irq_detect;
|
283 |
|
|
wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE);
|
284 |
|
|
|
285 |
202 |
olivier.gi |
// Halt/Run CPU status
|
286 |
|
|
reg cpu_halt_st;
|
287 |
157 |
olivier.gi |
always @(posedge mclk or posedge puc_rst)
|
288 |
202 |
olivier.gi |
if (puc_rst) cpu_halt_st <= 1'b0;
|
289 |
|
|
else cpu_halt_st <= cpu_halt_req & (i_state_nxt==I_IDLE);
|
290 |
157 |
olivier.gi |
|
291 |
|
|
|
292 |
|
|
//=============================================================================
|
293 |
|
|
// 4) INTERRUPT HANDLING & SYSTEM WAKEUP
|
294 |
|
|
//=============================================================================
|
295 |
|
|
|
296 |
|
|
//
|
297 |
|
|
// 4.1) INTERRUPT HANDLING
|
298 |
|
|
//-----------------------------------------
|
299 |
|
|
|
300 |
|
|
// Detect reset interrupt
|
301 |
|
|
reg inst_irq_rst;
|
302 |
|
|
always @(posedge mclk or posedge puc_rst)
|
303 |
|
|
if (puc_rst) inst_irq_rst <= 1'b1;
|
304 |
|
|
else if (exec_done) inst_irq_rst <= 1'b0;
|
305 |
|
|
|
306 |
|
|
// Detect other interrupts
|
307 |
202 |
olivier.gi |
assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_req & ~cpu_halt_st & (exec_done | (i_state==I_IDLE));
|
308 |
157 |
olivier.gi |
|
309 |
|
|
`ifdef CLOCK_GATING
|
310 |
|
|
wire mclk_irq_num;
|
311 |
|
|
omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num),
|
312 |
|
|
.clk (mclk), .enable(irq_detect), .scan_enable(scan_enable));
|
313 |
|
|
`else
|
314 |
202 |
olivier.gi |
wire UNUSED_scan_enable = scan_enable;
|
315 |
|
|
wire mclk_irq_num = mclk;
|
316 |
157 |
olivier.gi |
`endif
|
317 |
|
|
|
318 |
193 |
olivier.gi |
// Combine all IRQs
|
319 |
|
|
`ifdef IRQ_16
|
320 |
|
|
wire [62:0] irq_all = {nmi_pnd, irq, 48'h0000_0000_0000} |
|
321 |
|
|
`else
|
322 |
|
|
`ifdef IRQ_32
|
323 |
202 |
olivier.gi |
wire [62:0] irq_all = {nmi_pnd, irq, 32'h0000_0000} |
|
324 |
193 |
olivier.gi |
`else
|
325 |
|
|
`ifdef IRQ_64
|
326 |
|
|
wire [62:0] irq_all = {nmi_pnd, irq} |
|
327 |
|
|
`endif
|
328 |
|
|
`endif
|
329 |
|
|
`endif
|
330 |
|
|
{1'b0, 3'h0, wdt_irq, {58{1'b0}}};
|
331 |
|
|
|
332 |
|
|
// Select highest priority IRQ
|
333 |
|
|
reg [5:0] irq_num;
|
334 |
157 |
olivier.gi |
always @(posedge mclk_irq_num or posedge puc_rst)
|
335 |
193 |
olivier.gi |
if (puc_rst) irq_num <= 6'h3f;
|
336 |
157 |
olivier.gi |
`ifdef CLOCK_GATING
|
337 |
193 |
olivier.gi |
else
|
338 |
157 |
olivier.gi |
`else
|
339 |
193 |
olivier.gi |
else if (irq_detect)
|
340 |
157 |
olivier.gi |
`endif
|
341 |
193 |
olivier.gi |
irq_num <= get_irq_num(irq_all);
|
342 |
157 |
olivier.gi |
|
343 |
193 |
olivier.gi |
// Generate selected IRQ vector address
|
344 |
|
|
wire [15:0] irq_addr = {9'h1ff, irq_num, 1'b0};
|
345 |
157 |
olivier.gi |
|
346 |
|
|
// Interrupt request accepted
|
347 |
193 |
olivier.gi |
wire [63:0] irq_acc_all = one_hot64(irq_num) & {64{(i_state==I_IRQ_FETCH)}};
|
348 |
|
|
wire [`IRQ_NR-3:0] irq_acc = irq_acc_all[61:64-`IRQ_NR];
|
349 |
|
|
wire nmi_acc = irq_acc_all[62];
|
350 |
157 |
olivier.gi |
|
351 |
|
|
//
|
352 |
|
|
// 4.2) SYSTEM WAKEUP
|
353 |
|
|
//-----------------------------------------
|
354 |
|
|
`ifdef CPUOFF_EN
|
355 |
|
|
|
356 |
|
|
// Generate the main system clock enable signal
|
357 |
|
|
// Keep the clock running if:
|
358 |
|
|
wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing
|
359 |
|
|
// and if the CPU is enabled
|
360 |
|
|
// otherwise if:
|
361 |
|
|
~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction
|
362 |
|
|
(i_state==I_IDLE) & // and execution state machines are all two
|
363 |
|
|
(e_state==E_IDLE)); // not idle.
|
364 |
|
|
|
365 |
202 |
olivier.gi |
|
366 |
157 |
olivier.gi |
// Wakeup condition from maskable interrupts
|
367 |
|
|
wire mirq_wkup;
|
368 |
202 |
olivier.gi |
omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie));
|
369 |
157 |
olivier.gi |
|
370 |
|
|
// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled)
|
371 |
202 |
olivier.gi |
omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s));
|
372 |
157 |
olivier.gi |
|
373 |
202 |
olivier.gi |
// Wakeup condition from DMA interface
|
374 |
|
|
`ifdef DMA_IF_EN
|
375 |
|
|
wire mclk_dma_enable = dma_en & cpu_en_s;
|
376 |
|
|
omsp_and_gate and_mclk_dma_wkup (.y(mclk_dma_wkup), .a(dma_wkup), .b(cpu_en_s));
|
377 |
|
|
`else
|
378 |
|
|
assign mclk_dma_wkup = 1'b0;
|
379 |
|
|
assign mclk_dma_enable = 1'b0;
|
380 |
|
|
wire UNUSED_dma_en = dma_en;
|
381 |
|
|
wire UNUSED_dma_wkup = dma_wkup;
|
382 |
|
|
`endif
|
383 |
157 |
olivier.gi |
`else
|
384 |
|
|
|
385 |
|
|
// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1
|
386 |
202 |
olivier.gi |
assign mclk_dma_wkup = 1'b1;
|
387 |
|
|
assign mclk_dma_enable = 1'b1;
|
388 |
|
|
assign mclk_wkup = 1'b1;
|
389 |
|
|
assign mclk_enable = 1'b1;
|
390 |
|
|
wire UNUSED_dma_en = dma_en;
|
391 |
|
|
wire UNUSED_wkup = wkup;
|
392 |
|
|
wire UNUSED_wdt_wkup = wdt_wkup;
|
393 |
|
|
wire UNUSED_nmi_wkup = nmi_wkup;
|
394 |
|
|
wire UNUSED_dma_wkup = dma_wkup;
|
395 |
157 |
olivier.gi |
`endif
|
396 |
|
|
|
397 |
|
|
//=============================================================================
|
398 |
|
|
// 5) FETCH INSTRUCTION
|
399 |
|
|
//=============================================================================
|
400 |
|
|
|
401 |
|
|
//
|
402 |
|
|
// 5.1) PROGRAM COUNTER & MEMORY INTERFACE
|
403 |
|
|
//-----------------------------------------
|
404 |
|
|
|
405 |
|
|
// Program counter
|
406 |
|
|
reg [15:0] pc;
|
407 |
|
|
|
408 |
|
|
// Compute next PC value
|
409 |
|
|
wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0};
|
410 |
|
|
wire [15:0] pc_nxt = pc_sw_wr ? pc_sw :
|
411 |
|
|
(i_state==I_IRQ_FETCH) ? irq_addr :
|
412 |
|
|
(i_state==I_IRQ_DONE) ? mdb_in : pc_incr;
|
413 |
|
|
|
414 |
|
|
`ifdef CLOCK_GATING
|
415 |
|
|
wire pc_en = fetch |
|
416 |
|
|
pc_sw_wr |
|
417 |
|
|
(i_state==I_IRQ_FETCH) |
|
418 |
|
|
(i_state==I_IRQ_DONE);
|
419 |
|
|
wire mclk_pc;
|
420 |
|
|
omsp_clock_gate clock_gate_pc (.gclk(mclk_pc),
|
421 |
|
|
.clk (mclk), .enable(pc_en), .scan_enable(scan_enable));
|
422 |
|
|
`else
|
423 |
|
|
wire mclk_pc = mclk;
|
424 |
|
|
`endif
|
425 |
|
|
|
426 |
|
|
always @(posedge mclk_pc or posedge puc_rst)
|
427 |
|
|
if (puc_rst) pc <= 16'h0000;
|
428 |
|
|
else pc <= pc_nxt;
|
429 |
|
|
|
430 |
202 |
olivier.gi |
// Check if Program-Memory has been busy in order to retry Program-Memory access
|
431 |
157 |
olivier.gi |
reg pmem_busy;
|
432 |
|
|
always @(posedge mclk or posedge puc_rst)
|
433 |
|
|
if (puc_rst) pmem_busy <= 1'b0;
|
434 |
|
|
else pmem_busy <= fe_pmem_wait;
|
435 |
202 |
olivier.gi |
|
436 |
157 |
olivier.gi |
// Memory interface
|
437 |
|
|
wire [15:0] mab = pc_nxt;
|
438 |
202 |
olivier.gi |
wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (cpu_halt_st & ~cpu_halt_req);
|
439 |
157 |
olivier.gi |
|
440 |
|
|
|
441 |
|
|
//
|
442 |
|
|
// 5.2) INSTRUCTION REGISTER
|
443 |
|
|
//--------------------------------
|
444 |
|
|
|
445 |
|
|
// Instruction register
|
446 |
|
|
wire [15:0] ir = mdb_in;
|
447 |
|
|
|
448 |
|
|
// Detect if source extension word is required
|
449 |
|
|
wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]);
|
450 |
|
|
|
451 |
|
|
// For the Symbolic addressing mode, add -2 to the extension word in order
|
452 |
|
|
// to make up for the PC address
|
453 |
|
|
wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) |
|
454 |
|
|
((i_state==I_EXT2) & inst_ad[`SYMB]) |
|
455 |
|
|
((i_state==I_EXT1) & ~inst_as[`SYMB] &
|
456 |
|
|
~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000;
|
457 |
|
|
|
458 |
|
|
wire [15:0] ext_nxt = ir + ext_incr;
|
459 |
|
|
|
460 |
|
|
// Store source extension word
|
461 |
|
|
reg [15:0] inst_sext;
|
462 |
|
|
|
463 |
|
|
`ifdef CLOCK_GATING
|
464 |
|
|
wire inst_sext_en = (decode & is_const) |
|
465 |
|
|
(decode & inst_type_nxt[`INST_JMP]) |
|
466 |
|
|
((i_state==I_EXT1) & is_sext);
|
467 |
|
|
wire mclk_inst_sext;
|
468 |
|
|
omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext),
|
469 |
|
|
.clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable));
|
470 |
|
|
`else
|
471 |
|
|
wire mclk_inst_sext = mclk;
|
472 |
|
|
`endif
|
473 |
|
|
|
474 |
|
|
always @(posedge mclk_inst_sext or posedge puc_rst)
|
475 |
|
|
if (puc_rst) inst_sext <= 16'h0000;
|
476 |
|
|
else if (decode & is_const) inst_sext <= sconst_nxt;
|
477 |
|
|
else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0};
|
478 |
|
|
`ifdef CLOCK_GATING
|
479 |
|
|
else inst_sext <= ext_nxt;
|
480 |
|
|
`else
|
481 |
|
|
else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt;
|
482 |
|
|
`endif
|
483 |
|
|
|
484 |
|
|
// Source extension word is ready
|
485 |
|
|
wire inst_sext_rdy = (i_state==I_EXT1) & is_sext;
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
// Store destination extension word
|
489 |
|
|
reg [15:0] inst_dext;
|
490 |
|
|
|
491 |
|
|
`ifdef CLOCK_GATING
|
492 |
|
|
wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) |
|
493 |
|
|
(i_state==I_EXT2);
|
494 |
|
|
wire mclk_inst_dext;
|
495 |
|
|
omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext),
|
496 |
|
|
.clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable));
|
497 |
|
|
`else
|
498 |
|
|
wire mclk_inst_dext = mclk;
|
499 |
|
|
`endif
|
500 |
|
|
|
501 |
|
|
always @(posedge mclk_inst_dext or posedge puc_rst)
|
502 |
|
|
if (puc_rst) inst_dext <= 16'h0000;
|
503 |
|
|
else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt;
|
504 |
|
|
`ifdef CLOCK_GATING
|
505 |
|
|
else inst_dext <= ext_nxt;
|
506 |
|
|
`else
|
507 |
|
|
else if (i_state==I_EXT2) inst_dext <= ext_nxt;
|
508 |
|
|
`endif
|
509 |
|
|
|
510 |
|
|
// Destination extension word is ready
|
511 |
|
|
wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2));
|
512 |
|
|
|
513 |
|
|
|
514 |
|
|
//=============================================================================
|
515 |
|
|
// 6) DECODE INSTRUCTION
|
516 |
|
|
//=============================================================================
|
517 |
|
|
|
518 |
|
|
`ifdef CLOCK_GATING
|
519 |
|
|
wire mclk_decode;
|
520 |
|
|
omsp_clock_gate clock_gate_decode (.gclk(mclk_decode),
|
521 |
|
|
.clk (mclk), .enable(decode), .scan_enable(scan_enable));
|
522 |
|
|
`else
|
523 |
|
|
wire mclk_decode = mclk;
|
524 |
|
|
`endif
|
525 |
|
|
|
526 |
|
|
//
|
527 |
|
|
// 6.1) OPCODE: INSTRUCTION TYPE
|
528 |
|
|
//----------------------------------------
|
529 |
|
|
// Instructions type is encoded in a one hot fashion as following:
|
530 |
|
|
//
|
531 |
|
|
// 3'b001: Single-operand arithmetic
|
532 |
|
|
// 3'b010: Conditional jump
|
533 |
|
|
// 3'b100: Two-operand arithmetic
|
534 |
|
|
|
535 |
|
|
reg [2:0] inst_type;
|
536 |
|
|
assign inst_type_nxt = {(ir[15:14]!=2'b00),
|
537 |
|
|
(ir[15:13]==3'b001),
|
538 |
|
|
(ir[15:13]==3'b000)} & {3{~irq_detect}};
|
539 |
202 |
olivier.gi |
|
540 |
157 |
olivier.gi |
always @(posedge mclk_decode or posedge puc_rst)
|
541 |
|
|
if (puc_rst) inst_type <= 3'b000;
|
542 |
|
|
`ifdef CLOCK_GATING
|
543 |
|
|
else inst_type <= inst_type_nxt;
|
544 |
|
|
`else
|
545 |
|
|
else if (decode) inst_type <= inst_type_nxt;
|
546 |
|
|
`endif
|
547 |
|
|
|
548 |
|
|
//
|
549 |
|
|
// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC
|
550 |
|
|
//----------------------------------------
|
551 |
|
|
// Instructions are encoded in a one hot fashion as following:
|
552 |
|
|
//
|
553 |
|
|
// 8'b00000001: RRC
|
554 |
|
|
// 8'b00000010: SWPB
|
555 |
|
|
// 8'b00000100: RRA
|
556 |
|
|
// 8'b00001000: SXT
|
557 |
|
|
// 8'b00010000: PUSH
|
558 |
|
|
// 8'b00100000: CALL
|
559 |
|
|
// 8'b01000000: RETI
|
560 |
|
|
// 8'b10000000: IRQ
|
561 |
|
|
|
562 |
|
|
reg [7:0] inst_so;
|
563 |
|
|
wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}});
|
564 |
|
|
|
565 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
566 |
|
|
if (puc_rst) inst_so <= 8'h00;
|
567 |
|
|
`ifdef CLOCK_GATING
|
568 |
|
|
else inst_so <= inst_so_nxt;
|
569 |
|
|
`else
|
570 |
|
|
else if (decode) inst_so <= inst_so_nxt;
|
571 |
|
|
`endif
|
572 |
|
|
|
573 |
|
|
//
|
574 |
|
|
// 6.3) OPCODE: CONDITIONAL JUMP
|
575 |
|
|
//--------------------------------
|
576 |
|
|
// Instructions are encoded in a one hot fashion as following:
|
577 |
|
|
//
|
578 |
|
|
// 8'b00000001: JNE/JNZ
|
579 |
|
|
// 8'b00000010: JEQ/JZ
|
580 |
|
|
// 8'b00000100: JNC/JLO
|
581 |
|
|
// 8'b00001000: JC/JHS
|
582 |
|
|
// 8'b00010000: JN
|
583 |
|
|
// 8'b00100000: JGE
|
584 |
|
|
// 8'b01000000: JL
|
585 |
|
|
// 8'b10000000: JMP
|
586 |
|
|
|
587 |
|
|
reg [2:0] inst_jmp_bin;
|
588 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
589 |
|
|
if (puc_rst) inst_jmp_bin <= 3'h0;
|
590 |
|
|
`ifdef CLOCK_GATING
|
591 |
|
|
else inst_jmp_bin <= ir[12:10];
|
592 |
|
|
`else
|
593 |
|
|
else if (decode) inst_jmp_bin <= ir[12:10];
|
594 |
|
|
`endif
|
595 |
|
|
|
596 |
|
|
wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}};
|
597 |
|
|
|
598 |
|
|
|
599 |
|
|
//
|
600 |
|
|
// 6.4) OPCODE: TWO-OPERAND ARITHMETIC
|
601 |
|
|
//-------------------------------------
|
602 |
|
|
// Instructions are encoded in a one hot fashion as following:
|
603 |
|
|
//
|
604 |
|
|
// 12'b000000000001: MOV
|
605 |
|
|
// 12'b000000000010: ADD
|
606 |
|
|
// 12'b000000000100: ADDC
|
607 |
|
|
// 12'b000000001000: SUBC
|
608 |
|
|
// 12'b000000010000: SUB
|
609 |
|
|
// 12'b000000100000: CMP
|
610 |
|
|
// 12'b000001000000: DADD
|
611 |
|
|
// 12'b000010000000: BIT
|
612 |
|
|
// 12'b000100000000: BIC
|
613 |
|
|
// 12'b001000000000: BIS
|
614 |
|
|
// 12'b010000000000: XOR
|
615 |
|
|
// 12'b100000000000: AND
|
616 |
|
|
|
617 |
|
|
wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}};
|
618 |
|
|
wire [11:0] inst_to_nxt = inst_to_1hot[15:4];
|
619 |
|
|
|
620 |
|
|
reg inst_mov;
|
621 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
622 |
|
|
if (puc_rst) inst_mov <= 1'b0;
|
623 |
|
|
`ifdef CLOCK_GATING
|
624 |
|
|
else inst_mov <= inst_to_nxt[`MOV];
|
625 |
|
|
`else
|
626 |
|
|
else if (decode) inst_mov <= inst_to_nxt[`MOV];
|
627 |
|
|
`endif
|
628 |
|
|
|
629 |
|
|
|
630 |
|
|
//
|
631 |
|
|
// 6.5) SOURCE AND DESTINATION REGISTERS
|
632 |
|
|
//---------------------------------------
|
633 |
|
|
|
634 |
|
|
// Destination register
|
635 |
|
|
reg [3:0] inst_dest_bin;
|
636 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
637 |
|
|
if (puc_rst) inst_dest_bin <= 4'h0;
|
638 |
|
|
`ifdef CLOCK_GATING
|
639 |
|
|
else inst_dest_bin <= ir[3:0];
|
640 |
|
|
`else
|
641 |
|
|
else if (decode) inst_dest_bin <= ir[3:0];
|
642 |
|
|
`endif
|
643 |
|
|
|
644 |
202 |
olivier.gi |
wire [15:0] inst_dest = cpu_halt_st ? one_hot16(dbg_reg_sel) :
|
645 |
157 |
olivier.gi |
inst_type[`INST_JMP] ? 16'h0001 :
|
646 |
|
|
inst_so[`IRQ] |
|
647 |
|
|
inst_so[`PUSH] |
|
648 |
|
|
inst_so[`CALL] ? 16'h0002 :
|
649 |
|
|
one_hot16(inst_dest_bin);
|
650 |
|
|
|
651 |
|
|
|
652 |
|
|
// Source register
|
653 |
|
|
reg [3:0] inst_src_bin;
|
654 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
655 |
|
|
if (puc_rst) inst_src_bin <= 4'h0;
|
656 |
|
|
`ifdef CLOCK_GATING
|
657 |
|
|
else inst_src_bin <= ir[11:8];
|
658 |
|
|
`else
|
659 |
|
|
else if (decode) inst_src_bin <= ir[11:8];
|
660 |
|
|
`endif
|
661 |
|
|
|
662 |
|
|
wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) :
|
663 |
|
|
inst_so[`RETI] ? 16'h0002 :
|
664 |
|
|
inst_so[`IRQ] ? 16'h0001 :
|
665 |
|
|
inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000;
|
666 |
|
|
|
667 |
|
|
|
668 |
|
|
//
|
669 |
|
|
// 6.6) SOURCE ADDRESSING MODES
|
670 |
|
|
//--------------------------------
|
671 |
|
|
// Source addressing modes are encoded in a one hot fashion as following:
|
672 |
|
|
//
|
673 |
|
|
// 13'b0000000000001: Register direct.
|
674 |
|
|
// 13'b0000000000010: Register indexed.
|
675 |
|
|
// 13'b0000000000100: Register indirect.
|
676 |
|
|
// 13'b0000000001000: Register indirect autoincrement.
|
677 |
|
|
// 13'b0000000010000: Symbolic (operand is in memory at address PC+x).
|
678 |
|
|
// 13'b0000000100000: Immediate (operand is next word in the instruction stream).
|
679 |
|
|
// 13'b0000001000000: Absolute (operand is in memory at address x).
|
680 |
|
|
// 13'b0000010000000: Constant 4.
|
681 |
|
|
// 13'b0000100000000: Constant 8.
|
682 |
|
|
// 13'b0001000000000: Constant 0.
|
683 |
|
|
// 13'b0010000000000: Constant 1.
|
684 |
|
|
// 13'b0100000000000: Constant 2.
|
685 |
|
|
// 13'b1000000000000: Constant -1.
|
686 |
|
|
|
687 |
|
|
reg [12:0] inst_as_nxt;
|
688 |
|
|
|
689 |
|
|
wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8];
|
690 |
|
|
|
691 |
|
|
always @(src_reg or ir or inst_type_nxt)
|
692 |
|
|
begin
|
693 |
|
|
if (inst_type_nxt[`INST_JMP])
|
694 |
|
|
inst_as_nxt = 13'b0000000000001;
|
695 |
|
|
else if (src_reg==4'h3) // Addressing mode using R3
|
696 |
|
|
case (ir[5:4])
|
697 |
|
|
2'b11 : inst_as_nxt = 13'b1000000000000;
|
698 |
|
|
2'b10 : inst_as_nxt = 13'b0100000000000;
|
699 |
|
|
2'b01 : inst_as_nxt = 13'b0010000000000;
|
700 |
|
|
default: inst_as_nxt = 13'b0001000000000;
|
701 |
|
|
endcase
|
702 |
|
|
else if (src_reg==4'h2) // Addressing mode using R2
|
703 |
|
|
case (ir[5:4])
|
704 |
|
|
2'b11 : inst_as_nxt = 13'b0000100000000;
|
705 |
|
|
2'b10 : inst_as_nxt = 13'b0000010000000;
|
706 |
|
|
2'b01 : inst_as_nxt = 13'b0000001000000;
|
707 |
|
|
default: inst_as_nxt = 13'b0000000000001;
|
708 |
|
|
endcase
|
709 |
|
|
else if (src_reg==4'h0) // Addressing mode using R0
|
710 |
|
|
case (ir[5:4])
|
711 |
|
|
2'b11 : inst_as_nxt = 13'b0000000100000;
|
712 |
|
|
2'b10 : inst_as_nxt = 13'b0000000000100;
|
713 |
|
|
2'b01 : inst_as_nxt = 13'b0000000010000;
|
714 |
|
|
default: inst_as_nxt = 13'b0000000000001;
|
715 |
|
|
endcase
|
716 |
|
|
else // General Addressing mode
|
717 |
|
|
case (ir[5:4])
|
718 |
|
|
2'b11 : inst_as_nxt = 13'b0000000001000;
|
719 |
|
|
2'b10 : inst_as_nxt = 13'b0000000000100;
|
720 |
|
|
2'b01 : inst_as_nxt = 13'b0000000000010;
|
721 |
|
|
default: inst_as_nxt = 13'b0000000000001;
|
722 |
|
|
endcase
|
723 |
|
|
end
|
724 |
|
|
assign is_const = |inst_as_nxt[12:7];
|
725 |
|
|
|
726 |
|
|
reg [7:0] inst_as;
|
727 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
728 |
|
|
if (puc_rst) inst_as <= 8'h00;
|
729 |
|
|
`ifdef CLOCK_GATING
|
730 |
|
|
else inst_as <= {is_const, inst_as_nxt[6:0]};
|
731 |
|
|
`else
|
732 |
|
|
else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]};
|
733 |
|
|
`endif
|
734 |
|
|
|
735 |
|
|
|
736 |
|
|
// 13'b0000010000000: Constant 4.
|
737 |
|
|
// 13'b0000100000000: Constant 8.
|
738 |
|
|
// 13'b0001000000000: Constant 0.
|
739 |
|
|
// 13'b0010000000000: Constant 1.
|
740 |
|
|
// 13'b0100000000000: Constant 2.
|
741 |
|
|
// 13'b1000000000000: Constant -1.
|
742 |
|
|
always @(inst_as_nxt)
|
743 |
|
|
begin
|
744 |
|
|
if (inst_as_nxt[7]) sconst_nxt = 16'h0004;
|
745 |
|
|
else if (inst_as_nxt[8]) sconst_nxt = 16'h0008;
|
746 |
|
|
else if (inst_as_nxt[9]) sconst_nxt = 16'h0000;
|
747 |
|
|
else if (inst_as_nxt[10]) sconst_nxt = 16'h0001;
|
748 |
|
|
else if (inst_as_nxt[11]) sconst_nxt = 16'h0002;
|
749 |
|
|
else if (inst_as_nxt[12]) sconst_nxt = 16'hffff;
|
750 |
|
|
else sconst_nxt = 16'h0000;
|
751 |
|
|
end
|
752 |
|
|
|
753 |
|
|
|
754 |
|
|
//
|
755 |
|
|
// 6.7) DESTINATION ADDRESSING MODES
|
756 |
|
|
//-----------------------------------
|
757 |
|
|
// Destination addressing modes are encoded in a one hot fashion as following:
|
758 |
|
|
//
|
759 |
|
|
// 8'b00000001: Register direct.
|
760 |
|
|
// 8'b00000010: Register indexed.
|
761 |
|
|
// 8'b00010000: Symbolic (operand is in memory at address PC+x).
|
762 |
|
|
// 8'b01000000: Absolute (operand is in memory at address x).
|
763 |
|
|
|
764 |
|
|
reg [7:0] inst_ad_nxt;
|
765 |
|
|
|
766 |
|
|
wire [3:0] dest_reg = ir[3:0];
|
767 |
|
|
|
768 |
|
|
always @(dest_reg or ir or inst_type_nxt)
|
769 |
|
|
begin
|
770 |
|
|
if (~inst_type_nxt[`INST_TO])
|
771 |
|
|
inst_ad_nxt = 8'b00000000;
|
772 |
|
|
else if (dest_reg==4'h2) // Addressing mode using R2
|
773 |
|
|
case (ir[7])
|
774 |
|
|
1'b1 : inst_ad_nxt = 8'b01000000;
|
775 |
|
|
default: inst_ad_nxt = 8'b00000001;
|
776 |
|
|
endcase
|
777 |
|
|
else if (dest_reg==4'h0) // Addressing mode using R0
|
778 |
|
|
case (ir[7])
|
779 |
|
|
1'b1 : inst_ad_nxt = 8'b00010000;
|
780 |
|
|
default: inst_ad_nxt = 8'b00000001;
|
781 |
|
|
endcase
|
782 |
|
|
else // General Addressing mode
|
783 |
|
|
case (ir[7])
|
784 |
|
|
1'b1 : inst_ad_nxt = 8'b00000010;
|
785 |
|
|
default: inst_ad_nxt = 8'b00000001;
|
786 |
|
|
endcase
|
787 |
|
|
end
|
788 |
|
|
|
789 |
|
|
reg [7:0] inst_ad;
|
790 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
791 |
|
|
if (puc_rst) inst_ad <= 8'h00;
|
792 |
|
|
`ifdef CLOCK_GATING
|
793 |
|
|
else inst_ad <= inst_ad_nxt;
|
794 |
|
|
`else
|
795 |
|
|
else if (decode) inst_ad <= inst_ad_nxt;
|
796 |
|
|
`endif
|
797 |
|
|
|
798 |
|
|
|
799 |
|
|
//
|
800 |
|
|
// 6.8) REMAINING INSTRUCTION DECODING
|
801 |
|
|
//-------------------------------------
|
802 |
|
|
|
803 |
|
|
// Operation size
|
804 |
|
|
reg inst_bw;
|
805 |
|
|
always @(posedge mclk or posedge puc_rst)
|
806 |
|
|
if (puc_rst) inst_bw <= 1'b0;
|
807 |
202 |
olivier.gi |
else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_req;
|
808 |
157 |
olivier.gi |
|
809 |
|
|
// Extended instruction size
|
810 |
|
|
assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} +
|
811 |
|
|
{1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])};
|
812 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
813 |
|
|
if (puc_rst) inst_sz <= 2'b00;
|
814 |
|
|
`ifdef CLOCK_GATING
|
815 |
|
|
else inst_sz <= inst_sz_nxt;
|
816 |
|
|
`else
|
817 |
|
|
else if (decode) inst_sz <= inst_sz_nxt;
|
818 |
|
|
`endif
|
819 |
|
|
|
820 |
|
|
|
821 |
|
|
//=============================================================================
|
822 |
|
|
// 7) EXECUTION-UNIT STATE MACHINE
|
823 |
|
|
//=============================================================================
|
824 |
|
|
|
825 |
|
|
// State machine registers
|
826 |
|
|
reg [3:0] e_state;
|
827 |
|
|
|
828 |
|
|
|
829 |
|
|
// State machine control signals
|
830 |
|
|
//--------------------------------
|
831 |
|
|
|
832 |
|
|
wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS];
|
833 |
|
|
wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI];
|
834 |
|
|
wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS];
|
835 |
|
|
wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS];
|
836 |
|
|
wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI];
|
837 |
|
|
wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI];
|
838 |
|
|
|
839 |
|
|
wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI];
|
840 |
|
|
|
841 |
|
|
reg exec_jmp;
|
842 |
|
|
always @(posedge mclk or posedge puc_rst)
|
843 |
|
|
if (puc_rst) exec_jmp <= 1'b0;
|
844 |
|
|
else if (inst_branch & decode) exec_jmp <= 1'b1;
|
845 |
|
|
else if (e_state==E_JUMP) exec_jmp <= 1'b0;
|
846 |
|
|
|
847 |
|
|
reg exec_dst_wr;
|
848 |
|
|
always @(posedge mclk or posedge puc_rst)
|
849 |
|
|
if (puc_rst) exec_dst_wr <= 1'b0;
|
850 |
|
|
else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1;
|
851 |
|
|
else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0;
|
852 |
|
|
|
853 |
|
|
reg exec_src_wr;
|
854 |
|
|
always @(posedge mclk or posedge puc_rst)
|
855 |
|
|
if (puc_rst) exec_src_wr <= 1'b0;
|
856 |
|
|
else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1;
|
857 |
|
|
else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0;
|
858 |
|
|
|
859 |
|
|
reg exec_dext_rdy;
|
860 |
|
|
always @(posedge mclk or posedge puc_rst)
|
861 |
|
|
if (puc_rst) exec_dext_rdy <= 1'b0;
|
862 |
|
|
else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0;
|
863 |
|
|
else if (inst_dext_rdy) exec_dext_rdy <= 1'b1;
|
864 |
|
|
|
865 |
|
|
// Execution first state
|
866 |
202 |
olivier.gi |
wire [3:0] e_first_state = ~cpu_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 :
|
867 |
|
|
cpu_halt_req | (i_state==I_IDLE) ? E_IDLE :
|
868 |
157 |
olivier.gi |
cpuoff ? E_IDLE :
|
869 |
|
|
src_acalc_pre ? E_SRC_AD :
|
870 |
|
|
src_rd_pre ? E_SRC_RD :
|
871 |
|
|
dst_acalc_pre ? E_DST_AD :
|
872 |
|
|
dst_rd_pre ? E_DST_RD : E_EXEC;
|
873 |
|
|
|
874 |
|
|
|
875 |
|
|
// State machine
|
876 |
|
|
//--------------------------------
|
877 |
|
|
|
878 |
|
|
// States Transitions
|
879 |
|
|
always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or
|
880 |
|
|
inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or
|
881 |
|
|
e_first_state or exec_src_wr)
|
882 |
|
|
case(e_state)
|
883 |
|
|
E_IDLE : e_state_nxt = e_first_state;
|
884 |
|
|
E_IRQ_0 : e_state_nxt = E_IRQ_1;
|
885 |
|
|
E_IRQ_1 : e_state_nxt = E_IRQ_2;
|
886 |
|
|
E_IRQ_2 : e_state_nxt = E_IRQ_3;
|
887 |
|
|
E_IRQ_3 : e_state_nxt = E_IRQ_4;
|
888 |
|
|
E_IRQ_4 : e_state_nxt = E_EXEC;
|
889 |
|
|
|
890 |
|
|
E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD;
|
891 |
|
|
|
892 |
202 |
olivier.gi |
E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD :
|
893 |
157 |
olivier.gi |
dst_rd ? E_DST_RD : E_EXEC;
|
894 |
|
|
|
895 |
|
|
E_DST_AD : e_state_nxt = (inst_dext_rdy |
|
896 |
|
|
exec_dext_rdy) ? E_DST_RD : E_DST_AD;
|
897 |
|
|
|
898 |
|
|
E_DST_RD : e_state_nxt = E_EXEC;
|
899 |
|
|
|
900 |
|
|
E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR :
|
901 |
|
|
exec_jmp ? E_JUMP :
|
902 |
|
|
exec_src_wr ? E_SRC_WR : e_first_state;
|
903 |
|
|
|
904 |
|
|
E_JUMP : e_state_nxt = e_first_state;
|
905 |
|
|
E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state;
|
906 |
|
|
E_SRC_WR : e_state_nxt = e_first_state;
|
907 |
|
|
// pragma coverage off
|
908 |
|
|
default : e_state_nxt = E_IRQ_0;
|
909 |
|
|
// pragma coverage on
|
910 |
|
|
endcase
|
911 |
|
|
|
912 |
|
|
// State machine
|
913 |
|
|
always @(posedge mclk or posedge puc_rst)
|
914 |
|
|
if (puc_rst) e_state <= E_IRQ_1;
|
915 |
|
|
else e_state <= e_state_nxt;
|
916 |
|
|
|
917 |
|
|
|
918 |
|
|
// Frontend State machine control signals
|
919 |
|
|
//----------------------------------------
|
920 |
|
|
|
921 |
|
|
wire exec_done = exec_jmp ? (e_state==E_JUMP) :
|
922 |
|
|
exec_dst_wr ? (e_state==E_DST_WR) :
|
923 |
|
|
exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC);
|
924 |
|
|
|
925 |
|
|
|
926 |
|
|
//=============================================================================
|
927 |
|
|
// 8) EXECUTION-UNIT STATE CONTROL
|
928 |
|
|
//=============================================================================
|
929 |
|
|
|
930 |
|
|
//
|
931 |
|
|
// 8.1) ALU CONTROL SIGNALS
|
932 |
|
|
//-------------------------------------
|
933 |
|
|
//
|
934 |
|
|
// 12'b000000000001: Enable ALU source inverter
|
935 |
|
|
// 12'b000000000010: Enable Incrementer
|
936 |
|
|
// 12'b000000000100: Enable Incrementer on carry bit
|
937 |
|
|
// 12'b000000001000: Select Adder
|
938 |
|
|
// 12'b000000010000: Select AND
|
939 |
|
|
// 12'b000000100000: Select OR
|
940 |
|
|
// 12'b000001000000: Select XOR
|
941 |
|
|
// 12'b000010000000: Select DADD
|
942 |
|
|
// 12'b000100000000: Update N, Z & C (C=~Z)
|
943 |
|
|
// 12'b001000000000: Update all status bits
|
944 |
|
|
// 12'b010000000000: Update status bit for XOR instruction
|
945 |
|
|
// 12'b100000000000: Don't write to destination
|
946 |
|
|
|
947 |
|
|
reg [11:0] inst_alu;
|
948 |
|
|
|
949 |
|
|
wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
|
950 |
|
|
inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ;
|
951 |
|
|
|
952 |
|
|
wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP];
|
953 |
|
|
|
954 |
|
|
wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] |
|
955 |
|
|
inst_to_nxt[`SUBC];
|
956 |
|
|
|
957 |
|
|
wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
|
958 |
|
|
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
|
959 |
|
|
inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] |
|
960 |
|
|
inst_so_nxt[`RETI];
|
961 |
|
|
|
962 |
202 |
olivier.gi |
|
963 |
157 |
olivier.gi |
wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] |
|
964 |
|
|
inst_to_nxt[`BIT];
|
965 |
|
|
|
966 |
|
|
wire alu_or = inst_to_nxt[`BIS];
|
967 |
|
|
|
968 |
|
|
wire alu_xor = inst_to_nxt[`XOR];
|
969 |
|
|
|
970 |
|
|
wire alu_dadd = inst_to_nxt[`DADD];
|
971 |
|
|
|
972 |
|
|
wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] |
|
973 |
|
|
inst_so_nxt[`SXT];
|
974 |
|
|
|
975 |
|
|
wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
|
976 |
|
|
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
|
977 |
|
|
inst_to_nxt[`CMP] | inst_to_nxt[`DADD] |
|
978 |
|
|
inst_to_nxt[`BIT] | inst_to_nxt[`XOR] |
|
979 |
|
|
inst_to_nxt[`AND] |
|
980 |
|
|
inst_so_nxt[`RRC] | inst_so_nxt[`RRA] |
|
981 |
|
|
inst_so_nxt[`SXT];
|
982 |
|
|
|
983 |
|
|
wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA];
|
984 |
|
|
|
985 |
|
|
wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT];
|
986 |
|
|
|
987 |
|
|
wire [11:0] inst_alu_nxt = {exec_no_wr,
|
988 |
|
|
alu_shift,
|
989 |
|
|
alu_stat_f,
|
990 |
|
|
alu_stat_7,
|
991 |
|
|
alu_dadd,
|
992 |
|
|
alu_xor,
|
993 |
|
|
alu_or,
|
994 |
|
|
alu_and,
|
995 |
|
|
alu_add,
|
996 |
|
|
alu_inc_c,
|
997 |
|
|
alu_inc,
|
998 |
|
|
alu_src_inv};
|
999 |
|
|
|
1000 |
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
1001 |
|
|
if (puc_rst) inst_alu <= 12'h000;
|
1002 |
|
|
`ifdef CLOCK_GATING
|
1003 |
|
|
else inst_alu <= inst_alu_nxt;
|
1004 |
|
|
`else
|
1005 |
|
|
else if (decode) inst_alu <= inst_alu_nxt;
|
1006 |
|
|
`endif
|
1007 |
|
|
|
1008 |
|
|
|
1009 |
|
|
endmodule // omsp_frontend
|
1010 |
|
|
|
1011 |
|
|
`ifdef OMSP_NO_INCLUDE
|
1012 |
|
|
`else
|
1013 |
|
|
`include "openMSP430_undefines.v"
|
1014 |
|
|
`endif
|