OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc2/] [gcc/] [config/] [pa/] [pa32-regs.h] - Blame information for rev 437

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2
   2008 Free Software Foundation, Inc.
3
 
4
This file is part of GCC.
5
 
6
GCC is free software; you can redistribute it and/or modify it under
7
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
10
 
11
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12
WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14
for more details.
15
 
16
Under Section 7 of GPL version 3, you are granted additional
17
permissions described in the GCC Runtime Library Exception, version
18
3.1, as published by the Free Software Foundation.
19
 
20
You should have received a copy of the GNU General Public License and
21
a copy of the GCC Runtime Library Exception along with this program;
22
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
<http://www.gnu.org/licenses/>.  */
24
 
25
/* Standard register usage.  */
26
 
27
/* Number of actual hardware registers.
28
   The hardware registers are assigned numbers for the compiler
29
   from 0 to just below FIRST_PSEUDO_REGISTER.
30
   All registers that the compiler knows about must be given numbers,
31
   even those that are not normally considered general registers.
32
 
33
   HP-PA 1.0 has 32 fullword registers and 16 floating point
34
   registers. The floating point registers hold either word or double
35
   word values.
36
 
37
   16 additional registers are reserved.
38
 
39
   HP-PA 1.1 has 32 fullword registers and 32 floating point
40
   registers. However, the floating point registers behave
41
   differently: the left and right halves of registers are addressable
42
   as 32-bit registers. So, we will set things up like the 68k which
43
   has different fp units: define separate register sets for the 1.0
44
   and 1.1 fp units.  */
45
 
46
#define FIRST_PSEUDO_REGISTER 89  /* 32 general regs + 56 fp regs +
47
                                     + 1 shift reg */
48
 
49
/* 1 for registers that have pervasive standard uses
50
   and are not available for the register allocator.
51
 
52
   On the HP-PA, these are:
53
   Reg 0        = 0 (hardware). However, 0 is used for condition code,
54
                  so is not fixed.
55
   Reg 1        = ADDIL target/Temporary (hardware).
56
   Reg 2        = Return Pointer
57
   Reg 3        = Frame Pointer
58
   Reg 4        = Frame Pointer (>8k varying frame with HP compilers only)
59
   Reg 4-18     = Preserved Registers
60
   Reg 19       = Linkage Table Register in HPUX 8.0 shared library scheme.
61
   Reg 20-22    = Temporary Registers
62
   Reg 23-26    = Temporary/Parameter Registers
63
   Reg 27       = Global Data Pointer (hp)
64
   Reg 28       = Temporary/Return Value register
65
   Reg 29       = Temporary/Static Chain/Return Value register #2
66
   Reg 30       = stack pointer
67
   Reg 31       = Temporary/Millicode Return Pointer (hp)
68
 
69
   Freg 0-3     = Status Registers       -- Not known to the compiler.
70
   Freg 4-7     = Arguments/Return Value
71
   Freg 8-11    = Temporary Registers
72
   Freg 12-15   = Preserved Registers
73
 
74
   Freg 16-31   = Reserved
75
 
76
   On the Snake, fp regs are
77
 
78
   Freg 0-3     = Status Registers      -- Not known to the compiler.
79
   Freg 4L-7R   = Arguments/Return Value
80
   Freg 8L-11R  = Temporary Registers
81
   Freg 12L-21R = Preserved Registers
82
   Freg 22L-31R = Temporary Registers
83
 
84
*/
85
 
86
#define FIXED_REGISTERS  \
87
 {0, 0, 0, 0, 0, 0, 0, 0, \
88
  0, 0, 0, 0, 0, 0, 0, 0, \
89
  0, 0, 0, 0, 0, 0, 0, 0, \
90
  0, 0, 0, 1, 0, 0, 1, 0, \
91
  /* fp registers */      \
92
  0, 0, 0, 0, 0, 0, 0, 0, \
93
  0, 0, 0, 0, 0, 0, 0, 0, \
94
  0, 0, 0, 0, 0, 0, 0, 0, \
95
  0, 0, 0, 0, 0, 0, 0, 0, \
96
  0, 0, 0, 0, 0, 0, 0, 0, \
97
  0, 0, 0, 0, 0, 0, 0, 0, \
98
  0, 0, 0, 0, 0, 0, 0, 0, \
99
  0}
100
 
101
/* 1 for registers not available across function calls.
102
   These must include the FIXED_REGISTERS and also any
103
   registers that can be used without being saved.
104
   The latter must include the registers where values are returned
105
   and the register where structure-value addresses are passed.
106
   Aside from that, you can include as many other registers as you like.  */
107
#define CALL_USED_REGISTERS  \
108
 {1, 1, 1, 0, 0, 0, 0, 0, \
109
  0, 0, 0, 0, 0, 0, 0, 0, \
110
  0, 0, 0, 1, 1, 1, 1, 1, \
111
  1, 1, 1, 1, 1, 1, 1, 1, \
112
  /* fp registers */      \
113
  1, 1, 1, 1, 1, 1, 1, 1, \
114
  1, 1, 1, 1, 1, 1, 1, 1, \
115
  0, 0, 0, 0, 0, 0, 0, 0, \
116
  0, 0, 0, 0, 0, 0, 0, 0, \
117
  0, 0, 0, 0, 1, 1, 1, 1, \
118
  1, 1, 1, 1, 1, 1, 1, 1, \
119
  1, 1, 1, 1, 1, 1, 1, 1, \
120
  1}
121
 
122
#define CONDITIONAL_REGISTER_USAGE \
123
{                                               \
124
  int i;                                        \
125
  if (!TARGET_PA_11)                            \
126
    {                                           \
127
      for (i = 56; i < 88; i++)                 \
128
        fixed_regs[i] = call_used_regs[i] = 1;  \
129
      for (i = 33; i < 88; i += 2)              \
130
        fixed_regs[i] = call_used_regs[i] = 1;  \
131
    }                                           \
132
  if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
133
    {                                           \
134
      for (i = 32; i < 88; i++)                 \
135
        fixed_regs[i] = call_used_regs[i] = 1;  \
136
    }                                           \
137
  if (flag_pic)                                 \
138
    fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
139
}
140
 
141
/* Allocate the call used registers first.  This should minimize
142
   the number of registers that need to be saved (as call used
143
   registers will generally not be allocated across a call).
144
 
145
   Experimentation has shown slightly better results by allocating
146
   FP registers first.  We allocate the caller-saved registers more
147
   or less in reverse order to their allocation as arguments.
148
 
149
   FP registers are ordered so that all L registers are selected before
150
   R registers.  This works around a false dependency interlock on the
151
   PA8000 when accessing the high and low parts of an FP register
152
   independently.  */
153
 
154
#define REG_ALLOC_ORDER \
155
 {                                      \
156
  /* caller-saved fp regs.  */          \
157
  68, 70, 72, 74, 76, 78, 80, 82,       \
158
  84, 86, 40, 42, 44, 46, 38, 36,       \
159
  34, 32,                               \
160
  69, 71, 73, 75, 77, 79, 81, 83,       \
161
  85, 87, 41, 43, 45, 47, 39, 37,       \
162
  35, 33,                               \
163
  /* caller-saved general regs.  */     \
164
  28, 19, 20, 21, 22, 31, 27, 29,       \
165
  23, 24, 25, 26,  2,                   \
166
  /* callee-saved fp regs.  */          \
167
  48, 50, 52, 54, 56, 58, 60, 62,       \
168
  64, 66,                               \
169
  49, 51, 53, 55, 57, 59, 61, 63,       \
170
  65, 67,                               \
171
  /* callee-saved general regs.  */     \
172
   3,  4,  5,  6,  7,  8,  9, 10,       \
173
  11, 12, 13, 14, 15, 16, 17, 18,       \
174
  /* special registers.  */             \
175
   1, 30,  0, 88}
176
 
177
 
178
/* Return number of consecutive hard regs needed starting at reg REGNO
179
   to hold something of mode MODE.
180
   This is ordinarily the length in words of a value of mode MODE
181
   but can be less for certain modes in special long registers.
182
 
183
   On the HP-PA, general registers are 32 bits wide.  The floating
184
   point registers are 64 bits wide.  Snake fp regs are treated as
185
   32 bits wide since the left and right parts are independently
186
   accessible.  */
187
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
188
  (FP_REGNO_P (REGNO)                                                   \
189
   ? (!TARGET_PA_11                                                     \
190
      ? COMPLEX_MODE_P (MODE) ? 2 : 1                                   \
191
      : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)                             \
192
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
193
 
194
/* There are no instructions that use DImode in PA 1.0, so we only
195
   allow it in PA 1.1 and later.  */
196
#define VALID_FP_MODE_P(MODE)                                           \
197
  ((MODE) == SFmode || (MODE) == DFmode                                 \
198
   || (MODE) == SCmode || (MODE) == DCmode                              \
199
   || (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
200
 
201
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
202
 
203
   On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
204
   For the 64-bit modes, we choose a set of non-overlapping general registers
205
   that includes the incoming arguments and the return value.  We specify a
206
   set with no overlaps so that we don't have to specify that the destination
207
   register is an early clobber in patterns using this mode.  Except for the
208
   return value, the starting registers are odd.  For 128 and 256 bit modes,
209
   we similarly specify non-overlapping sets of cpu registers.  However,
210
   there aren't any patterns defined for modes larger than 64 bits at the
211
   moment.
212
 
213
   We limit the modes allowed in the floating point registers to the
214
   set of modes used in the machine definition.  In addition, we allow
215
   the complex modes SCmode and DCmode.  The real and imaginary parts
216
   of complex modes are allocated to separate registers.  This might
217
   allow patterns to be defined in the future to operate on these values.
218
 
219
   The PA 2.0 architecture specifies that quad-precision floating-point
220
   values should start on an even floating point register.  Thus, we
221
   choose non-overlapping sets of registers starting on even register
222
   boundaries for large modes.  However, there is currently no support
223
   in the machine definition for modes larger than 64 bits.  TFmode is
224
   supported under HP-UX using libcalls.  Since TFmode values are passed
225
   by reference, they never need to be loaded into the floating-point
226
   registers.  */
227
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
228
  ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode         \
229
   : !TARGET_PA_11 && FP_REGNO_P (REGNO)                                \
230
     ? (VALID_FP_MODE_P (MODE)                                          \
231
        && (GET_MODE_SIZE (MODE) <= 8                                   \
232
            || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)))      \
233
   : FP_REGNO_P (REGNO)                                                 \
234
     ? (VALID_FP_MODE_P (MODE)                                          \
235
        && (GET_MODE_SIZE (MODE) <= 4                                   \
236
            || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0) \
237
            || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)        \
238
            || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0)))      \
239
   : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD                            \
240
      || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD                    \
241
          && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))  \
242
      || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD                    \
243
          && ((REGNO) & 3) == 3 && (REGNO) <= 23)                       \
244
      || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD                    \
245
          && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
246
 
247
/* How to renumber registers for dbx and gdb.
248
 
249
   Registers 0  - 31 remain unchanged.
250
 
251
   Registers 32 - 87 are mapped to 72 - 127
252
 
253
   Register 88 is mapped to 32.  */
254
 
255
#define DBX_REGISTER_NUMBER(REGNO) \
256
  ((REGNO) <= 31 ? (REGNO) :                                            \
257
   ((REGNO) <= 87 ? (REGNO) + 40 : 32))
258
 
259
/* We must not use the DBX register numbers for the DWARF 2 CFA column
260
   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
261
   Instead use the identity mapping.  */
262
#define DWARF_FRAME_REGNUM(REG) REG
263
 
264
/* Define the classes of registers for register constraints in the
265
   machine description.  Also define ranges of constants.
266
 
267
   One of the classes must always be named ALL_REGS and include all hard regs.
268
   If there is more than one class, another class must be named NO_REGS
269
   and contain no registers.
270
 
271
   The name GENERAL_REGS must be the name of a class (or an alias for
272
   another name such as ALL_REGS).  This is the class of registers
273
   that is allowed by "g" or "r" in a register constraint.
274
   Also, registers outside this class are allocated only when
275
   instructions express preferences for them.
276
 
277
   The classes must be numbered in nondecreasing order; that is,
278
   a larger-numbered class must never be contained completely
279
   in a smaller-numbered class.
280
 
281
   For any two classes, it is very desirable that there be another
282
   class that represents their union.  */
283
 
284
  /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
285
     1.1 fp regs, and the high 1.1 fp regs, to which the operands of
286
     fmpyadd and fmpysub are restricted.  */
287
 
288
enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
289
                 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
290
 
291
#define N_REG_CLASSES (int) LIM_REG_CLASSES
292
 
293
/* Give names of register classes as strings for dump file.  */
294
 
295
#define REG_CLASS_NAMES \
296
  {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
297
   "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
298
 
299
/* Define which registers fit in which classes.
300
   This is an initializer for a vector of HARD_REG_SET
301
   of length N_REG_CLASSES. Register 0, the "condition code" register,
302
   is in no class.  */
303
 
304
#define REG_CLASS_CONTENTS      \
305
 {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */                   \
306
  {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */                   \
307
  {0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */              \
308
  {0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */              \
309
  {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */                   \
310
  {0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */        \
311
  {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */                \
312
  {0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */
313
 
314
/* The following macro defines cover classes for Integrated Register
315
   Allocator.  Cover classes is a set of non-intersected register
316
   classes covering all hard registers used for register allocation
317
   purpose.  Any move between two registers of a cover class should be
318
   cheaper than load or store of the registers.  The macro value is
319
   array of register classes with LIM_REG_CLASSES used as the end
320
   marker.  */
321
 
322
#define IRA_COVER_CLASSES                                               \
323
{                                                                       \
324
  GENERAL_REGS, FP_REGS, SHIFT_REGS, LIM_REG_CLASSES                    \
325
}
326
 
327
/* Defines invalid mode changes.  */
328
 
329
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
330
  pa_cannot_change_mode_class (FROM, TO, CLASS)
331
 
332
/* Return the class number of the smallest class containing
333
   reg number REGNO.  This could be a conditional expression
334
   or could index an array.  */
335
 
336
#define REGNO_REG_CLASS(REGNO)                                          \
337
  ((REGNO) == 0 ? NO_REGS                                                \
338
   : (REGNO) == 1 ? R1_REGS                                             \
339
   : (REGNO) < 32 ? GENERAL_REGS                                        \
340
   : (REGNO) < 56 ? FP_REGS                                             \
341
   : (REGNO) < 88 ? FPUPPER_REGS                                        \
342
   : SHIFT_REGS)
343
 
344
/* Return the maximum number of consecutive registers
345
   needed to represent mode MODE in a register of class CLASS.  */
346
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
347
  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS                        \
348
   ? (!TARGET_PA_11                                                     \
349
      ? COMPLEX_MODE_P (MODE) ? 2 : 1                                   \
350
      : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)                             \
351
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
352
 
353
/* 1 if N is a possible register number for function argument passing.  */
354
 
355
#define FUNCTION_ARG_REGNO_P(N) \
356
  (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
357
 
358
/* How to refer to registers in assembler output.
359
   This sequence is indexed by compiler's hard-register-number (see above).  */
360
 
361
#define REGISTER_NAMES \
362
{"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
363
 "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
364
 "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
365
 "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
366
 "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \
367
 "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \
368
 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
369
 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
370
 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
371
 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
372
 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
373
 "SAR"}
374
 
375
#define ADDITIONAL_REGISTER_NAMES \
376
{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},                \
377
 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},              \
378
 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},            \
379
 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},            \
380
 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},            \
381
 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},            \
382
 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},            \
383
 {"%cr11",88}}
384
 
385
#define FP_SAVED_REG_LAST 66
386
#define FP_SAVED_REG_FIRST 48
387
#define FP_REG_STEP 2
388
#define FP_REG_FIRST 32
389
#define FP_REG_LAST 87

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.