1 |
136 |
olivier.gi |
//----------------------------------------------------------------------------
|
2 |
|
|
// Copyright (C) 2009 , Olivier Girard
|
3 |
|
|
//
|
4 |
|
|
// Redistribution and use in source and binary forms, with or without
|
5 |
|
|
// modification, are permitted provided that the following conditions
|
6 |
|
|
// are met:
|
7 |
|
|
// * Redistributions of source code must retain the above copyright
|
8 |
|
|
// notice, this list of conditions and the following disclaimer.
|
9 |
|
|
// * Redistributions in binary form must reproduce the above copyright
|
10 |
|
|
// notice, this list of conditions and the following disclaimer in the
|
11 |
|
|
// documentation and/or other materials provided with the distribution.
|
12 |
|
|
// * Neither the name of the authors nor the names of its contributors
|
13 |
|
|
// may be used to endorse or promote products derived from this software
|
14 |
|
|
// without specific prior written permission.
|
15 |
|
|
//
|
16 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
17 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
18 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
19 |
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
20 |
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
21 |
|
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
22 |
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
23 |
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
24 |
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
25 |
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
26 |
|
|
// THE POSSIBILITY OF SUCH DAMAGE
|
27 |
|
|
//
|
28 |
|
|
//----------------------------------------------------------------------------
|
29 |
|
|
//
|
30 |
|
|
// *File Name: omsp_uart.v
|
31 |
|
|
//
|
32 |
|
|
// *Module Description:
|
33 |
|
|
// Simple full duplex UART (8N1 protocol).
|
34 |
|
|
//
|
35 |
|
|
// *Author(s):
|
36 |
|
|
// - Olivier Girard, olgirard@gmail.com
|
37 |
|
|
//
|
38 |
|
|
//----------------------------------------------------------------------------
|
39 |
|
|
// $Rev: 111 $
|
40 |
|
|
// $LastChangedBy: olivier.girard $
|
41 |
|
|
// $LastChangedDate: 2011-05-20 22:39:02 +0200 (Fri, 20 May 2011) $
|
42 |
|
|
//----------------------------------------------------------------------------
|
43 |
|
|
|
44 |
|
|
module omsp_uart (
|
45 |
|
|
|
46 |
|
|
// OUTPUTs
|
47 |
|
|
irq_uart_rx, // UART receive interrupt
|
48 |
|
|
irq_uart_tx, // UART transmit interrupt
|
49 |
|
|
per_dout, // Peripheral data output
|
50 |
|
|
uart_txd, // UART Data Transmit (TXD)
|
51 |
|
|
|
52 |
|
|
// INPUTs
|
53 |
|
|
mclk, // Main system clock
|
54 |
|
|
per_addr, // Peripheral address
|
55 |
|
|
per_din, // Peripheral data input
|
56 |
|
|
per_en, // Peripheral enable (high active)
|
57 |
|
|
per_we, // Peripheral write enable (high active)
|
58 |
|
|
puc_rst, // Main system reset
|
59 |
|
|
smclk_en, // SMCLK enable (from CPU)
|
60 |
|
|
uart_rxd // UART Data Receive (RXD)
|
61 |
|
|
);
|
62 |
|
|
|
63 |
|
|
// OUTPUTs
|
64 |
|
|
//=========
|
65 |
|
|
output irq_uart_rx; // UART receive interrupt
|
66 |
|
|
output irq_uart_tx; // UART transmit interrupt
|
67 |
|
|
output [15:0] per_dout; // Peripheral data output
|
68 |
|
|
output uart_txd; // UART Data Transmit (TXD)
|
69 |
|
|
|
70 |
|
|
// INPUTs
|
71 |
|
|
//=========
|
72 |
|
|
input mclk; // Main system clock
|
73 |
|
|
input [13:0] per_addr; // Peripheral address
|
74 |
|
|
input [15:0] per_din; // Peripheral data input
|
75 |
|
|
input per_en; // Peripheral enable (high active)
|
76 |
|
|
input [1:0] per_we; // Peripheral write enable (high active)
|
77 |
|
|
input puc_rst; // Main system reset
|
78 |
|
|
input smclk_en; // SMCLK enable (from CPU)
|
79 |
|
|
input uart_rxd; // UART Data Receive (RXD)
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
//=============================================================================
|
83 |
|
|
// 1) PARAMETER DECLARATION
|
84 |
|
|
//=============================================================================
|
85 |
|
|
|
86 |
|
|
// Register base address (must be aligned to decoder bit width)
|
87 |
|
|
parameter [14:0] BASE_ADDR = 15'h0080;
|
88 |
|
|
|
89 |
|
|
// Decoder bit width (defines how many bits are considered for address decoding)
|
90 |
|
|
parameter DEC_WD = 3;
|
91 |
|
|
|
92 |
|
|
// Register addresses offset
|
93 |
|
|
parameter [DEC_WD-1:0] CTRL = 'h0,
|
94 |
|
|
STATUS = 'h1,
|
95 |
|
|
BAUD_LO = 'h2,
|
96 |
|
|
BAUD_HI = 'h3,
|
97 |
|
|
DATA_TX = 'h4,
|
98 |
|
|
DATA_RX = 'h5;
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
// Register one-hot decoder utilities
|
102 |
|
|
parameter DEC_SZ = 2**DEC_WD;
|
103 |
|
|
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
|
104 |
|
|
|
105 |
|
|
// Register one-hot decoder
|
106 |
|
|
parameter [DEC_SZ-1:0] CTRL_D = (BASE_REG << CTRL),
|
107 |
|
|
STATUS_D = (BASE_REG << STATUS),
|
108 |
|
|
BAUD_LO_D = (BASE_REG << BAUD_LO),
|
109 |
|
|
BAUD_HI_D = (BASE_REG << BAUD_HI),
|
110 |
|
|
DATA_TX_D = (BASE_REG << DATA_TX),
|
111 |
|
|
DATA_RX_D = (BASE_REG << DATA_RX);
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
//============================================================================
|
115 |
|
|
// 2) REGISTER DECODER
|
116 |
|
|
//============================================================================
|
117 |
|
|
|
118 |
|
|
// Local register selection
|
119 |
|
|
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
|
120 |
|
|
|
121 |
|
|
// Register local address
|
122 |
|
|
wire [DEC_WD-1:0] reg_addr = {1'b0, per_addr[DEC_WD-2:0]};
|
123 |
|
|
|
124 |
|
|
// Register address decode
|
125 |
|
|
wire [DEC_SZ-1:0] reg_dec = (CTRL_D & {DEC_SZ{(reg_addr==(CTRL >>1))}}) |
|
126 |
|
|
(STATUS_D & {DEC_SZ{(reg_addr==(STATUS >>1))}}) |
|
127 |
|
|
(BAUD_LO_D & {DEC_SZ{(reg_addr==(BAUD_LO >>1))}}) |
|
128 |
|
|
(BAUD_HI_D & {DEC_SZ{(reg_addr==(BAUD_HI >>1))}}) |
|
129 |
|
|
(DATA_TX_D & {DEC_SZ{(reg_addr==(DATA_TX >>1))}}) |
|
130 |
|
|
(DATA_RX_D & {DEC_SZ{(reg_addr==(DATA_RX >>1))}});
|
131 |
|
|
|
132 |
|
|
// Read/Write probes
|
133 |
|
|
wire reg_lo_write = per_we[0] & reg_sel;
|
134 |
|
|
wire reg_hi_write = per_we[1] & reg_sel;
|
135 |
|
|
wire reg_read = ~|per_we & reg_sel;
|
136 |
|
|
|
137 |
|
|
// Read/Write vectors
|
138 |
|
|
wire [DEC_SZ-1:0] reg_hi_wr = reg_dec & {DEC_SZ{reg_hi_write}};
|
139 |
|
|
wire [DEC_SZ-1:0] reg_lo_wr = reg_dec & {DEC_SZ{reg_lo_write}};
|
140 |
|
|
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
//============================================================================
|
144 |
|
|
// 3) REGISTERS
|
145 |
|
|
//============================================================================
|
146 |
|
|
|
147 |
|
|
// CTRL Register
|
148 |
|
|
//-----------------
|
149 |
|
|
reg [7:0] ctrl;
|
150 |
|
|
|
151 |
|
|
wire ctrl_wr = CTRL[0] ? reg_hi_wr[CTRL] : reg_lo_wr[CTRL];
|
152 |
|
|
wire [7:0] ctrl_nxt = CTRL[0] ? per_din[15:8] : per_din[7:0];
|
153 |
|
|
|
154 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
155 |
|
|
if (puc_rst) ctrl <= 8'h00;
|
156 |
|
|
else if (ctrl_wr) ctrl <= ctrl_nxt & 8'h73;
|
157 |
|
|
|
158 |
|
|
wire ctrl_ien_tx_empty = ctrl[7];
|
159 |
|
|
wire ctrl_ien_tx = ctrl[6];
|
160 |
|
|
wire ctrl_ien_rx_ovflw = ctrl[5];
|
161 |
|
|
wire ctrl_ien_rx = ctrl[4];
|
162 |
|
|
wire ctrl_smclk_sel = ctrl[1];
|
163 |
|
|
wire ctrl_en = ctrl[0];
|
164 |
|
|
|
165 |
|
|
|
166 |
|
|
// STATUS Register
|
167 |
|
|
//-----------------
|
168 |
|
|
wire [7:0] status;
|
169 |
|
|
reg status_tx_empty_pnd;
|
170 |
|
|
reg status_tx_pnd;
|
171 |
|
|
reg status_rx_ovflw_pnd;
|
172 |
|
|
reg status_rx_pnd;
|
173 |
|
|
wire status_tx_full;
|
174 |
|
|
wire status_tx_busy;
|
175 |
|
|
wire status_rx_busy;
|
176 |
|
|
|
177 |
|
|
wire status_wr = STATUS[0] ? reg_hi_wr[STATUS] : reg_lo_wr[STATUS];
|
178 |
|
|
wire [7:0] status_nxt = STATUS[0] ? per_din[15:8] : per_din[7:0];
|
179 |
|
|
|
180 |
|
|
wire status_tx_empty_pnd_clr = status_wr & status_nxt[7];
|
181 |
|
|
wire status_tx_pnd_clr = status_wr & status_nxt[6];
|
182 |
|
|
wire status_rx_ovflw_pnd_clr = status_wr & status_nxt[5];
|
183 |
|
|
wire status_rx_pnd_clr = status_wr & status_nxt[4];
|
184 |
|
|
wire status_tx_empty_pnd_set;
|
185 |
|
|
wire status_tx_pnd_set;
|
186 |
|
|
wire status_rx_ovflw_pnd_set;
|
187 |
|
|
wire status_rx_pnd_set;
|
188 |
|
|
|
189 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
190 |
|
|
if (puc_rst) status_tx_empty_pnd <= 1'b0;
|
191 |
|
|
else if (status_tx_empty_pnd_set) status_tx_empty_pnd <= 1'b1;
|
192 |
|
|
else if (status_tx_empty_pnd_clr) status_tx_empty_pnd <= 1'b0;
|
193 |
|
|
|
194 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
195 |
|
|
if (puc_rst) status_tx_pnd <= 1'b0;
|
196 |
|
|
else if (status_tx_pnd_set) status_tx_pnd <= 1'b1;
|
197 |
|
|
else if (status_tx_pnd_clr) status_tx_pnd <= 1'b0;
|
198 |
|
|
|
199 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
200 |
|
|
if (puc_rst) status_rx_ovflw_pnd <= 1'b0;
|
201 |
|
|
else if (status_rx_ovflw_pnd_set) status_rx_ovflw_pnd <= 1'b1;
|
202 |
|
|
else if (status_rx_ovflw_pnd_clr) status_rx_ovflw_pnd <= 1'b0;
|
203 |
|
|
|
204 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
205 |
|
|
if (puc_rst) status_rx_pnd <= 1'b0;
|
206 |
|
|
else if (status_rx_pnd_set) status_rx_pnd <= 1'b1;
|
207 |
|
|
else if (status_rx_pnd_clr) status_rx_pnd <= 1'b0;
|
208 |
|
|
|
209 |
|
|
assign status = {status_tx_empty_pnd, status_tx_pnd, status_rx_ovflw_pnd, status_rx_pnd,
|
210 |
|
|
status_tx_full, status_tx_busy, 1'b0, status_rx_busy};
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
// BAUD_LO Register
|
214 |
|
|
//-----------------
|
215 |
|
|
reg [7:0] baud_lo;
|
216 |
|
|
|
217 |
|
|
wire baud_lo_wr = BAUD_LO[0] ? reg_hi_wr[BAUD_LO] : reg_lo_wr[BAUD_LO];
|
218 |
|
|
wire [7:0] baud_lo_nxt = BAUD_LO[0] ? per_din[15:8] : per_din[7:0];
|
219 |
|
|
|
220 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
221 |
|
|
if (puc_rst) baud_lo <= 8'h00;
|
222 |
|
|
else if (baud_lo_wr) baud_lo <= baud_lo_nxt;
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
// BAUD_HI Register
|
226 |
|
|
//-----------------
|
227 |
|
|
reg [7:0] baud_hi;
|
228 |
|
|
|
229 |
|
|
wire baud_hi_wr = BAUD_HI[0] ? reg_hi_wr[BAUD_HI] : reg_lo_wr[BAUD_HI];
|
230 |
|
|
wire [7:0] baud_hi_nxt = BAUD_HI[0] ? per_din[15:8] : per_din[7:0];
|
231 |
|
|
|
232 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
233 |
|
|
if (puc_rst) baud_hi <= 8'h00;
|
234 |
|
|
else if (baud_lo_wr) baud_hi <= baud_hi_nxt;
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
wire [15:0] baudrate = {baud_hi, baud_lo};
|
238 |
|
|
|
239 |
|
|
|
240 |
|
|
// DATA_TX Register
|
241 |
|
|
//-----------------
|
242 |
|
|
reg [7:0] data_tx;
|
243 |
|
|
|
244 |
|
|
wire data_tx_wr = DATA_TX[0] ? reg_hi_wr[DATA_TX] : reg_lo_wr[DATA_TX];
|
245 |
|
|
wire [7:0] data_tx_nxt = DATA_TX[0] ? per_din[15:8] : per_din[7:0];
|
246 |
|
|
|
247 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
248 |
|
|
if (puc_rst) data_tx <= 8'h00;
|
249 |
|
|
else if (data_tx_wr) data_tx <= data_tx_nxt;
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
// DATA_RX Register
|
253 |
|
|
//-----------------
|
254 |
|
|
reg [7:0] data_rx;
|
255 |
|
|
|
256 |
|
|
reg [7:0] rxfer_buf;
|
257 |
|
|
|
258 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
259 |
|
|
if (puc_rst) data_rx <= 8'h00;
|
260 |
|
|
else if (status_rx_pnd_set) data_rx <= rxfer_buf;
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
//============================================================================
|
264 |
|
|
// 4) DATA OUTPUT GENERATION
|
265 |
|
|
//============================================================================
|
266 |
|
|
|
267 |
|
|
// Data output mux
|
268 |
|
|
wire [15:0] ctrl_rd = {8'h00, (ctrl & {8{reg_rd[CTRL]}})} << (8 & {4{CTRL[0]}});
|
269 |
|
|
wire [15:0] status_rd = {8'h00, (status & {8{reg_rd[STATUS]}})} << (8 & {4{STATUS[0]}});
|
270 |
|
|
wire [15:0] baud_lo_rd = {8'h00, (baud_lo & {8{reg_rd[BAUD_LO]}})} << (8 & {4{BAUD_LO[0]}});
|
271 |
|
|
wire [15:0] baud_hi_rd = {8'h00, (baud_hi & {8{reg_rd[BAUD_HI]}})} << (8 & {4{BAUD_HI[0]}});
|
272 |
|
|
wire [15:0] data_tx_rd = {8'h00, (data_tx & {8{reg_rd[DATA_TX]}})} << (8 & {4{DATA_TX[0]}});
|
273 |
|
|
wire [15:0] data_rx_rd = {8'h00, (data_rx & {8{reg_rd[DATA_RX]}})} << (8 & {4{DATA_RX[0]}});
|
274 |
|
|
|
275 |
|
|
wire [15:0] per_dout = ctrl_rd |
|
276 |
|
|
status_rd |
|
277 |
|
|
baud_lo_rd |
|
278 |
|
|
baud_hi_rd |
|
279 |
|
|
data_tx_rd |
|
280 |
|
|
data_rx_rd;
|
281 |
|
|
|
282 |
|
|
|
283 |
|
|
//=============================================================================
|
284 |
|
|
// 5) UART CLOCK SELECTION
|
285 |
|
|
//=============================================================================
|
286 |
|
|
|
287 |
|
|
wire uclk_en = ctrl_smclk_sel ? smclk_en : 1'b1;
|
288 |
|
|
|
289 |
|
|
|
290 |
|
|
//=============================================================================
|
291 |
|
|
// 5) UART RECEIVE LINE SYNCHRONIZTION & FILTERING
|
292 |
|
|
//=============================================================================
|
293 |
|
|
|
294 |
|
|
// Synchronize RXD input
|
295 |
|
|
//--------------------------------
|
296 |
|
|
wire uart_rxd_sync_n;
|
297 |
|
|
|
298 |
|
|
omsp_sync_cell sync_cell_uart_rxd (
|
299 |
|
|
.data_out (uart_rxd_sync_n),
|
300 |
|
|
.clk (mclk),
|
301 |
|
|
.data_in (~uart_rxd),
|
302 |
|
|
.rst (puc_rst)
|
303 |
|
|
);
|
304 |
|
|
wire uart_rxd_sync = ~uart_rxd_sync_n;
|
305 |
|
|
|
306 |
|
|
// RXD input buffer
|
307 |
|
|
//--------------------------------
|
308 |
|
|
reg [1:0] rxd_buf;
|
309 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
310 |
|
|
if (puc_rst) rxd_buf <= 2'h3;
|
311 |
|
|
else rxd_buf <= {rxd_buf[0], uart_rxd_sync};
|
312 |
|
|
|
313 |
|
|
// Majority decision
|
314 |
|
|
//------------------------
|
315 |
|
|
reg rxd_maj;
|
316 |
|
|
|
317 |
|
|
wire [1:0] rxd_maj_cnt = {1'b0, uart_rxd_sync} +
|
318 |
|
|
{1'b0, rxd_buf[0]} +
|
319 |
|
|
{1'b0, rxd_buf[1]};
|
320 |
|
|
wire rxd_maj_nxt = (rxd_maj_cnt>=2'b10);
|
321 |
|
|
|
322 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
323 |
|
|
if (puc_rst) rxd_maj <= 1'b1;
|
324 |
|
|
else rxd_maj <= rxd_maj_nxt;
|
325 |
|
|
|
326 |
|
|
wire rxd_s = rxd_maj;
|
327 |
|
|
wire rxd_fe = rxd_maj & ~rxd_maj_nxt;
|
328 |
|
|
|
329 |
|
|
|
330 |
|
|
//=============================================================================
|
331 |
|
|
// 6) UART RECEIVE
|
332 |
|
|
//=============================================================================
|
333 |
|
|
|
334 |
|
|
// RX Transfer counter
|
335 |
|
|
//------------------------
|
336 |
|
|
reg [3:0] rxfer_bit;
|
337 |
|
|
reg [15:0] rxfer_cnt;
|
338 |
|
|
|
339 |
|
|
wire rxfer_start = (rxfer_bit==4'h0) & rxd_fe;
|
340 |
|
|
wire rxfer_bit_inc = (rxfer_bit!=4'h0) & (rxfer_cnt=={16{1'b0}});
|
341 |
|
|
wire rxfer_done = (rxfer_bit==4'ha);
|
342 |
|
|
|
343 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
344 |
|
|
if (puc_rst) rxfer_bit <= 4'h0;
|
345 |
|
|
else if (~ctrl_en) rxfer_bit <= 4'h0;
|
346 |
|
|
else if (rxfer_start) rxfer_bit <= 4'h1;
|
347 |
|
|
else if (uclk_en)
|
348 |
|
|
begin
|
349 |
|
|
if (rxfer_done) rxfer_bit <= 4'h0;
|
350 |
|
|
else if (rxfer_bit_inc) rxfer_bit <= rxfer_bit+4'h1;
|
351 |
|
|
end
|
352 |
|
|
|
353 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
354 |
|
|
if (puc_rst) rxfer_cnt <= {16{1'b0}};
|
355 |
|
|
else if (~ctrl_en) rxfer_cnt <= {16{1'b0}};
|
356 |
|
|
else if (rxfer_start) rxfer_cnt <= {1'b0, baudrate[15:1]};
|
357 |
|
|
else if (uclk_en)
|
358 |
|
|
begin
|
359 |
|
|
if (rxfer_bit_inc) rxfer_cnt <= baudrate;
|
360 |
|
|
else if (|rxfer_cnt) rxfer_cnt <= rxfer_cnt+{16{1'b1}};
|
361 |
|
|
end
|
362 |
|
|
|
363 |
|
|
|
364 |
|
|
// Receive buffer
|
365 |
|
|
//-------------------------
|
366 |
|
|
wire [7:0] rxfer_buf_nxt = {rxd_s, rxfer_buf[7:1]};
|
367 |
|
|
|
368 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
369 |
|
|
if (puc_rst) rxfer_buf <= 8'h00;
|
370 |
|
|
else if (~ctrl_en) rxfer_buf <= 8'h00;
|
371 |
|
|
else if (uclk_en)
|
372 |
|
|
begin
|
373 |
|
|
if (rxfer_bit_inc) rxfer_buf <= rxfer_buf_nxt;
|
374 |
|
|
end
|
375 |
|
|
|
376 |
|
|
|
377 |
|
|
// Status flags
|
378 |
|
|
//-------------------------
|
379 |
|
|
|
380 |
|
|
// Edge detection required for the case when
|
381 |
|
|
// the transmit base clock is SMCLK
|
382 |
|
|
reg rxfer_done_dly;
|
383 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
384 |
|
|
if (puc_rst) rxfer_done_dly <= 1'b0;
|
385 |
|
|
else rxfer_done_dly <= rxfer_done;
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
assign status_rx_pnd_set = rxfer_done & ~rxfer_done_dly;
|
389 |
|
|
assign status_rx_ovflw_pnd_set = status_rx_pnd_set & status_rx_pnd;
|
390 |
|
|
assign status_rx_busy = (rxfer_bit!=4'h0);
|
391 |
|
|
|
392 |
|
|
|
393 |
|
|
//============================================================================
|
394 |
|
|
// 5) UART TRANSMIT
|
395 |
|
|
//============================================================================
|
396 |
|
|
|
397 |
|
|
// TX Transfer start detection
|
398 |
|
|
//-----------------------------
|
399 |
|
|
reg txfer_triggered;
|
400 |
|
|
wire txfer_start;
|
401 |
|
|
|
402 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
403 |
|
|
if (puc_rst) txfer_triggered <= 1'b0;
|
404 |
|
|
else if (data_tx_wr) txfer_triggered <= 1'b1;
|
405 |
|
|
else if (txfer_start) txfer_triggered <= 1'b0;
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
// TX Transfer counter
|
409 |
|
|
//------------------------
|
410 |
|
|
reg [3:0] txfer_bit;
|
411 |
|
|
reg [15:0] txfer_cnt;
|
412 |
|
|
|
413 |
|
|
assign txfer_start = (txfer_bit==4'h0) & txfer_triggered;
|
414 |
|
|
wire txfer_bit_inc = (txfer_bit!=4'h0) & (txfer_cnt=={16{1'b0}});
|
415 |
|
|
wire txfer_done = (txfer_bit==4'hb);
|
416 |
|
|
|
417 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
418 |
|
|
if (puc_rst) txfer_bit <= 4'h0;
|
419 |
|
|
else if (~ctrl_en) txfer_bit <= 4'h0;
|
420 |
|
|
else if (txfer_start) txfer_bit <= 4'h1;
|
421 |
|
|
else if (uclk_en)
|
422 |
|
|
begin
|
423 |
|
|
if (txfer_done) txfer_bit <= 4'h0;
|
424 |
|
|
else if (txfer_bit_inc) txfer_bit <= txfer_bit+4'h1;
|
425 |
|
|
end
|
426 |
|
|
|
427 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
428 |
|
|
if (puc_rst) txfer_cnt <= {16{1'b0}};
|
429 |
|
|
else if (~ctrl_en) txfer_cnt <= {16{1'b0}};
|
430 |
|
|
else if (txfer_start) txfer_cnt <= baudrate;
|
431 |
|
|
else if (uclk_en)
|
432 |
|
|
begin
|
433 |
|
|
if (txfer_bit_inc) txfer_cnt <= baudrate;
|
434 |
|
|
else if (|txfer_cnt) txfer_cnt <= txfer_cnt+{16{1'b1}};
|
435 |
|
|
end
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
// Transmit buffer
|
439 |
|
|
//-------------------------
|
440 |
|
|
reg [8:0] txfer_buf;
|
441 |
|
|
|
442 |
|
|
wire [8:0] txfer_buf_nxt = {1'b1, txfer_buf[8:1]};
|
443 |
|
|
|
444 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
445 |
|
|
if (puc_rst) txfer_buf <= 9'h1ff;
|
446 |
|
|
else if (~ctrl_en) txfer_buf <= 9'h1ff;
|
447 |
|
|
else if (txfer_start) txfer_buf <= {data_tx, 1'b0};
|
448 |
|
|
else if (uclk_en)
|
449 |
|
|
begin
|
450 |
|
|
if (txfer_bit_inc) txfer_buf <= txfer_buf_nxt;
|
451 |
|
|
end
|
452 |
|
|
|
453 |
|
|
assign uart_txd = txfer_buf[0];
|
454 |
|
|
|
455 |
|
|
|
456 |
|
|
// Status flags
|
457 |
|
|
//-------------------------
|
458 |
|
|
|
459 |
|
|
// Edge detection required for the case when
|
460 |
|
|
// the transmit base clock is SMCLK
|
461 |
|
|
reg txfer_done_dly;
|
462 |
|
|
always @ (posedge mclk or posedge puc_rst)
|
463 |
|
|
if (puc_rst) txfer_done_dly <= 1'b0;
|
464 |
|
|
else txfer_done_dly <= txfer_done;
|
465 |
|
|
|
466 |
|
|
|
467 |
|
|
assign status_tx_pnd_set = txfer_done & ~txfer_done_dly;
|
468 |
|
|
assign status_tx_empty_pnd_set = status_tx_pnd_set & ~txfer_triggered;
|
469 |
|
|
assign status_tx_busy = (txfer_bit!=4'h0) | txfer_triggered;
|
470 |
|
|
assign status_tx_full = status_tx_busy & txfer_triggered;
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
//============================================================================
|
474 |
|
|
// 6) INTERRUPTS
|
475 |
|
|
//============================================================================
|
476 |
|
|
|
477 |
|
|
// Receive interrupt can be generated with the completion of a received byte
|
478 |
|
|
// or an overflow occures.
|
479 |
|
|
assign irq_uart_rx = (status_rx_pnd & ctrl_ien_rx) |
|
480 |
|
|
(status_rx_ovflw_pnd & ctrl_ien_rx_ovflw);
|
481 |
|
|
|
482 |
|
|
|
483 |
|
|
// Transmit interrupt can be generated with the transmition completion of
|
484 |
|
|
// a byte or when the tranmit buffer is empty (i.e. nothing left to transmit)
|
485 |
|
|
assign irq_uart_tx = (status_tx_pnd & ctrl_ien_tx) |
|
486 |
|
|
(status_tx_empty_pnd & ctrl_ien_tx_empty);
|
487 |
|
|
|
488 |
|
|
|
489 |
|
|
endmodule // uart
|
490 |
|
|
|