OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [fpga/] [xilinx_diligent_s3board/] [rtl/] [verilog/] [openmsp430/] [omsp_multiplier.v] - Blame information for rev 91

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 71 olivier.gi
 
2
//----------------------------------------------------------------------------
3
// Copyright (C) 2001 Authors
4
//
5
// This source file may be used and distributed without restriction provided
6
// that this copyright statement is not removed from the file and that any
7
// derivative work contains the original copyright notice and the associated
8
// disclaimer.
9
//
10
// This source file is free software; you can redistribute it and/or modify
11
// it under the terms of the GNU Lesser General Public License as published
12
// by the Free Software Foundation; either version 2.1 of the License, or
13
// (at your option) any later version.
14
//
15
// This source is distributed in the hope that it will be useful, but WITHOUT
16
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
18
// License for more details.
19
//
20
// You should have received a copy of the GNU Lesser General Public License
21
// along with this source; if not, write to the Free Software Foundation,
22
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
23
//
24
//----------------------------------------------------------------------------
25
//
26
// *File Name: omsp_multiplier.v
27
// 
28
// *Module Description:
29
//                       16x16 Hardware multiplier.
30
//
31
// *Author(s):
32
//              - Olivier Girard,    olgirard@gmail.com
33
//
34
//----------------------------------------------------------------------------
35
// $Rev: 23 $
36
// $LastChangedBy: olivier.girard $
37
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
38
//----------------------------------------------------------------------------
39
`include "timescale.v"
40
`include "openMSP430_defines.v"
41
 
42
module  omsp_multiplier (
43
 
44
// OUTPUTs
45
    per_dout,                       // Peripheral data output
46
 
47
// INPUTs
48
    mclk,                           // Main system clock
49
    per_addr,                       // Peripheral address
50
    per_din,                        // Peripheral data input
51
    per_en,                         // Peripheral enable (high active)
52
    per_wen,                        // Peripheral write enable (high active)
53
    puc                             // Main system reset
54
);
55
 
56
// OUTPUTs
57
//=========
58
output       [15:0] per_dout;       // Peripheral data output
59
 
60
// INPUTs
61
//=========
62
input               mclk;           // Main system clock
63
input         [7:0] per_addr;       // Peripheral address
64
input        [15:0] per_din;        // Peripheral data input
65
input               per_en;         // Peripheral enable (high active)
66
input         [1:0] per_wen;        // Peripheral write enable (high active)
67
input               puc;            // Main system reset
68
 
69
 
70
//=============================================================================
71
// 1)  PARAMETER/REGISTERS & WIRE DECLARATION
72
//=============================================================================
73
 
74
// Register addresses
75
parameter           OP1_MPY    = 9'h130;
76
parameter           OP1_MPYS   = 9'h132;
77
parameter           OP1_MAC    = 9'h134;
78
parameter           OP1_MACS   = 9'h136;
79
parameter           OP2        = 9'h138;
80
parameter           RESLO      = 9'h13A;
81
parameter           RESHI      = 9'h13C;
82
parameter           SUMEXT     = 9'h13E;
83
 
84
 
85
// Register one-hot decoder
86
parameter           OP1_MPY_D  = (512'h1 << OP1_MPY);
87
parameter           OP1_MPYS_D = (512'h1 << OP1_MPYS);
88
parameter           OP1_MAC_D  = (512'h1 << OP1_MAC);
89
parameter           OP1_MACS_D = (512'h1 << OP1_MACS);
90
parameter           OP2_D      = (512'h1 << OP2);
91
parameter           RESLO_D    = (512'h1 << RESLO);
92
parameter           RESHI_D    = (512'h1 << RESHI);
93
parameter           SUMEXT_D   = (512'h1 << SUMEXT);
94
 
95
 
96
// Wire pre-declarations
97
wire  result_wr;
98
wire  result_clr;
99
wire  early_read;
100
 
101
 
102
//============================================================================
103
// 2)  REGISTER DECODER
104
//============================================================================
105
 
106
// Register address decode
107
reg  [511:0]  reg_dec;
108
always @(per_addr)
109
  case ({per_addr,1'b0})
110
    OP1_MPY  :  reg_dec  =  OP1_MPY_D;
111
    OP1_MPYS :  reg_dec  =  OP1_MPYS_D;
112
    OP1_MAC  :  reg_dec  =  OP1_MAC_D;
113
    OP1_MACS :  reg_dec  =  OP1_MACS_D;
114
    OP2      :  reg_dec  =  OP2_D;
115
    RESLO    :  reg_dec  =  RESLO_D;
116
    RESHI    :  reg_dec  =  RESHI_D;
117
    SUMEXT   :  reg_dec  =  SUMEXT_D;
118
    default  :  reg_dec  =  {512{1'b0}};
119
  endcase
120
 
121
// Read/Write probes
122
wire         reg_write =  |per_wen   & per_en;
123
wire         reg_read  = ~|per_wen   & per_en;
124
 
125
// Read/Write vectors
126
wire [511:0] reg_wr    = reg_dec & {512{reg_write}};
127
wire [511:0] reg_rd    = reg_dec & {512{reg_read}};
128
 
129
 
130
//============================================================================
131
// 3) REGISTERS
132
//============================================================================
133
 
134
// OP1 Register
135
//-----------------   
136
reg  [15:0] op1;
137
 
138
wire        op1_wr = reg_wr[OP1_MPY]  |
139
                     reg_wr[OP1_MPYS] |
140
                     reg_wr[OP1_MAC]  |
141
                     reg_wr[OP1_MACS];
142
 
143
always @ (posedge mclk or posedge puc)
144
  if (puc)          op1 <=  16'h0000;
145
  else if (op1_wr)  op1 <=  per_din;
146
 
147
wire [15:0] op1_rd  = op1;
148
 
149
 
150
// OP2 Register
151
//-----------------   
152
reg  [15:0] op2;
153
 
154
wire        op2_wr = reg_wr[OP2];
155
 
156
always @ (posedge mclk or posedge puc)
157
  if (puc)          op2 <=  16'h0000;
158
  else if (op2_wr)  op2 <=  per_din;
159
 
160
wire [15:0] op2_rd  = op2;
161
 
162
 
163
// RESLO Register
164
//-----------------   
165
reg  [15:0] reslo;
166
 
167
wire [15:0] reslo_nxt;
168
wire        reslo_wr = reg_wr[RESLO];
169
 
170
always @ (posedge mclk or posedge puc)
171
  if (puc)             reslo <=  16'h0000;
172
  else if (reslo_wr)   reslo <=  per_din;
173
  else if (result_clr) reslo <=  16'h0000;
174
  else if (result_wr)  reslo <=  reslo_nxt;
175
 
176
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
177
 
178
 
179
// RESHI Register
180
//-----------------   
181
reg  [15:0] reshi;
182
 
183
wire [15:0] reshi_nxt;
184
wire        reshi_wr = reg_wr[RESHI];
185
 
186
always @ (posedge mclk or posedge puc)
187
  if (puc)             reshi <=  16'h0000;
188
  else if (reshi_wr)   reshi <=  per_din;
189
  else if (result_clr) reshi <=  16'h0000;
190
  else if (result_wr)  reshi <=  reshi_nxt;
191
 
192
wire [15:0] reshi_rd = early_read ? reshi_nxt  : reshi;
193
 
194
 
195
// SUMEXT Register
196
//-----------------   
197
reg  [1:0] sumext_s;
198
 
199
wire [1:0] sumext_s_nxt;
200
 
201
always @ (posedge mclk or posedge puc)
202
  if (puc)             sumext_s <=  2'b00;
203
  else if (op2_wr)     sumext_s <=  2'b00;
204
  else if (result_wr)  sumext_s <=  sumext_s_nxt;
205
 
206
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
207
wire [15:0] sumext     = {{14{sumext_s[1]}},     sumext_s};
208
wire [15:0] sumext_rd  = early_read ? sumext_nxt : sumext;
209
 
210
 
211
//============================================================================
212
// 4) DATA OUTPUT GENERATION
213
//============================================================================
214
 
215
// Data output mux
216
wire [15:0] op1_mux    = op1_rd     & {16{reg_rd[OP1_MPY]  |
217
                                          reg_rd[OP1_MPYS] |
218
                                          reg_rd[OP1_MAC]  |
219
                                          reg_rd[OP1_MACS]}};
220
wire [15:0] op2_mux    = op2_rd     & {16{reg_rd[OP2]}};
221
wire [15:0] reslo_mux  = reslo_rd   & {16{reg_rd[RESLO]}};
222
wire [15:0] reshi_mux  = reshi_rd   & {16{reg_rd[RESHI]}};
223
wire [15:0] sumext_mux = sumext_rd  & {16{reg_rd[SUMEXT]}};
224
 
225
wire [15:0] per_dout   = op1_mux    |
226
                         op2_mux    |
227
                         reslo_mux  |
228
                         reshi_mux  |
229
                         sumext_mux;
230
 
231
 
232
//============================================================================
233
// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
234
//============================================================================
235
 
236
// Multiplier configuration
237
//--------------------------
238
 
239
// Detect signed mode
240
reg sign_sel;
241
always @ (posedge mclk or posedge puc)
242
  if (puc)         sign_sel <=  1'b0;
243
  else if (op1_wr) sign_sel <=  reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
244
 
245
 
246
// Detect accumulate mode
247
reg acc_sel;
248
always @ (posedge mclk or posedge puc)
249
  if (puc)         acc_sel  <=  1'b0;
250
  else if (op1_wr) acc_sel  <=  reg_wr[OP1_MAC]  | reg_wr[OP1_MACS];
251
 
252
 
253
// Detect whenever the RESHI and RESLO registers should be cleared
254
assign      result_clr = op2_wr & ~acc_sel;
255
 
256
// Combine RESHI & RESLO 
257
wire [31:0] result     = {reshi, reslo};
258
 
259
 
260
// 16x16 Multiplier (result computed in 1 clock cycle)
261
//-----------------------------------------------------
262
`ifdef MPY_16x16
263
 
264
// Detect start of a multiplication
265
reg cycle;
266
always @ (posedge mclk or posedge puc)
267
  if (puc) cycle <=  1'b0;
268
  else     cycle <=  op2_wr;
269
 
270
assign result_wr = cycle;
271
 
272
// Expand the operands to support signed & unsigned operations
273
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
274
wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
275
 
276
 
277
// 17x17 signed multiplication
278
wire signed [33:0] product = op1_xp * op2_xp;
279
 
280
// Accumulate
281
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
282
 
283
 
284
// Next register values
285
assign reslo_nxt    = result_nxt[15:0];
286
assign reshi_nxt    = result_nxt[31:16];
287
assign sumext_s_nxt =  sign_sel ? {2{result_nxt[31]}} :
288
                                  {1'b0, result_nxt[32]};
289
 
290
 
291
// Since the MAC is completed within 1 clock cycle,
292
// an early read can't happen.
293
assign early_read   = 1'b0;
294
 
295
 
296
// 16x8 Multiplier (result computed in 2 clock cycles)
297
//-----------------------------------------------------
298
`else
299
 
300
// Detect start of a multiplication
301
reg [1:0] cycle;
302
always @ (posedge mclk or posedge puc)
303
  if (puc) cycle <=  2'b00;
304
  else     cycle <=  {cycle[0], op2_wr};
305
 
306
assign result_wr = |cycle;
307
 
308
 
309
// Expand the operands to support signed & unsigned operations
310
wire signed [16:0] op1_xp    = {sign_sel & op1[15], op1};
311
wire signed  [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
312
wire signed  [8:0] op2_lo_xp = {              1'b0, op2[7:0]};
313
wire signed  [8:0] op2_xp    = cycle[0] ? op2_hi_xp : op2_lo_xp;
314
 
315
 
316
// 17x9 signed multiplication
317
wire signed [25:0] product    = op1_xp * op2_xp;
318
 
319
wire        [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
320
                                           {{8{sign_sel & product[23]}}, product[23:0]};
321
 
322
// Accumulate
323
wire [32:0] result_nxt  = {1'b0, result} + {1'b0, product_xp[31:0]};
324
 
325
 
326
// Next register values
327
assign reslo_nxt    = result_nxt[15:0];
328
assign reshi_nxt    = result_nxt[31:16];
329
assign sumext_s_nxt =  sign_sel ? {2{result_nxt[31]}} :
330
                                  {1'b0, result_nxt[32] | sumext_s[0]};
331
 
332
// Since the MAC is completed within 2 clock cycle,
333
// an early read can happen during the second cycle.
334
assign early_read   = cycle[1];
335
 
336
`endif
337
 
338
 
339
endmodule // omsp_multiplier
340
 
341
`include "openMSP430_undefines.v"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.