OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [config/] [i386/] [sync.md] - Blame information for rev 847

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
;; GCC machine description for i386 synchronization instructions.
2
;; Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3
;; Free Software Foundation, Inc.
4
;;
5
;; This file is part of GCC.
6
;;
7
;; GCC is free software; you can redistribute it and/or modify
8
;; it under the terms of the GNU General Public License as published by
9
;; the Free Software Foundation; either version 3, or (at your option)
10
;; any later version.
11
;;
12
;; GCC is distributed in the hope that it will be useful,
13
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
;; GNU General Public License for more details.
16
;;
17
;; You should have received a copy of the GNU General Public License
18
;; along with GCC; see the file COPYING3.  If not see
19
;; .
20
 
21
(define_c_enum "unspec" [
22
  UNSPEC_LFENCE
23
  UNSPEC_SFENCE
24
  UNSPEC_MFENCE
25
  UNSPEC_MOVA   ; For __atomic support
26
  UNSPEC_LDA
27
  UNSPEC_STA
28
])
29
 
30
(define_c_enum "unspecv" [
31
  UNSPECV_CMPXCHG_1
32
  UNSPECV_CMPXCHG_2
33
  UNSPECV_CMPXCHG_3
34
  UNSPECV_CMPXCHG_4
35
  UNSPECV_XCHG
36
  UNSPECV_LOCK
37
])
38
 
39
(define_expand "sse2_lfence"
40
  [(set (match_dup 0)
41
        (unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
42
  "TARGET_SSE2"
43
{
44
  operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
45
  MEM_VOLATILE_P (operands[0]) = 1;
46
})
47
 
48
(define_insn "*sse2_lfence"
49
  [(set (match_operand:BLK 0 "" "")
50
        (unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
51
  "TARGET_SSE2"
52
  "lfence"
53
  [(set_attr "type" "sse")
54
   (set_attr "length_address" "0")
55
   (set_attr "atom_sse_attr" "lfence")
56
   (set_attr "memory" "unknown")])
57
 
58
(define_expand "sse_sfence"
59
  [(set (match_dup 0)
60
        (unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
61
  "TARGET_SSE || TARGET_3DNOW_A"
62
{
63
  operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
64
  MEM_VOLATILE_P (operands[0]) = 1;
65
})
66
 
67
(define_insn "*sse_sfence"
68
  [(set (match_operand:BLK 0 "" "")
69
        (unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
70
  "TARGET_SSE || TARGET_3DNOW_A"
71
  "sfence"
72
  [(set_attr "type" "sse")
73
   (set_attr "length_address" "0")
74
   (set_attr "atom_sse_attr" "fence")
75
   (set_attr "memory" "unknown")])
76
 
77
(define_expand "sse2_mfence"
78
  [(set (match_dup 0)
79
        (unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
80
  "TARGET_SSE2"
81
{
82
  operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
83
  MEM_VOLATILE_P (operands[0]) = 1;
84
})
85
 
86
(define_insn "mfence_sse2"
87
  [(set (match_operand:BLK 0 "" "")
88
        (unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
89
  "TARGET_64BIT || TARGET_SSE2"
90
  "mfence"
91
  [(set_attr "type" "sse")
92
   (set_attr "length_address" "0")
93
   (set_attr "atom_sse_attr" "fence")
94
   (set_attr "memory" "unknown")])
95
 
96
(define_insn "mfence_nosse"
97
  [(set (match_operand:BLK 0 "" "")
98
        (unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))
99
   (clobber (reg:CC FLAGS_REG))]
100
  "!(TARGET_64BIT || TARGET_SSE2)"
101
  "lock{%;} or{l}\t{$0, (%%esp)|DWORD PTR [esp], 0}"
102
  [(set_attr "memory" "unknown")])
103
 
104
(define_expand "mem_thread_fence"
105
  [(match_operand:SI 0 "const_int_operand" "")]         ;; model
106
  ""
107
{
108
  /* Unless this is a SEQ_CST fence, the i386 memory model is strong
109
     enough not to require barriers of any kind.  */
110
  if (INTVAL (operands[0]) == MEMMODEL_SEQ_CST)
111
    {
112
      rtx (*mfence_insn)(rtx);
113
      rtx mem;
114
 
115
      if (TARGET_64BIT || TARGET_SSE2)
116
        mfence_insn = gen_mfence_sse2;
117
      else
118
        mfence_insn = gen_mfence_nosse;
119
 
120
      mem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
121
      MEM_VOLATILE_P (mem) = 1;
122
 
123
      emit_insn (mfence_insn (mem));
124
    }
125
  DONE;
126
})
127
 
128
;; ??? From volume 3 section 8.1.1 Guaranteed Atomic Operations,
129
;; Only beginning at Pentium family processors do we get any guarantee of
130
;; atomicity in aligned 64-bit quantities.  Beginning at P6, we get a
131
;; guarantee for 64-bit accesses that do not cross a cacheline boundary.
132
;;
133
;; Note that the TARGET_CMPXCHG8B test below is a stand-in for "Pentium".
134
;;
135
;; Importantly, *no* processor makes atomicity guarantees for larger
136
;; accesses.  In particular, there's no way to perform an atomic TImode
137
;; move, despite the apparent applicability of MOVDQA et al.
138
 
139
(define_mode_iterator ATOMIC
140
   [QI HI SI
141
    (DI "TARGET_64BIT || (TARGET_CMPXCHG8B && (TARGET_80387 || TARGET_SSE))")
142
   ])
143
 
144
(define_expand "atomic_load"
145
  [(set (match_operand:ATOMIC 0 "register_operand" "")
146
        (unspec:ATOMIC [(match_operand:ATOMIC 1 "memory_operand" "")
147
                        (match_operand:SI 2 "const_int_operand" "")]
148
                       UNSPEC_MOVA))]
149
  ""
150
{
151
  /* For DImode on 32-bit, we can use the FPU to perform the load.  */
152
  if (mode == DImode && !TARGET_64BIT)
153
    emit_insn (gen_atomic_loaddi_fpu
154
               (operands[0], operands[1],
155
                assign_386_stack_local (DImode,
156
                                        (virtuals_instantiated
157
                                         ? SLOT_TEMP : SLOT_VIRTUAL))));
158
  else
159
    emit_move_insn (operands[0], operands[1]);
160
  DONE;
161
})
162
 
163
(define_insn_and_split "atomic_loaddi_fpu"
164
  [(set (match_operand:DI 0 "nonimmediate_operand" "=x,m,?r")
165
        (unspec:DI [(match_operand:DI 1 "memory_operand" "m,m,m")]
166
                   UNSPEC_MOVA))
167
   (clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
168
   (clobber (match_scratch:DF 3 "=X,xf,xf"))]
169
  "!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
170
  "#"
171
  "&& reload_completed"
172
  [(const_int 0)]
173
{
174
  rtx dst = operands[0], src = operands[1];
175
  rtx mem = operands[2], tmp = operands[3];
176
 
177
  if (SSE_REG_P (dst))
178
    emit_move_insn (dst, src);
179
  else
180
    {
181
      if (MEM_P (dst))
182
        mem = dst;
183
 
184
      if (FP_REG_P (tmp))
185
        {
186
          emit_insn (gen_loaddi_via_fpu (tmp, src));
187
          emit_insn (gen_storedi_via_fpu (mem, tmp));
188
        }
189
      else
190
        {
191
          adjust_reg_mode (tmp, DImode);
192
          emit_move_insn (tmp, src);
193
          emit_move_insn (mem, tmp);
194
        }
195
 
196
      if (mem != dst)
197
        emit_move_insn (dst, mem);
198
    }
199
  DONE;
200
})
201
 
202
(define_expand "atomic_store"
203
  [(set (match_operand:ATOMIC 0 "memory_operand" "")
204
        (unspec:ATOMIC [(match_operand:ATOMIC 1 "register_operand" "")
205
                        (match_operand:SI 2 "const_int_operand" "")]
206
                       UNSPEC_MOVA))]
207
  ""
208
{
209
  enum memmodel model = (enum memmodel) INTVAL (operands[2]);
210
 
211
  if (mode == DImode && !TARGET_64BIT)
212
    {
213
      /* For DImode on 32-bit, we can use the FPU to perform the store.  */
214
      /* Note that while we could perform a cmpxchg8b loop, that turns
215
         out to be significantly larger than this plus a barrier.  */
216
      emit_insn (gen_atomic_storedi_fpu
217
                 (operands[0], operands[1],
218
                  assign_386_stack_local (DImode,
219
                                          (virtuals_instantiated
220
                                           ? SLOT_TEMP : SLOT_VIRTUAL))));
221
    }
222
  else
223
    {
224
      /* For seq-cst stores, when we lack MFENCE, use XCHG.  */
225
      if (model == MEMMODEL_SEQ_CST && !(TARGET_64BIT || TARGET_SSE2))
226
        {
227
          emit_insn (gen_atomic_exchange (gen_reg_rtx (mode),
228
                                                operands[0], operands[1],
229
                                                operands[2]));
230
          DONE;
231
        }
232
 
233
      /* Otherwise use a normal store.  */
234
      emit_move_insn (operands[0], operands[1]);
235
    }
236
  /* ... followed by an MFENCE, if required.  */
237
  if (model == MEMMODEL_SEQ_CST)
238
    emit_insn (gen_mem_thread_fence (operands[2]));
239
  DONE;
240
})
241
 
242
(define_insn_and_split "atomic_storedi_fpu"
243
  [(set (match_operand:DI 0 "memory_operand" "=m,m,m")
244
        (unspec:DI [(match_operand:DI 1 "register_operand" "x,m,?r")]
245
                   UNSPEC_MOVA))
246
   (clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
247
   (clobber (match_scratch:DF 3 "=X,xf,xf"))]
248
  "!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
249
  "#"
250
  "&& reload_completed"
251
  [(const_int 0)]
252
{
253
  rtx dst = operands[0], src = operands[1];
254
  rtx mem = operands[2], tmp = operands[3];
255
 
256
  if (!SSE_REG_P (src))
257
    {
258
      if (REG_P (src))
259
        {
260
          emit_move_insn (mem, src);
261
          src = mem;
262
        }
263
 
264
      if (FP_REG_P (tmp))
265
        {
266
          emit_insn (gen_loaddi_via_fpu (tmp, src));
267
          emit_insn (gen_storedi_via_fpu (dst, tmp));
268
          DONE;
269
        }
270
      else
271
        {
272
          adjust_reg_mode (tmp, DImode);
273
          emit_move_insn (tmp, mem);
274
          src = tmp;
275
        }
276
    }
277
  emit_move_insn (dst, src);
278
  DONE;
279
})
280
 
281
;; ??? You'd think that we'd be able to perform this via FLOAT + FIX_TRUNC
282
;; operations.  But the fix_trunc patterns want way more setup than we want
283
;; to provide.  Note that the scratch is DFmode instead of XFmode in order
284
;; to make it easy to allocate a scratch in either SSE or FP_REGs above.
285
 
286
(define_insn "loaddi_via_fpu"
287
  [(set (match_operand:DF 0 "register_operand" "=f")
288
        (unspec:DF [(match_operand:DI 1 "memory_operand" "m")] UNSPEC_LDA))]
289
  "TARGET_80387"
290
  "fild%Z1\t%1"
291
  [(set_attr "type" "fmov")
292
   (set_attr "mode" "DF")
293
   (set_attr "fp_int_src" "true")])
294
 
295
(define_insn "storedi_via_fpu"
296
  [(set (match_operand:DI 0 "memory_operand" "=m")
297
        (unspec:DI [(match_operand:DF 1 "register_operand" "f")] UNSPEC_STA))]
298
  "TARGET_80387"
299
{
300
  gcc_assert (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != NULL_RTX);
301
 
302
  return "fistp%Z0\t%0";
303
}
304
  [(set_attr "type" "fmov")
305
   (set_attr "mode" "DI")])
306
 
307
(define_expand "atomic_compare_and_swap"
308
  [(match_operand:QI 0 "register_operand" "")           ;; bool success output
309
   (match_operand:SWI124 1 "register_operand" "")       ;; oldval output
310
   (match_operand:SWI124 2 "memory_operand" "")         ;; memory
311
   (match_operand:SWI124 3 "register_operand" "")       ;; expected input
312
   (match_operand:SWI124 4 "register_operand" "")       ;; newval input
313
   (match_operand:SI 5 "const_int_operand" "")          ;; is_weak
314
   (match_operand:SI 6 "const_int_operand" "")          ;; success model
315
   (match_operand:SI 7 "const_int_operand" "")]         ;; failure model
316
  "TARGET_CMPXCHG"
317
{
318
  emit_insn (gen_atomic_compare_and_swap_single
319
             (operands[1], operands[2], operands[3], operands[4]));
320
  ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
321
                     const0_rtx);
322
  DONE;
323
})
324
 
325
(define_mode_iterator CASMODE
326
  [(DI "TARGET_64BIT || TARGET_CMPXCHG8B")
327
   (TI "TARGET_64BIT && TARGET_CMPXCHG16B")])
328
(define_mode_iterator DCASMODE
329
  [(DI "!TARGET_64BIT && TARGET_CMPXCHG8B && !flag_pic")
330
   (TI "TARGET_64BIT && TARGET_CMPXCHG16B")])
331
(define_mode_attr doublemodesuffix [(DI "8") (TI "16")])
332
(define_mode_attr DCASHMODE [(DI "SI") (TI "DI")])
333
 
334
(define_expand "atomic_compare_and_swap"
335
  [(match_operand:QI 0 "register_operand" "")           ;; bool success output
336
   (match_operand:CASMODE 1 "register_operand" "")      ;; oldval output
337
   (match_operand:CASMODE 2 "memory_operand" "")        ;; memory
338
   (match_operand:CASMODE 3 "register_operand" "")      ;; expected input
339
   (match_operand:CASMODE 4 "register_operand" "")      ;; newval input
340
   (match_operand:SI 5 "const_int_operand" "")          ;; is_weak
341
   (match_operand:SI 6 "const_int_operand" "")          ;; success model
342
   (match_operand:SI 7 "const_int_operand" "")]         ;; failure model
343
  "TARGET_CMPXCHG"
344
{
345
  if (mode == DImode && TARGET_64BIT)
346
    {
347
      emit_insn (gen_atomic_compare_and_swap_singledi
348
                 (operands[1], operands[2], operands[3], operands[4]));
349
    }
350
  else
351
    {
352
      enum machine_mode hmode = mode;
353
      rtx lo_o, lo_e, lo_n, hi_o, hi_e, hi_n, mem;
354
 
355
      lo_o = operands[1];
356
      mem  = operands[2];
357
      lo_e = operands[3];
358
      lo_n = operands[4];
359
      hi_o = gen_highpart (hmode, lo_o);
360
      hi_e = gen_highpart (hmode, lo_e);
361
      hi_n = gen_highpart (hmode, lo_n);
362
      lo_o = gen_lowpart (hmode, lo_o);
363
      lo_e = gen_lowpart (hmode, lo_e);
364
      lo_n = gen_lowpart (hmode, lo_n);
365
 
366
      if (mode == DImode
367
          && !TARGET_64BIT
368
          && flag_pic
369
          && !cmpxchg8b_pic_memory_operand (mem, DImode))
370
        mem = replace_equiv_address (mem, force_reg (Pmode, XEXP (mem, 0)));
371
 
372
      emit_insn (gen_atomic_compare_and_swap_double
373
                 (lo_o, hi_o, mem, lo_e, hi_e, lo_n, hi_n));
374
    }
375
  ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
376
                     const0_rtx);
377
  DONE;
378
})
379
 
380
(define_insn "atomic_compare_and_swap_single"
381
  [(set (match_operand:SWI 0 "register_operand" "=a")
382
        (unspec_volatile:SWI
383
          [(match_operand:SWI 1 "memory_operand" "+m")
384
           (match_operand:SWI 2 "register_operand" "0")
385
           (match_operand:SWI 3 "register_operand" "")]
386
          UNSPECV_CMPXCHG_1))
387
   (set (match_dup 1)
388
        (unspec_volatile:SWI [(const_int 0)] UNSPECV_CMPXCHG_2))
389
   (set (reg:CCZ FLAGS_REG)
390
        (unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG_3))]
391
  "TARGET_CMPXCHG"
392
  "lock{%;} cmpxchg{}\t{%3, %1|%1, %3}")
393
 
394
;; For double-word compare and swap, we are obliged to play tricks with
395
;; the input newval (op5:op6) because the Intel register numbering does
396
;; not match the gcc register numbering, so the pair must be CX:BX.
397
;; That said, in order to take advantage of possible lower-subreg opts,
398
;; treat all of the integral operands in the same way.
399
(define_insn "atomic_compare_and_swap_double"
400
  [(set (match_operand: 0 "register_operand" "=a")
401
        (unspec_volatile:
402
          [(match_operand:DCASMODE 2 "memory_operand" "+m")
403
           (match_operand: 3 "register_operand" "0")
404
           (match_operand: 4 "register_operand" "1")
405
           (match_operand: 5 "register_operand" "b")
406
           (match_operand: 6 "register_operand" "c")]
407
          UNSPECV_CMPXCHG_1))
408
   (set (match_operand: 1 "register_operand" "=d")
409
        (unspec_volatile: [(const_int 0)] UNSPECV_CMPXCHG_2))
410
   (set (match_dup 2)
411
        (unspec_volatile:DCASMODE [(const_int 0)] UNSPECV_CMPXCHG_3))
412
   (set (reg:CCZ FLAGS_REG)
413
        (unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG_4))]
414
  ""
415
  "lock{%;} cmpxchgb\t%2")
416
 
417
;; Theoretically we'd like to use constraint "r" (any reg) for op5,
418
;; but that includes ecx.  If op5 and op6 are the same (like when
419
;; the input is -1LL) GCC might chose to allocate op5 to ecx, like
420
;; op6.  This breaks, as the xchg will move the PIC register contents
421
;; to %ecx then --> boom.  Operands 5 and 6 really need to be different
422
;; registers, which in this case means op5 must not be ecx.  Instead
423
;; of playing tricks with fake early clobbers or the like we just
424
;; enumerate all regs possible here, which (as this is !TARGET_64BIT)
425
;; are just esi and edi.
426
(define_insn "*atomic_compare_and_swap_doubledi_pic"
427
  [(set (match_operand:SI 0 "register_operand" "=a")
428
        (unspec_volatile:SI
429
          [(match_operand:DI 2 "cmpxchg8b_pic_memory_operand" "+m")
430
           (match_operand:SI 3 "register_operand" "0")
431
           (match_operand:SI 4 "register_operand" "1")
432
           (match_operand:SI 5 "register_operand" "SD")
433
           (match_operand:SI 6 "register_operand" "c")]
434
          UNSPECV_CMPXCHG_1))
435
   (set (match_operand:SI 1 "register_operand" "=d")
436
        (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_2))
437
   (set (match_dup 2)
438
        (unspec_volatile:DI [(const_int 0)] UNSPECV_CMPXCHG_3))
439
   (set (reg:CCZ FLAGS_REG)
440
        (unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG_4))]
441
  "!TARGET_64BIT && TARGET_CMPXCHG8B && flag_pic"
442
  "xchg{l}\t%%ebx, %5\;lock{%;} cmpxchg8b\t%2\;xchg{l}\t%%ebx, %5")
443
 
444
;; For operand 2 nonmemory_operand predicate is used instead of
445
;; register_operand to allow combiner to better optimize atomic
446
;; additions of constants.
447
(define_insn "atomic_fetch_add"
448
  [(set (match_operand:SWI 0 "register_operand" "=")
449
        (unspec_volatile:SWI
450
          [(match_operand:SWI 1 "memory_operand" "+m")
451
           (match_operand:SI 3 "const_int_operand" "")]         ;; model
452
          UNSPECV_XCHG))
453
   (set (match_dup 1)
454
        (plus:SWI (match_dup 1)
455
                  (match_operand:SWI 2 "nonmemory_operand" "0")))
456
   (clobber (reg:CC FLAGS_REG))]
457
  "TARGET_XADD"
458
  "lock{%;} xadd{}\t{%0, %1|%1, %0}")
459
 
460
;; This peephole2 and following insn optimize
461
;; __sync_fetch_and_add (x, -N) == N into just lock {add,sub,inc,dec}
462
;; followed by testing of flags instead of lock xadd and comparisons.
463
(define_peephole2
464
  [(set (match_operand:SWI 0 "register_operand" "")
465
        (match_operand:SWI 2 "const_int_operand" ""))
466
   (parallel [(set (match_dup 0)
467
                   (unspec_volatile:SWI
468
                     [(match_operand:SWI 1 "memory_operand" "")
469
                      (match_operand:SI 4 "const_int_operand" "")]
470
                     UNSPECV_XCHG))
471
              (set (match_dup 1)
472
                   (plus:SWI (match_dup 1)
473
                             (match_dup 0)))
474
              (clobber (reg:CC FLAGS_REG))])
475
   (set (reg:CCZ FLAGS_REG)
476
        (compare:CCZ (match_dup 0)
477
                     (match_operand:SWI 3 "const_int_operand" "")))]
478
  "peep2_reg_dead_p (3, operands[0])
479
   && (unsigned HOST_WIDE_INT) INTVAL (operands[2])
480
      == -(unsigned HOST_WIDE_INT) INTVAL (operands[3])
481
   && !reg_overlap_mentioned_p (operands[0], operands[1])"
482
  [(parallel [(set (reg:CCZ FLAGS_REG)
483
                   (compare:CCZ
484
                     (unspec_volatile:SWI [(match_dup 1) (match_dup 4)]
485
                                          UNSPECV_XCHG)
486
                     (match_dup 3)))
487
              (set (match_dup 1)
488
                   (plus:SWI (match_dup 1)
489
                             (match_dup 2)))])])
490
 
491
(define_insn "*atomic_fetch_add_cmp"
492
  [(set (reg:CCZ FLAGS_REG)
493
        (compare:CCZ (unspec_volatile:SWI
494
                       [(match_operand:SWI 0 "memory_operand" "+m")
495
                        (match_operand:SI 3 "const_int_operand" "")]
496
                       UNSPECV_XCHG)
497
                     (match_operand:SWI 2 "const_int_operand" "i")))
498
   (set (match_dup 0)
499
        (plus:SWI (match_dup 0)
500
                  (match_operand:SWI 1 "const_int_operand" "i")))]
501
  "(unsigned HOST_WIDE_INT) INTVAL (operands[1])
502
   == -(unsigned HOST_WIDE_INT) INTVAL (operands[2])"
503
{
504
  if (TARGET_USE_INCDEC)
505
    {
506
      if (operands[1] == const1_rtx)
507
        return "lock{%;} inc{}\t%0";
508
      if (operands[1] == constm1_rtx)
509
        return "lock{%;} dec{}\t%0";
510
    }
511
 
512
  if (x86_maybe_negate_const_int (&operands[1], mode))
513
    return "lock{%;} sub{}\t{%1, %0|%0, %1}";
514
 
515
  return "lock{%;} add{}\t{%1, %0|%0, %1}";
516
})
517
 
518
;; Recall that xchg implicitly sets LOCK#, so adding it again wastes space.
519
;; In addition, it is always a full barrier, so we can ignore the memory model.
520
(define_insn "atomic_exchange"
521
  [(set (match_operand:SWI 0 "register_operand" "=")            ;; output
522
        (unspec_volatile:SWI
523
          [(match_operand:SWI 1 "memory_operand" "+m")          ;; memory
524
           (match_operand:SI 3 "const_int_operand" "")]         ;; model
525
          UNSPECV_XCHG))
526
   (set (match_dup 1)
527
        (match_operand:SWI 2 "register_operand" "0"))]          ;; input
528
  ""
529
  "xchg{}\t{%1, %0|%0, %1}")
530
 
531
(define_insn "atomic_add"
532
  [(set (match_operand:SWI 0 "memory_operand" "+m")
533
        (unspec_volatile:SWI
534
          [(plus:SWI (match_dup 0)
535
                     (match_operand:SWI 1 "nonmemory_operand" ""))
536
           (match_operand:SI 2 "const_int_operand" "")]         ;; model
537
          UNSPECV_LOCK))
538
   (clobber (reg:CC FLAGS_REG))]
539
  ""
540
{
541
  if (TARGET_USE_INCDEC)
542
    {
543
      if (operands[1] == const1_rtx)
544
        return "lock{%;} inc{}\t%0";
545
      if (operands[1] == constm1_rtx)
546
        return "lock{%;} dec{}\t%0";
547
    }
548
 
549
  if (x86_maybe_negate_const_int (&operands[1], mode))
550
    return "lock{%;} sub{}\t{%1, %0|%0, %1}";
551
 
552
  return "lock{%;} add{}\t{%1, %0|%0, %1}";
553
})
554
 
555
(define_insn "atomic_sub"
556
  [(set (match_operand:SWI 0 "memory_operand" "+m")
557
        (unspec_volatile:SWI
558
          [(minus:SWI (match_dup 0)
559
                      (match_operand:SWI 1 "nonmemory_operand" ""))
560
           (match_operand:SI 2 "const_int_operand" "")]         ;; model
561
          UNSPECV_LOCK))
562
   (clobber (reg:CC FLAGS_REG))]
563
  ""
564
{
565
  if (TARGET_USE_INCDEC)
566
    {
567
      if (operands[1] == const1_rtx)
568
        return "lock{%;} dec{}\t%0";
569
      if (operands[1] == constm1_rtx)
570
        return "lock{%;} inc{}\t%0";
571
    }
572
 
573
  if (x86_maybe_negate_const_int (&operands[1], mode))
574
    return "lock{%;} add{}\t{%1, %0|%0, %1}";
575
 
576
  return "lock{%;} sub{}\t{%1, %0|%0, %1}";
577
})
578
 
579
(define_insn "atomic_"
580
  [(set (match_operand:SWI 0 "memory_operand" "+m")
581
        (unspec_volatile:SWI
582
          [(any_logic:SWI (match_dup 0)
583
                          (match_operand:SWI 1 "nonmemory_operand" ""))
584
           (match_operand:SI 2 "const_int_operand" "")]         ;; model
585
          UNSPECV_LOCK))
586
   (clobber (reg:CC FLAGS_REG))]
587
  ""
588
  "lock{%;} {}\t{%1, %0|%0, %1}")

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.