OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [ada/] [a-ciorse.adb] - Blame information for rev 847

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT LIBRARY COMPONENTS                          --
4
--                                                                          --
5
--                 ADA.CONTAINERS.INDEFINITE_ORDERED_SETS                   --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 2004-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- This unit was originally developed by Matthew J Heaney.                  --
28
------------------------------------------------------------------------------
29
 
30
with Ada.Containers.Red_Black_Trees.Generic_Operations;
31
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
32
 
33
with Ada.Containers.Red_Black_Trees.Generic_Keys;
34
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
35
 
36
with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
37
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
38
 
39
with Ada.Unchecked_Deallocation;
40
 
41
with System; use type System.Address;
42
 
43
package body Ada.Containers.Indefinite_Ordered_Sets is
44
 
45
   type Iterator is new Limited_Controlled and
46
     Set_Iterator_Interfaces.Reversible_Iterator with
47
   record
48
      Container : Set_Access;
49
      Node      : Node_Access;
50
   end record;
51
 
52
   overriding procedure Finalize (Object : in out Iterator);
53
 
54
   overriding function First (Object : Iterator) return Cursor;
55
   overriding function Last  (Object : Iterator) return Cursor;
56
 
57
   overriding function Next
58
     (Object   : Iterator;
59
      Position : Cursor) return Cursor;
60
 
61
   overriding function Previous
62
     (Object   : Iterator;
63
      Position : Cursor) return Cursor;
64
 
65
   -----------------------
66
   -- Local Subprograms --
67
   -----------------------
68
 
69
   function Color (Node : Node_Access) return Color_Type;
70
   pragma Inline (Color);
71
 
72
   function Copy_Node (Source : Node_Access) return Node_Access;
73
   pragma Inline (Copy_Node);
74
 
75
   procedure Free (X : in out Node_Access);
76
 
77
   procedure Insert_Sans_Hint
78
     (Tree     : in out Tree_Type;
79
      New_Item : Element_Type;
80
      Node     : out Node_Access;
81
      Inserted : out Boolean);
82
 
83
   procedure Insert_With_Hint
84
     (Dst_Tree : in out Tree_Type;
85
      Dst_Hint : Node_Access;
86
      Src_Node : Node_Access;
87
      Dst_Node : out Node_Access);
88
 
89
   function Is_Greater_Element_Node
90
     (Left  : Element_Type;
91
      Right : Node_Access) return Boolean;
92
   pragma Inline (Is_Greater_Element_Node);
93
 
94
   function Is_Less_Element_Node
95
     (Left  : Element_Type;
96
      Right : Node_Access) return Boolean;
97
   pragma Inline (Is_Less_Element_Node);
98
 
99
   function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
100
   pragma Inline (Is_Less_Node_Node);
101
 
102
   function Left (Node : Node_Access) return Node_Access;
103
   pragma Inline (Left);
104
 
105
   function Parent (Node : Node_Access) return Node_Access;
106
   pragma Inline (Parent);
107
 
108
   procedure Replace_Element
109
     (Tree : in out Tree_Type;
110
      Node : Node_Access;
111
      Item : Element_Type);
112
 
113
   function Right (Node : Node_Access) return Node_Access;
114
   pragma Inline (Right);
115
 
116
   procedure Set_Color (Node : Node_Access; Color : Color_Type);
117
   pragma Inline (Set_Color);
118
 
119
   procedure Set_Left (Node : Node_Access; Left : Node_Access);
120
   pragma Inline (Set_Left);
121
 
122
   procedure Set_Parent (Node   : Node_Access; Parent : Node_Access);
123
   pragma Inline (Set_Parent);
124
 
125
   procedure Set_Right (Node : Node_Access; Right : Node_Access);
126
   pragma Inline (Set_Right);
127
 
128
   --------------------------
129
   -- Local Instantiations --
130
   --------------------------
131
 
132
   procedure Free_Element is
133
     new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
134
 
135
   package Tree_Operations is
136
     new Red_Black_Trees.Generic_Operations (Tree_Types);
137
 
138
   procedure Delete_Tree is
139
     new Tree_Operations.Generic_Delete_Tree (Free);
140
 
141
   function Copy_Tree is
142
     new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
143
 
144
   use Tree_Operations;
145
 
146
   package Element_Keys is
147
     new Red_Black_Trees.Generic_Keys
148
       (Tree_Operations     => Tree_Operations,
149
        Key_Type            => Element_Type,
150
        Is_Less_Key_Node    => Is_Less_Element_Node,
151
        Is_Greater_Key_Node => Is_Greater_Element_Node);
152
 
153
   package Set_Ops is
154
      new Generic_Set_Operations
155
        (Tree_Operations  => Tree_Operations,
156
         Insert_With_Hint => Insert_With_Hint,
157
         Copy_Tree        => Copy_Tree,
158
         Delete_Tree      => Delete_Tree,
159
         Is_Less          => Is_Less_Node_Node,
160
         Free             => Free);
161
 
162
   ---------
163
   -- "<" --
164
   ---------
165
 
166
   function "<" (Left, Right : Cursor) return Boolean is
167
   begin
168
      if Left.Node = null then
169
         raise Constraint_Error with "Left cursor equals No_Element";
170
      end if;
171
 
172
      if Right.Node = null then
173
         raise Constraint_Error with "Right cursor equals No_Element";
174
      end if;
175
 
176
      if Left.Node.Element = null then
177
         raise Program_Error with "Left cursor is bad";
178
      end if;
179
 
180
      if Right.Node.Element = null then
181
         raise Program_Error with "Right cursor is bad";
182
      end if;
183
 
184
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
185
                     "bad Left cursor in ""<""");
186
 
187
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
188
                     "bad Right cursor in ""<""");
189
 
190
      return Left.Node.Element.all < Right.Node.Element.all;
191
   end "<";
192
 
193
   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
194
   begin
195
      if Left.Node = null then
196
         raise Constraint_Error with "Left cursor equals No_Element";
197
      end if;
198
 
199
      if Left.Node.Element = null then
200
         raise Program_Error with "Left cursor is bad";
201
      end if;
202
 
203
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
204
                     "bad Left cursor in ""<""");
205
 
206
      return Left.Node.Element.all < Right;
207
   end "<";
208
 
209
   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
210
   begin
211
      if Right.Node = null then
212
         raise Constraint_Error with "Right cursor equals No_Element";
213
      end if;
214
 
215
      if Right.Node.Element = null then
216
         raise Program_Error with "Right cursor is bad";
217
      end if;
218
 
219
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
220
                     "bad Right cursor in ""<""");
221
 
222
      return Left < Right.Node.Element.all;
223
   end "<";
224
 
225
   ---------
226
   -- "=" --
227
   ---------
228
 
229
   function "=" (Left, Right : Set) return Boolean is
230
 
231
      function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
232
      pragma Inline (Is_Equal_Node_Node);
233
 
234
      function Is_Equal is
235
        new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
236
 
237
      ------------------------
238
      -- Is_Equal_Node_Node --
239
      ------------------------
240
 
241
      function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
242
      begin
243
         return L.Element.all = R.Element.all;
244
      end Is_Equal_Node_Node;
245
 
246
   --  Start of processing for "="
247
 
248
   begin
249
      return Is_Equal (Left.Tree, Right.Tree);
250
   end "=";
251
 
252
   ---------
253
   -- ">" --
254
   ---------
255
 
256
   function ">" (Left, Right : Cursor) return Boolean is
257
   begin
258
      if Left.Node = null then
259
         raise Constraint_Error with "Left cursor equals No_Element";
260
      end if;
261
 
262
      if Right.Node = null then
263
         raise Constraint_Error with "Right cursor equals No_Element";
264
      end if;
265
 
266
      if Left.Node.Element = null then
267
         raise Program_Error with "Left cursor is bad";
268
      end if;
269
 
270
      if Right.Node.Element = null then
271
         raise Program_Error with "Right cursor is bad";
272
      end if;
273
 
274
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
275
                     "bad Left cursor in "">""");
276
 
277
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
278
                     "bad Right cursor in "">""");
279
 
280
      --  L > R same as R < L
281
 
282
      return Right.Node.Element.all < Left.Node.Element.all;
283
   end ">";
284
 
285
   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
286
   begin
287
      if Left.Node = null then
288
         raise Constraint_Error with "Left cursor equals No_Element";
289
      end if;
290
 
291
      if Left.Node.Element = null then
292
         raise Program_Error with "Left cursor is bad";
293
      end if;
294
 
295
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
296
                     "bad Left cursor in "">""");
297
 
298
      return Right < Left.Node.Element.all;
299
   end ">";
300
 
301
   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
302
   begin
303
      if Right.Node = null then
304
         raise Constraint_Error with "Right cursor equals No_Element";
305
      end if;
306
 
307
      if Right.Node.Element = null then
308
         raise Program_Error with "Right cursor is bad";
309
      end if;
310
 
311
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
312
                     "bad Right cursor in "">""");
313
 
314
      return Right.Node.Element.all < Left;
315
   end ">";
316
 
317
   ------------
318
   -- Adjust --
319
   ------------
320
 
321
   procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree);
322
 
323
   procedure Adjust (Container : in out Set) is
324
   begin
325
      Adjust (Container.Tree);
326
   end Adjust;
327
 
328
   procedure Adjust (Control : in out Reference_Control_Type) is
329
   begin
330
      if Control.Container /= null then
331
         declare
332
            Tree : Tree_Type renames Control.Container.all.Tree;
333
            B : Natural renames Tree.Busy;
334
            L : Natural renames Tree.Lock;
335
         begin
336
            B := B + 1;
337
            L := L + 1;
338
         end;
339
      end if;
340
   end Adjust;
341
 
342
   ------------
343
   -- Assign --
344
   ------------
345
 
346
   procedure Assign (Target : in out Set; Source : Set) is
347
   begin
348
      if Target'Address = Source'Address then
349
         return;
350
      end if;
351
 
352
      Target.Clear;
353
      Target.Union (Source);
354
   end Assign;
355
 
356
   -------------
357
   -- Ceiling --
358
   -------------
359
 
360
   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
361
      Node : constant Node_Access :=
362
               Element_Keys.Ceiling (Container.Tree, Item);
363
   begin
364
      return (if Node = null then No_Element
365
              else Cursor'(Container'Unrestricted_Access, Node));
366
   end Ceiling;
367
 
368
   -----------
369
   -- Clear --
370
   -----------
371
 
372
   procedure Clear is
373
      new Tree_Operations.Generic_Clear (Delete_Tree);
374
 
375
   procedure Clear (Container : in out Set) is
376
   begin
377
      Clear (Container.Tree);
378
   end Clear;
379
 
380
   -----------
381
   -- Color --
382
   -----------
383
 
384
   function Color (Node : Node_Access) return Color_Type is
385
   begin
386
      return Node.Color;
387
   end Color;
388
 
389
   ------------------------
390
   -- Constant_Reference --
391
   ------------------------
392
 
393
   function Constant_Reference
394
     (Container : aliased Set;
395
      Position  : Cursor) return Constant_Reference_Type
396
   is
397
   begin
398
      if Position.Container = null then
399
         raise Constraint_Error with "Position cursor has no element";
400
      end if;
401
 
402
      if Position.Container /= Container'Unrestricted_Access then
403
         raise Program_Error with
404
           "Position cursor designates wrong container";
405
      end if;
406
 
407
      if Position.Node.Element = null then
408
         raise Program_Error with "Node has no element";
409
      end if;
410
 
411
      pragma Assert
412
        (Vet (Container.Tree, Position.Node),
413
         "bad cursor in Constant_Reference");
414
 
415
      declare
416
         Tree : Tree_Type renames Position.Container.all.Tree;
417
         B : Natural renames Tree.Busy;
418
         L : Natural renames Tree.Lock;
419
      begin
420
         return R : constant Constant_Reference_Type :=
421
                      (Element => Position.Node.Element.all'Access,
422
                       Control =>
423
                         (Controlled with Container'Unrestricted_Access))
424
         do
425
            B := B + 1;
426
            L := L + 1;
427
         end return;
428
      end;
429
   end Constant_Reference;
430
 
431
   --------------
432
   -- Contains --
433
   --------------
434
 
435
   function Contains (Container : Set; Item : Element_Type) return Boolean is
436
   begin
437
      return Find (Container, Item) /= No_Element;
438
   end Contains;
439
 
440
   ----------
441
   -- Copy --
442
   ----------
443
 
444
   function Copy (Source : Set) return Set is
445
   begin
446
      return Target : Set do
447
         Target.Assign (Source);
448
      end return;
449
   end Copy;
450
 
451
   ---------------
452
   -- Copy_Node --
453
   ---------------
454
 
455
   function Copy_Node (Source : Node_Access) return Node_Access is
456
      Element : Element_Access := new Element_Type'(Source.Element.all);
457
 
458
   begin
459
      return new Node_Type'(Parent  => null,
460
                            Left    => null,
461
                            Right   => null,
462
                            Color   => Source.Color,
463
                            Element => Element);
464
   exception
465
      when others =>
466
         Free_Element (Element);
467
         raise;
468
   end Copy_Node;
469
 
470
   ------------
471
   -- Delete --
472
   ------------
473
 
474
   procedure Delete (Container : in out Set; Position : in out Cursor) is
475
   begin
476
      if Position.Node = null then
477
         raise Constraint_Error with "Position cursor equals No_Element";
478
      end if;
479
 
480
      if Position.Node.Element = null then
481
         raise Program_Error with "Position cursor is bad";
482
      end if;
483
 
484
      if Position.Container /= Container'Unrestricted_Access then
485
         raise Program_Error with "Position cursor designates wrong set";
486
      end if;
487
 
488
      pragma Assert (Vet (Container.Tree, Position.Node),
489
                     "bad cursor in Delete");
490
 
491
      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
492
      Free (Position.Node);
493
      Position.Container := null;
494
   end Delete;
495
 
496
   procedure Delete (Container : in out Set; Item : Element_Type) is
497
      X : Node_Access :=
498
            Element_Keys.Find (Container.Tree, Item);
499
 
500
   begin
501
      if X = null then
502
         raise Constraint_Error with "attempt to delete element not in set";
503
      end if;
504
 
505
      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
506
      Free (X);
507
   end Delete;
508
 
509
   ------------------
510
   -- Delete_First --
511
   ------------------
512
 
513
   procedure Delete_First (Container : in out Set) is
514
      Tree : Tree_Type renames Container.Tree;
515
      X    : Node_Access := Tree.First;
516
   begin
517
      if X /= null then
518
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
519
         Free (X);
520
      end if;
521
   end Delete_First;
522
 
523
   -----------------
524
   -- Delete_Last --
525
   -----------------
526
 
527
   procedure Delete_Last (Container : in out Set) is
528
      Tree : Tree_Type renames Container.Tree;
529
      X    : Node_Access := Tree.Last;
530
   begin
531
      if X /= null then
532
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
533
         Free (X);
534
      end if;
535
   end Delete_Last;
536
 
537
   ----------------
538
   -- Difference --
539
   ----------------
540
 
541
   procedure Difference (Target : in out Set; Source : Set) is
542
   begin
543
      Set_Ops.Difference (Target.Tree, Source.Tree);
544
   end Difference;
545
 
546
   function Difference (Left, Right : Set) return Set is
547
      Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree);
548
   begin
549
      return Set'(Controlled with Tree);
550
   end Difference;
551
 
552
   -------------
553
   -- Element --
554
   -------------
555
 
556
   function Element (Position : Cursor) return Element_Type is
557
   begin
558
      if Position.Node = null then
559
         raise Constraint_Error with "Position cursor equals No_Element";
560
      end if;
561
 
562
      if Position.Node.Element = null then
563
         raise Program_Error with "Position cursor is bad";
564
      end if;
565
 
566
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
567
                     "bad cursor in Element");
568
 
569
      return Position.Node.Element.all;
570
   end Element;
571
 
572
   -------------------------
573
   -- Equivalent_Elements --
574
   -------------------------
575
 
576
   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
577
   begin
578
      if Left < Right or else Right < Left then
579
         return False;
580
      else
581
         return True;
582
      end if;
583
   end Equivalent_Elements;
584
 
585
   ---------------------
586
   -- Equivalent_Sets --
587
   ---------------------
588
 
589
   function Equivalent_Sets (Left, Right : Set) return Boolean is
590
 
591
      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
592
      pragma Inline (Is_Equivalent_Node_Node);
593
 
594
      function Is_Equivalent is
595
         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
596
 
597
      -----------------------------
598
      -- Is_Equivalent_Node_Node --
599
      -----------------------------
600
 
601
      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
602
      begin
603
         if L.Element.all < R.Element.all then
604
            return False;
605
         elsif R.Element.all < L.Element.all then
606
            return False;
607
         else
608
            return True;
609
         end if;
610
      end Is_Equivalent_Node_Node;
611
 
612
   --  Start of processing for Equivalent_Sets
613
 
614
   begin
615
      return Is_Equivalent (Left.Tree, Right.Tree);
616
   end Equivalent_Sets;
617
 
618
   -------------
619
   -- Exclude --
620
   -------------
621
 
622
   procedure Exclude (Container : in out Set; Item : Element_Type) is
623
      X : Node_Access :=
624
            Element_Keys.Find (Container.Tree, Item);
625
   begin
626
      if X /= null then
627
         Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
628
         Free (X);
629
      end if;
630
   end Exclude;
631
 
632
   --------------
633
   -- Finalize --
634
   --------------
635
 
636
   procedure Finalize (Object : in out Iterator) is
637
   begin
638
      if Object.Container /= null then
639
         declare
640
            B : Natural renames Object.Container.all.Tree.Busy;
641
         begin
642
            B := B - 1;
643
         end;
644
      end if;
645
   end Finalize;
646
 
647
   procedure Finalize (Control : in out Reference_Control_Type) is
648
   begin
649
      if Control.Container /= null then
650
         declare
651
            Tree : Tree_Type renames Control.Container.all.Tree;
652
            B : Natural renames Tree.Busy;
653
            L : Natural renames Tree.Lock;
654
         begin
655
            B := B - 1;
656
            L := L - 1;
657
         end;
658
 
659
         Control.Container := null;
660
      end if;
661
   end Finalize;
662
 
663
   ----------
664
   -- Find --
665
   ----------
666
 
667
   function Find (Container : Set; Item : Element_Type) return Cursor is
668
      Node : constant Node_Access :=
669
               Element_Keys.Find (Container.Tree, Item);
670
   begin
671
      if Node = null then
672
         return No_Element;
673
      else
674
         return Cursor'(Container'Unrestricted_Access, Node);
675
      end if;
676
   end Find;
677
 
678
   -----------
679
   -- First --
680
   -----------
681
 
682
   function First (Container : Set) return Cursor is
683
   begin
684
      return
685
        (if Container.Tree.First = null then No_Element
686
         else Cursor'(Container'Unrestricted_Access, Container.Tree.First));
687
   end First;
688
 
689
   function First (Object : Iterator) return Cursor is
690
   begin
691
      --  The value of the iterator object's Node component influences the
692
      --  behavior of the First (and Last) selector function.
693
 
694
      --  When the Node component is null, this means the iterator object was
695
      --  constructed without a start expression, in which case the (forward)
696
      --  iteration starts from the (logical) beginning of the entire sequence
697
      --  of items (corresponding to Container.First, for a forward iterator).
698
 
699
      --  Otherwise, this is iteration over a partial sequence of items. When
700
      --  the Node component is non-null, the iterator object was constructed
701
      --  with a start expression, that specifies the position from which the
702
      --  (forward) partial iteration begins.
703
 
704
      if Object.Node = null then
705
         return Object.Container.First;
706
      else
707
         return Cursor'(Object.Container, Object.Node);
708
      end if;
709
   end First;
710
 
711
   -------------------
712
   -- First_Element --
713
   -------------------
714
 
715
   function First_Element (Container : Set) return Element_Type is
716
   begin
717
      if Container.Tree.First = null then
718
         raise Constraint_Error with "set is empty";
719
      else
720
         return Container.Tree.First.Element.all;
721
      end if;
722
   end First_Element;
723
 
724
   -----------
725
   -- Floor --
726
   -----------
727
 
728
   function Floor (Container : Set; Item : Element_Type) return Cursor is
729
      Node : constant Node_Access :=
730
               Element_Keys.Floor (Container.Tree, Item);
731
   begin
732
      return (if Node = null then No_Element
733
              else Cursor'(Container'Unrestricted_Access, Node));
734
   end Floor;
735
 
736
   ----------
737
   -- Free --
738
   ----------
739
 
740
   procedure Free (X : in out Node_Access) is
741
      procedure Deallocate is
742
        new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
743
 
744
   begin
745
      if X = null then
746
         return;
747
      end if;
748
 
749
      X.Parent := X;
750
      X.Left := X;
751
      X.Right := X;
752
 
753
      begin
754
         Free_Element (X.Element);
755
      exception
756
         when others =>
757
            X.Element := null;
758
            Deallocate (X);
759
            raise;
760
      end;
761
 
762
      Deallocate (X);
763
   end Free;
764
 
765
   ------------------
766
   -- Generic_Keys --
767
   ------------------
768
 
769
   package body Generic_Keys is
770
 
771
      -----------------------
772
      -- Local Subprograms --
773
      -----------------------
774
 
775
      function Is_Greater_Key_Node
776
        (Left  : Key_Type;
777
         Right : Node_Access) return Boolean;
778
      pragma Inline (Is_Greater_Key_Node);
779
 
780
      function Is_Less_Key_Node
781
        (Left  : Key_Type;
782
         Right : Node_Access) return Boolean;
783
      pragma Inline (Is_Less_Key_Node);
784
 
785
      --------------------------
786
      -- Local Instantiations --
787
      --------------------------
788
 
789
      package Key_Keys is
790
        new Red_Black_Trees.Generic_Keys
791
          (Tree_Operations     => Tree_Operations,
792
           Key_Type            => Key_Type,
793
           Is_Less_Key_Node    => Is_Less_Key_Node,
794
           Is_Greater_Key_Node => Is_Greater_Key_Node);
795
 
796
      -------------
797
      -- Ceiling --
798
      -------------
799
 
800
      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
801
         Node : constant Node_Access :=
802
                  Key_Keys.Ceiling (Container.Tree, Key);
803
      begin
804
         return (if Node = null then No_Element
805
                 else Cursor'(Container'Unrestricted_Access, Node));
806
      end Ceiling;
807
 
808
      ------------------------
809
      -- Constant_Reference --
810
      ------------------------
811
 
812
      function Constant_Reference
813
        (Container : aliased Set;
814
         Key       : Key_Type) return Constant_Reference_Type
815
      is
816
         Node : constant Node_Access :=
817
                  Key_Keys.Find (Container.Tree, Key);
818
 
819
      begin
820
         if Node = null then
821
            raise Constraint_Error with "Key not in set";
822
         end if;
823
 
824
         if Node.Element = null then
825
            raise Program_Error with "Node has no element";
826
         end if;
827
 
828
         declare
829
            Tree : Tree_Type renames Container'Unrestricted_Access.all.Tree;
830
            B : Natural renames Tree.Busy;
831
            L : Natural renames Tree.Lock;
832
         begin
833
            return R : constant Constant_Reference_Type :=
834
                         (Element => Node.Element.all'Access,
835
                          Control =>
836
                            (Controlled with Container'Unrestricted_Access))
837
            do
838
               B := B + 1;
839
               L := L + 1;
840
            end return;
841
         end;
842
      end Constant_Reference;
843
 
844
      --------------
845
      -- Contains --
846
      --------------
847
 
848
      function Contains (Container : Set; Key : Key_Type) return Boolean is
849
      begin
850
         return Find (Container, Key) /= No_Element;
851
      end Contains;
852
 
853
      ------------
854
      -- Delete --
855
      ------------
856
 
857
      procedure Delete (Container : in out Set; Key : Key_Type) is
858
         X : Node_Access := Key_Keys.Find (Container.Tree, Key);
859
 
860
      begin
861
         if X = null then
862
            raise Constraint_Error with "attempt to delete key not in set";
863
         end if;
864
 
865
         Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
866
         Free (X);
867
      end Delete;
868
 
869
      -------------
870
      -- Element --
871
      -------------
872
 
873
      function Element (Container : Set; Key : Key_Type) return Element_Type is
874
         Node : constant Node_Access :=
875
                  Key_Keys.Find (Container.Tree, Key);
876
      begin
877
         if Node = null then
878
            raise Constraint_Error with "key not in set";
879
         else
880
            return Node.Element.all;
881
         end if;
882
      end Element;
883
 
884
      ---------------------
885
      -- Equivalent_Keys --
886
      ---------------------
887
 
888
      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
889
      begin
890
         if Left < Right or else Right < Left then
891
            return False;
892
         else
893
            return True;
894
         end if;
895
      end Equivalent_Keys;
896
 
897
      -------------
898
      -- Exclude --
899
      -------------
900
 
901
      procedure Exclude (Container : in out Set; Key : Key_Type) is
902
         X : Node_Access := Key_Keys.Find (Container.Tree, Key);
903
      begin
904
         if X /= null then
905
            Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
906
            Free (X);
907
         end if;
908
      end Exclude;
909
 
910
      ----------
911
      -- Find --
912
      ----------
913
 
914
      function Find (Container : Set; Key : Key_Type) return Cursor is
915
         Node : constant Node_Access :=
916
                  Key_Keys.Find (Container.Tree, Key);
917
      begin
918
         return (if Node = null then No_Element
919
                 else Cursor'(Container'Unrestricted_Access, Node));
920
      end Find;
921
 
922
      -----------
923
      -- Floor --
924
      -----------
925
 
926
      function Floor (Container : Set; Key : Key_Type) return Cursor is
927
         Node : constant Node_Access :=
928
                  Key_Keys.Floor (Container.Tree, Key);
929
      begin
930
         return (if Node = null then No_Element
931
                 else Cursor'(Container'Unrestricted_Access, Node));
932
      end Floor;
933
 
934
      -------------------------
935
      -- Is_Greater_Key_Node --
936
      -------------------------
937
 
938
      function Is_Greater_Key_Node
939
        (Left  : Key_Type;
940
         Right : Node_Access) return Boolean
941
      is
942
      begin
943
         return Key (Right.Element.all) < Left;
944
      end Is_Greater_Key_Node;
945
 
946
      ----------------------
947
      -- Is_Less_Key_Node --
948
      ----------------------
949
 
950
      function Is_Less_Key_Node
951
        (Left  : Key_Type;
952
         Right : Node_Access) return Boolean
953
      is
954
      begin
955
         return Left < Key (Right.Element.all);
956
      end Is_Less_Key_Node;
957
 
958
      ---------
959
      -- Key --
960
      ---------
961
 
962
      function Key (Position : Cursor) return Key_Type is
963
      begin
964
         if Position.Node = null then
965
            raise Constraint_Error with
966
              "Position cursor equals No_Element";
967
         end if;
968
 
969
         if Position.Node.Element = null then
970
            raise Program_Error with
971
              "Position cursor is bad";
972
         end if;
973
 
974
         pragma Assert (Vet (Position.Container.Tree, Position.Node),
975
                        "bad cursor in Key");
976
 
977
         return Key (Position.Node.Element.all);
978
      end Key;
979
 
980
      -------------
981
      -- Replace --
982
      -------------
983
 
984
      procedure Replace
985
        (Container : in out Set;
986
         Key       : Key_Type;
987
         New_Item  : Element_Type)
988
      is
989
         Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
990
 
991
      begin
992
         if Node = null then
993
            raise Constraint_Error with
994
              "attempt to replace key not in set";
995
         end if;
996
 
997
         Replace_Element (Container.Tree, Node, New_Item);
998
      end Replace;
999
 
1000
      ----------
1001
      -- Read --
1002
      ----------
1003
 
1004
      procedure Read
1005
        (Stream : not null access Root_Stream_Type'Class;
1006
         Item   : out Reference_Type)
1007
      is
1008
      begin
1009
         raise Program_Error with "attempt to stream reference";
1010
      end Read;
1011
 
1012
      ------------------------------
1013
      -- Reference_Preserving_Key --
1014
      ------------------------------
1015
 
1016
      function Reference_Preserving_Key
1017
        (Container : aliased in out Set;
1018
         Position  : Cursor) return Reference_Type
1019
      is
1020
      begin
1021
         if Position.Container = null then
1022
            raise Constraint_Error with "Position cursor has no element";
1023
         end if;
1024
 
1025
         if Position.Container /= Container'Unrestricted_Access then
1026
            raise Program_Error with
1027
              "Position cursor designates wrong container";
1028
         end if;
1029
 
1030
         if Position.Node.Element = null then
1031
            raise Program_Error with "Node has no element";
1032
         end if;
1033
 
1034
         pragma Assert
1035
           (Vet (Container.Tree, Position.Node),
1036
            "bad cursor in function Reference_Preserving_Key");
1037
 
1038
         --  Some form of finalization will be required in order to actually
1039
         --  check that the key-part of the element designated by Position has
1040
         --  not changed.  ???
1041
 
1042
         return (Element => Position.Node.Element.all'Access);
1043
      end Reference_Preserving_Key;
1044
 
1045
      function Reference_Preserving_Key
1046
        (Container : aliased in out Set;
1047
         Key       : Key_Type) return Reference_Type
1048
      is
1049
         Node : constant Node_Access :=
1050
                  Key_Keys.Find (Container.Tree, Key);
1051
 
1052
      begin
1053
         if Node = null then
1054
            raise Constraint_Error with "Key not in set";
1055
         end if;
1056
 
1057
         if Node.Element = null then
1058
            raise Program_Error with "Node has no element";
1059
         end if;
1060
 
1061
         --  Some form of finalization will be required in order to actually
1062
         --  check that the key-part of the element designated by Key has not
1063
         --  changed.  ???
1064
 
1065
         return (Element => Node.Element.all'Access);
1066
      end Reference_Preserving_Key;
1067
 
1068
      -----------------------------------
1069
      -- Update_Element_Preserving_Key --
1070
      -----------------------------------
1071
 
1072
      procedure Update_Element_Preserving_Key
1073
        (Container : in out Set;
1074
         Position  : Cursor;
1075
         Process   : not null access
1076
                        procedure (Element : in out Element_Type))
1077
      is
1078
         Tree : Tree_Type renames Container.Tree;
1079
 
1080
      begin
1081
         if Position.Node = null then
1082
            raise Constraint_Error with "Position cursor equals No_Element";
1083
         end if;
1084
 
1085
         if Position.Node.Element = null then
1086
            raise Program_Error with "Position cursor is bad";
1087
         end if;
1088
 
1089
         if Position.Container /= Container'Unrestricted_Access then
1090
            raise Program_Error with "Position cursor designates wrong set";
1091
         end if;
1092
 
1093
         pragma Assert (Vet (Container.Tree, Position.Node),
1094
                        "bad cursor in Update_Element_Preserving_Key");
1095
 
1096
         declare
1097
            E : Element_Type renames Position.Node.Element.all;
1098
            K : constant Key_Type := Key (E);
1099
 
1100
            B : Natural renames Tree.Busy;
1101
            L : Natural renames Tree.Lock;
1102
 
1103
         begin
1104
            B := B + 1;
1105
            L := L + 1;
1106
 
1107
            begin
1108
               Process (E);
1109
            exception
1110
               when others =>
1111
                  L := L - 1;
1112
                  B := B - 1;
1113
                  raise;
1114
            end;
1115
 
1116
            L := L - 1;
1117
            B := B - 1;
1118
 
1119
            if Equivalent_Keys (K, Key (E)) then
1120
               return;
1121
            end if;
1122
         end;
1123
 
1124
         declare
1125
            X : Node_Access := Position.Node;
1126
         begin
1127
            Tree_Operations.Delete_Node_Sans_Free (Tree, X);
1128
            Free (X);
1129
         end;
1130
 
1131
         raise Program_Error with "key was modified";
1132
      end Update_Element_Preserving_Key;
1133
 
1134
      -----------
1135
      -- Write --
1136
      -----------
1137
 
1138
      procedure Write
1139
        (Stream : not null access Root_Stream_Type'Class;
1140
         Item   : Reference_Type)
1141
      is
1142
      begin
1143
         raise Program_Error with "attempt to stream reference";
1144
      end Write;
1145
 
1146
   end Generic_Keys;
1147
 
1148
   -----------------
1149
   -- Has_Element --
1150
   -----------------
1151
 
1152
   function Has_Element (Position : Cursor) return Boolean is
1153
   begin
1154
      return Position /= No_Element;
1155
   end Has_Element;
1156
 
1157
   -------------
1158
   -- Include --
1159
   -------------
1160
 
1161
   procedure Include (Container : in out Set; New_Item  : Element_Type) is
1162
      Position : Cursor;
1163
      Inserted : Boolean;
1164
 
1165
      X : Element_Access;
1166
 
1167
   begin
1168
      Insert (Container, New_Item, Position, Inserted);
1169
 
1170
      if not Inserted then
1171
         if Container.Tree.Lock > 0 then
1172
            raise Program_Error with
1173
              "attempt to tamper with elements (set is locked)";
1174
         end if;
1175
 
1176
         X := Position.Node.Element;
1177
         Position.Node.Element := new Element_Type'(New_Item);
1178
         Free_Element (X);
1179
      end if;
1180
   end Include;
1181
 
1182
   ------------
1183
   -- Insert --
1184
   ------------
1185
 
1186
   procedure Insert
1187
     (Container : in out Set;
1188
      New_Item  : Element_Type;
1189
      Position  : out Cursor;
1190
      Inserted  : out Boolean)
1191
   is
1192
   begin
1193
      Insert_Sans_Hint
1194
        (Container.Tree,
1195
         New_Item,
1196
         Position.Node,
1197
         Inserted);
1198
 
1199
      Position.Container := Container'Unrestricted_Access;
1200
   end Insert;
1201
 
1202
   procedure Insert (Container : in out Set; New_Item  : Element_Type) is
1203
      Position : Cursor;
1204
      pragma Unreferenced (Position);
1205
 
1206
      Inserted : Boolean;
1207
 
1208
   begin
1209
      Insert (Container, New_Item, Position, Inserted);
1210
 
1211
      if not Inserted then
1212
         raise Constraint_Error with
1213
           "attempt to insert element already in set";
1214
      end if;
1215
   end Insert;
1216
 
1217
   ----------------------
1218
   -- Insert_Sans_Hint --
1219
   ----------------------
1220
 
1221
   procedure Insert_Sans_Hint
1222
     (Tree     : in out Tree_Type;
1223
      New_Item : Element_Type;
1224
      Node     : out Node_Access;
1225
      Inserted : out Boolean)
1226
   is
1227
      function New_Node return Node_Access;
1228
      pragma Inline (New_Node);
1229
 
1230
      procedure Insert_Post is
1231
        new Element_Keys.Generic_Insert_Post (New_Node);
1232
 
1233
      procedure Conditional_Insert_Sans_Hint is
1234
        new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1235
 
1236
      --------------
1237
      -- New_Node --
1238
      --------------
1239
 
1240
      function New_Node return Node_Access is
1241
         Element : Element_Access := new Element_Type'(New_Item);
1242
 
1243
      begin
1244
         return new Node_Type'(Parent  => null,
1245
                               Left    => null,
1246
                               Right   => null,
1247
                               Color   => Red_Black_Trees.Red,
1248
                               Element => Element);
1249
      exception
1250
         when others =>
1251
            Free_Element (Element);
1252
            raise;
1253
      end New_Node;
1254
 
1255
   --  Start of processing for Insert_Sans_Hint
1256
 
1257
   begin
1258
      Conditional_Insert_Sans_Hint
1259
        (Tree,
1260
         New_Item,
1261
         Node,
1262
         Inserted);
1263
   end Insert_Sans_Hint;
1264
 
1265
   ----------------------
1266
   -- Insert_With_Hint --
1267
   ----------------------
1268
 
1269
   procedure Insert_With_Hint
1270
     (Dst_Tree : in out Tree_Type;
1271
      Dst_Hint : Node_Access;
1272
      Src_Node : Node_Access;
1273
      Dst_Node : out Node_Access)
1274
   is
1275
      Success : Boolean;
1276
      pragma Unreferenced (Success);
1277
 
1278
      function New_Node return Node_Access;
1279
 
1280
      procedure Insert_Post is
1281
        new Element_Keys.Generic_Insert_Post (New_Node);
1282
 
1283
      procedure Insert_Sans_Hint is
1284
        new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1285
 
1286
      procedure Insert_With_Hint is
1287
         new Element_Keys.Generic_Conditional_Insert_With_Hint
1288
            (Insert_Post,
1289
             Insert_Sans_Hint);
1290
 
1291
      --------------
1292
      -- New_Node --
1293
      --------------
1294
 
1295
      function New_Node return Node_Access is
1296
         Element : Element_Access :=
1297
                     new Element_Type'(Src_Node.Element.all);
1298
         Node    : Node_Access;
1299
 
1300
      begin
1301
         begin
1302
            Node := new Node_Type;
1303
         exception
1304
            when others =>
1305
               Free_Element (Element);
1306
               raise;
1307
         end;
1308
 
1309
         Node.Element := Element;
1310
         return Node;
1311
      end New_Node;
1312
 
1313
   --  Start of processing for Insert_With_Hint
1314
 
1315
   begin
1316
      Insert_With_Hint
1317
        (Dst_Tree,
1318
         Dst_Hint,
1319
         Src_Node.Element.all,
1320
         Dst_Node,
1321
         Success);
1322
   end Insert_With_Hint;
1323
 
1324
   ------------------
1325
   -- Intersection --
1326
   ------------------
1327
 
1328
   procedure Intersection (Target : in out Set; Source : Set) is
1329
   begin
1330
      Set_Ops.Intersection (Target.Tree, Source.Tree);
1331
   end Intersection;
1332
 
1333
   function Intersection (Left, Right : Set) return Set is
1334
      Tree : constant Tree_Type :=
1335
               Set_Ops.Intersection (Left.Tree, Right.Tree);
1336
   begin
1337
      return Set'(Controlled with Tree);
1338
   end Intersection;
1339
 
1340
   --------------
1341
   -- Is_Empty --
1342
   --------------
1343
 
1344
   function Is_Empty (Container : Set) return Boolean is
1345
   begin
1346
      return Container.Tree.Length = 0;
1347
   end Is_Empty;
1348
 
1349
   -----------------------------
1350
   -- Is_Greater_Element_Node --
1351
   -----------------------------
1352
 
1353
   function Is_Greater_Element_Node
1354
     (Left  : Element_Type;
1355
      Right : Node_Access) return Boolean
1356
   is
1357
   begin
1358
      --  e > node same as node < e
1359
 
1360
      return Right.Element.all < Left;
1361
   end Is_Greater_Element_Node;
1362
 
1363
   --------------------------
1364
   -- Is_Less_Element_Node --
1365
   --------------------------
1366
 
1367
   function Is_Less_Element_Node
1368
     (Left  : Element_Type;
1369
      Right : Node_Access) return Boolean
1370
   is
1371
   begin
1372
      return Left < Right.Element.all;
1373
   end Is_Less_Element_Node;
1374
 
1375
   -----------------------
1376
   -- Is_Less_Node_Node --
1377
   -----------------------
1378
 
1379
   function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
1380
   begin
1381
      return L.Element.all < R.Element.all;
1382
   end Is_Less_Node_Node;
1383
 
1384
   ---------------
1385
   -- Is_Subset --
1386
   ---------------
1387
 
1388
   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1389
   begin
1390
      return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
1391
   end Is_Subset;
1392
 
1393
   -------------
1394
   -- Iterate --
1395
   -------------
1396
 
1397
   procedure Iterate
1398
     (Container : Set;
1399
      Process   : not null access procedure (Position : Cursor))
1400
   is
1401
      procedure Process_Node (Node : Node_Access);
1402
      pragma Inline (Process_Node);
1403
 
1404
      procedure Local_Iterate is
1405
        new Tree_Operations.Generic_Iteration (Process_Node);
1406
 
1407
      ------------------
1408
      -- Process_Node --
1409
      ------------------
1410
 
1411
      procedure Process_Node (Node : Node_Access) is
1412
      begin
1413
         Process (Cursor'(Container'Unrestricted_Access, Node));
1414
      end Process_Node;
1415
 
1416
      T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
1417
      B : Natural renames T.Busy;
1418
 
1419
   --  Start of processing for Iterate
1420
 
1421
   begin
1422
      B := B + 1;
1423
 
1424
      begin
1425
         Local_Iterate (T);
1426
      exception
1427
         when others =>
1428
            B := B - 1;
1429
            raise;
1430
      end;
1431
 
1432
      B := B - 1;
1433
   end Iterate;
1434
 
1435
   function Iterate
1436
     (Container : Set)
1437
      return Set_Iterator_Interfaces.Reversible_Iterator'class
1438
   is
1439
      B  : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1440
 
1441
   begin
1442
      --  The value of the Node component influences the behavior of the First
1443
      --  and Last selector functions of the iterator object. When the Node
1444
      --  component is null (as is the case here), this means the iterator
1445
      --  object was constructed without a start expression. This is a complete
1446
      --  iterator, meaning that the iteration starts from the (logical)
1447
      --  beginning of the sequence of items.
1448
 
1449
      --  Note: For a forward iterator, Container.First is the beginning, and
1450
      --  for a reverse iterator, Container.Last is the beginning.
1451
 
1452
      return It : constant Iterator :=
1453
                    Iterator'(Limited_Controlled with
1454
                                Container => Container'Unrestricted_Access,
1455
                                Node      => null)
1456
      do
1457
         B := B + 1;
1458
      end return;
1459
   end Iterate;
1460
 
1461
   function Iterate
1462
     (Container : Set;
1463
      Start     : Cursor)
1464
      return Set_Iterator_Interfaces.Reversible_Iterator'class
1465
   is
1466
      B  : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1467
 
1468
   begin
1469
      --  It was formerly the case that when Start = No_Element, the partial
1470
      --  iterator was defined to behave the same as for a complete iterator,
1471
      --  and iterate over the entire sequence of items. However, those
1472
      --  semantics were unintuitive and arguably error-prone (it is too easy
1473
      --  to accidentally create an endless loop), and so they were changed,
1474
      --  per the ARG meeting in Denver on 2011/11. However, there was no
1475
      --  consensus about what positive meaning this corner case should have,
1476
      --  and so it was decided to simply raise an exception. This does imply,
1477
      --  however, that it is not possible to use a partial iterator to specify
1478
      --  an empty sequence of items.
1479
 
1480
      if Start = No_Element then
1481
         raise Constraint_Error with
1482
           "Start position for iterator equals No_Element";
1483
      end if;
1484
 
1485
      if Start.Container /= Container'Unrestricted_Access then
1486
         raise Program_Error with
1487
           "Start cursor of Iterate designates wrong set";
1488
      end if;
1489
 
1490
      pragma Assert (Vet (Container.Tree, Start.Node),
1491
                     "Start cursor of Iterate is bad");
1492
 
1493
      --  The value of the Node component influences the behavior of the First
1494
      --  and Last selector functions of the iterator object. When the Node
1495
      --  component is non-null (as is the case here), it means that this is a
1496
      --  partial iteration, over a subset of the complete sequence of
1497
      --  items. The iterator object was constructed with a start expression,
1498
      --  indicating the position from which the iteration begins. Note that
1499
      --  the start position has the same value irrespective of whether this is
1500
      --  a forward or reverse iteration.
1501
 
1502
      return It : constant Iterator :=
1503
                    (Limited_Controlled with
1504
                       Container => Container'Unrestricted_Access,
1505
                       Node      => Start.Node)
1506
      do
1507
         B := B + 1;
1508
      end return;
1509
   end Iterate;
1510
 
1511
   ----------
1512
   -- Last --
1513
   ----------
1514
 
1515
   function Last (Container : Set) return Cursor is
1516
   begin
1517
      return
1518
        (if Container.Tree.Last = null then No_Element
1519
         else Cursor'(Container'Unrestricted_Access, Container.Tree.Last));
1520
   end Last;
1521
 
1522
   function Last (Object : Iterator) return Cursor is
1523
   begin
1524
      --  The value of the iterator object's Node component influences the
1525
      --  behavior of the Last (and First) selector function.
1526
 
1527
      --  When the Node component is null, this means the iterator object was
1528
      --  constructed without a start expression, in which case the (reverse)
1529
      --  iteration starts from the (logical) beginning of the entire sequence
1530
      --  (corresponding to Container.Last, for a reverse iterator).
1531
 
1532
      --  Otherwise, this is iteration over a partial sequence of items. When
1533
      --  the Node component is non-null, the iterator object was constructed
1534
      --  with a start expression, that specifies the position from which the
1535
      --  (reverse) partial iteration begins.
1536
 
1537
      if Object.Node = null then
1538
         return Object.Container.Last;
1539
      else
1540
         return Cursor'(Object.Container, Object.Node);
1541
      end if;
1542
   end Last;
1543
 
1544
   ------------------
1545
   -- Last_Element --
1546
   ------------------
1547
 
1548
   function Last_Element (Container : Set) return Element_Type is
1549
   begin
1550
      if Container.Tree.Last = null then
1551
         raise Constraint_Error with "set is empty";
1552
      else
1553
         return Container.Tree.Last.Element.all;
1554
      end if;
1555
   end Last_Element;
1556
 
1557
   ----------
1558
   -- Left --
1559
   ----------
1560
 
1561
   function Left (Node : Node_Access) return Node_Access is
1562
   begin
1563
      return Node.Left;
1564
   end Left;
1565
 
1566
   ------------
1567
   -- Length --
1568
   ------------
1569
 
1570
   function Length (Container : Set) return Count_Type is
1571
   begin
1572
      return Container.Tree.Length;
1573
   end Length;
1574
 
1575
   ----------
1576
   -- Move --
1577
   ----------
1578
 
1579
   procedure Move is new Tree_Operations.Generic_Move (Clear);
1580
 
1581
   procedure Move (Target : in out Set; Source : in out Set) is
1582
   begin
1583
      Move (Target => Target.Tree, Source => Source.Tree);
1584
   end Move;
1585
 
1586
   ----------
1587
   -- Next --
1588
   ----------
1589
 
1590
   procedure Next (Position : in out Cursor) is
1591
   begin
1592
      Position := Next (Position);
1593
   end Next;
1594
 
1595
   function Next (Position : Cursor) return Cursor is
1596
   begin
1597
      if Position = No_Element then
1598
         return No_Element;
1599
      end if;
1600
 
1601
      if Position.Node.Element = null then
1602
         raise Program_Error with "Position cursor is bad";
1603
      end if;
1604
 
1605
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1606
                     "bad cursor in Next");
1607
 
1608
      declare
1609
         Node : constant Node_Access :=
1610
                  Tree_Operations.Next (Position.Node);
1611
      begin
1612
         return (if Node = null then No_Element
1613
                 else Cursor'(Position.Container, Node));
1614
      end;
1615
   end Next;
1616
 
1617
   function Next
1618
     (Object   : Iterator;
1619
      Position : Cursor) return Cursor
1620
   is
1621
   begin
1622
      if Position.Container = null then
1623
         return No_Element;
1624
      end if;
1625
 
1626
      if Position.Container /= Object.Container then
1627
         raise Program_Error with
1628
           "Position cursor of Next designates wrong set";
1629
      end if;
1630
 
1631
      return Next (Position);
1632
   end Next;
1633
 
1634
   -------------
1635
   -- Overlap --
1636
   -------------
1637
 
1638
   function Overlap (Left, Right : Set) return Boolean is
1639
   begin
1640
      return Set_Ops.Overlap (Left.Tree, Right.Tree);
1641
   end Overlap;
1642
 
1643
   ------------
1644
   -- Parent --
1645
   ------------
1646
 
1647
   function Parent (Node : Node_Access) return Node_Access is
1648
   begin
1649
      return Node.Parent;
1650
   end Parent;
1651
 
1652
   --------------
1653
   -- Previous --
1654
   --------------
1655
 
1656
   procedure Previous (Position : in out Cursor) is
1657
   begin
1658
      Position := Previous (Position);
1659
   end Previous;
1660
 
1661
   function Previous (Position : Cursor) return Cursor is
1662
   begin
1663
      if Position = No_Element then
1664
         return No_Element;
1665
      end if;
1666
 
1667
      if Position.Node.Element = null then
1668
         raise Program_Error with "Position cursor is bad";
1669
      end if;
1670
 
1671
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1672
                     "bad cursor in Previous");
1673
 
1674
      declare
1675
         Node : constant Node_Access :=
1676
                  Tree_Operations.Previous (Position.Node);
1677
      begin
1678
         return (if Node = null then No_Element
1679
                 else Cursor'(Position.Container, Node));
1680
      end;
1681
   end Previous;
1682
 
1683
   function Previous
1684
     (Object   : Iterator;
1685
      Position : Cursor) return Cursor
1686
   is
1687
   begin
1688
      if Position.Container = null then
1689
         return No_Element;
1690
      end if;
1691
 
1692
      if Position.Container /= Object.Container then
1693
         raise Program_Error with
1694
           "Position cursor of Previous designates wrong set";
1695
      end if;
1696
 
1697
      return Previous (Position);
1698
   end Previous;
1699
 
1700
   -------------------
1701
   -- Query_Element --
1702
   -------------------
1703
 
1704
   procedure Query_Element
1705
     (Position  : Cursor;
1706
      Process   : not null access procedure (Element : Element_Type))
1707
   is
1708
   begin
1709
      if Position.Node = null then
1710
         raise Constraint_Error with "Position cursor equals No_Element";
1711
      end if;
1712
 
1713
      if Position.Node.Element = null then
1714
         raise Program_Error with "Position cursor is bad";
1715
      end if;
1716
 
1717
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1718
                     "bad cursor in Query_Element");
1719
 
1720
      declare
1721
         T : Tree_Type renames Position.Container.Tree;
1722
 
1723
         B : Natural renames T.Busy;
1724
         L : Natural renames T.Lock;
1725
 
1726
      begin
1727
         B := B + 1;
1728
         L := L + 1;
1729
 
1730
         begin
1731
            Process (Position.Node.Element.all);
1732
         exception
1733
            when others =>
1734
               L := L - 1;
1735
               B := B - 1;
1736
               raise;
1737
         end;
1738
 
1739
         L := L - 1;
1740
         B := B - 1;
1741
      end;
1742
   end Query_Element;
1743
 
1744
   ----------
1745
   -- Read --
1746
   ----------
1747
 
1748
   procedure Read
1749
     (Stream    : not null access Root_Stream_Type'Class;
1750
      Container : out Set)
1751
   is
1752
      function Read_Node
1753
        (Stream : not null access Root_Stream_Type'Class) return Node_Access;
1754
      pragma Inline (Read_Node);
1755
 
1756
      procedure Read is
1757
         new Tree_Operations.Generic_Read (Clear, Read_Node);
1758
 
1759
      ---------------
1760
      -- Read_Node --
1761
      ---------------
1762
 
1763
      function Read_Node
1764
        (Stream : not null access Root_Stream_Type'Class) return Node_Access
1765
      is
1766
         Node : Node_Access := new Node_Type;
1767
 
1768
      begin
1769
         Node.Element := new Element_Type'(Element_Type'Input (Stream));
1770
         return Node;
1771
 
1772
      exception
1773
         when others =>
1774
            Free (Node);  --  Note that Free deallocates elem too
1775
            raise;
1776
      end Read_Node;
1777
 
1778
   --  Start of processing for Read
1779
 
1780
   begin
1781
      Read (Stream, Container.Tree);
1782
   end Read;
1783
 
1784
   procedure Read
1785
     (Stream : not null access Root_Stream_Type'Class;
1786
      Item   : out Cursor)
1787
   is
1788
   begin
1789
      raise Program_Error with "attempt to stream set cursor";
1790
   end Read;
1791
 
1792
   procedure Read
1793
     (Stream : not null access Root_Stream_Type'Class;
1794
      Item   : out Constant_Reference_Type)
1795
   is
1796
   begin
1797
      raise Program_Error with "attempt to stream reference";
1798
   end Read;
1799
 
1800
   -------------
1801
   -- Replace --
1802
   -------------
1803
 
1804
   procedure Replace (Container : in out Set; New_Item : Element_Type) is
1805
      Node : constant Node_Access :=
1806
               Element_Keys.Find (Container.Tree, New_Item);
1807
 
1808
      X : Element_Access;
1809
      pragma Warnings (Off, X);
1810
 
1811
   begin
1812
      if Node = null then
1813
         raise Constraint_Error with "attempt to replace element not in set";
1814
      end if;
1815
 
1816
      if Container.Tree.Lock > 0 then
1817
         raise Program_Error with
1818
           "attempt to tamper with elements (set is locked)";
1819
      end if;
1820
 
1821
      X := Node.Element;
1822
      Node.Element := new Element_Type'(New_Item);
1823
      Free_Element (X);
1824
   end Replace;
1825
 
1826
   ---------------------
1827
   -- Replace_Element --
1828
   ---------------------
1829
 
1830
   procedure Replace_Element
1831
     (Tree : in out Tree_Type;
1832
      Node : Node_Access;
1833
      Item : Element_Type)
1834
   is
1835
      pragma Assert (Node /= null);
1836
      pragma Assert (Node.Element /= null);
1837
 
1838
      function New_Node return Node_Access;
1839
      pragma Inline (New_Node);
1840
 
1841
      procedure Local_Insert_Post is
1842
        new Element_Keys.Generic_Insert_Post (New_Node);
1843
 
1844
      procedure Local_Insert_Sans_Hint is
1845
        new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1846
 
1847
      procedure Local_Insert_With_Hint is
1848
        new Element_Keys.Generic_Conditional_Insert_With_Hint
1849
          (Local_Insert_Post,
1850
           Local_Insert_Sans_Hint);
1851
 
1852
      --------------
1853
      -- New_Node --
1854
      --------------
1855
 
1856
      function New_Node return Node_Access is
1857
      begin
1858
         Node.Element := new Element_Type'(Item);  -- OK if fails
1859
         Node.Color := Red;
1860
         Node.Parent := null;
1861
         Node.Right := null;
1862
         Node.Left := null;
1863
         return Node;
1864
      end New_Node;
1865
 
1866
      Hint     : Node_Access;
1867
      Result   : Node_Access;
1868
      Inserted : Boolean;
1869
 
1870
      X : Element_Access := Node.Element;
1871
 
1872
      --  Start of processing for Replace_Element
1873
 
1874
   begin
1875
      if Item < Node.Element.all
1876
        or else Node.Element.all < Item
1877
      then
1878
         null;
1879
 
1880
      else
1881
         if Tree.Lock > 0 then
1882
            raise Program_Error with
1883
              "attempt to tamper with elements (set is locked)";
1884
         end if;
1885
 
1886
         Node.Element := new Element_Type'(Item);
1887
         Free_Element (X);
1888
 
1889
         return;
1890
      end if;
1891
 
1892
      Hint := Element_Keys.Ceiling (Tree, Item);
1893
 
1894
      if Hint = null then
1895
         null;
1896
 
1897
      elsif Item < Hint.Element.all then
1898
         if Hint = Node then
1899
            if Tree.Lock > 0 then
1900
               raise Program_Error with
1901
                 "attempt to tamper with elements (set is locked)";
1902
            end if;
1903
 
1904
            Node.Element := new Element_Type'(Item);
1905
            Free_Element (X);
1906
 
1907
            return;
1908
         end if;
1909
 
1910
      else
1911
         pragma Assert (not (Hint.Element.all < Item));
1912
         raise Program_Error with "attempt to replace existing element";
1913
      end if;
1914
 
1915
      Tree_Operations.Delete_Node_Sans_Free (Tree, Node);  -- Checks busy-bit
1916
 
1917
      Local_Insert_With_Hint
1918
        (Tree     => Tree,
1919
         Position => Hint,
1920
         Key      => Item,
1921
         Node     => Result,
1922
         Inserted => Inserted);
1923
 
1924
      pragma Assert (Inserted);
1925
      pragma Assert (Result = Node);
1926
 
1927
      Free_Element (X);
1928
   end Replace_Element;
1929
 
1930
   procedure Replace_Element
1931
    (Container : in out Set;
1932
     Position  : Cursor;
1933
     New_Item  : Element_Type)
1934
   is
1935
   begin
1936
      if Position.Node = null then
1937
         raise Constraint_Error with "Position cursor equals No_Element";
1938
      end if;
1939
 
1940
      if Position.Node.Element = null then
1941
         raise Program_Error with "Position cursor is bad";
1942
      end if;
1943
 
1944
      if Position.Container /= Container'Unrestricted_Access then
1945
         raise Program_Error with "Position cursor designates wrong set";
1946
      end if;
1947
 
1948
      pragma Assert (Vet (Container.Tree, Position.Node),
1949
                     "bad cursor in Replace_Element");
1950
 
1951
      Replace_Element (Container.Tree, Position.Node, New_Item);
1952
   end Replace_Element;
1953
 
1954
   ---------------------
1955
   -- Reverse_Iterate --
1956
   ---------------------
1957
 
1958
   procedure Reverse_Iterate
1959
     (Container : Set;
1960
      Process   : not null access procedure (Position : Cursor))
1961
   is
1962
      procedure Process_Node (Node : Node_Access);
1963
      pragma Inline (Process_Node);
1964
 
1965
      procedure Local_Reverse_Iterate is
1966
         new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1967
 
1968
      ------------------
1969
      -- Process_Node --
1970
      ------------------
1971
 
1972
      procedure Process_Node (Node : Node_Access) is
1973
      begin
1974
         Process (Cursor'(Container'Unrestricted_Access, Node));
1975
      end Process_Node;
1976
 
1977
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1978
      B : Natural renames T.Busy;
1979
 
1980
   --  Start of processing for Reverse_Iterate
1981
 
1982
   begin
1983
      B := B + 1;
1984
 
1985
      begin
1986
         Local_Reverse_Iterate (T);
1987
      exception
1988
         when others =>
1989
            B := B - 1;
1990
            raise;
1991
      end;
1992
 
1993
      B := B - 1;
1994
   end Reverse_Iterate;
1995
 
1996
   -----------
1997
   -- Right --
1998
   -----------
1999
 
2000
   function Right (Node : Node_Access) return Node_Access is
2001
   begin
2002
      return Node.Right;
2003
   end Right;
2004
 
2005
   ---------------
2006
   -- Set_Color --
2007
   ---------------
2008
 
2009
   procedure Set_Color (Node : Node_Access; Color : Color_Type) is
2010
   begin
2011
      Node.Color := Color;
2012
   end Set_Color;
2013
 
2014
   --------------
2015
   -- Set_Left --
2016
   --------------
2017
 
2018
   procedure Set_Left (Node : Node_Access; Left : Node_Access) is
2019
   begin
2020
      Node.Left := Left;
2021
   end Set_Left;
2022
 
2023
   ----------------
2024
   -- Set_Parent --
2025
   ----------------
2026
 
2027
   procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
2028
   begin
2029
      Node.Parent := Parent;
2030
   end Set_Parent;
2031
 
2032
   ---------------
2033
   -- Set_Right --
2034
   ---------------
2035
 
2036
   procedure Set_Right (Node : Node_Access; Right : Node_Access) is
2037
   begin
2038
      Node.Right := Right;
2039
   end Set_Right;
2040
 
2041
   --------------------------
2042
   -- Symmetric_Difference --
2043
   --------------------------
2044
 
2045
   procedure Symmetric_Difference (Target : in out Set; Source : Set) is
2046
   begin
2047
      Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
2048
   end Symmetric_Difference;
2049
 
2050
   function Symmetric_Difference (Left, Right : Set) return Set is
2051
      Tree : constant Tree_Type :=
2052
               Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
2053
   begin
2054
      return Set'(Controlled with Tree);
2055
   end Symmetric_Difference;
2056
 
2057
   ------------
2058
   -- To_Set --
2059
   ------------
2060
 
2061
   function To_Set (New_Item : Element_Type) return Set is
2062
      Tree     : Tree_Type;
2063
      Node     : Node_Access;
2064
      Inserted : Boolean;
2065
      pragma Unreferenced (Node, Inserted);
2066
   begin
2067
      Insert_Sans_Hint (Tree, New_Item, Node, Inserted);
2068
      return Set'(Controlled with Tree);
2069
   end To_Set;
2070
 
2071
   -----------
2072
   -- Union --
2073
   -----------
2074
 
2075
   procedure Union (Target : in out Set; Source : Set) is
2076
   begin
2077
      Set_Ops.Union (Target.Tree, Source.Tree);
2078
   end Union;
2079
 
2080
   function Union (Left, Right : Set) return Set is
2081
      Tree : constant Tree_Type :=
2082
               Set_Ops.Union (Left.Tree, Right.Tree);
2083
   begin
2084
      return Set'(Controlled with Tree);
2085
   end Union;
2086
 
2087
   -----------
2088
   -- Write --
2089
   -----------
2090
 
2091
   procedure Write
2092
     (Stream    : not null access Root_Stream_Type'Class;
2093
      Container : Set)
2094
   is
2095
      procedure Write_Node
2096
        (Stream : not null access Root_Stream_Type'Class;
2097
         Node   : Node_Access);
2098
      pragma Inline (Write_Node);
2099
 
2100
      procedure Write is
2101
         new Tree_Operations.Generic_Write (Write_Node);
2102
 
2103
      ----------------
2104
      -- Write_Node --
2105
      ----------------
2106
 
2107
      procedure Write_Node
2108
        (Stream : not null access Root_Stream_Type'Class;
2109
         Node   : Node_Access)
2110
      is
2111
      begin
2112
         Element_Type'Output (Stream, Node.Element.all);
2113
      end Write_Node;
2114
 
2115
   --  Start of processing for Write
2116
 
2117
   begin
2118
      Write (Stream, Container.Tree);
2119
   end Write;
2120
 
2121
   procedure Write
2122
     (Stream : not null access Root_Stream_Type'Class;
2123
      Item   : Cursor)
2124
   is
2125
   begin
2126
      raise Program_Error with "attempt to stream set cursor";
2127
   end Write;
2128
 
2129
   procedure Write
2130
     (Stream : not null access Root_Stream_Type'Class;
2131
      Item   : Constant_Reference_Type)
2132
   is
2133
   begin
2134
      raise Program_Error with "attempt to stream reference";
2135
   end Write;
2136
 
2137
end Ada.Containers.Indefinite_Ordered_Sets;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.