OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [gcc/] [config/] [s390/] [s390.h] - Blame information for rev 338

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler, for IBM S/390
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3
   2007, 2008, 2009 Free Software Foundation, Inc.
4
   Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5
                  Ulrich Weigand (uweigand@de.ibm.com).
6
                  Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
7
 
8
This file is part of GCC.
9
 
10
GCC is free software; you can redistribute it and/or modify it under
11
the terms of the GNU General Public License as published by the Free
12
Software Foundation; either version 3, or (at your option) any later
13
version.
14
 
15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16
WARRANTY; without even the implied warranty of MERCHANTABILITY or
17
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18
for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with GCC; see the file COPYING3.  If not see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
#ifndef _S390_H
25
#define _S390_H
26
 
27
/* Which processor to generate code or schedule for. The cpu attribute
28
   defines a list that mirrors this list, so changes to s390.md must be
29
   made at the same time.  */
30
 
31
enum processor_type
32
{
33
  PROCESSOR_9672_G5,
34
  PROCESSOR_9672_G6,
35
  PROCESSOR_2064_Z900,
36
  PROCESSOR_2084_Z990,
37
  PROCESSOR_2094_Z9_109,
38
  PROCESSOR_2097_Z10,
39
  PROCESSOR_max
40
};
41
 
42
/* Optional architectural facilities supported by the processor.  */
43
 
44
enum processor_flags
45
{
46
  PF_IEEE_FLOAT = 1,
47
  PF_ZARCH = 2,
48
  PF_LONG_DISPLACEMENT = 4,
49
  PF_EXTIMM = 8,
50
  PF_DFP = 16,
51
  PF_Z10 = 32
52
};
53
 
54
extern enum processor_type s390_tune;
55
extern int s390_tune_flags;
56
 
57
/* This is necessary to avoid a warning about comparing different enum
58
   types.  */
59
#define s390_tune_attr ((enum attr_cpu)s390_tune)
60
 
61
extern enum processor_type s390_arch;
62
extern int s390_arch_flags;
63
 
64
/* These flags indicate that the generated code should run on a cpu
65
   providing the respective hardware facility regardless of the
66
   current cpu mode (ESA or z/Architecture).  */
67
 
68
#define TARGET_CPU_IEEE_FLOAT \
69
        (s390_arch_flags & PF_IEEE_FLOAT)
70
#define TARGET_CPU_ZARCH \
71
        (s390_arch_flags & PF_ZARCH)
72
#define TARGET_CPU_LONG_DISPLACEMENT \
73
        (s390_arch_flags & PF_LONG_DISPLACEMENT)
74
#define TARGET_CPU_EXTIMM \
75
        (s390_arch_flags & PF_EXTIMM)
76
#define TARGET_CPU_DFP \
77
        (s390_arch_flags & PF_DFP)
78
#define TARGET_CPU_Z10 \
79
        (s390_arch_flags & PF_Z10)
80
 
81
/* These flags indicate that the generated code should run on a cpu
82
   providing the respective hardware facility when run in
83
   z/Architecture mode.  */
84
 
85
#define TARGET_LONG_DISPLACEMENT \
86
       (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
87
#define TARGET_EXTIMM \
88
       (TARGET_ZARCH && TARGET_CPU_EXTIMM)
89
#define TARGET_DFP \
90
       (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
91
#define TARGET_Z10 \
92
       (TARGET_ZARCH && TARGET_CPU_Z10)
93
 
94
/* Run-time target specification.  */
95
 
96
/* Defaults for option flags defined only on some subtargets.  */
97
#ifndef TARGET_TPF_PROFILING
98
#define TARGET_TPF_PROFILING 0
99
#endif
100
 
101
/* This will be overridden by OS headers.  */
102
#define TARGET_TPF 0
103
 
104
/* Target CPU builtins.  */
105
#define TARGET_CPU_CPP_BUILTINS()                       \
106
  do                                                    \
107
    {                                                   \
108
      builtin_assert ("cpu=s390");                      \
109
      builtin_assert ("machine=s390");                  \
110
      builtin_define ("__s390__");                      \
111
      if (TARGET_64BIT)                                 \
112
        builtin_define ("__s390x__");                   \
113
      if (TARGET_LONG_DOUBLE_128)                       \
114
        builtin_define ("__LONG_DOUBLE_128__");         \
115
    }                                                   \
116
  while (0)
117
 
118
#ifdef DEFAULT_TARGET_64BIT
119
#define TARGET_DEFAULT             (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
120
#else
121
#define TARGET_DEFAULT             0
122
#endif
123
 
124
/* Support for configure-time defaults.  */
125
#define OPTION_DEFAULT_SPECS                                    \
126
  { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" },                 \
127
  { "arch", "%{!march=*:-march=%(VALUE)}" },                    \
128
  { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
129
 
130
/* Defaulting rules.  */
131
#ifdef DEFAULT_TARGET_64BIT
132
#define DRIVER_SELF_SPECS                                       \
133
  "%{!m31:%{!m64:-m64}}",                                       \
134
  "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",             \
135
  "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
136
#else
137
#define DRIVER_SELF_SPECS                                       \
138
  "%{!m31:%{!m64:-m31}}",                                       \
139
  "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",             \
140
  "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
141
#endif
142
 
143
/* Target version string.  Overridden by the OS header.  */
144
#ifdef DEFAULT_TARGET_64BIT
145
#define TARGET_VERSION fprintf (stderr, " (zSeries)");
146
#else
147
#define TARGET_VERSION fprintf (stderr, " (S/390)");
148
#endif
149
 
150
/* Hooks to override options.  */
151
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
152
#define OVERRIDE_OPTIONS override_options ()
153
 
154
/* Frame pointer is not used for debugging.  */
155
#define CAN_DEBUG_WITHOUT_FP
156
 
157
/* Constants needed to control the TEST DATA CLASS (TDC) instruction.  */
158
#define S390_TDC_POSITIVE_ZERO                     (1 << 11)
159
#define S390_TDC_NEGATIVE_ZERO                     (1 << 10)
160
#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER    (1 << 9)
161
#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER    (1 << 8)
162
#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER  (1 << 7)
163
#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER  (1 << 6)
164
#define S390_TDC_POSITIVE_INFINITY                 (1 << 5)
165
#define S390_TDC_NEGATIVE_INFINITY                 (1 << 4)
166
#define S390_TDC_POSITIVE_QUIET_NAN                (1 << 3)
167
#define S390_TDC_NEGATIVE_QUIET_NAN                (1 << 2)
168
#define S390_TDC_POSITIVE_SIGNALING_NAN            (1 << 1)
169
#define S390_TDC_NEGATIVE_SIGNALING_NAN            (1 << 0)
170
 
171
/* The following values are different for DFP.  */
172
#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
173
#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
174
#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER   (1 << 7)
175
#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER   (1 << 6)
176
 
177
/* For signbit, the BFP-DFP-difference makes no difference. */
178
#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
179
                          | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
180
                          | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
181
                          | S390_TDC_NEGATIVE_INFINITY \
182
                          | S390_TDC_NEGATIVE_QUIET_NAN \
183
                          | S390_TDC_NEGATIVE_SIGNALING_NAN )
184
 
185
#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
186
                          | S390_TDC_NEGATIVE_INFINITY )
187
 
188
/* In libgcc2, determine target settings as compile-time constants.  */
189
#ifdef IN_LIBGCC2
190
#undef TARGET_64BIT
191
#ifdef __s390x__
192
#define TARGET_64BIT 1
193
#else
194
#define TARGET_64BIT 0
195
#endif
196
#endif
197
 
198
 
199
/* Target machine storage layout.  */
200
 
201
/* Everything is big-endian.  */
202
#define BITS_BIG_ENDIAN 1
203
#define BYTES_BIG_ENDIAN 1
204
#define WORDS_BIG_ENDIAN 1
205
 
206
/* Width of a word, in units (bytes).  */
207
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
208
#ifndef IN_LIBGCC2
209
#define MIN_UNITS_PER_WORD 4
210
#endif
211
#define MAX_BITS_PER_WORD 64
212
 
213
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
214
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
215
 
216
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
217
#define STACK_BOUNDARY 64
218
 
219
/* Allocation boundary (in *bits*) for the code of a function.  */
220
#define FUNCTION_BOUNDARY 32
221
 
222
/* There is no point aligning anything to a rounder boundary than this.  */
223
#define BIGGEST_ALIGNMENT 64
224
 
225
/* Alignment of field after `int : 0' in a structure.  */
226
#define EMPTY_FIELD_BOUNDARY 32
227
 
228
/* Alignment on even addresses for LARL instruction.  */
229
#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
230
#define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
231
 
232
/* Alignment is not required by the hardware.  */
233
#define STRICT_ALIGNMENT 0
234
 
235
/* Mode of stack savearea.
236
   FUNCTION is VOIDmode because calling convention maintains SP.
237
   BLOCK needs Pmode for SP.
238
   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
239
#define STACK_SAVEAREA_MODE(LEVEL)      \
240
  (LEVEL == SAVE_FUNCTION ? VOIDmode    \
241
  : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
242
 
243
 
244
/* Type layout.  */
245
 
246
/* Sizes in bits of the source language data types.  */
247
#define SHORT_TYPE_SIZE 16
248
#define INT_TYPE_SIZE 32
249
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
250
#define LONG_LONG_TYPE_SIZE 64
251
#define FLOAT_TYPE_SIZE 32
252
#define DOUBLE_TYPE_SIZE 64
253
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
254
 
255
/* Define this to set long double type size to use in libgcc2.c, which can
256
   not depend on target_flags.  */
257
#ifdef __LONG_DOUBLE_128__
258
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
259
#else
260
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
261
#endif
262
 
263
/* Work around target_flags dependency in ada/targtyps.c.  */
264
#define WIDEST_HARDWARE_FP_SIZE 64
265
 
266
/* We use "unsigned char" as default.  */
267
#define DEFAULT_SIGNED_CHAR 0
268
 
269
 
270
/* Register usage.  */
271
 
272
/* We have 16 general purpose registers (registers 0-15),
273
   and 16 floating point registers (registers 16-31).
274
   (On non-IEEE machines, we have only 4 fp registers.)
275
 
276
   Amongst the general purpose registers, some are used
277
   for specific purposes:
278
   GPR 11: Hard frame pointer (if needed)
279
   GPR 12: Global offset table pointer (if needed)
280
   GPR 13: Literal pool base register
281
   GPR 14: Return address register
282
   GPR 15: Stack pointer
283
 
284
   Registers 32-35 are 'fake' hard registers that do not
285
   correspond to actual hardware:
286
   Reg 32: Argument pointer
287
   Reg 33: Condition code
288
   Reg 34: Frame pointer
289
   Reg 35: Return address pointer
290
 
291
   Registers 36 and 37 are mapped to access registers
292
 
293
 
294
#define FIRST_PSEUDO_REGISTER 38
295
 
296
/* Standard register usage.  */
297
#define GENERAL_REGNO_P(N)      ((int)(N) >= 0 && (N) < 16)
298
#define ADDR_REGNO_P(N)         ((N) >= 1 && (N) < 16)
299
#define FP_REGNO_P(N)           ((N) >= 16 && (N) < 32)
300
#define CC_REGNO_P(N)           ((N) == 33)
301
#define FRAME_REGNO_P(N)        ((N) == 32 || (N) == 34 || (N) == 35)
302
#define ACCESS_REGNO_P(N)       ((N) == 36 || (N) == 37)
303
 
304
#define GENERAL_REG_P(X)        (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
305
#define ADDR_REG_P(X)           (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
306
#define FP_REG_P(X)             (REG_P (X) && FP_REGNO_P (REGNO (X)))
307
#define CC_REG_P(X)             (REG_P (X) && CC_REGNO_P (REGNO (X)))
308
#define FRAME_REG_P(X)          (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
309
#define ACCESS_REG_P(X)         (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
310
 
311
/* Set up fixed registers and calling convention:
312
 
313
   GPRs 0-5 are always call-clobbered,
314
   GPRs 6-15 are always call-saved.
315
   GPR 12 is fixed if used as GOT pointer.
316
   GPR 13 is always fixed (as literal pool pointer).
317
   GPR 14 is always fixed on S/390 machines (as return address).
318
   GPR 15 is always fixed (as stack pointer).
319
   The 'fake' hard registers are call-clobbered and fixed.
320
   The access registers are call-saved and fixed.
321
 
322
   On 31-bit, FPRs 18-19 are call-clobbered;
323
   on 64-bit, FPRs 24-31 are call-clobbered.
324
   The remaining FPRs are call-saved.  */
325
 
326
#define FIXED_REGISTERS                         \
327
{ 0, 0, 0, 0,                                       \
328
  0, 0, 0, 0,                                       \
329
  0, 0, 0, 0,                                       \
330
  0, 1, 1, 1,                                    \
331
  0, 0, 0, 0,                                       \
332
  0, 0, 0, 0,                                       \
333
  0, 0, 0, 0,                                       \
334
  0, 0, 0, 0,                                       \
335
  1, 1, 1, 1,                                   \
336
  1, 1 }
337
 
338
#define CALL_USED_REGISTERS                     \
339
{ 1, 1, 1, 1,                                   \
340
  1, 1, 0, 0,                                     \
341
  0, 0, 0, 0,                                       \
342
  0, 1, 1, 1,                                    \
343
  1, 1, 1, 1,                                   \
344
  1, 1, 1, 1,                                   \
345
  1, 1, 1, 1,                                   \
346
  1, 1, 1, 1,                                   \
347
  1, 1, 1, 1,                                   \
348
  1, 1 }
349
 
350
#define CALL_REALLY_USED_REGISTERS              \
351
{ 1, 1, 1, 1,                                   \
352
  1, 1, 0, 0,                                     \
353
  0, 0, 0, 0,                                       \
354
  0, 0, 0, 0,                                       \
355
  1, 1, 1, 1,                                   \
356
  1, 1, 1, 1,                                   \
357
  1, 1, 1, 1,                                   \
358
  1, 1, 1, 1,                                   \
359
  1, 1, 1, 1,                                   \
360
  0, 0 }
361
 
362
#define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
363
 
364
/* Preferred register allocation order.  */
365
#define REG_ALLOC_ORDER                                         \
366
{  1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13,            \
367
   16, 17, 18, 19, 20, 21, 22, 23,                              \
368
   24, 25, 26, 27, 28, 29, 30, 31,                              \
369
   15, 32, 33, 34, 35, 36, 37 }
370
 
371
 
372
/* Fitting values into registers.  */
373
 
374
/* Integer modes <= word size fit into any GPR.
375
   Integer modes > word size fit into successive GPRs, starting with
376
   an even-numbered register.
377
   SImode and DImode fit into FPRs as well.
378
 
379
   Floating point modes <= word size fit into any FPR or GPR.
380
   Floating point modes > word size (i.e. DFmode on 32-bit) fit
381
   into any FPR, or an even-odd GPR pair.
382
   TFmode fits only into an even-odd FPR pair.
383
 
384
   Complex floating point modes fit either into two FPRs, or into
385
   successive GPRs (again starting with an even number).
386
   TCmode fits only into two successive even-odd FPR pairs.
387
 
388
   Condition code modes fit only into the CC register.  */
389
 
390
/* Because all registers in a class have the same size HARD_REGNO_NREGS
391
   is equivalent to CLASS_MAX_NREGS.  */
392
#define HARD_REGNO_NREGS(REGNO, MODE)                           \
393
  s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
394
 
395
#define HARD_REGNO_MODE_OK(REGNO, MODE)         \
396
  s390_hard_regno_mode_ok ((REGNO), (MODE))
397
 
398
#define HARD_REGNO_RENAME_OK(FROM, TO)          \
399
  s390_hard_regno_rename_ok (FROM, TO)
400
 
401
#define MODES_TIEABLE_P(MODE1, MODE2)           \
402
   (((MODE1) == SFmode || (MODE1) == DFmode)    \
403
   == ((MODE2) == SFmode || (MODE2) == DFmode))
404
 
405
/* Maximum number of registers to represent a value of mode MODE
406
   in a register of class CLASS.  */
407
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
408
  s390_class_max_nregs ((CLASS), (MODE))
409
 
410
/* If a 4-byte value is loaded into a FPR, it is placed into the
411
   *upper* half of the register, not the lower.  Therefore, we
412
   cannot use SUBREGs to switch between modes in FP registers.
413
   Likewise for access registers, since they have only half the
414
   word size on 64-bit.  */
415
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                       \
416
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                           \
417
   ? ((reg_classes_intersect_p (FP_REGS, CLASS)                         \
418
       && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8))         \
419
      || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
420
 
421
/* Register classes.  */
422
 
423
/* We use the following register classes:
424
   GENERAL_REGS     All general purpose registers
425
   ADDR_REGS        All general purpose registers except %r0
426
                    (These registers can be used in address generation)
427
   FP_REGS          All floating point registers
428
   CC_REGS          The condition code register
429
   ACCESS_REGS      The access registers
430
 
431
   GENERAL_FP_REGS  Union of GENERAL_REGS and FP_REGS
432
   ADDR_FP_REGS     Union of ADDR_REGS and FP_REGS
433
   GENERAL_CC_REGS  Union of GENERAL_REGS and CC_REGS
434
   ADDR_CC_REGS     Union of ADDR_REGS and CC_REGS
435
 
436
   NO_REGS          No registers
437
   ALL_REGS         All registers
438
 
439
   Note that the 'fake' frame pointer and argument pointer registers
440
   are included amongst the address registers here.  */
441
 
442
enum reg_class
443
{
444
  NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
445
  ADDR_CC_REGS, GENERAL_CC_REGS,
446
  FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
447
  ALL_REGS, LIM_REG_CLASSES
448
};
449
#define N_REG_CLASSES (int) LIM_REG_CLASSES
450
 
451
#define REG_CLASS_NAMES                                                 \
452
{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS",     \
453
  "ADDR_CC_REGS", "GENERAL_CC_REGS",                                    \
454
  "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
455
 
456
/* Class -> register mapping.  */
457
#define REG_CLASS_CONTENTS \
458
{                                                       \
459
  { 0x00000000, 0x00000000 },   /* NO_REGS */           \
460
  { 0x00000000, 0x00000002 },   /* CC_REGS */           \
461
  { 0x0000fffe, 0x0000000d },   /* ADDR_REGS */         \
462
  { 0x0000ffff, 0x0000000d },   /* GENERAL_REGS */      \
463
  { 0x00000000, 0x00000030 },   /* ACCESS_REGS */       \
464
  { 0x0000fffe, 0x0000000f },   /* ADDR_CC_REGS */      \
465
  { 0x0000ffff, 0x0000000f },   /* GENERAL_CC_REGS */   \
466
  { 0xffff0000, 0x00000000 },   /* FP_REGS */           \
467
  { 0xfffffffe, 0x0000000d },   /* ADDR_FP_REGS */      \
468
  { 0xffffffff, 0x0000000d },   /* GENERAL_FP_REGS */   \
469
  { 0xffffffff, 0x0000003f },   /* ALL_REGS */          \
470
}
471
 
472
/* The following macro defines cover classes for Integrated Register
473
   Allocator.  Cover classes is a set of non-intersected register
474
   classes covering all hard registers used for register allocation
475
   purpose.  Any move between two registers of a cover class should be
476
   cheaper than load or store of the registers.  The macro value is
477
   array of register classes with LIM_REG_CLASSES used as the end
478
   marker.  */
479
 
480
#define IRA_COVER_CLASSES                                                    \
481
{                                                                            \
482
  GENERAL_REGS, FP_REGS, CC_REGS, ACCESS_REGS, LIM_REG_CLASSES               \
483
}
484
 
485
/* In some case register allocation order is not enough for IRA to
486
   generate a good code.  The following macro (if defined) increases
487
   cost of REGNO for a pseudo approximately by pseudo usage frequency
488
   multiplied by the macro value.
489
 
490
   We avoid usage of BASE_REGNUM by nonzero macro value because the
491
   reload can decide not to use the hard register because some
492
   constant was forced to be in memory.  */
493
#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno)       \
494
  (regno == BASE_REGNUM ? 0.0 : 0.5)
495
 
496
/* Register -> class mapping.  */
497
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
498
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
499
 
500
/* ADDR_REGS can be used as base or index register.  */
501
#define INDEX_REG_CLASS ADDR_REGS
502
#define BASE_REG_CLASS ADDR_REGS
503
 
504
/* Check whether REGNO is a hard register of the suitable class
505
   or a pseudo register currently allocated to one such.  */
506
#define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
507
    (((REGNO) < FIRST_PSEUDO_REGISTER                                   \
508
      && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS)                        \
509
     || ADDR_REGNO_P (reg_renumber[REGNO]))
510
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
511
 
512
 
513
/* Given an rtx X being reloaded into a reg required to be in class CLASS,
514
   return the class of reg to actually use.  */
515
#define PREFERRED_RELOAD_CLASS(X, CLASS)        \
516
  s390_preferred_reload_class ((X), (CLASS))
517
 
518
/* We need secondary memory to move data between GPRs and FPRs.  With
519
   DFP the ldgr lgdr instructions are available.  But these
520
   instructions do not handle GPR pairs so it is not possible for 31
521
   bit.  */
522
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
523
 ((CLASS1) != (CLASS2)                                \
524
  && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS)     \
525
  && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
526
 
527
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
528
   because the movsi and movsf patterns don't handle r/f moves.  */
529
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
530
 (GET_MODE_BITSIZE (MODE) < 32                          \
531
  ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
532
  : MODE)
533
 
534
 
535
/* Stack layout and calling conventions.  */
536
 
537
/* Our stack grows from higher to lower addresses.  However, local variables
538
   are accessed by positive offsets, and function arguments are stored at
539
   increasing addresses.  */
540
#define STACK_GROWS_DOWNWARD
541
#define FRAME_GROWS_DOWNWARD 1
542
/* #undef ARGS_GROW_DOWNWARD */
543
 
544
/* The basic stack layout looks like this: the stack pointer points
545
   to the register save area for called functions.  Above that area
546
   is the location to place outgoing arguments.  Above those follow
547
   dynamic allocations (alloca), and finally the local variables.  */
548
 
549
/* Offset from stack-pointer to first location of outgoing args.  */
550
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
551
 
552
/* Offset within stack frame to start allocating local variables at.  */
553
#define STARTING_FRAME_OFFSET 0
554
 
555
/* Offset from the stack pointer register to an item dynamically
556
   allocated on the stack, e.g., by `alloca'.  */
557
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
558
  (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
559
 
560
/* Offset of first parameter from the argument pointer register value.
561
   We have a fake argument pointer register that points directly to
562
   the argument area.  */
563
#define FIRST_PARM_OFFSET(FNDECL) 0
564
 
565
/* Defining this macro makes __builtin_frame_address(0) and
566
   __builtin_return_address(0) work with -fomit-frame-pointer.  */
567
#define INITIAL_FRAME_ADDRESS_RTX                                             \
568
  (plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
569
 
570
/* The return address of the current frame is retrieved
571
   from the initial value of register RETURN_REGNUM.
572
   For frames farther back, we use the stack slot where
573
   the corresponding RETURN_REGNUM register was saved.  */
574
#define DYNAMIC_CHAIN_ADDRESS(FRAME)                                          \
575
  (TARGET_PACKED_STACK ?                                                      \
576
   plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_WORD) : (FRAME))
577
 
578
/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
579
   builtin_frame_address.  Otherwise arg pointer -
580
   STACK_POINTER_OFFSET would be returned for
581
   __builtin_frame_address(0) what might result in an address pointing
582
   somewhere into the middle of the local variables since the packed
583
   stack layout generally does not need all the bytes in the register
584
   save area.  */
585
#define FRAME_ADDR_RTX(FRAME)                   \
586
  DYNAMIC_CHAIN_ADDRESS ((FRAME))
587
 
588
#define RETURN_ADDR_RTX(COUNT, FRAME)                                         \
589
  s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
590
 
591
/* In 31-bit mode, we need to mask off the high bit of return addresses.  */
592
#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
593
 
594
 
595
/* Exception handling.  */
596
 
597
/* Describe calling conventions for DWARF-2 exception handling.  */
598
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, RETURN_REGNUM)
599
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
600
#define DWARF_FRAME_RETURN_COLUMN  14
601
 
602
/* Describe how we implement __builtin_eh_return.  */
603
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
604
#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
605
 
606
/* Select a format to encode pointers in exception handling data.  */
607
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                          \
608
  (flag_pic                                                                 \
609
    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
610
   : DW_EH_PE_absptr)
611
 
612
 
613
/* Frame registers.  */
614
 
615
#define STACK_POINTER_REGNUM 15
616
#define FRAME_POINTER_REGNUM 34
617
#define HARD_FRAME_POINTER_REGNUM 11
618
#define ARG_POINTER_REGNUM 32
619
#define RETURN_ADDRESS_POINTER_REGNUM 35
620
 
621
/* The static chain must be call-clobbered, but not used for
622
   function argument passing.  As register 1 is clobbered by
623
   the trampoline code, we only have one option.  */
624
#define STATIC_CHAIN_REGNUM 0
625
 
626
/* Number of hardware registers that go into the DWARF-2 unwind info.
627
   To avoid ABI incompatibility, this number must not change even as
628
   'fake' hard registers are added or removed.  */
629
#define DWARF_FRAME_REGISTERS 34
630
 
631
 
632
/* Frame pointer and argument pointer elimination.  */
633
 
634
#define ELIMINABLE_REGS                                         \
635
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },                \
636
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },           \
637
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },                  \
638
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },             \
639
 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM },       \
640
 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },  \
641
 { BASE_REGNUM, BASE_REGNUM }}
642
 
643
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
644
  (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
645
 
646
 
647
/* Stack arguments.  */
648
 
649
/* We need current_function_outgoing_args to be valid.  */
650
#define ACCUMULATE_OUTGOING_ARGS 1
651
 
652
/* Return doesn't modify the stack.  */
653
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
654
 
655
 
656
/* Register arguments.  */
657
 
658
typedef struct s390_arg_structure
659
{
660
  int gprs;                     /* gpr so far */
661
  int fprs;                     /* fpr so far */
662
}
663
CUMULATIVE_ARGS;
664
 
665
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
666
  ((CUM).gprs=0, (CUM).fprs=0)
667
 
668
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
669
  s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
670
 
671
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)   \
672
  s390_function_arg (&CUM, MODE, TYPE, NAMED)
673
 
674
/* Arguments can be placed in general registers 2 to 6, or in floating
675
   point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
676
   bit.  */
677
#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
678
  (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
679
 
680
 
681
/* Scalar return values.  */
682
 
683
#define FUNCTION_VALUE(VALTYPE, FUNC) \
684
  s390_function_value ((VALTYPE), (FUNC), VOIDmode)
685
 
686
#define LIBCALL_VALUE(MODE) \
687
  s390_function_value (NULL, NULL, (MODE))
688
 
689
/* Only gpr 2 and fpr 0 are ever used as return registers.  */
690
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
691
 
692
 
693
/* Function entry and exit.  */
694
 
695
/* When returning from a function, the stack pointer does not matter.  */
696
#define EXIT_IGNORE_STACK       1
697
 
698
 
699
/* Profiling.  */
700
 
701
#define FUNCTION_PROFILER(FILE, LABELNO)                        \
702
  s390_function_profiler ((FILE), ((LABELNO)))
703
 
704
#define PROFILE_BEFORE_PROLOGUE 1
705
 
706
 
707
/* Trampolines for nested functions.  */
708
 
709
#define TRAMPOLINE_SIZE         (TARGET_64BIT ? 32 : 16)
710
#define TRAMPOLINE_ALIGNMENT    BITS_PER_WORD
711
 
712
/* Addressing modes, and classification of registers for them.  */
713
 
714
/* Recognize any constant value that is a valid address.  */
715
#define CONSTANT_ADDRESS_P(X) 0
716
 
717
/* Maximum number of registers that can appear in a valid memory address.  */
718
#define MAX_REGS_PER_ADDRESS 2
719
 
720
/* This definition replaces the formerly used 'm' constraint with a
721
   different constraint letter in order to avoid changing semantics of
722
   the 'm' constraint when accepting new address formats in
723
   TARGET_LEGITIMATE_ADDRESS_P.  The constraint letter defined here
724
   must not be used in insn definitions or inline assemblies.  */
725
#define TARGET_MEM_CONSTRAINT 'e'
726
 
727
/* Try a machine-dependent way of reloading an illegitimate address
728
   operand.  If we find one, push the reload and jump to WIN.  This
729
   macro is used in only one place: `find_reloads_address' in reload.c.  */
730
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)      \
731
do {                                                                    \
732
  rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE));       \
733
  if (new_rtx)                                                          \
734
    {                                                                   \
735
      (AD) = new_rtx;                                                   \
736
      goto WIN;                                                         \
737
    }                                                                   \
738
} while (0)
739
 
740
/* Nonzero if the constant value X is a legitimate general operand.
741
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
742
#define LEGITIMATE_CONSTANT_P(X) \
743
     legitimate_constant_p (X)
744
 
745
/* Helper macro for s390.c and s390.md to check for symbolic constants.  */
746
#define SYMBOLIC_CONST(X)       \
747
(GET_CODE (X) == SYMBOL_REF                                             \
748
 || GET_CODE (X) == LABEL_REF                                           \
749
 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
750
 
751
#define TLS_SYMBOLIC_CONST(X)   \
752
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X))       \
753
 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
754
 
755
 
756
/* Condition codes.  */
757
 
758
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
759
   return the mode to be used for the comparison.  */
760
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
761
 
762
/* Canonicalize a comparison from one we don't have to one we do have.  */
763
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
764
  s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
765
 
766
/* Relative costs of operations.  */
767
 
768
/* On s390, copy between fprs and gprs is expensive.  */
769
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                        \
770
  ((   (   reg_classes_intersect_p ((CLASS1), GENERAL_REGS)             \
771
        && reg_classes_intersect_p ((CLASS2), FP_REGS))                 \
772
    || (   reg_classes_intersect_p ((CLASS1), FP_REGS)                  \
773
        && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
774
 
775
/* A C expression for the cost of moving data of mode M between a
776
   register and memory.  A value of 2 is the default; this cost is
777
   relative to those in `REGISTER_MOVE_COST'.  */
778
#define MEMORY_MOVE_COST(M, C, I) 1
779
 
780
/* A C expression for the cost of a branch instruction.  A value of 1
781
   is the default; other values are interpreted relative to that.  */
782
#define BRANCH_COST(speed_p, predictable_p) 1
783
 
784
/* Nonzero if access to memory by bytes is slow and undesirable.  */
785
#define SLOW_BYTE_ACCESS 1
786
 
787
/* An integer expression for the size in bits of the largest integer machine
788
   mode that should actually be used.  We allow pairs of registers.  */
789
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
790
 
791
/* The maximum number of bytes that a single instruction can move quickly
792
   between memory and registers or between two memory locations.  */
793
#define MOVE_MAX (TARGET_64BIT ? 16 : 8)
794
#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
795
#define MAX_MOVE_MAX 16
796
 
797
/* Determine whether to use move_by_pieces or block move insn.  */
798
#define MOVE_BY_PIECES_P(SIZE, ALIGN)           \
799
  ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4   \
800
    || (TARGET_64BIT && (SIZE) == 8) )
801
 
802
/* Determine whether to use clear_by_pieces or block clear insn.  */
803
#define CLEAR_BY_PIECES_P(SIZE, ALIGN)          \
804
  ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4   \
805
    || (TARGET_64BIT && (SIZE) == 8) )
806
 
807
/* This macro is used to determine whether store_by_pieces should be
808
   called to "memcpy" storage when the source is a constant string.  */
809
#define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
810
 
811
/* Likewise to decide whether to "memset" storage with byte values
812
   other than zero.  */
813
#define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
814
 
815
/* Don't perform CSE on function addresses.  */
816
#define NO_FUNCTION_CSE
817
 
818
/* This value is used in tree-sra to decide whether it might benefical
819
   to split a struct move into several word-size moves.  For S/390
820
   only small values make sense here since struct moves are relatively
821
   cheap thanks to mvc so the small default value choosen for archs
822
   with memmove patterns should be ok.  But this value is multiplied
823
   in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
824
   here to compensate for that factor since mvc costs exactly the same
825
   on 31 and 64 bit.  */
826
#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
827
 
828
 
829
/* Sections.  */
830
 
831
/* Output before read-only data.  */
832
#define TEXT_SECTION_ASM_OP ".text"
833
 
834
/* Output before writable (initialized) data.  */
835
#define DATA_SECTION_ASM_OP ".data"
836
 
837
/* Output before writable (uninitialized) data.  */
838
#define BSS_SECTION_ASM_OP ".bss"
839
 
840
/* S/390 constant pool breaks the devices in crtstuff.c to control section
841
   in where code resides.  We have to write it as asm code.  */
842
#ifndef __s390x__
843
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
844
    asm (SECTION_OP "\n\
845
        bras\t%r2,1f\n\
846
0:      .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
847
1:      l\t%r3,0(%r2)\n\
848
        bas\t%r14,0(%r3,%r2)\n\
849
        .previous");
850
#endif
851
 
852
 
853
/* Position independent code.  */
854
 
855
extern int flag_pic;
856
 
857
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
858
 
859
#define LEGITIMATE_PIC_OPERAND_P(X)  legitimate_pic_operand_p (X)
860
 
861
 
862
/* Assembler file format.  */
863
 
864
/* Character to start a comment.  */
865
#define ASM_COMMENT_START "#"
866
 
867
/* Declare an uninitialized external linkage data object.  */
868
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
869
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
870
 
871
/* Globalizing directive for a label.  */
872
#define GLOBAL_ASM_OP ".globl "
873
 
874
/* Advance the location counter to a multiple of 2**LOG bytes.  */
875
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
876
  if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
877
 
878
/* Advance the location counter by SIZE bytes.  */
879
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
880
  fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
881
 
882
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h.  */
883
#define LOCAL_LABEL_PREFIX "."
884
 
885
/* How to refer to registers in assembler output.  This sequence is
886
   indexed by compiler's hard-register-number (see above).  */
887
#define REGISTER_NAMES                                                  \
888
{ "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",        \
889
  "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",       \
890
  "%f0",  "%f2",  "%f4",  "%f6",  "%f1",  "%f3",  "%f5",  "%f7",        \
891
  "%f8",  "%f10", "%f12", "%f14", "%f9",  "%f11", "%f13", "%f15",       \
892
  "%ap",  "%cc",  "%fp",  "%rp",  "%a0",  "%a1"                         \
893
}
894
 
895
/* Print operand X (an rtx) in assembler syntax to file FILE.  */
896
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
897
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
898
 
899
/* Output machine-dependent UNSPECs in address constants.  */
900
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)          \
901
do {                                                    \
902
  if (!s390_output_addr_const_extra (FILE, (X)))        \
903
    goto FAIL;                                          \
904
} while (0);
905
 
906
/* Output an element of a case-vector that is absolute.  */
907
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)                            \
908
do {                                                                    \
909
  char buf[32];                                                         \
910
  fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE));                \
911
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));                      \
912
  assemble_name ((FILE), buf);                                          \
913
  fputc ('\n', (FILE));                                                 \
914
} while (0)
915
 
916
/* Output an element of a case-vector that is relative.  */
917
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
918
do {                                                                    \
919
  char buf[32];                                                         \
920
  fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE));                \
921
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));                      \
922
  assemble_name ((FILE), buf);                                          \
923
  fputc ('-', (FILE));                                                  \
924
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL));                        \
925
  assemble_name ((FILE), buf);                                          \
926
  fputc ('\n', (FILE));                                                 \
927
} while (0)
928
 
929
 
930
/* Miscellaneous parameters.  */
931
 
932
/* Specify the machine mode that this machine uses for the index in the
933
   tablejump instruction.  */
934
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
935
 
936
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
937
   is done just by pretending it is already truncated.  */
938
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
939
 
940
/* Specify the machine mode that pointers have.
941
   After generation of rtl, the compiler makes no further distinction
942
   between pointers and any other objects of this machine mode.  */
943
#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
944
 
945
/* This is -1 for "pointer mode" extend.  See ptr_extend in s390.md.  */
946
#define POINTERS_EXTEND_UNSIGNED -1
947
 
948
/* A function address in a call instruction is a byte address (for
949
   indexing purposes) so give the MEM rtx a byte's mode.  */
950
#define FUNCTION_MODE QImode
951
 
952
/* Specify the value which is used when clz operand is zero.  */
953
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
954
 
955
/* Machine-specific symbol_ref flags.  */
956
#define SYMBOL_FLAG_ALIGN1                (SYMBOL_FLAG_MACH_DEP << 0)
957
#define SYMBOL_REF_ALIGN1_P(X)          \
958
  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
959
#define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
960
#define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
961
  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
962
 
963
/* Check whether integer displacement is in range.  */
964
#define DISP_IN_RANGE(d) \
965
  (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
966
                           : ((d) >= 0 && (d) <= 4095))
967
 
968
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.