OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [gcc/] [config/] [pa/] [pa.h] - Blame information for rev 338

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler, for the HP Spectrum.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
   Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
6
   and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
7
   Software Science at the University of Utah.
8
 
9
This file is part of GCC.
10
 
11
GCC is free software; you can redistribute it and/or modify
12
it under the terms of the GNU General Public License as published by
13
the Free Software Foundation; either version 3, or (at your option)
14
any later version.
15
 
16
GCC is distributed in the hope that it will be useful,
17
but WITHOUT ANY WARRANTY; without even the implied warranty of
18
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
GNU General Public License for more details.
20
 
21
You should have received a copy of the GNU General Public License
22
along with GCC; see the file COPYING3.  If not see
23
<http://www.gnu.org/licenses/>.  */
24
 
25
/* For long call handling.  */
26
extern unsigned long total_code_bytes;
27
 
28
/* Which processor to schedule for.  */
29
 
30
enum processor_type
31
{
32
  PROCESSOR_700,
33
  PROCESSOR_7100,
34
  PROCESSOR_7100LC,
35
  PROCESSOR_7200,
36
  PROCESSOR_7300,
37
  PROCESSOR_8000
38
};
39
 
40
/* For -mschedule= option.  */
41
extern enum processor_type pa_cpu;
42
 
43
/* For -munix= option.  */
44
extern int flag_pa_unix;
45
 
46
#define pa_cpu_attr ((enum attr_cpu)pa_cpu)
47
 
48
/* Print subsidiary information on the compiler version in use.  */
49
 
50
#define TARGET_VERSION fputs (" (hppa)", stderr);
51
 
52
#define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
53
 
54
/* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
55
#ifndef TARGET_64BIT
56
#define TARGET_64BIT 0
57
#endif
58
 
59
/* Generate code for ELF32 ABI.  */
60
#ifndef TARGET_ELF32
61
#define TARGET_ELF32 0
62
#endif
63
 
64
/* Generate code for SOM 32bit ABI.  */
65
#ifndef TARGET_SOM
66
#define TARGET_SOM 0
67
#endif
68
 
69
/* HP-UX UNIX features.  */
70
#ifndef TARGET_HPUX
71
#define TARGET_HPUX 0
72
#endif
73
 
74
/* HP-UX 10.10 UNIX 95 features.  */
75
#ifndef TARGET_HPUX_10_10
76
#define TARGET_HPUX_10_10 0
77
#endif
78
 
79
/* HP-UX 11.* features (11.00, 11.11, 11.23, etc.)  */
80
#ifndef TARGET_HPUX_11
81
#define TARGET_HPUX_11 0
82
#endif
83
 
84
/* HP-UX 11i multibyte and UNIX 98 extensions.  */
85
#ifndef TARGET_HPUX_11_11
86
#define TARGET_HPUX_11_11 0
87
#endif
88
 
89
/* The following three defines are potential target switches.  The current
90
   defines are optimal given the current capabilities of GAS and GNU ld.  */
91
 
92
/* Define to a C expression evaluating to true to use long absolute calls.
93
   Currently, only the HP assembler and SOM linker support long absolute
94
   calls.  They are used only in non-pic code.  */
95
#define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
96
 
97
/* Define to a C expression evaluating to true to use long PIC symbol
98
   difference calls.  Long PIC symbol difference calls are only used with
99
   the HP assembler and linker.  The HP assembler detects this instruction
100
   sequence and treats it as long pc-relative call.  Currently, GAS only
101
   allows a difference of two symbols in the same subspace, and it doesn't
102
   detect the sequence as a pc-relative call.  */
103
#define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
104
 
105
/* Define to a C expression evaluating to true to use long PIC
106
   pc-relative calls.  Long PIC pc-relative calls are only used with
107
   GAS.  Currently, they are usable for calls which bind local to a
108
   module but not for external calls.  */
109
#define TARGET_LONG_PIC_PCREL_CALL 0
110
 
111
/* Define to a C expression evaluating to true to use SOM secondary
112
   definition symbols for weak support.  Linker support for secondary
113
   definition symbols is buggy prior to HP-UX 11.X.  */
114
#define TARGET_SOM_SDEF 0
115
 
116
/* Define to a C expression evaluating to true to save the entry value
117
   of SP in the current frame marker.  This is normally unnecessary.
118
   However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
119
   HP compilers don't use this flag but it is supported by the assembler.
120
   We set this flag to indicate that register %r3 has been saved at the
121
   start of the frame.  Thus, when the HP unwind library is used, we
122
   need to generate additional code to save SP into the frame marker.  */
123
#define TARGET_HPUX_UNWIND_LIBRARY 0
124
 
125
#ifndef TARGET_DEFAULT
126
#define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
127
#endif
128
 
129
#ifndef TARGET_CPU_DEFAULT
130
#define TARGET_CPU_DEFAULT 0
131
#endif
132
 
133
#ifndef TARGET_SCHED_DEFAULT
134
#define TARGET_SCHED_DEFAULT PROCESSOR_8000
135
#endif
136
 
137
/* Support for a compile-time default CPU, et cetera.  The rules are:
138
   --with-schedule is ignored if -mschedule is specified.
139
   --with-arch is ignored if -march is specified.  */
140
#define OPTION_DEFAULT_SPECS \
141
  {"arch", "%{!march=*:-march=%(VALUE)}" }, \
142
  {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
143
 
144
/* Specify the dialect of assembler to use.  New mnemonics is dialect one
145
   and the old mnemonics are dialect zero.  */
146
#define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
147
 
148
#define OVERRIDE_OPTIONS override_options ()
149
 
150
/* Override some settings from dbxelf.h.  */
151
 
152
/* We do not have to be compatible with dbx, so we enable gdb extensions
153
   by default.  */
154
#define DEFAULT_GDB_EXTENSIONS 1
155
 
156
/* This used to be zero (no max length), but big enums and such can
157
   cause huge strings which killed gas.
158
 
159
   We also have to avoid lossage in dbxout.c -- it does not compute the
160
   string size accurately, so we are real conservative here.  */
161
#undef DBX_CONTIN_LENGTH
162
#define DBX_CONTIN_LENGTH 3000
163
 
164
/* GDB always assumes the current function's frame begins at the value
165
   of the stack pointer upon entry to the current function.  Accessing
166
   local variables and parameters passed on the stack is done using the
167
   base of the frame + an offset provided by GCC.
168
 
169
   For functions which have frame pointers this method works fine;
170
   the (frame pointer) == (stack pointer at function entry) and GCC provides
171
   an offset relative to the frame pointer.
172
 
173
   This loses for functions without a frame pointer; GCC provides an offset
174
   which is relative to the stack pointer after adjusting for the function's
175
   frame size.  GDB would prefer the offset to be relative to the value of
176
   the stack pointer at the function's entry.  Yuk!  */
177
#define DEBUGGER_AUTO_OFFSET(X) \
178
  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
179
    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
180
 
181
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
182
  ((GET_CODE (X) == PLUS ? OFFSET : 0) \
183
    + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
184
 
185
#define TARGET_CPU_CPP_BUILTINS()                               \
186
do {                                                            \
187
     builtin_assert("cpu=hppa");                                \
188
     builtin_assert("machine=hppa");                            \
189
     builtin_define("__hppa");                                  \
190
     builtin_define("__hppa__");                                \
191
     if (TARGET_PA_20)                                          \
192
       builtin_define("_PA_RISC2_0");                           \
193
     else if (TARGET_PA_11)                                     \
194
       builtin_define("_PA_RISC1_1");                           \
195
     else                                                       \
196
       builtin_define("_PA_RISC1_0");                           \
197
} while (0)
198
 
199
/* An old set of OS defines for various BSD-like systems.  */
200
#define TARGET_OS_CPP_BUILTINS()                                \
201
  do                                                            \
202
    {                                                           \
203
        builtin_define_std ("REVARGV");                         \
204
        builtin_define_std ("hp800");                           \
205
        builtin_define_std ("hp9000");                          \
206
        builtin_define_std ("hp9k8");                           \
207
        if (!c_dialect_cxx () && !flag_iso)                     \
208
          builtin_define ("hppa");                              \
209
        builtin_define_std ("spectrum");                        \
210
        builtin_define_std ("unix");                            \
211
        builtin_assert ("system=bsd");                          \
212
        builtin_assert ("system=unix");                         \
213
    }                                                           \
214
  while (0)
215
 
216
#define CC1_SPEC "%{pg:} %{p:}"
217
 
218
#define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
219
 
220
/* We don't want -lg.  */
221
#ifndef LIB_SPEC
222
#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
223
#endif
224
 
225
/* This macro defines command-line switches that modify the default
226
   target name.
227
 
228
   The definition is be an initializer for an array of structures.  Each
229
   array element has have three elements: the switch name, one of the
230
   enumeration codes ADD or DELETE to indicate whether the string should be
231
   inserted or deleted, and the string to be inserted or deleted.  */
232
#define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
233
 
234
/* Make gcc agree with <machine/ansi.h> */
235
 
236
#define SIZE_TYPE "unsigned int"
237
#define PTRDIFF_TYPE "int"
238
#define WCHAR_TYPE "unsigned int"
239
#define WCHAR_TYPE_SIZE 32
240
 
241
/* Show we can debug even without a frame pointer.  */
242
#define CAN_DEBUG_WITHOUT_FP
243
 
244
/* target machine storage layout */
245
typedef struct GTY(()) machine_function
246
{
247
  /* Flag indicating that a .NSUBSPA directive has been output for
248
     this function.  */
249
  int in_nsubspa;
250
} machine_function;
251
 
252
/* Define this macro if it is advisable to hold scalars in registers
253
   in a wider mode than that declared by the program.  In such cases,
254
   the value is constrained to be within the bounds of the declared
255
   type, but kept valid in the wider mode.  The signedness of the
256
   extension may differ from that of the type.  */
257
 
258
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
259
  if (GET_MODE_CLASS (MODE) == MODE_INT \
260
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)         \
261
    (MODE) = word_mode;
262
 
263
/* Define this if most significant bit is lowest numbered
264
   in instructions that operate on numbered bit-fields.  */
265
#define BITS_BIG_ENDIAN 1
266
 
267
/* Define this if most significant byte of a word is the lowest numbered.  */
268
/* That is true on the HP-PA.  */
269
#define BYTES_BIG_ENDIAN 1
270
 
271
/* Define this if most significant word of a multiword number is lowest
272
   numbered.  */
273
#define WORDS_BIG_ENDIAN 1
274
 
275
#define MAX_BITS_PER_WORD 64
276
 
277
/* Width of a word, in units (bytes).  */
278
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
279
 
280
/* Minimum number of units in a word.  If this is undefined, the default
281
   is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
282
   smallest value that UNITS_PER_WORD can have at run-time.
283
 
284
   FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
285
   building of various TImode routines in libgcc.  The HP runtime
286
   specification doesn't provide the alignment requirements and calling
287
   conventions for TImode variables.  */
288
#define MIN_UNITS_PER_WORD 4
289
 
290
/* The widest floating point format supported by the hardware.  Note that
291
   setting this influences some Ada floating point type sizes, currently
292
   required for GNAT to operate properly.  */
293
#define WIDEST_HARDWARE_FP_SIZE 64
294
 
295
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
296
#define PARM_BOUNDARY BITS_PER_WORD
297
 
298
/* Largest alignment required for any stack parameter, in bits.
299
   Don't define this if it is equal to PARM_BOUNDARY */
300
#define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
301
 
302
/* Boundary (in *bits*) on which stack pointer is always aligned;
303
   certain optimizations in combine depend on this.
304
 
305
   The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
306
   the stack on the 32 and 64-bit ports, respectively.  However, we
307
   are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
308
   in main.  Thus, we treat the former as the preferred alignment.  */
309
#define STACK_BOUNDARY BIGGEST_ALIGNMENT
310
#define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
311
 
312
/* Allocation boundary (in *bits*) for the code of a function.  */
313
#define FUNCTION_BOUNDARY BITS_PER_WORD
314
 
315
/* Alignment of field after `int : 0' in a structure.  */
316
#define EMPTY_FIELD_BOUNDARY 32
317
 
318
/* Every structure's size must be a multiple of this.  */
319
#define STRUCTURE_SIZE_BOUNDARY 8
320
 
321
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
322
#define PCC_BITFIELD_TYPE_MATTERS 1
323
 
324
/* No data type wants to be aligned rounder than this.  */
325
#define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
326
 
327
/* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
328
#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
329
  ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
330
 
331
/* Make arrays of chars word-aligned for the same reasons.  */
332
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
333
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
334
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
335
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
336
 
337
/* Set this nonzero if move instructions will actually fail to work
338
   when given unaligned data.  */
339
#define STRICT_ALIGNMENT 1
340
 
341
/* Value is 1 if it is a good idea to tie two pseudo registers
342
   when one has mode MODE1 and one has mode MODE2.
343
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
344
   for any hard reg, then this must be 0 for correct output.  */
345
#define MODES_TIEABLE_P(MODE1, MODE2) \
346
  pa_modes_tieable_p (MODE1, MODE2)
347
 
348
/* Specify the registers used for certain standard purposes.
349
   The values of these macros are register numbers.  */
350
 
351
/* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
352
/* #define PC_REGNUM  */
353
 
354
/* Register to use for pushing function arguments.  */
355
#define STACK_POINTER_REGNUM 30
356
 
357
/* Base register for access to local variables of the function.  */
358
#define FRAME_POINTER_REGNUM 3
359
 
360
/* Don't allow hard registers to be renamed into r2 unless r2
361
   is already live or already being saved (due to eh).  */
362
 
363
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
364
  ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
365
 
366
/* C statement to store the difference between the frame pointer
367
   and the stack pointer values immediately after the function prologue.
368
 
369
   Note, we always pretend that this is a leaf function because if
370
   it's not, there's no point in trying to eliminate the
371
   frame pointer.  If it is a leaf function, we guessed right!  */
372
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
373
  do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
374
 
375
/* Base register for access to arguments of the function.  */
376
#define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
377
 
378
/* Register in which static-chain is passed to a function.  */
379
#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
380
 
381
/* Register used to address the offset table for position-independent
382
   data references.  */
383
#define PIC_OFFSET_TABLE_REGNUM \
384
  (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
385
 
386
#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
387
 
388
/* Function to return the rtx used to save the pic offset table register
389
   across function calls.  */
390
extern struct rtx_def *hppa_pic_save_rtx (void);
391
 
392
#define DEFAULT_PCC_STRUCT_RETURN 0
393
 
394
/* Register in which address to store a structure value
395
   is passed to a function.  */
396
#define PA_STRUCT_VALUE_REGNUM 28
397
 
398
/* Describe how we implement __builtin_eh_return.  */
399
#define EH_RETURN_DATA_REGNO(N) \
400
  ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
401
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 29)
402
#define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
403
 
404
/* Offset from the frame pointer register value to the top of stack.  */
405
#define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
406
 
407
/* A C expression whose value is RTL representing the location of the
408
   incoming return address at the beginning of any function, before the
409
   prologue.  You only need to define this macro if you want to support
410
   call frame debugging information like that provided by DWARF 2.  */
411
#define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
412
#define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
413
 
414
/* A C expression whose value is an integer giving a DWARF 2 column
415
   number that may be used as an alternate return column.  This should
416
   be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
417
   register, but an alternate column needs to be used for signal frames.
418
 
419
   Column 0 is not used but unfortunately its register size is set to
420
   4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
421
#define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
422
 
423
/* This macro chooses the encoding of pointers embedded in the exception
424
   handling sections.  If at all possible, this should be defined such
425
   that the exception handling section will not require dynamic relocations,
426
   and so may be read-only.
427
 
428
   Because the HP assembler auto aligns, it is necessary to use
429
   DW_EH_PE_aligned.  It's not possible to make the data read-only
430
   on the HP-UX SOM port since the linker requires fixups for label
431
   differences in different sections to be word aligned.  However,
432
   the SOM linker can do unaligned fixups for absolute pointers.
433
   We also need aligned pointers for global and function pointers.
434
 
435
   Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
436
   fixups, the runtime doesn't have a consistent relationship between
437
   text and data for dynamically loaded objects.  Thus, it's not possible
438
   to use pc-relative encoding for pointers on this target.  It may be
439
   possible to use segment relative encodings but GAS doesn't currently
440
   have a mechanism to generate these encodings.  For other targets, we
441
   use pc-relative encoding for pointers.  If the pointer might require
442
   dynamic relocation, we make it indirect.  */
443
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
444
  (TARGET_GAS && !TARGET_HPUX                                           \
445
   ? (DW_EH_PE_pcrel                                                    \
446
      | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)                \
447
      | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))             \
448
   : (!TARGET_GAS || (GLOBAL) || (CODE) == 2                            \
449
      ? DW_EH_PE_aligned : DW_EH_PE_absptr))
450
 
451
/* Handle special EH pointer encodings.  Absolute, pc-relative, and
452
   indirect are handled automatically.  We output pc-relative, and
453
   indirect pc-relative ourself since we need some special magic to
454
   generate pc-relative relocations, and to handle indirect function
455
   pointers.  */
456
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
457
  do {                                                                  \
458
    if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)                          \
459
      {                                                                 \
460
        fputs (integer_asm_op (SIZE, FALSE), FILE);                     \
461
        if ((ENCODING) & DW_EH_PE_indirect)                             \
462
          output_addr_const (FILE, get_deferred_plabel (ADDR));         \
463
        else                                                            \
464
          assemble_name (FILE, XSTR ((ADDR), 0));                        \
465
        fputs ("+8-$PIC_pcrel$0", FILE);                                \
466
        goto DONE;                                                      \
467
      }                                                                 \
468
    } while (0)
469
 
470
 
471
/* The class value for index registers, and the one for base regs.  */
472
#define INDEX_REG_CLASS GENERAL_REGS
473
#define BASE_REG_CLASS GENERAL_REGS
474
 
475
#define FP_REG_CLASS_P(CLASS) \
476
  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
477
 
478
/* True if register is floating-point.  */
479
#define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
480
 
481
/* Given an rtx X being reloaded into a reg required to be
482
   in class CLASS, return the class of reg to actually use.
483
   In general this is just CLASS; but on some machines
484
   in some cases it is preferable to use a more restrictive class.  */
485
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
486
 
487
#define MAYBE_FP_REG_CLASS_P(CLASS) \
488
  reg_classes_intersect_p ((CLASS), FP_REGS)
489
 
490
 
491
/* Stack layout; function entry, exit and calling.  */
492
 
493
/* Define this if pushing a word on the stack
494
   makes the stack pointer a smaller address.  */
495
/* #define STACK_GROWS_DOWNWARD */
496
 
497
/* Believe it or not.  */
498
#define ARGS_GROW_DOWNWARD
499
 
500
/* Define this to nonzero if the nominal address of the stack frame
501
   is at the high-address end of the local variables;
502
   that is, each additional local variable allocated
503
   goes at a more negative offset in the frame.  */
504
#define FRAME_GROWS_DOWNWARD 0
505
 
506
/* Offset within stack frame to start allocating local variables at.
507
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
508
   first local allocated.  Otherwise, it is the offset to the BEGINNING
509
   of the first local allocated.
510
 
511
   On the 32-bit ports, we reserve one slot for the previous frame
512
   pointer and one fill slot.  The fill slot is for compatibility
513
   with HP compiled programs.  On the 64-bit ports, we reserve one
514
   slot for the previous frame pointer.  */
515
#define STARTING_FRAME_OFFSET 8
516
 
517
/* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
518
   of the stack.  The default is to align it to STACK_BOUNDARY.  */
519
#define STACK_ALIGNMENT_NEEDED 0
520
 
521
/* If we generate an insn to push BYTES bytes,
522
   this says how many the stack pointer really advances by.
523
   On the HP-PA, don't define this because there are no push insns.  */
524
/*  #define PUSH_ROUNDING(BYTES) */
525
 
526
/* Offset of first parameter from the argument pointer register value.
527
   This value will be negated because the arguments grow down.
528
   Also note that on STACK_GROWS_UPWARD machines (such as this one)
529
   this is the distance from the frame pointer to the end of the first
530
   argument, not it's beginning.  To get the real offset of the first
531
   argument, the size of the argument must be added.  */
532
 
533
#define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
534
 
535
/* When a parameter is passed in a register, stack space is still
536
   allocated for it.  */
537
#define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
538
 
539
/* Define this if the above stack space is to be considered part of the
540
   space allocated by the caller.  */
541
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
542
 
543
/* Keep the stack pointer constant throughout the function.
544
   This is both an optimization and a necessity: longjmp
545
   doesn't behave itself when the stack pointer moves within
546
   the function!  */
547
#define ACCUMULATE_OUTGOING_ARGS 1
548
 
549
/* The weird HPPA calling conventions require a minimum of 48 bytes on
550
   the stack: 16 bytes for register saves, and 32 bytes for magic.
551
   This is the difference between the logical top of stack and the
552
   actual sp.
553
 
554
   On the 64-bit port, the HP C compiler allocates a 48-byte frame
555
   marker, although the runtime documentation only describes a 16
556
   byte marker.  For compatibility, we allocate 48 bytes.  */
557
#define STACK_POINTER_OFFSET \
558
  (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
559
 
560
#define STACK_DYNAMIC_OFFSET(FNDECL)    \
561
  (TARGET_64BIT                         \
562
   ? (STACK_POINTER_OFFSET)             \
563
   : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
564
 
565
/* Value is 1 if returning from a function call automatically
566
   pops the arguments described by the number-of-args field in the call.
567
   FUNDECL is the declaration node of the function (as a tree),
568
   FUNTYPE is the data type of the function (as a tree),
569
   or for a library call it is an identifier node for the subroutine name.  */
570
 
571
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
572
 
573
/* Define how to find the value returned by a library function
574
   assuming the value has mode MODE.  */
575
 
576
#define LIBCALL_VALUE(MODE)     \
577
  gen_rtx_REG (MODE,                                                    \
578
               (! TARGET_SOFT_FLOAT                                     \
579
                && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
580
 
581
/* 1 if N is a possible register number for a function value
582
   as seen by the caller.  */
583
 
584
#define FUNCTION_VALUE_REGNO_P(N) \
585
  ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
586
 
587
 
588
/* Define a data type for recording info about an argument list
589
   during the scan of that argument list.  This data type should
590
   hold all necessary information about the function itself
591
   and about the args processed so far, enough to enable macros
592
   such as FUNCTION_ARG to determine where the next arg should go.
593
 
594
   On the HP-PA, the WORDS field holds the number of words
595
   of arguments scanned so far (including the invisible argument,
596
   if any, which holds the structure-value-address).  Thus, 4 or
597
   more means all following args should go on the stack.
598
 
599
   The INCOMING field tracks whether this is an "incoming" or
600
   "outgoing" argument.
601
 
602
   The INDIRECT field indicates whether this is is an indirect
603
   call or not.
604
 
605
   The NARGS_PROTOTYPE field indicates that an argument does not
606
   have a prototype when it less than or equal to 0.  */
607
 
608
struct hppa_args {int words, nargs_prototype, incoming, indirect; };
609
 
610
#define CUMULATIVE_ARGS struct hppa_args
611
 
612
/* Initialize a variable CUM of type CUMULATIVE_ARGS
613
   for a call to a function whose data type is FNTYPE.
614
   For a library call, FNTYPE is 0.  */
615
 
616
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
617
  (CUM).words = 0,                                                       \
618
  (CUM).incoming = 0,                                                    \
619
  (CUM).indirect = (FNTYPE) && !(FNDECL),                               \
620
  (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE)            \
621
                           ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
622
                              + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
623
                                 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
624
                           : 0)
625
 
626
 
627
 
628
/* Similar, but when scanning the definition of a procedure.  We always
629
   set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
630
 
631
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
632
  (CUM).words = 0,                               \
633
  (CUM).incoming = 1,                           \
634
  (CUM).indirect = 0,                            \
635
  (CUM).nargs_prototype = 1000
636
 
637
/* Figure out the size in words of the function argument.  The size
638
   returned by this macro should always be greater than zero because
639
   we pass variable and zero sized objects by reference.  */
640
 
641
#define FUNCTION_ARG_SIZE(MODE, TYPE)   \
642
  ((((MODE) != BLKmode \
643
     ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
644
     : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
645
 
646
/* Update the data in CUM to advance over an argument
647
   of mode MODE and data type TYPE.
648
   (TYPE is null for libcalls where that information may not be available.)  */
649
 
650
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
651
{ (CUM).nargs_prototype--;                                              \
652
  (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE)                          \
653
    + (((CUM).words & 01) && (TYPE) != 0                         \
654
        && FUNCTION_ARG_SIZE(MODE, TYPE) > 1);                          \
655
}
656
 
657
/* Determine where to put an argument to a function.
658
   Value is zero to push the argument on the stack,
659
   or a hard register in which to store the argument.
660
 
661
   MODE is the argument's machine mode.
662
   TYPE is the data type of the argument (as a tree).
663
    This is null for libcalls where that information may
664
    not be available.
665
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
666
    the preceding args and about the function being called.
667
   NAMED is nonzero if this argument is a named parameter
668
    (otherwise it is an extra parameter matching an ellipsis).
669
 
670
   On the HP-PA the first four words of args are normally in registers
671
   and the rest are pushed.  But any arg that won't entirely fit in regs
672
   is pushed.
673
 
674
   Arguments passed in registers are either 1 or 2 words long.
675
 
676
   The caller must make a distinction between calls to explicitly named
677
   functions and calls through pointers to functions -- the conventions
678
   are different!  Calls through pointers to functions only use general
679
   registers for the first four argument words.
680
 
681
   Of course all this is different for the portable runtime model
682
   HP wants everyone to use for ELF.  Ugh.  Here's a quick description
683
   of how it's supposed to work.
684
 
685
   1) callee side remains unchanged.  It expects integer args to be
686
   in the integer registers, float args in the float registers and
687
   unnamed args in integer registers.
688
 
689
   2) caller side now depends on if the function being called has
690
   a prototype in scope (rather than if it's being called indirectly).
691
 
692
      2a) If there is a prototype in scope, then arguments are passed
693
      according to their type (ints in integer registers, floats in float
694
      registers, unnamed args in integer registers.
695
 
696
      2b) If there is no prototype in scope, then floating point arguments
697
      are passed in both integer and float registers.  egad.
698
 
699
  FYI: The portable parameter passing conventions are almost exactly like
700
  the standard parameter passing conventions on the RS6000.  That's why
701
  you'll see lots of similar code in rs6000.h.  */
702
 
703
/* If defined, a C expression which determines whether, and in which
704
   direction, to pad out an argument with extra space.  */
705
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
706
 
707
/* Specify padding for the last element of a block move between registers
708
   and memory.
709
 
710
   The 64-bit runtime specifies that objects need to be left justified
711
   (i.e., the normal justification for a big endian target).  The 32-bit
712
   runtime specifies right justification for objects smaller than 64 bits.
713
   We use a DImode register in the parallel for 5 to 7 byte structures
714
   so that there is only one element.  This allows the object to be
715
   correctly padded.  */
716
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
717
  function_arg_padding ((MODE), (TYPE))
718
 
719
/* Do not expect to understand this without reading it several times.  I'm
720
   tempted to try and simply it, but I worry about breaking something.  */
721
 
722
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
723
  function_arg (&CUM, MODE, TYPE, NAMED)
724
 
725
/* If defined, a C expression that gives the alignment boundary, in
726
   bits, of an argument with the specified mode and type.  If it is
727
   not defined,  `PARM_BOUNDARY' is used for all arguments.  */
728
 
729
/* Arguments larger than one word are double word aligned.  */
730
 
731
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE)                               \
732
  (((TYPE)                                                              \
733
    ? (integer_zerop (TYPE_SIZE (TYPE))                                 \
734
       || !TREE_CONSTANT (TYPE_SIZE (TYPE))                             \
735
       || int_size_in_bytes (TYPE) <= UNITS_PER_WORD)                   \
736
    : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD)                            \
737
   ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
738
 
739
 
740
/* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
741
   as assembly via FUNCTION_PROFILER.  Just output a local label.
742
   We can't use the function label because the GAS SOM target can't
743
   handle the difference of a global symbol and a local symbol.  */
744
 
745
#ifndef FUNC_BEGIN_PROLOG_LABEL
746
#define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
747
#endif
748
 
749
#define FUNCTION_PROFILER(FILE, LABEL) \
750
  (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
751
 
752
#define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
753
void hppa_profile_hook (int label_no);
754
 
755
/* The profile counter if emitted must come before the prologue.  */
756
#define PROFILE_BEFORE_PROLOGUE 1
757
 
758
/* We never want final.c to emit profile counters.  When profile
759
   counters are required, we have to defer emitting them to the end
760
   of the current file.  */
761
#define NO_PROFILE_COUNTERS 1
762
 
763
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
764
   the stack pointer does not matter.  The value is tested only in
765
   functions that have frame pointers.
766
   No definition is equivalent to always zero.  */
767
 
768
extern int may_call_alloca;
769
 
770
#define EXIT_IGNORE_STACK       \
771
 (get_frame_size () != 0 \
772
  || cfun->calls_alloca || crtl->outgoing_args_size)
773
 
774
/* Length in units of the trampoline for entering a nested function.  */
775
 
776
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
777
 
778
/* Alignment required by the trampoline.  */
779
 
780
#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
781
 
782
/* Minimum length of a cache line.  A length of 16 will work on all
783
   PA-RISC processors.  All PA 1.1 processors have a cache line of
784
   32 bytes.  Most but not all PA 2.0 processors have a cache line
785
   of 64 bytes.  As cache flushes are expensive and we don't support
786
   PA 1.0, we use a minimum length of 32.  */
787
 
788
#define MIN_CACHELINE_SIZE 32
789
 
790
 
791
/* Addressing modes, and classification of registers for them.
792
 
793
   Using autoincrement addressing modes on PA8000 class machines is
794
   not profitable.  */
795
 
796
#define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
797
#define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
798
 
799
#define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
800
#define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
801
 
802
/* Macros to check register numbers against specific register classes.  */
803
 
804
/* The following macros assume that X is a hard or pseudo reg number.
805
   They give nonzero only if X is a hard reg of the suitable class
806
   or a pseudo reg currently allocated to a suitable hard reg.
807
   Since they use reg_renumber, they are safe only once reg_renumber
808
   has been allocated, which happens in local-alloc.c.  */
809
 
810
#define REGNO_OK_FOR_INDEX_P(X) \
811
  ((X) && ((X) < 32                                                     \
812
   || (X >= FIRST_PSEUDO_REGISTER                                       \
813
       && reg_renumber                                                  \
814
       && (unsigned) reg_renumber[X] < 32)))
815
#define REGNO_OK_FOR_BASE_P(X) \
816
  ((X) && ((X) < 32                                                     \
817
   || (X >= FIRST_PSEUDO_REGISTER                                       \
818
       && reg_renumber                                                  \
819
       && (unsigned) reg_renumber[X] < 32)))
820
#define REGNO_OK_FOR_FP_P(X) \
821
  (FP_REGNO_P (X)                                                       \
822
   || (X >= FIRST_PSEUDO_REGISTER                                       \
823
       && reg_renumber                                                  \
824
       && FP_REGNO_P (reg_renumber[X])))
825
 
826
/* Now macros that check whether X is a register and also,
827
   strictly, whether it is in a specified class.
828
 
829
   These macros are specific to the HP-PA, and may be used only
830
   in code for printing assembler insns and in conditions for
831
   define_optimization.  */
832
 
833
/* 1 if X is an fp register.  */
834
 
835
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
836
 
837
/* Maximum number of registers that can appear in a valid memory address.  */
838
 
839
#define MAX_REGS_PER_ADDRESS 2
840
 
841
/* Non-TLS symbolic references.  */
842
#define PA_SYMBOL_REF_TLS_P(RTX) \
843
  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
844
 
845
/* Recognize any constant value that is a valid address except
846
   for symbolic addresses.  We get better CSE by rejecting them
847
   here and allowing hppa_legitimize_address to break them up.  We
848
   use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
849
 
850
#define CONSTANT_ADDRESS_P(X) \
851
  ((GET_CODE (X) == LABEL_REF                                           \
852
   || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))         \
853
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
854
   || GET_CODE (X) == HIGH)                                             \
855
   && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
856
 
857
/* A C expression that is nonzero if we are using the new HP assembler.  */
858
 
859
#ifndef NEW_HP_ASSEMBLER
860
#define NEW_HP_ASSEMBLER 0
861
#endif
862
 
863
/* The macros below define the immediate range for CONST_INTS on
864
   the 64-bit port.  Constants in this range can be loaded in three
865
   instructions using a ldil/ldo/depdi sequence.  Constants outside
866
   this range are forced to the constant pool prior to reload.  */
867
 
868
#define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
869
#define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
870
#define LEGITIMATE_64BIT_CONST_INT_P(X) \
871
  ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
872
 
873
/* A C expression that is nonzero if X is a legitimate constant for an
874
   immediate operand.
875
 
876
   We include all constant integers and constant doubles, but not
877
   floating-point, except for floating-point zero.  We reject LABEL_REFs
878
   if we're not using gas or the new HP assembler.
879
 
880
   In 64-bit mode, we reject CONST_DOUBLES.  We also reject CONST_INTS
881
   that need more than three instructions to load prior to reload.  This
882
   limit is somewhat arbitrary.  It takes three instructions to load a
883
   CONST_INT from memory but two are memory accesses.  It may be better
884
   to increase the allowed range for CONST_INTS.  We may also be able
885
   to handle CONST_DOUBLES.  */
886
 
887
#define LEGITIMATE_CONSTANT_P(X)                                \
888
  ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT                 \
889
    || (X) == CONST0_RTX (GET_MODE (X)))                        \
890
   && (NEW_HP_ASSEMBLER                                         \
891
       || TARGET_GAS                                            \
892
       || GET_CODE (X) != LABEL_REF)                            \
893
   && (!TARGET_64BIT                                            \
894
       || GET_CODE (X) != CONST_DOUBLE)                         \
895
   && (!TARGET_64BIT                                            \
896
       || HOST_BITS_PER_WIDE_INT <= 32                          \
897
       || GET_CODE (X) != CONST_INT                             \
898
       || reload_in_progress                                    \
899
       || reload_completed                                      \
900
       || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X))             \
901
       || cint_ok_for_move (INTVAL (X)))                        \
902
   && !function_label_operand (X, VOIDmode))
903
 
904
/* Target flags set on a symbol_ref.  */
905
 
906
/* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
907
#define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
908
#define SYMBOL_REF_REFERENCED_P(RTX) \
909
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
910
 
911
/* Defines for constraints.md.  */
912
 
913
/* Return 1 iff OP is a scaled or unscaled index address.  */
914
#define IS_INDEX_ADDR_P(OP) \
915
  (GET_CODE (OP) == PLUS                                \
916
   && GET_MODE (OP) == Pmode                            \
917
   && (GET_CODE (XEXP (OP, 0)) == MULT                   \
918
       || GET_CODE (XEXP (OP, 1)) == MULT               \
919
       || (REG_P (XEXP (OP, 0))                          \
920
           && REG_P (XEXP (OP, 1)))))
921
 
922
/* Return 1 iff OP is a LO_SUM DLT address.  */
923
#define IS_LO_SUM_DLT_ADDR_P(OP) \
924
  (GET_CODE (OP) == LO_SUM                              \
925
   && GET_MODE (OP) == Pmode                            \
926
   && REG_P (XEXP (OP, 0))                               \
927
   && REG_OK_FOR_BASE_P (XEXP (OP, 0))                   \
928
   && GET_CODE (XEXP (OP, 1)) == UNSPEC)
929
 
930
/* Nonzero if 14-bit offsets can be used for all loads and stores.
931
   This is not possible when generating PA 1.x code as floating point
932
   loads and stores only support 5-bit offsets.  Note that we do not
933
   forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
934
   Instead, we use pa_secondary_reload() to reload integer mode
935
   REG+D memory addresses used in floating point loads and stores.
936
 
937
   FIXME: the ELF32 linker clobbers the LSB of the FP register number
938
   in PA 2.0 floating-point insns with long displacements.  This is
939
   because R_PARISC_DPREL14WR and other relocations like it are not
940
   yet supported by GNU ld.  For now, we reject long displacements
941
   on this target.  */
942
 
943
#define INT14_OK_STRICT \
944
  (TARGET_SOFT_FLOAT                                                   \
945
   || TARGET_DISABLE_FPREGS                                            \
946
   || (TARGET_PA_20 && !TARGET_ELF32))
947
 
948
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
949
   and check its validity for a certain class.
950
   We have two alternate definitions for each of them.
951
   The usual definition accepts all pseudo regs; the other rejects
952
   them unless they have been allocated suitable hard regs.
953
   The symbol REG_OK_STRICT causes the latter definition to be used.
954
 
955
   Most source files want to accept pseudo regs in the hope that
956
   they will get allocated to the class that the insn wants them to be in.
957
   Source files for reload pass need to be strict.
958
   After reload, it makes no difference, since pseudo regs have
959
   been eliminated by then.  */
960
 
961
#ifndef REG_OK_STRICT
962
 
963
/* Nonzero if X is a hard reg that can be used as an index
964
   or if it is a pseudo reg.  */
965
#define REG_OK_FOR_INDEX_P(X) \
966
  (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
967
 
968
/* Nonzero if X is a hard reg that can be used as a base reg
969
   or if it is a pseudo reg.  */
970
#define REG_OK_FOR_BASE_P(X) \
971
  (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
972
 
973
#else
974
 
975
/* Nonzero if X is a hard reg that can be used as an index.  */
976
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
977
 
978
/* Nonzero if X is a hard reg that can be used as a base reg.  */
979
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
980
 
981
#endif
982
 
983
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
984
   valid memory address for an instruction.  The MODE argument is the
985
   machine mode for the MEM expression that wants to use this address.
986
 
987
   On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
988
   REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
989
   available with floating point loads and stores, and integer loads.
990
   We get better code by allowing indexed addresses in the initial
991
   RTL generation.
992
 
993
   The acceptance of indexed addresses as legitimate implies that we
994
   must provide patterns for doing indexed integer stores, or the move
995
   expanders must force the address of an indexed store to a register.
996
   We have adopted the latter approach.
997
 
998
   Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
999
   the base register is a valid pointer for indexed instructions.
1000
   On targets that have non-equivalent space registers, we have to
1001
   know at the time of assembler output which register in a REG+REG
1002
   pair is the base register.  The REG_POINTER flag is sometimes lost
1003
   in reload and the following passes, so it can't be relied on during
1004
   code generation.  Thus, we either have to canonicalize the order
1005
   of the registers in REG+REG indexed addresses, or treat REG+REG
1006
   addresses separately and provide patterns for both permutations.
1007
 
1008
   The latter approach requires several hundred additional lines of
1009
   code in pa.md.  The downside to canonicalizing is that a PLUS
1010
   in the wrong order can't combine to form to make a scaled indexed
1011
   memory operand.  As we won't need to canonicalize the operands if
1012
   the REG_POINTER lossage can be fixed, it seems better canonicalize.
1013
 
1014
   We initially break out scaled indexed addresses in canonical order
1015
   in emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
1016
   scaled indexed addresses during RTL generation.  However, fold_rtx
1017
   has its own opinion on how the operands of a PLUS should be ordered.
1018
   If one of the operands is equivalent to a constant, it will make
1019
   that operand the second operand.  As the base register is likely to
1020
   be equivalent to a SYMBOL_REF, we have made it the second operand.
1021
 
1022
   GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1023
   operands are in the order INDEX+BASE on targets with non-equivalent
1024
   space registers, and in any order on targets with equivalent space
1025
   registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1026
 
1027
   We treat a SYMBOL_REF as legitimate if it is part of the current
1028
   function's constant-pool, because such addresses can actually be
1029
   output as REG+SMALLINT.  */
1030
 
1031
#define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1032
#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1033
 
1034
#define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1035
#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1036
 
1037
#define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1038
#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1039
 
1040
#define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1041
#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1042
 
1043
#if HOST_BITS_PER_WIDE_INT > 32
1044
#define VAL_32_BITS_P(X) \
1045
  ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
1046
   < (unsigned HOST_WIDE_INT) 2 << 31)
1047
#else
1048
#define VAL_32_BITS_P(X) 1
1049
#endif
1050
#define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1051
 
1052
/* These are the modes that we allow for scaled indexing.  */
1053
#define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1054
  ((TARGET_64BIT && (MODE) == DImode)                                   \
1055
   || (MODE) == SImode                                                  \
1056
   || (MODE) == HImode                                                  \
1057
   || (MODE) == SFmode                                                  \
1058
   || (MODE) == DFmode)
1059
 
1060
/* These are the modes that we allow for unscaled indexing.  */
1061
#define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1062
  ((TARGET_64BIT && (MODE) == DImode)                                   \
1063
   || (MODE) == SImode                                                  \
1064
   || (MODE) == HImode                                                  \
1065
   || (MODE) == QImode                                                  \
1066
   || (MODE) == SFmode                                                  \
1067
   || (MODE) == DFmode)
1068
 
1069
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1070
{                                                                       \
1071
  if ((REG_P (X) && REG_OK_FOR_BASE_P (X))                              \
1072
      || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC          \
1073
           || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)      \
1074
          && REG_P (XEXP (X, 0))                                 \
1075
          && REG_OK_FOR_BASE_P (XEXP (X, 0))))                           \
1076
    goto ADDR;                                                          \
1077
  else if (GET_CODE (X) == PLUS)                                        \
1078
    {                                                                   \
1079
      rtx base = 0, index = 0;                                            \
1080
      if (REG_P (XEXP (X, 1))                                           \
1081
          && REG_OK_FOR_BASE_P (XEXP (X, 1)))                           \
1082
        base = XEXP (X, 1), index = XEXP (X, 0);                 \
1083
      else if (REG_P (XEXP (X, 0))                                       \
1084
               && REG_OK_FOR_BASE_P (XEXP (X, 0)))                       \
1085
        base = XEXP (X, 0), index = XEXP (X, 1);                 \
1086
      if (base                                                          \
1087
          && GET_CODE (index) == CONST_INT                              \
1088
          && ((INT_14_BITS (index)                                      \
1089
               && (((MODE) != DImode                                    \
1090
                    && (MODE) != SFmode                                 \
1091
                    && (MODE) != DFmode)                                \
1092
                   /* The base register for DImode loads and stores     \
1093
                      with long displacements must be aligned because   \
1094
                      the lower three bits in the displacement are      \
1095
                      assumed to be zero.  */                           \
1096
                   || ((MODE) == DImode                                 \
1097
                       && (!TARGET_64BIT                                \
1098
                           || (INTVAL (index) % 8) == 0))                \
1099
                   /* Similarly, the base register for SFmode/DFmode    \
1100
                      loads and stores with long displacements must     \
1101
                      be aligned.  */                                   \
1102
                   || (((MODE) == SFmode || (MODE) == DFmode)           \
1103
                       && INT14_OK_STRICT                               \
1104
                       && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1105
               || INT_5_BITS (index)))                                  \
1106
        goto ADDR;                                                      \
1107
      if (!TARGET_DISABLE_INDEXING                                      \
1108
          /* Only accept the "canonical" INDEX+BASE operand order       \
1109
             on targets with non-equivalent space registers.  */        \
1110
          && (TARGET_NO_SPACE_REGS                                      \
1111
              ? (base && REG_P (index))                                 \
1112
              : (base == XEXP (X, 1) && REG_P (index)                   \
1113
                 && (reload_completed                                   \
1114
                     || (reload_in_progress && HARD_REGISTER_P (base))  \
1115
                     || REG_POINTER (base))                             \
1116
                 && (reload_completed                                   \
1117
                     || (reload_in_progress && HARD_REGISTER_P (index)) \
1118
                     || !REG_POINTER (index))))                         \
1119
          && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)                     \
1120
          && REG_OK_FOR_INDEX_P (index)                                 \
1121
          && borx_reg_operand (base, Pmode)                             \
1122
          && borx_reg_operand (index, Pmode))                           \
1123
        goto ADDR;                                                      \
1124
      if (!TARGET_DISABLE_INDEXING                                      \
1125
          && base                                                       \
1126
          && GET_CODE (index) == MULT                                   \
1127
          && MODE_OK_FOR_SCALED_INDEXING_P (MODE)                       \
1128
          && REG_P (XEXP (index, 0))                                     \
1129
          && GET_MODE (XEXP (index, 0)) == Pmode                 \
1130
          && REG_OK_FOR_INDEX_P (XEXP (index, 0))                        \
1131
          && GET_CODE (XEXP (index, 1)) == CONST_INT                    \
1132
          && INTVAL (XEXP (index, 1))                                   \
1133
             == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)                    \
1134
          && borx_reg_operand (base, Pmode))                            \
1135
        goto ADDR;                                                      \
1136
    }                                                                   \
1137
  else if (GET_CODE (X) == LO_SUM                                       \
1138
           && GET_CODE (XEXP (X, 0)) == REG                              \
1139
           && REG_OK_FOR_BASE_P (XEXP (X, 0))                            \
1140
           && CONSTANT_P (XEXP (X, 1))                                  \
1141
           && (TARGET_SOFT_FLOAT                                        \
1142
               /* We can allow symbolic LO_SUM addresses for PA2.0.  */ \
1143
               || (TARGET_PA_20                                         \
1144
                   && !TARGET_ELF32                                     \
1145
                   && GET_CODE (XEXP (X, 1)) != CONST_INT)              \
1146
               || ((MODE) != SFmode                                     \
1147
                   && (MODE) != DFmode)))                               \
1148
    goto ADDR;                                                          \
1149
  else if (GET_CODE (X) == LO_SUM                                       \
1150
           && GET_CODE (XEXP (X, 0)) == SUBREG                           \
1151
           && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG         \
1152
           && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))               \
1153
           && CONSTANT_P (XEXP (X, 1))                                  \
1154
           && (TARGET_SOFT_FLOAT                                        \
1155
               /* We can allow symbolic LO_SUM addresses for PA2.0.  */ \
1156
               || (TARGET_PA_20                                         \
1157
                   && !TARGET_ELF32                                     \
1158
                   && GET_CODE (XEXP (X, 1)) != CONST_INT)              \
1159
               || ((MODE) != SFmode                                     \
1160
                   && (MODE) != DFmode)))                               \
1161
    goto ADDR;                                                          \
1162
  else if (GET_CODE (X) == CONST_INT && INT_5_BITS (X))                 \
1163
    goto ADDR;                                                          \
1164
  /* Needed for -fPIC */                                                \
1165
  else if (GET_CODE (X) == LO_SUM                                       \
1166
           && GET_CODE (XEXP (X, 0)) == REG                      \
1167
           && REG_OK_FOR_BASE_P (XEXP (X, 0))                            \
1168
           && GET_CODE (XEXP (X, 1)) == UNSPEC                          \
1169
           && (TARGET_SOFT_FLOAT                                        \
1170
               || (TARGET_PA_20 && !TARGET_ELF32)                       \
1171
               || ((MODE) != SFmode                                     \
1172
                   && (MODE) != DFmode)))                               \
1173
    goto ADDR;                                                          \
1174
}
1175
 
1176
/* Look for machine dependent ways to make the invalid address AD a
1177
   valid address.
1178
 
1179
   For the PA, transform:
1180
 
1181
        memory(X + <large int>)
1182
 
1183
   into:
1184
 
1185
        if (<large int> & mask) >= 16
1186
          Y = (<large int> & ~mask) + mask + 1  Round up.
1187
        else
1188
          Y = (<large int> & ~mask)             Round down.
1189
        Z = X + Y
1190
        memory (Z + (<large int> - Y));
1191
 
1192
   This makes reload inheritance and reload_cse work better since Z
1193
   can be reused.
1194
 
1195
   There may be more opportunities to improve code with this hook.  */
1196
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)      \
1197
do {                                                                    \
1198
  long offset, newoffset, mask;                                         \
1199
  rtx new_rtx, temp = NULL_RTX;                                         \
1200
                                                                        \
1201
  mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT                           \
1202
          ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff);                \
1203
                                                                        \
1204
  if (optimize && GET_CODE (AD) == PLUS)                                \
1205
    temp = simplify_binary_operation (PLUS, Pmode,                      \
1206
                                      XEXP (AD, 0), XEXP (AD, 1));       \
1207
                                                                        \
1208
  new_rtx = temp ? temp : AD;                                           \
1209
                                                                        \
1210
  if (optimize                                                          \
1211
      && GET_CODE (new_rtx) == PLUS                                             \
1212
      && GET_CODE (XEXP (new_rtx, 0)) == REG                             \
1213
      && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT)                             \
1214
    {                                                                   \
1215
      offset = INTVAL (XEXP ((new_rtx), 1));                            \
1216
                                                                        \
1217
      /* Choose rounding direction.  Round up if we are >= halfway.  */ \
1218
      if ((offset & mask) >= ((mask + 1) / 2))                          \
1219
        newoffset = (offset & ~mask) + mask + 1;                        \
1220
      else                                                              \
1221
        newoffset = offset & ~mask;                                     \
1222
                                                                        \
1223
      /* Ensure that long displacements are aligned.  */                \
1224
      if (mask == 0x3fff                                                \
1225
          && (GET_MODE_CLASS (MODE) == MODE_FLOAT                       \
1226
              || (TARGET_64BIT && (MODE) == DImode)))                   \
1227
        newoffset &= ~(GET_MODE_SIZE (MODE) - 1);                       \
1228
                                                                        \
1229
      if (newoffset != 0 && VAL_14_BITS_P (newoffset))                   \
1230
        {                                                               \
1231
          temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0),                 \
1232
                               GEN_INT (newoffset));                    \
1233
          AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1234
          push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,           \
1235
                       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,             \
1236
                       (OPNUM), (TYPE));                                \
1237
          goto WIN;                                                     \
1238
        }                                                               \
1239
    }                                                                   \
1240
} while (0)
1241
 
1242
 
1243
 
1244
#define TARGET_ASM_SELECT_SECTION  pa_select_section
1245
 
1246
/* Return a nonzero value if DECL has a section attribute.  */
1247
#define IN_NAMED_SECTION_P(DECL) \
1248
  ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1249
   && DECL_SECTION_NAME (DECL) != NULL_TREE)
1250
 
1251
/* Define this macro if references to a symbol must be treated
1252
   differently depending on something about the variable or
1253
   function named by the symbol (such as what section it is in).
1254
 
1255
   The macro definition, if any, is executed immediately after the
1256
   rtl for DECL or other node is created.
1257
   The value of the rtl will be a `mem' whose address is a
1258
   `symbol_ref'.
1259
 
1260
   The usual thing for this macro to do is to a flag in the
1261
   `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1262
   name string in the `symbol_ref' (if one bit is not enough
1263
   information).
1264
 
1265
   On the HP-PA we use this to indicate if a symbol is in text or
1266
   data space.  Also, function labels need special treatment.  */
1267
 
1268
#define TEXT_SPACE_P(DECL)\
1269
  (TREE_CODE (DECL) == FUNCTION_DECL                                    \
1270
   || (TREE_CODE (DECL) == VAR_DECL                                     \
1271
       && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)            \
1272
       && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1273
       && !flag_pic)                                                    \
1274
   || CONSTANT_CLASS_P (DECL))
1275
 
1276
#define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1277
 
1278
/* Specify the machine mode that this machine uses for the index in the
1279
   tablejump instruction.  For small tables, an element consists of a
1280
   ia-relative branch and its delay slot.  When -mbig-switch is specified,
1281
   we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1282
   for both 32 and 64-bit pic code.  */
1283
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1284
 
1285
/* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1286
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
1287
 
1288
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1289
#define DEFAULT_SIGNED_CHAR 1
1290
 
1291
/* Max number of bytes we can move from memory to memory
1292
   in one reasonably fast instruction.  */
1293
#define MOVE_MAX 8
1294
 
1295
/* Higher than the default as we prefer to use simple move insns
1296
   (better scheduling and delay slot filling) and because our
1297
   built-in block move is really a 2X unrolled loop.
1298
 
1299
   Believe it or not, this has to be big enough to allow for copying all
1300
   arguments passed in registers to avoid infinite recursion during argument
1301
   setup for a function call.  Why?  Consider how we copy the stack slots
1302
   reserved for parameters when they may be trashed by a call.  */
1303
#define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1304
 
1305
/* Define if operations between registers always perform the operation
1306
   on the full register even if a narrower mode is specified.  */
1307
#define WORD_REGISTER_OPERATIONS
1308
 
1309
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1310
   will either zero-extend or sign-extend.  The value of this macro should
1311
   be the code that says which one of the two operations is implicitly
1312
   done, UNKNOWN if none.  */
1313
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1314
 
1315
/* Nonzero if access to memory by bytes is slow and undesirable.  */
1316
#define SLOW_BYTE_ACCESS 1
1317
 
1318
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1319
   is done just by pretending it is already truncated.  */
1320
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1321
 
1322
/* Specify the machine mode that pointers have.
1323
   After generation of rtl, the compiler makes no further distinction
1324
   between pointers and any other objects of this machine mode.  */
1325
#define Pmode word_mode
1326
 
1327
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1328
   return the mode to be used for the comparison.  For floating-point, CCFPmode
1329
   should be used.  CC_NOOVmode should be used when the first operand is a
1330
   PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1331
   needed.  */
1332
#define SELECT_CC_MODE(OP,X,Y) \
1333
  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1334
 
1335
/* A function address in a call instruction
1336
   is a byte address (for indexing purposes)
1337
   so give the MEM rtx a byte's mode.  */
1338
#define FUNCTION_MODE SImode
1339
 
1340
/* Define this if addresses of constant functions
1341
   shouldn't be put through pseudo regs where they can be cse'd.
1342
   Desirable on machines where ordinary constants are expensive
1343
   but a CALL with constant address is cheap.  */
1344
#define NO_FUNCTION_CSE
1345
 
1346
/* Define this to be nonzero if shift instructions ignore all but the low-order
1347
   few bits.  */
1348
#define SHIFT_COUNT_TRUNCATED 1
1349
 
1350
/* Compute extra cost of moving data between one register class
1351
   and another.
1352
 
1353
   Make moves from SAR so expensive they should never happen.  We used to
1354
   have 0xffff here, but that generates overflow in rare cases.
1355
 
1356
   Copies involving a FP register and a non-FP register are relatively
1357
   expensive because they must go through memory.
1358
 
1359
   Other copies are reasonably cheap.  */
1360
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1361
 (CLASS1 == SHIFT_REGS ? 0x100                                  \
1362
  : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16   \
1363
  : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16   \
1364
  : 2)
1365
 
1366
/* Adjust the cost of branches.  */
1367
#define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1368
 
1369
/* Handling the special cases is going to get too complicated for a macro,
1370
   just call `pa_adjust_insn_length' to do the real work.  */
1371
#define ADJUST_INSN_LENGTH(INSN, LENGTH)        \
1372
  LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1373
 
1374
/* Millicode insns are actually function calls with some special
1375
   constraints on arguments and register usage.
1376
 
1377
   Millicode calls always expect their arguments in the integer argument
1378
   registers, and always return their result in %r29 (ret1).  They
1379
   are expected to clobber their arguments, %r1, %r29, and the return
1380
   pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1381
 
1382
   This macro tells reorg that the references to arguments and
1383
   millicode calls do not appear to happen until after the millicode call.
1384
   This allows reorg to put insns which set the argument registers into the
1385
   delay slot of the millicode call -- thus they act more like traditional
1386
   CALL_INSNs.
1387
 
1388
   Note we cannot consider side effects of the insn to be delayed because
1389
   the branch and link insn will clobber the return pointer.  If we happened
1390
   to use the return pointer in the delay slot of the call, then we lose.
1391
 
1392
   get_attr_type will try to recognize the given insn, so make sure to
1393
   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1394
   in particular.  */
1395
#define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1396
 
1397
 
1398
/* Control the assembler format that we output.  */
1399
 
1400
/* A C string constant describing how to begin a comment in the target
1401
   assembler language.  The compiler assumes that the comment will end at
1402
   the end of the line.  */
1403
 
1404
#define ASM_COMMENT_START ";"
1405
 
1406
/* Output to assembler file text saying following lines
1407
   may contain character constants, extra white space, comments, etc.  */
1408
 
1409
#define ASM_APP_ON ""
1410
 
1411
/* Output to assembler file text saying following lines
1412
   no longer contain unusual constructs.  */
1413
 
1414
#define ASM_APP_OFF ""
1415
 
1416
/* This is how to output the definition of a user-level label named NAME,
1417
   such as the label on a static function or variable NAME.  */
1418
 
1419
#define ASM_OUTPUT_LABEL(FILE,NAME) \
1420
  do {                                                  \
1421
    assemble_name ((FILE), (NAME));                     \
1422
    if (TARGET_GAS)                                     \
1423
      fputs (":\n", (FILE));                            \
1424
    else                                                \
1425
      fputc ('\n', (FILE));                             \
1426
  } while (0)
1427
 
1428
/* This is how to output a reference to a user-level label named NAME.
1429
   `assemble_name' uses this.  */
1430
 
1431
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1432
  do {                                  \
1433
    const char *xname = (NAME);         \
1434
    if (FUNCTION_NAME_P (NAME))         \
1435
      xname += 1;                       \
1436
    if (xname[0] == '*')         \
1437
      xname += 1;                       \
1438
    else                                \
1439
      fputs (user_label_prefix, FILE);  \
1440
    fputs (xname, FILE);                \
1441
  } while (0)
1442
 
1443
/* This how we output the symbol_ref X.  */
1444
 
1445
#define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1446
  do {                                                 \
1447
    SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1448
    assemble_name (FILE, XSTR (X, 0));                 \
1449
  } while (0)
1450
 
1451
/* This is how to store into the string LABEL
1452
   the symbol_ref name of an internal numbered label where
1453
   PREFIX is the class of label and NUM is the number within the class.
1454
   This is suitable for output with `assemble_name'.  */
1455
 
1456
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1457
  sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1458
 
1459
/* Output the definition of a compiler-generated label named NAME.  */
1460
 
1461
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1462
  do {                                                  \
1463
    assemble_name_raw ((FILE), (NAME));                 \
1464
    if (TARGET_GAS)                                     \
1465
      fputs (":\n", (FILE));                            \
1466
    else                                                \
1467
      fputc ('\n', (FILE));                             \
1468
  } while (0)
1469
 
1470
#define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1471
 
1472
#define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1473
  output_ascii ((FILE), (P), (SIZE))
1474
 
1475
/* Jump tables are always placed in the text section.  Technically, it
1476
   is possible to put them in the readonly data section when -mbig-switch
1477
   is specified.  This has the benefit of getting the table out of .text
1478
   and reducing branch lengths as a result.  The downside is that an
1479
   additional insn (addil) is needed to access the table when generating
1480
   PIC code.  The address difference table also has to use 32-bit
1481
   pc-relative relocations.  Currently, GAS does not support these
1482
   relocations, although it is easily modified to do this operation.
1483
   The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1484
   when using ELF GAS.  A simple difference can be used when using
1485
   SOM GAS or the HP assembler.  The final downside is GDB complains
1486
   about the nesting of the label for the table when debugging.  */
1487
 
1488
#define JUMP_TABLES_IN_TEXT_SECTION 1
1489
 
1490
/* This is how to output an element of a case-vector that is absolute.  */
1491
 
1492
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1493
  if (TARGET_BIG_SWITCH)                                                \
1494
    fprintf (FILE, "\t.word L$%04d\n", VALUE);                          \
1495
  else                                                                  \
1496
    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1497
 
1498
/* This is how to output an element of a case-vector that is relative.
1499
   Since we always place jump tables in the text section, the difference
1500
   is absolute and requires no relocation.  */
1501
 
1502
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1503
  if (TARGET_BIG_SWITCH)                                                \
1504
    fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);              \
1505
  else                                                                  \
1506
    fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1507
 
1508
/* This is how to output an assembler line that says to advance the
1509
   location counter to a multiple of 2**LOG bytes.  */
1510
 
1511
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1512
    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1513
 
1514
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1515
  fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",          \
1516
           (unsigned HOST_WIDE_INT)(SIZE))
1517
 
1518
/* This says how to output an assembler line to define an uninitialized
1519
   global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1520
   This macro exists to properly support languages like C++ which do not
1521
   have common data.  */
1522
 
1523
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)           \
1524
  pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1525
 
1526
/* This says how to output an assembler line to define a global common symbol
1527
   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1528
 
1529
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)              \
1530
  pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1531
 
1532
/* This says how to output an assembler line to define a local common symbol
1533
   with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1534
   controls how the assembler definitions of uninitialized static variables
1535
   are output.  */
1536
 
1537
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)               \
1538
  pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1539
 
1540
/* All HP assemblers use "!" to separate logical lines.  */
1541
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1542
 
1543
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1544
  ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1545
 
1546
/* Print operand X (an rtx) in assembler syntax to file FILE.
1547
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1548
   For `%' followed by punctuation, CODE is the punctuation and X is null.
1549
 
1550
   On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1551
   and an immediate zero should be represented as `r0'.
1552
 
1553
   Several % codes are defined:
1554
   O an operation
1555
   C compare conditions
1556
   N extract conditions
1557
   M modifier to handle preincrement addressing for memory refs.
1558
   F modifier to handle preincrement addressing for fp memory refs */
1559
 
1560
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1561
 
1562
 
1563
/* Print a memory address as an operand to reference that memory location.  */
1564
 
1565
#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1566
{ rtx addr = ADDR;                                                      \
1567
  switch (GET_CODE (addr))                                              \
1568
    {                                                                   \
1569
    case REG:                                                           \
1570
      fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);                \
1571
      break;                                                            \
1572
    case PLUS:                                                          \
1573
      gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);              \
1574
      fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),            \
1575
               reg_names [REGNO (XEXP (addr, 0))]);                      \
1576
      break;                                                            \
1577
    case LO_SUM:                                                        \
1578
      if (!symbolic_operand (XEXP (addr, 1), VOIDmode))                 \
1579
        fputs ("R'", FILE);                                             \
1580
      else if (flag_pic == 0)                                            \
1581
        fputs ("RR'", FILE);                                            \
1582
      else                                                              \
1583
        fputs ("RT'", FILE);                                            \
1584
      output_global_address (FILE, XEXP (addr, 1), 0);                   \
1585
      fputs ("(", FILE);                                                \
1586
      output_operand (XEXP (addr, 0), 0);                         \
1587
      fputs (")", FILE);                                                \
1588
      break;                                                            \
1589
    case CONST_INT:                                                     \
1590
      fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));  \
1591
      break;                                                            \
1592
    default:                                                            \
1593
      output_addr_const (FILE, addr);                                   \
1594
    }}
1595
 
1596
 
1597
/* Find the return address associated with the frame given by
1598
   FRAMEADDR.  */
1599
#define RETURN_ADDR_RTX(COUNT, FRAMEADDR)                                \
1600
  (return_addr_rtx (COUNT, FRAMEADDR))
1601
 
1602
/* Used to mask out junk bits from the return address, such as
1603
   processor state, interrupt status, condition codes and the like.  */
1604
#define MASK_RETURN_ADDR                                                \
1605
  /* The privilege level is in the two low order bits, mask em out      \
1606
     of the return address.  */                                         \
1607
  (GEN_INT (-4))
1608
 
1609
/* The number of Pmode words for the setjmp buffer.  */
1610
#define JMP_BUF_SIZE 50
1611
 
1612
/* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
1613
#define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1614
  "__canonicalize_funcptr_for_compare"
1615
 
1616
#ifdef HAVE_AS_TLS
1617
#undef TARGET_HAVE_TLS
1618
#define TARGET_HAVE_TLS true
1619
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.