OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc2/] [gcc/] [config/] [sparc/] [sparc.h] - Blame information for rev 384

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler, for Sun SPARC.
2
   Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
   Contributed by Michael Tiemann (tiemann@cygnus.com).
6
   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7
   at Cygnus Support.
8
 
9
This file is part of GCC.
10
 
11
GCC is free software; you can redistribute it and/or modify
12
it under the terms of the GNU General Public License as published by
13
the Free Software Foundation; either version 3, or (at your option)
14
any later version.
15
 
16
GCC is distributed in the hope that it will be useful,
17
but WITHOUT ANY WARRANTY; without even the implied warranty of
18
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
GNU General Public License for more details.
20
 
21
You should have received a copy of the GNU General Public License
22
along with GCC; see the file COPYING3.  If not see
23
<http://www.gnu.org/licenses/>.  */
24
 
25
#include "config/vxworks-dummy.h"
26
 
27
/* Note that some other tm.h files include this one and then override
28
   whatever definitions are necessary.  */
29
 
30
/* Define the specific costs for a given cpu */
31
 
32
struct processor_costs {
33
  /* Integer load */
34
  const int int_load;
35
 
36
  /* Integer signed load */
37
  const int int_sload;
38
 
39
  /* Integer zeroed load */
40
  const int int_zload;
41
 
42
  /* Float load */
43
  const int float_load;
44
 
45
  /* fmov, fneg, fabs */
46
  const int float_move;
47
 
48
  /* fadd, fsub */
49
  const int float_plusminus;
50
 
51
  /* fcmp */
52
  const int float_cmp;
53
 
54
  /* fmov, fmovr */
55
  const int float_cmove;
56
 
57
  /* fmul */
58
  const int float_mul;
59
 
60
  /* fdivs */
61
  const int float_div_sf;
62
 
63
  /* fdivd */
64
  const int float_div_df;
65
 
66
  /* fsqrts */
67
  const int float_sqrt_sf;
68
 
69
  /* fsqrtd */
70
  const int float_sqrt_df;
71
 
72
  /* umul/smul */
73
  const int int_mul;
74
 
75
  /* mulX */
76
  const int int_mulX;
77
 
78
  /* integer multiply cost for each bit set past the most
79
     significant 3, so the formula for multiply cost becomes:
80
 
81
        if (rs1 < 0)
82
          highest_bit = highest_clear_bit(rs1);
83
        else
84
          highest_bit = highest_set_bit(rs1);
85
        if (highest_bit < 3)
86
          highest_bit = 3;
87
        cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
88
 
89
     A value of zero indicates that the multiply costs is fixed,
90
     and not variable.  */
91
  const int int_mul_bit_factor;
92
 
93
  /* udiv/sdiv */
94
  const int int_div;
95
 
96
  /* divX */
97
  const int int_divX;
98
 
99
  /* movcc, movr */
100
  const int int_cmove;
101
 
102
  /* penalty for shifts, due to scheduling rules etc. */
103
  const int shift_penalty;
104
};
105
 
106
extern const struct processor_costs *sparc_costs;
107
 
108
/* Target CPU builtins.  FIXME: Defining sparc is for the benefit of
109
   Solaris only; otherwise just define __sparc__.  Sadly the headers
110
   are such a mess there is no Solaris-specific header.  */
111
#define TARGET_CPU_CPP_BUILTINS()               \
112
  do                                            \
113
    {                                           \
114
        builtin_define_std ("sparc");           \
115
        if (TARGET_64BIT)                       \
116
          {                                     \
117
            builtin_assert ("cpu=sparc64");     \
118
            builtin_assert ("machine=sparc64"); \
119
          }                                     \
120
        else                                    \
121
          {                                     \
122
            builtin_assert ("cpu=sparc");       \
123
            builtin_assert ("machine=sparc");   \
124
          }                                     \
125
    }                                           \
126
  while (0)
127
 
128
/* Specify this in a cover file to provide bi-architecture (32/64) support.  */
129
/* #define SPARC_BI_ARCH */
130
 
131
/* Macro used later in this file to determine default architecture.  */
132
#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
133
 
134
/* TARGET_ARCH{32,64} are the main macros to decide which of the two
135
   architectures to compile for.  We allow targets to choose compile time or
136
   runtime selection.  */
137
#ifdef IN_LIBGCC2
138
#if defined(__sparcv9) || defined(__arch64__)
139
#define TARGET_ARCH32 0
140
#else
141
#define TARGET_ARCH32 1
142
#endif /* sparc64 */
143
#else
144
#ifdef SPARC_BI_ARCH
145
#define TARGET_ARCH32 (! TARGET_64BIT)
146
#else
147
#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
148
#endif /* SPARC_BI_ARCH */
149
#endif /* IN_LIBGCC2 */
150
#define TARGET_ARCH64 (! TARGET_ARCH32)
151
 
152
/* Code model selection in 64-bit environment.
153
 
154
   The machine mode used for addresses is 32-bit wide:
155
 
156
   TARGET_CM_32:     32-bit address space.
157
                     It is the code model used when generating 32-bit code.
158
 
159
   The machine mode used for addresses is 64-bit wide:
160
 
161
   TARGET_CM_MEDLOW: 32-bit address space.
162
                     The executable must be in the low 32 bits of memory.
163
                     This avoids generating %uhi and %ulo terms.  Programs
164
                     can be statically or dynamically linked.
165
 
166
   TARGET_CM_MEDMID: 44-bit address space.
167
                     The executable must be in the low 44 bits of memory,
168
                     and the %[hml]44 terms are used.  The text and data
169
                     segments have a maximum size of 2GB (31-bit span).
170
                     The maximum offset from any instruction to the label
171
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
172
 
173
   TARGET_CM_MEDANY: 64-bit address space.
174
                     The text and data segments have a maximum size of 2GB
175
                     (31-bit span) and may be located anywhere in memory.
176
                     The maximum offset from any instruction to the label
177
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
178
 
179
   TARGET_CM_EMBMEDANY: 64-bit address space.
180
                     The text and data segments have a maximum size of 2GB
181
                     (31-bit span) and may be located anywhere in memory.
182
                     The global register %g4 contains the start address of
183
                     the data segment.  Programs are statically linked and
184
                     PIC is not supported.
185
 
186
   Different code models are not supported in 32-bit environment.  */
187
 
188
enum cmodel {
189
  CM_32,
190
  CM_MEDLOW,
191
  CM_MEDMID,
192
  CM_MEDANY,
193
  CM_EMBMEDANY
194
};
195
 
196
/* One of CM_FOO.  */
197
extern enum cmodel sparc_cmodel;
198
 
199
/* V9 code model selection.  */
200
#define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
201
#define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
202
#define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
203
#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
204
 
205
#define SPARC_DEFAULT_CMODEL CM_32
206
 
207
/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
208
   which requires the following macro to be true if enabled.  Prior to V9,
209
   there are no instructions to even talk about memory synchronization.
210
   Note that the UltraSPARC III processors don't implement RMO, unlike the
211
   UltraSPARC II processors.  Niagara and Niagara-2 do not implement RMO
212
   either.
213
 
214
   Default to false; for example, Solaris never enables RMO, only ever uses
215
   total memory ordering (TMO).  */
216
#define SPARC_RELAXED_ORDERING false
217
 
218
/* Do not use the .note.GNU-stack convention by default.  */
219
#define NEED_INDICATE_EXEC_STACK 0
220
 
221
/* This is call-clobbered in the normal ABI, but is reserved in the
222
   home grown (aka upward compatible) embedded ABI.  */
223
#define EMBMEDANY_BASE_REG "%g4"
224
 
225
/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
226
   and specified by the user via --with-cpu=foo.
227
   This specifies the cpu implementation, not the architecture size.  */
228
/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
229
   capable cpu's.  */
230
#define TARGET_CPU_sparc        0
231
#define TARGET_CPU_v7           0        /* alias for previous */
232
#define TARGET_CPU_sparclet     1
233
#define TARGET_CPU_sparclite    2
234
#define TARGET_CPU_v8           3       /* generic v8 implementation */
235
#define TARGET_CPU_supersparc   4
236
#define TARGET_CPU_hypersparc   5
237
#define TARGET_CPU_sparc86x     6
238
#define TARGET_CPU_sparclite86x 6
239
#define TARGET_CPU_v9           7       /* generic v9 implementation */
240
#define TARGET_CPU_sparcv9      7       /* alias */
241
#define TARGET_CPU_sparc64      7       /* alias */
242
#define TARGET_CPU_ultrasparc   8
243
#define TARGET_CPU_ultrasparc3  9
244
#define TARGET_CPU_niagara      10
245
#define TARGET_CPU_niagara2     11
246
 
247
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
248
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
249
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
250
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
251
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
252
 
253
#define CPP_CPU32_DEFAULT_SPEC ""
254
#define ASM_CPU32_DEFAULT_SPEC ""
255
 
256
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
257
/* ??? What does Sun's CC pass?  */
258
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
259
/* ??? It's not clear how other assemblers will handle this, so by default
260
   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
261
   is handled in sol2.h.  */
262
#define ASM_CPU64_DEFAULT_SPEC "-Av9"
263
#endif
264
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
265
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
266
#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
267
#endif
268
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
269
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
270
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
271
#endif
272
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
273
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
274
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
275
#endif
276
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
277
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
278
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
279
#endif
280
 
281
#else
282
 
283
#define CPP_CPU64_DEFAULT_SPEC ""
284
#define ASM_CPU64_DEFAULT_SPEC ""
285
 
286
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
287
 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
288
#define CPP_CPU32_DEFAULT_SPEC ""
289
#define ASM_CPU32_DEFAULT_SPEC ""
290
#endif
291
 
292
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
293
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
294
#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
295
#endif
296
 
297
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
298
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
299
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
300
#endif
301
 
302
#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
303
#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
304
#define ASM_CPU32_DEFAULT_SPEC ""
305
#endif
306
 
307
#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
308
#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
309
#define ASM_CPU32_DEFAULT_SPEC ""
310
#endif
311
 
312
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
313
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
314
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
315
#endif
316
 
317
#endif
318
 
319
#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
320
 #error Unrecognized value in TARGET_CPU_DEFAULT.
321
#endif
322
 
323
#ifdef SPARC_BI_ARCH
324
 
325
#define CPP_CPU_DEFAULT_SPEC \
326
(DEFAULT_ARCH32_P ? "\
327
%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
328
%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
329
" : "\
330
%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
331
%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
332
")
333
#define ASM_CPU_DEFAULT_SPEC \
334
(DEFAULT_ARCH32_P ? "\
335
%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
336
%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
337
" : "\
338
%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
339
%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
340
")
341
 
342
#else /* !SPARC_BI_ARCH */
343
 
344
#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
345
#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
346
 
347
#endif /* !SPARC_BI_ARCH */
348
 
349
/* Define macros to distinguish architectures.  */
350
 
351
/* Common CPP definitions used by CPP_SPEC amongst the various targets
352
   for handling -mcpu=xxx switches.  */
353
#define CPP_CPU_SPEC "\
354
%{msoft-float:-D_SOFT_FLOAT} \
355
%{mcypress:} \
356
%{msparclite:-D__sparclite__} \
357
%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
358
%{mv8:-D__sparc_v8__} \
359
%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
360
%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
361
%{mcpu=sparclite:-D__sparclite__} \
362
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
363
%{mcpu=v8:-D__sparc_v8__} \
364
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
365
%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
366
%{mcpu=sparclite86x:-D__sparclite86x__} \
367
%{mcpu=v9:-D__sparc_v9__} \
368
%{mcpu=ultrasparc:-D__sparc_v9__} \
369
%{mcpu=ultrasparc3:-D__sparc_v9__} \
370
%{mcpu=niagara:-D__sparc_v9__} \
371
%{mcpu=niagara2:-D__sparc_v9__} \
372
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
373
"
374
#define CPP_ARCH32_SPEC ""
375
#define CPP_ARCH64_SPEC "-D__arch64__"
376
 
377
#define CPP_ARCH_DEFAULT_SPEC \
378
(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
379
 
380
#define CPP_ARCH_SPEC "\
381
%{m32:%(cpp_arch32)} \
382
%{m64:%(cpp_arch64)} \
383
%{!m32:%{!m64:%(cpp_arch_default)}} \
384
"
385
 
386
/* Macros to distinguish endianness.  */
387
#define CPP_ENDIAN_SPEC "\
388
%{mlittle-endian:-D__LITTLE_ENDIAN__} \
389
%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
390
 
391
/* Macros to distinguish the particular subtarget.  */
392
#define CPP_SUBTARGET_SPEC ""
393
 
394
#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
395
 
396
/* Prevent error on `-sun4' and `-target sun4' options.  */
397
/* This used to translate -dalign to -malign, but that is no good
398
   because it can't turn off the usual meaning of making debugging dumps.  */
399
/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
400
   ??? Delete support for -m<cpu> for 2.9.  */
401
 
402
#define CC1_SPEC "\
403
%{sun4:} %{target:} \
404
%{mcypress:-mcpu=cypress} \
405
%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
406
%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
407
"
408
 
409
/* Override in target specific files.  */
410
#define ASM_CPU_SPEC "\
411
%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
412
%{msparclite:-Asparclite} \
413
%{mf930:-Asparclite} %{mf934:-Asparclite} \
414
%{mcpu=sparclite:-Asparclite} \
415
%{mcpu=sparclite86x:-Asparclite} \
416
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
417
%{mv8plus:-Av8plus} \
418
%{mcpu=v9:-Av9} \
419
%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
420
%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
421
%{mcpu=niagara:%{!mv8plus:-Av9b}} \
422
%{mcpu=niagara2:%{!mv8plus:-Av9b}} \
423
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
424
"
425
 
426
/* Word size selection, among other things.
427
   This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
428
 
429
#define ASM_ARCH32_SPEC "-32"
430
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
431
#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
432
#else
433
#define ASM_ARCH64_SPEC "-64"
434
#endif
435
#define ASM_ARCH_DEFAULT_SPEC \
436
(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
437
 
438
#define ASM_ARCH_SPEC "\
439
%{m32:%(asm_arch32)} \
440
%{m64:%(asm_arch64)} \
441
%{!m32:%{!m64:%(asm_arch_default)}} \
442
"
443
 
444
#ifdef HAVE_AS_RELAX_OPTION
445
#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
446
#else
447
#define ASM_RELAX_SPEC ""
448
#endif
449
 
450
/* Special flags to the Sun-4 assembler when using pipe for input.  */
451
 
452
#define ASM_SPEC "\
453
%{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
454
%(asm_cpu) %(asm_relax)"
455
 
456
#define AS_NEEDS_DASH_FOR_PIPED_INPUT
457
 
458
/* This macro defines names of additional specifications to put in the specs
459
   that can be used in various specifications like CC1_SPEC.  Its definition
460
   is an initializer with a subgrouping for each command option.
461
 
462
   Each subgrouping contains a string constant, that defines the
463
   specification name, and a string constant that used by the GCC driver
464
   program.
465
 
466
   Do not define this macro if it does not need to do anything.  */
467
 
468
#define EXTRA_SPECS \
469
  { "cpp_cpu",          CPP_CPU_SPEC },         \
470
  { "cpp_cpu_default",  CPP_CPU_DEFAULT_SPEC }, \
471
  { "cpp_arch32",       CPP_ARCH32_SPEC },      \
472
  { "cpp_arch64",       CPP_ARCH64_SPEC },      \
473
  { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
474
  { "cpp_arch",         CPP_ARCH_SPEC },        \
475
  { "cpp_endian",       CPP_ENDIAN_SPEC },      \
476
  { "cpp_subtarget",    CPP_SUBTARGET_SPEC },   \
477
  { "asm_cpu",          ASM_CPU_SPEC },         \
478
  { "asm_cpu_default",  ASM_CPU_DEFAULT_SPEC }, \
479
  { "asm_arch32",       ASM_ARCH32_SPEC },      \
480
  { "asm_arch64",       ASM_ARCH64_SPEC },      \
481
  { "asm_relax",        ASM_RELAX_SPEC },       \
482
  { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
483
  { "asm_arch",         ASM_ARCH_SPEC },        \
484
  SUBTARGET_EXTRA_SPECS
485
 
486
#define SUBTARGET_EXTRA_SPECS
487
 
488
/* Because libgcc can generate references back to libc (via .umul etc.) we have
489
   to list libc again after the second libgcc.  */
490
#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
491
 
492
 
493
#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
494
#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
495
 
496
/* ??? This should be 32 bits for v9 but what can we do?  */
497
#define WCHAR_TYPE "short unsigned int"
498
#define WCHAR_TYPE_SIZE 16
499
 
500
/* Show we can debug even without a frame pointer.  */
501
#define CAN_DEBUG_WITHOUT_FP
502
 
503
/* Option handling.  */
504
 
505
#define OVERRIDE_OPTIONS  sparc_override_options ()
506
 
507
/* Mask of all CPU selection flags.  */
508
#define MASK_ISA \
509
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
510
 
511
/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
512
   TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
513
   to get high 32 bits.  False in V8+ or V9 because multiply stores
514
   a 64-bit result in a register.  */
515
 
516
#define TARGET_HARD_MUL32                               \
517
  ((TARGET_V8 || TARGET_SPARCLITE                       \
518
    || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)   \
519
   && ! TARGET_V8PLUS && TARGET_ARCH32)
520
 
521
#define TARGET_HARD_MUL                                 \
522
  (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET     \
523
   || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
524
 
525
/* MASK_APP_REGS must always be the default because that's what
526
   FIXED_REGISTERS is set to and -ffixed- is processed before
527
   CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
528
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
529
 
530
/* Processor type.
531
   These must match the values for the cpu attribute in sparc.md.  */
532
enum processor_type {
533
  PROCESSOR_V7,
534
  PROCESSOR_CYPRESS,
535
  PROCESSOR_V8,
536
  PROCESSOR_SUPERSPARC,
537
  PROCESSOR_SPARCLITE,
538
  PROCESSOR_F930,
539
  PROCESSOR_F934,
540
  PROCESSOR_HYPERSPARC,
541
  PROCESSOR_SPARCLITE86X,
542
  PROCESSOR_SPARCLET,
543
  PROCESSOR_TSC701,
544
  PROCESSOR_V9,
545
  PROCESSOR_ULTRASPARC,
546
  PROCESSOR_ULTRASPARC3,
547
  PROCESSOR_NIAGARA,
548
  PROCESSOR_NIAGARA2
549
};
550
 
551
/* This is set from -m{cpu,tune}=xxx.  */
552
extern enum processor_type sparc_cpu;
553
 
554
/* Recast the cpu class to be the cpu attribute.
555
   Every file includes us, but not every file includes insn-attr.h.  */
556
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
557
 
558
/* Support for a compile-time default CPU, et cetera.  The rules are:
559
   --with-cpu is ignored if -mcpu is specified.
560
   --with-tune is ignored if -mtune is specified.
561
   --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
562
     are specified.  */
563
#define OPTION_DEFAULT_SPECS \
564
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
565
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
566
  {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
567
 
568
/* sparc_select[0] is reserved for the default cpu.  */
569
struct sparc_cpu_select
570
{
571
  const char *string;
572
  const char *const name;
573
  const int set_tune_p;
574
  const int set_arch_p;
575
};
576
 
577
extern struct sparc_cpu_select sparc_select[];
578
 
579
/* target machine storage layout */
580
 
581
/* Define this if most significant bit is lowest numbered
582
   in instructions that operate on numbered bit-fields.  */
583
#define BITS_BIG_ENDIAN 1
584
 
585
/* Define this if most significant byte of a word is the lowest numbered.  */
586
#define BYTES_BIG_ENDIAN 1
587
 
588
/* Define this if most significant word of a multiword number is the lowest
589
   numbered.  */
590
#define WORDS_BIG_ENDIAN 1
591
 
592
/* Define this to set the endianness to use in libgcc2.c, which can
593
   not depend on target_flags.  */
594
#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
595
#define LIBGCC2_WORDS_BIG_ENDIAN 0
596
#else
597
#define LIBGCC2_WORDS_BIG_ENDIAN 1
598
#endif
599
 
600
#define MAX_BITS_PER_WORD       64
601
 
602
/* Width of a word, in units (bytes).  */
603
#define UNITS_PER_WORD          (TARGET_ARCH64 ? 8 : 4)
604
#ifdef IN_LIBGCC2
605
#define MIN_UNITS_PER_WORD      UNITS_PER_WORD
606
#else
607
#define MIN_UNITS_PER_WORD      4
608
#endif
609
 
610
#define UNITS_PER_SIMD_WORD(MODE) (TARGET_VIS ? 8 : UNITS_PER_WORD)
611
 
612
/* Now define the sizes of the C data types.  */
613
 
614
#define SHORT_TYPE_SIZE         16
615
#define INT_TYPE_SIZE           32
616
#define LONG_TYPE_SIZE          (TARGET_ARCH64 ? 64 : 32)
617
#define LONG_LONG_TYPE_SIZE     64
618
#define FLOAT_TYPE_SIZE         32
619
#define DOUBLE_TYPE_SIZE        64
620
 
621
/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
622
   SPARC ABI says that it is 128-bit wide.  */
623
/* #define LONG_DOUBLE_TYPE_SIZE        128 */
624
 
625
/* The widest floating-point format really supported by the hardware.  */
626
#define WIDEST_HARDWARE_FP_SIZE 64
627
 
628
/* Width in bits of a pointer.  This is the size of ptr_mode.  */
629
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
630
 
631
/* This is the machine mode used for addresses.  */
632
#define Pmode (TARGET_ARCH64 ? DImode : SImode)
633
 
634
/* If we have to extend pointers (only when TARGET_ARCH64 and not
635
   TARGET_PTR64), we want to do it unsigned.   This macro does nothing
636
   if ptr_mode and Pmode are the same.  */
637
#define POINTERS_EXTEND_UNSIGNED 1
638
 
639
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
640
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
641
 
642
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
643
/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
644
   then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
645
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
646
/* Temporary hack until the FIXME above is fixed.  */
647
#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
648
 
649
/* ALIGN FRAMES on double word boundaries */
650
 
651
#define SPARC_STACK_ALIGN(LOC) \
652
  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
653
 
654
/* Allocation boundary (in *bits*) for the code of a function.  */
655
#define FUNCTION_BOUNDARY 32
656
 
657
/* Alignment of field after `int : 0' in a structure.  */
658
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
659
 
660
/* Every structure's size must be a multiple of this.  */
661
#define STRUCTURE_SIZE_BOUNDARY 8
662
 
663
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
664
#define PCC_BITFIELD_TYPE_MATTERS 1
665
 
666
/* No data type wants to be aligned rounder than this.  */
667
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
668
 
669
/* The best alignment to use in cases where we have a choice.  */
670
#define FASTEST_ALIGNMENT 64
671
 
672
/* Define this macro as an expression for the alignment of a structure
673
   (given by STRUCT as a tree node) if the alignment computed in the
674
   usual way is COMPUTED and the alignment explicitly specified was
675
   SPECIFIED.
676
 
677
   The default is to use SPECIFIED if it is larger; otherwise, use
678
   the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
679
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)   \
680
 (TARGET_FASTER_STRUCTS ?                               \
681
  ((TREE_CODE (STRUCT) == RECORD_TYPE                   \
682
    || TREE_CODE (STRUCT) == UNION_TYPE                 \
683
    || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
684
   && TYPE_FIELDS (STRUCT) != 0                         \
685
     ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
686
     : MAX ((COMPUTED), (SPECIFIED)))                   \
687
   :  MAX ((COMPUTED), (SPECIFIED)))
688
 
689
/* Make strings word-aligned so strcpy from constants will be faster.  */
690
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
691
  ((TREE_CODE (EXP) == STRING_CST       \
692
    && (ALIGN) < FASTEST_ALIGNMENT)     \
693
   ? FASTEST_ALIGNMENT : (ALIGN))
694
 
695
/* Make arrays of chars word-aligned for the same reasons.  */
696
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
697
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
698
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
699
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
700
 
701
/* Make local arrays of chars word-aligned for the same reasons.  */
702
#define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
703
 
704
/* Set this nonzero if move instructions will actually fail to work
705
   when given unaligned data.  */
706
#define STRICT_ALIGNMENT 1
707
 
708
/* Things that must be doubleword aligned cannot go in the text section,
709
   because the linker fails to align the text section enough!
710
   Put them in the data section.  This macro is only used in this file.  */
711
#define MAX_TEXT_ALIGN 32
712
 
713
/* Standard register usage.  */
714
 
715
/* Number of actual hardware registers.
716
   The hardware registers are assigned numbers for the compiler
717
   from 0 to just below FIRST_PSEUDO_REGISTER.
718
   All registers that the compiler knows about must be given numbers,
719
   even those that are not normally considered general registers.
720
 
721
   SPARC has 32 integer registers and 32 floating point registers.
722
   64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
723
   accessible.  We still account for them to simplify register computations
724
   (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
725
   32+32+32+4 == 100.
726
   Register 100 is used as the integer condition code register.
727
   Register 101 is used as the soft frame pointer register.  */
728
 
729
#define FIRST_PSEUDO_REGISTER 102
730
 
731
#define SPARC_FIRST_FP_REG     32
732
/* Additional V9 fp regs.  */
733
#define SPARC_FIRST_V9_FP_REG  64
734
#define SPARC_LAST_V9_FP_REG   95
735
/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
736
#define SPARC_FIRST_V9_FCC_REG 96
737
#define SPARC_LAST_V9_FCC_REG  99
738
/* V8 fcc reg.  */
739
#define SPARC_FCC_REG 96
740
/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
741
#define SPARC_ICC_REG 100
742
 
743
/* Nonzero if REGNO is an fp reg.  */
744
#define SPARC_FP_REG_P(REGNO) \
745
((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
746
 
747
/* Argument passing regs.  */
748
#define SPARC_OUTGOING_INT_ARG_FIRST 8
749
#define SPARC_INCOMING_INT_ARG_FIRST 24
750
#define SPARC_FP_ARG_FIRST           32
751
 
752
/* 1 for registers that have pervasive standard uses
753
   and are not available for the register allocator.
754
 
755
   On non-v9 systems:
756
   g1 is free to use as temporary.
757
   g2-g4 are reserved for applications.  Gcc normally uses them as
758
   temporaries, but this can be disabled via the -mno-app-regs option.
759
   g5 through g7 are reserved for the operating system.
760
 
761
   On v9 systems:
762
   g1,g5 are free to use as temporaries, and are free to use between calls
763
   if the call is to an external function via the PLT.
764
   g4 is free to use as a temporary in the non-embedded case.
765
   g4 is reserved in the embedded case.
766
   g2-g3 are reserved for applications.  Gcc normally uses them as
767
   temporaries, but this can be disabled via the -mno-app-regs option.
768
   g6-g7 are reserved for the operating system (or application in
769
   embedded case).
770
   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
771
   currently be a fixed register until this pattern is rewritten.
772
   Register 1 is also used when restoring call-preserved registers in large
773
   stack frames.
774
 
775
   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
776
   CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
777
*/
778
 
779
#define FIXED_REGISTERS  \
780
 {1, 0, 2, 2, 2, 2, 1, 1,       \
781
  0, 0, 0, 0, 0, 0, 1, 0,       \
782
  0, 0, 0, 0, 0, 0, 0, 0,       \
783
  0, 0, 0, 0, 0, 0, 1, 1,       \
784
                                \
785
  0, 0, 0, 0, 0, 0, 0, 0,       \
786
  0, 0, 0, 0, 0, 0, 0, 0,       \
787
  0, 0, 0, 0, 0, 0, 0, 0,       \
788
  0, 0, 0, 0, 0, 0, 0, 0,       \
789
                                \
790
  0, 0, 0, 0, 0, 0, 0, 0,       \
791
  0, 0, 0, 0, 0, 0, 0, 0,       \
792
  0, 0, 0, 0, 0, 0, 0, 0,       \
793
  0, 0, 0, 0, 0, 0, 0, 0,       \
794
                                \
795
  0, 0, 0, 0, 0, 1}
796
 
797
/* 1 for registers not available across function calls.
798
   These must include the FIXED_REGISTERS and also any
799
   registers that can be used without being saved.
800
   The latter must include the registers where values are returned
801
   and the register where structure-value addresses are passed.
802
   Aside from that, you can include as many other registers as you like.  */
803
 
804
#define CALL_USED_REGISTERS  \
805
 {1, 1, 1, 1, 1, 1, 1, 1,       \
806
  1, 1, 1, 1, 1, 1, 1, 1,       \
807
  0, 0, 0, 0, 0, 0, 0, 0,       \
808
  0, 0, 0, 0, 0, 0, 1, 1,       \
809
                                \
810
  1, 1, 1, 1, 1, 1, 1, 1,       \
811
  1, 1, 1, 1, 1, 1, 1, 1,       \
812
  1, 1, 1, 1, 1, 1, 1, 1,       \
813
  1, 1, 1, 1, 1, 1, 1, 1,       \
814
                                \
815
  1, 1, 1, 1, 1, 1, 1, 1,       \
816
  1, 1, 1, 1, 1, 1, 1, 1,       \
817
  1, 1, 1, 1, 1, 1, 1, 1,       \
818
  1, 1, 1, 1, 1, 1, 1, 1,       \
819
                                \
820
  1, 1, 1, 1, 1, 1}
821
 
822
/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
823
   they won't be allocated.  */
824
 
825
#define CONDITIONAL_REGISTER_USAGE                              \
826
do                                                              \
827
  {                                                             \
828
    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)              \
829
      {                                                         \
830
        fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                \
831
        call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;            \
832
      }                                                         \
833
    /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
834
    /* then honor it.  */                                       \
835
    if (TARGET_ARCH32 && fixed_regs[5])                         \
836
      fixed_regs[5] = 1;                                        \
837
    else if (TARGET_ARCH64 && fixed_regs[5] == 2)               \
838
      fixed_regs[5] = 0;                                        \
839
    if (! TARGET_V9)                                            \
840
      {                                                         \
841
        int regno;                                              \
842
        for (regno = SPARC_FIRST_V9_FP_REG;                     \
843
             regno <= SPARC_LAST_V9_FP_REG;                     \
844
             regno++)                                           \
845
          fixed_regs[regno] = 1;                                \
846
        /* %fcc0 is used by v8 and v9.  */                      \
847
        for (regno = SPARC_FIRST_V9_FCC_REG + 1;                \
848
             regno <= SPARC_LAST_V9_FCC_REG;                    \
849
             regno++)                                           \
850
          fixed_regs[regno] = 1;                                \
851
      }                                                         \
852
    if (! TARGET_FPU)                                           \
853
      {                                                         \
854
        int regno;                                              \
855
        for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
856
          fixed_regs[regno] = 1;                                \
857
      }                                                         \
858
    /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
859
    /* then honor it.  Likewise with g3 and g4.  */             \
860
    if (fixed_regs[2] == 2)                                     \
861
      fixed_regs[2] = ! TARGET_APP_REGS;                        \
862
    if (fixed_regs[3] == 2)                                     \
863
      fixed_regs[3] = ! TARGET_APP_REGS;                        \
864
    if (TARGET_ARCH32 && fixed_regs[4] == 2)                    \
865
      fixed_regs[4] = ! TARGET_APP_REGS;                        \
866
    else if (TARGET_CM_EMBMEDANY)                               \
867
      fixed_regs[4] = 1;                                        \
868
    else if (fixed_regs[4] == 2)                                \
869
      fixed_regs[4] = 0;                                        \
870
  }                                                             \
871
while (0)
872
 
873
/* Return number of consecutive hard regs needed starting at reg REGNO
874
   to hold something of mode MODE.
875
   This is ordinarily the length in words of a value of mode MODE
876
   but can be less for certain modes in special long registers.
877
 
878
   On SPARC, ordinary registers hold 32 bits worth;
879
   this means both integer and floating point registers.
880
   On v9, integer regs hold 64 bits worth; floating point regs hold
881
   32 bits worth (this includes the new fp regs as even the odd ones are
882
   included in the hard register count).  */
883
 
884
#define HARD_REGNO_NREGS(REGNO, MODE) \
885
  (TARGET_ARCH64                                                        \
886
   ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM                   \
887
      ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD    \
888
      : (GET_MODE_SIZE (MODE) + 3) / 4)                                 \
889
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
890
 
891
/* Due to the ARCH64 discrepancy above we must override this next
892
   macro too.  */
893
#define REGMODE_NATURAL_SIZE(MODE) \
894
  ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
895
 
896
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
897
   See sparc.c for how we initialize this.  */
898
extern const int *hard_regno_mode_classes;
899
extern int sparc_mode_class[];
900
 
901
/* ??? Because of the funny way we pass parameters we should allow certain
902
   ??? types of float/complex values to be in integer registers during
903
   ??? RTL generation.  This only matters on arch32.  */
904
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
905
  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
906
 
907
/* Value is 1 if it is OK to rename a hard register FROM to another hard
908
   register TO.  We cannot rename %g1 as it may be used before the save
909
   register window instruction in the prologue.  */
910
#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
911
 
912
/* Value is 1 if it is a good idea to tie two pseudo registers
913
   when one has mode MODE1 and one has mode MODE2.
914
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
915
   for any hard reg, then this must be 0 for correct output.
916
 
917
   For V9: SFmode can't be combined with other float modes, because they can't
918
   be allocated to the %d registers.  Also, DFmode won't fit in odd %f
919
   registers, but SFmode will.  */
920
#define MODES_TIEABLE_P(MODE1, MODE2) \
921
  ((MODE1) == (MODE2)                                           \
922
   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)         \
923
       && (! TARGET_V9                                          \
924
           || (GET_MODE_CLASS (MODE1) != MODE_FLOAT             \
925
               || (MODE1 != SFmode && MODE2 != SFmode)))))
926
 
927
/* Specify the registers used for certain standard purposes.
928
   The values of these macros are register numbers.  */
929
 
930
/* Register to use for pushing function arguments.  */
931
#define STACK_POINTER_REGNUM 14
932
 
933
/* The stack bias (amount by which the hardware register is offset by).  */
934
#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
935
 
936
/* Actual top-of-stack address is 92/176 greater than the contents of the
937
   stack pointer register for !v9/v9.  That is:
938
   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
939
     address, and 6*4 bytes for the 6 register parameters.
940
   - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
941
     parameter regs.  */
942
#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
943
 
944
/* Base register for access to local variables of the function.  */
945
#define HARD_FRAME_POINTER_REGNUM 30
946
 
947
/* The soft frame pointer does not have the stack bias applied.  */
948
#define FRAME_POINTER_REGNUM 101
949
 
950
/* Given the stack bias, the stack pointer isn't actually aligned.  */
951
#define INIT_EXPANDERS                                                   \
952
  do {                                                                   \
953
    if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)      \
954
      {                                                                  \
955
        REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;      \
956
        REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
957
      }                                                                  \
958
  } while (0)
959
 
960
/* Base register for access to arguments of the function.  */
961
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
962
 
963
/* Register in which static-chain is passed to a function.  This must
964
   not be a register used by the prologue.  */
965
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
966
 
967
/* Register which holds offset table for position-independent
968
   data references.  */
969
 
970
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
971
 
972
/* Pick a default value we can notice from override_options:
973
   !v9: Default is on.
974
   v9: Default is off.
975
   Originally it was -1, but later on the container of options changed to
976
   unsigned byte, so we decided to pick 127 as default value, which does
977
   reflect an undefined default value in case of 0/1.  */
978
 
979
#define DEFAULT_PCC_STRUCT_RETURN 127
980
 
981
/* Functions which return large structures get the address
982
   to place the wanted value at offset 64 from the frame.
983
   Must reserve 64 bytes for the in and local registers.
984
   v9: Functions which return large structures get the address to place the
985
   wanted value from an invisible first argument.  */
986
#define STRUCT_VALUE_OFFSET 64
987
 
988
/* Define the classes of registers for register constraints in the
989
   machine description.  Also define ranges of constants.
990
 
991
   One of the classes must always be named ALL_REGS and include all hard regs.
992
   If there is more than one class, another class must be named NO_REGS
993
   and contain no registers.
994
 
995
   The name GENERAL_REGS must be the name of a class (or an alias for
996
   another name such as ALL_REGS).  This is the class of registers
997
   that is allowed by "g" or "r" in a register constraint.
998
   Also, registers outside this class are allocated only when
999
   instructions express preferences for them.
1000
 
1001
   The classes must be numbered in nondecreasing order; that is,
1002
   a larger-numbered class must never be contained completely
1003
   in a smaller-numbered class.
1004
 
1005
   For any two classes, it is very desirable that there be another
1006
   class that represents their union.  */
1007
 
1008
/* The SPARC has various kinds of registers: general, floating point,
1009
   and condition codes [well, it has others as well, but none that we
1010
   care directly about].
1011
 
1012
   For v9 we must distinguish between the upper and lower floating point
1013
   registers because the upper ones can't hold SFmode values.
1014
   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1015
   satisfying a group need for a class will also satisfy a single need for
1016
   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1017
   regs.
1018
 
1019
   It is important that one class contains all the general and all the standard
1020
   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
1021
   because reg_class_record() will bias the selection in favor of fp regs,
1022
   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1023
   because FP_REGS > GENERAL_REGS.
1024
 
1025
   It is also important that one class contain all the general and all
1026
   the fp regs.  Otherwise when spilling a DFmode reg, it may be from
1027
   EXTRA_FP_REGS but find_reloads() may use class
1028
   GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1029
   because the compiler thinks it doesn't have a spill reg when in
1030
   fact it does.
1031
 
1032
   v9 also has 4 floating point condition code registers.  Since we don't
1033
   have a class that is the union of FPCC_REGS with either of the others,
1034
   it is important that it appear first.  Otherwise the compiler will die
1035
   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1036
   constraints.
1037
 
1038
   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
1039
   may try to use it to hold an SImode value.  See register_operand.
1040
   ??? Should %fcc[0123] be handled similarly?
1041
*/
1042
 
1043
enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1044
                 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1045
                 ALL_REGS, LIM_REG_CLASSES };
1046
 
1047
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1048
 
1049
/* Give names of register classes as strings for dump file.  */
1050
 
1051
#define REG_CLASS_NAMES \
1052
  { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",      \
1053
     "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1054
     "ALL_REGS" }
1055
 
1056
/* Define which registers fit in which classes.
1057
   This is an initializer for a vector of HARD_REG_SET
1058
   of length N_REG_CLASSES.  */
1059
 
1060
#define REG_CLASS_CONTENTS                              \
1061
  {{0, 0, 0, 0},        /* NO_REGS */                   \
1062
   {0, 0, 0, 0xf},      /* FPCC_REGS */                 \
1063
   {0xffff, 0, 0, 0},   /* I64_REGS */                  \
1064
   {-1, 0, 0, 0x20},    /* GENERAL_REGS */              \
1065
   {0, -1, 0, 0},       /* FP_REGS */                   \
1066
   {0, -1, -1, 0},      /* EXTRA_FP_REGS */             \
1067
   {-1, -1, 0, 0x20},   /* GENERAL_OR_FP_REGS */        \
1068
   {-1, -1, -1, 0x20},  /* GENERAL_OR_EXTRA_FP_REGS */  \
1069
   {-1, -1, -1, 0x3f}}  /* ALL_REGS */
1070
 
1071
/* The same information, inverted:
1072
   Return the class number of the smallest class containing
1073
   reg number REGNO.  This could be a conditional expression
1074
   or could index an array.  */
1075
 
1076
extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1077
 
1078
#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1079
 
1080
/* The following macro defines cover classes for Integrated Register
1081
   Allocator.  Cover classes is a set of non-intersected register
1082
   classes covering all hard registers used for register allocation
1083
   purpose.  Any move between two registers of a cover class should be
1084
   cheaper than load or store of the registers.  The macro value is
1085
   array of register classes with LIM_REG_CLASSES used as the end
1086
   marker.  */
1087
 
1088
#define IRA_COVER_CLASSES                                                    \
1089
{                                                                            \
1090
  GENERAL_REGS, EXTRA_FP_REGS, FPCC_REGS, LIM_REG_CLASSES                    \
1091
}
1092
 
1093
/* Defines invalid mode changes.  Borrowed from pa64-regs.h.
1094
 
1095
   SImode loads to floating-point registers are not zero-extended.
1096
   The definition for LOAD_EXTEND_OP specifies that integer loads
1097
   narrower than BITS_PER_WORD will be zero-extended.  As a result,
1098
   we inhibit changes from SImode unless they are to a mode that is
1099
   identical in size.  */
1100
 
1101
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
1102
  (TARGET_ARCH64                                                \
1103
   && (FROM) == SImode                                          \
1104
   && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                \
1105
   ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1106
 
1107
/* This is the order in which to allocate registers normally.
1108
 
1109
   We put %f0-%f7 last among the float registers, so as to make it more
1110
   likely that a pseudo-register which dies in the float return register
1111
   area will get allocated to the float return register, thus saving a move
1112
   instruction at the end of the function.
1113
 
1114
   Similarly for integer return value registers.
1115
 
1116
   We know in this case that we will not end up with a leaf function.
1117
 
1118
   The register allocator is given the global and out registers first
1119
   because these registers are call clobbered and thus less useful to
1120
   global register allocation.
1121
 
1122
   Next we list the local and in registers.  They are not call clobbered
1123
   and thus very useful for global register allocation.  We list the input
1124
   registers before the locals so that it is more likely the incoming
1125
   arguments received in those registers can just stay there and not be
1126
   reloaded.  */
1127
 
1128
#define REG_ALLOC_ORDER \
1129
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1130
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1131
  15,                                   /* %o7 */       \
1132
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1133
  29, 28, 27, 26, 25, 24, 31,           /* %i5-%i0,%i7 */\
1134
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1135
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1136
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1137
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1138
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1139
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1140
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1141
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1142
  96, 97, 98, 99,                       /* %fcc0-3 */   \
1143
  100, 0, 14, 30, 101}                  /* %icc, %g0, %o6, %i6, %sfp */
1144
 
1145
/* This is the order in which to allocate registers for
1146
   leaf functions.  If all registers can fit in the global and
1147
   output registers, then we have the possibility of having a leaf
1148
   function.
1149
 
1150
   The macro actually mentioned the input registers first,
1151
   because they get renumbered into the output registers once
1152
   we know really do have a leaf function.
1153
 
1154
   To be more precise, this register allocation order is used
1155
   when %o7 is found to not be clobbered right before register
1156
   allocation.  Normally, the reason %o7 would be clobbered is
1157
   due to a call which could not be transformed into a sibling
1158
   call.
1159
 
1160
   As a consequence, it is possible to use the leaf register
1161
   allocation order and not end up with a leaf function.  We will
1162
   not get suboptimal register allocation in that case because by
1163
   definition of being potentially leaf, there were no function
1164
   calls.  Therefore, allocation order within the local register
1165
   window is not critical like it is when we do have function calls.  */
1166
 
1167
#define REG_LEAF_ALLOC_ORDER \
1168
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1169
  29, 28, 27, 26, 25, 24,               /* %i5-%i0 */   \
1170
  15,                                   /* %o7 */       \
1171
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1172
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1173
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1174
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1175
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1176
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1177
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1178
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1179
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1180
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1181
  96, 97, 98, 99,                       /* %fcc0-3 */   \
1182
  100, 0, 14, 30, 31, 101}              /* %icc, %g0, %o6, %i6, %i7, %sfp */
1183
 
1184
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1185
 
1186
extern char sparc_leaf_regs[];
1187
#define LEAF_REGISTERS sparc_leaf_regs
1188
 
1189
extern char leaf_reg_remap[];
1190
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1191
 
1192
/* The class value for index registers, and the one for base regs.  */
1193
#define INDEX_REG_CLASS GENERAL_REGS
1194
#define BASE_REG_CLASS GENERAL_REGS
1195
 
1196
/* Local macro to handle the two v9 classes of FP regs.  */
1197
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1198
 
1199
/* Predicates for 10-bit, 11-bit and 13-bit signed constants.  */
1200
#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1201
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1202
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1203
 
1204
/* 10- and 11-bit immediates are only used for a few specific insns.
1205
   SMALL_INT is used throughout the port so we continue to use it.  */
1206
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1207
 
1208
/* Predicate for constants that can be loaded with a sethi instruction.
1209
   This is the general, 64-bit aware, bitwise version that ensures that
1210
   only constants whose representation fits in the mask
1211
 
1212
     0x00000000fffffc00
1213
 
1214
   are accepted.  It will reject, for example, negative SImode constants
1215
   on 64-bit hosts, so correct handling is to mask the value beforehand
1216
   according to the mode of the instruction.  */
1217
#define SPARC_SETHI_P(X) \
1218
  (((unsigned HOST_WIDE_INT) (X) \
1219
    & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1220
 
1221
/* Version of the above predicate for SImode constants and below.  */
1222
#define SPARC_SETHI32_P(X) \
1223
  (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1224
 
1225
/* Given an rtx X being reloaded into a reg required to be
1226
   in class CLASS, return the class of reg to actually use.
1227
   In general this is just CLASS; but on some machines
1228
   in some cases it is preferable to use a more restrictive class.  */
1229
/* - We can't load constants into FP registers.
1230
   - We can't load FP constants into integer registers when soft-float,
1231
     because there is no soft-float pattern with a r/F constraint.
1232
   - We can't load FP constants into integer registers for TFmode unless
1233
     it is 0.0L, because there is no movtf pattern with a r/F constraint.
1234
   - Try and reload integer constants (symbolic or otherwise) back into
1235
     registers directly, rather than having them dumped to memory.  */
1236
 
1237
#define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
1238
  (CONSTANT_P (X)                                       \
1239
   ? ((FP_REG_CLASS_P (CLASS)                           \
1240
       || (CLASS) == GENERAL_OR_FP_REGS                 \
1241
       || (CLASS) == GENERAL_OR_EXTRA_FP_REGS           \
1242
       || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT  \
1243
           && ! TARGET_FPU)                             \
1244
       || (GET_MODE (X) == TFmode                       \
1245
           && ! const_zero_operand (X, TFmode)))        \
1246
      ? NO_REGS                                         \
1247
      : (!FP_REG_CLASS_P (CLASS)                        \
1248
         && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)  \
1249
      ? GENERAL_REGS                                    \
1250
      : (CLASS))                                        \
1251
   : (CLASS))
1252
 
1253
/* Return the register class of a scratch register needed to load IN into
1254
   a register of class CLASS in MODE.
1255
 
1256
   We need a temporary when loading/storing a HImode/QImode value
1257
   between memory and the FPU registers.  This can happen when combine puts
1258
   a paradoxical subreg in a float/fix conversion insn.
1259
 
1260
   We need a temporary when loading/storing a DFmode value between
1261
   unaligned memory and the upper FPU registers.  */
1262
 
1263
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)           \
1264
  ((FP_REG_CLASS_P (CLASS)                                      \
1265
    && ((MODE) == HImode || (MODE) == QImode)                   \
1266
    && (GET_CODE (IN) == MEM                                    \
1267
        || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)   \
1268
            && true_regnum (IN) == -1)))                        \
1269
   ? GENERAL_REGS                                               \
1270
   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode              \
1271
      && GET_CODE (IN) == MEM && TARGET_ARCH32                  \
1272
      && ! mem_min_alignment ((IN), 8))                         \
1273
     ? FP_REGS                                                  \
1274
     : (((TARGET_CM_MEDANY                                      \
1275
          && symbolic_operand ((IN), (MODE)))                   \
1276
         || (TARGET_CM_EMBMEDANY                                \
1277
             && text_segment_operand ((IN), (MODE))))           \
1278
        && !flag_pic)                                           \
1279
       ? GENERAL_REGS                                           \
1280
       : NO_REGS)
1281
 
1282
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)          \
1283
  ((FP_REG_CLASS_P (CLASS)                                      \
1284
     && ((MODE) == HImode || (MODE) == QImode)                  \
1285
     && (GET_CODE (IN) == MEM                                   \
1286
         || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)  \
1287
             && true_regnum (IN) == -1)))                       \
1288
   ? GENERAL_REGS                                               \
1289
   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode              \
1290
      && GET_CODE (IN) == MEM && TARGET_ARCH32                  \
1291
      && ! mem_min_alignment ((IN), 8))                         \
1292
     ? FP_REGS                                                  \
1293
     : (((TARGET_CM_MEDANY                                      \
1294
          && symbolic_operand ((IN), (MODE)))                   \
1295
         || (TARGET_CM_EMBMEDANY                                \
1296
             && text_segment_operand ((IN), (MODE))))           \
1297
        && !flag_pic)                                           \
1298
       ? GENERAL_REGS                                           \
1299
       : NO_REGS)
1300
 
1301
/* On SPARC it is not possible to directly move data between
1302
   GENERAL_REGS and FP_REGS.  */
1303
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1304
  (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1305
 
1306
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1307
   because the movsi and movsf patterns don't handle r/f moves.
1308
   For v8 we copy the default definition.  */
1309
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1310
  (TARGET_ARCH64                                                \
1311
   ? (GET_MODE_BITSIZE (MODE) < 32                              \
1312
      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)            \
1313
      : MODE)                                                   \
1314
   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD                   \
1315
      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1316
      : MODE))
1317
 
1318
/* Return the maximum number of consecutive registers
1319
   needed to represent mode MODE in a register of class CLASS.  */
1320
/* On SPARC, this is the size of MODE in words.  */
1321
#define CLASS_MAX_NREGS(CLASS, MODE)    \
1322
  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1323
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1324
 
1325
/* Stack layout; function entry, exit and calling.  */
1326
 
1327
/* Define this if pushing a word on the stack
1328
   makes the stack pointer a smaller address.  */
1329
#define STACK_GROWS_DOWNWARD
1330
 
1331
/* Define this to nonzero if the nominal address of the stack frame
1332
   is at the high-address end of the local variables;
1333
   that is, each additional local variable allocated
1334
   goes at a more negative offset in the frame.  */
1335
#define FRAME_GROWS_DOWNWARD 1
1336
 
1337
/* Offset within stack frame to start allocating local variables at.
1338
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1339
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1340
   of the first local allocated.  */
1341
#define STARTING_FRAME_OFFSET 0
1342
 
1343
/* Offset of first parameter from the argument pointer register value.
1344
   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1345
   even if this function isn't going to use it.
1346
   v9: This is 128 for the ins and locals.  */
1347
#define FIRST_PARM_OFFSET(FNDECL) \
1348
  (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1349
 
1350
/* Offset from the argument pointer register value to the CFA.
1351
   This is different from FIRST_PARM_OFFSET because the register window
1352
   comes between the CFA and the arguments.  */
1353
#define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1354
 
1355
/* When a parameter is passed in a register, stack space is still
1356
   allocated for it.
1357
   !v9: All 6 possible integer registers have backing store allocated.
1358
   v9: Only space for the arguments passed is allocated.  */
1359
/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1360
   meaning to the backend.  Further, we need to be able to detect if a
1361
   varargs/unprototyped function is called, as they may want to spill more
1362
   registers than we've provided space.  Ugly, ugly.  So for now we retain
1363
   all 6 slots even for v9.  */
1364
#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1365
 
1366
/* Definitions for register elimination.  */
1367
 
1368
#define ELIMINABLE_REGS \
1369
  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1370
   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1371
 
1372
/* We always pretend that this is a leaf function because if it's not,
1373
   there's no point in trying to eliminate the frame pointer.  If it
1374
   is a leaf function, we guessed right!  */
1375
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
1376
  do {                                                                  \
1377
    if ((TO) == STACK_POINTER_REGNUM)                                   \
1378
      (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1);       \
1379
    else                                                                \
1380
      (OFFSET) = 0;                                                     \
1381
    (OFFSET) += SPARC_STACK_BIAS;                                       \
1382
  } while (0)
1383
 
1384
/* Keep the stack pointer constant throughout the function.
1385
   This is both an optimization and a necessity: longjmp
1386
   doesn't behave itself when the stack pointer moves within
1387
   the function!  */
1388
#define ACCUMULATE_OUTGOING_ARGS 1
1389
 
1390
/* Value is the number of bytes of arguments automatically
1391
   popped when returning from a subroutine call.
1392
   FUNDECL is the declaration node of the function (as a tree),
1393
   FUNTYPE is the data type of the function (as a tree),
1394
   or for a library call it is an identifier node for the subroutine name.
1395
   SIZE is the number of bytes of arguments passed on the stack.  */
1396
 
1397
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1398
 
1399
/* Define this macro if the target machine has "register windows".  This
1400
   C expression returns the register number as seen by the called function
1401
   corresponding to register number OUT as seen by the calling function.
1402
   Return OUT if register number OUT is not an outbound register.  */
1403
 
1404
#define INCOMING_REGNO(OUT) \
1405
 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1406
 
1407
/* Define this macro if the target machine has "register windows".  This
1408
   C expression returns the register number as seen by the calling function
1409
   corresponding to register number IN as seen by the called function.
1410
   Return IN if register number IN is not an inbound register.  */
1411
 
1412
#define OUTGOING_REGNO(IN) \
1413
 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1414
 
1415
/* Define this macro if the target machine has register windows.  This
1416
   C expression returns true if the register is call-saved but is in the
1417
   register window.  */
1418
 
1419
#define LOCAL_REGNO(REGNO) \
1420
  ((REGNO) >= 16 && (REGNO) <= 31)
1421
 
1422
/* Define how to find the value returned by a function.
1423
   VALTYPE is the data type of the value (as a tree).
1424
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1425
   otherwise, FUNC is 0.  */
1426
 
1427
/* On SPARC the value is found in the first "output" register.  */
1428
 
1429
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1430
  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1431
 
1432
/* But the called function leaves it in the first "input" register.  */
1433
 
1434
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1435
  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1436
 
1437
/* Define how to find the value returned by a library function
1438
   assuming the value has mode MODE.  */
1439
 
1440
#define LIBCALL_VALUE(MODE) \
1441
  function_value (NULL_TREE, (MODE), 1)
1442
 
1443
/* 1 if N is a possible register number for a function value
1444
   as seen by the caller.
1445
   On SPARC, the first "output" reg is used for integer values,
1446
   and the first floating point register is used for floating point values.  */
1447
 
1448
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1449
 
1450
/* Define the size of space to allocate for the return value of an
1451
   untyped_call.  */
1452
 
1453
#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1454
 
1455
/* 1 if N is a possible register number for function argument passing.
1456
   On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1457
 
1458
#define FUNCTION_ARG_REGNO_P(N) \
1459
(TARGET_ARCH64 \
1460
 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1461
 : ((N) >= 8 && (N) <= 13))
1462
 
1463
/* Define a data type for recording info about an argument list
1464
   during the scan of that argument list.  This data type should
1465
   hold all necessary information about the function itself
1466
   and about the args processed so far, enough to enable macros
1467
   such as FUNCTION_ARG to determine where the next arg should go.
1468
 
1469
   On SPARC (!v9), this is a single integer, which is a number of words
1470
   of arguments scanned so far (including the invisible argument,
1471
   if any, which holds the structure-value-address).
1472
   Thus 7 or more means all following args should go on the stack.
1473
 
1474
   For v9, we also need to know whether a prototype is present.  */
1475
 
1476
struct sparc_args {
1477
  int words;       /* number of words passed so far */
1478
  int prototype_p; /* nonzero if a prototype is present */
1479
  int libcall_p;   /* nonzero if a library call */
1480
};
1481
#define CUMULATIVE_ARGS struct sparc_args
1482
 
1483
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1484
   for a call to a function whose data type is FNTYPE.
1485
   For a library call, FNTYPE is 0.  */
1486
 
1487
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1488
init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1489
 
1490
/* Update the data in CUM to advance over an argument
1491
   of mode MODE and data type TYPE.
1492
   TYPE is null for libcalls where that information may not be available.  */
1493
 
1494
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1495
function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1496
 
1497
/* Determine where to put an argument to a function.
1498
   Value is zero to push the argument on the stack,
1499
   or a hard register in which to store the argument.
1500
 
1501
   MODE is the argument's machine mode.
1502
   TYPE is the data type of the argument (as a tree).
1503
    This is null for libcalls where that information may
1504
    not be available.
1505
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1506
    the preceding args and about the function being called.
1507
   NAMED is nonzero if this argument is a named parameter
1508
    (otherwise it is an extra parameter matching an ellipsis).  */
1509
 
1510
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1511
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1512
 
1513
/* Define where a function finds its arguments.
1514
   This is different from FUNCTION_ARG because of register windows.  */
1515
 
1516
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1517
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1518
 
1519
/* If defined, a C expression which determines whether, and in which direction,
1520
   to pad out an argument with extra space.  The value should be of type
1521
   `enum direction': either `upward' to pad above the argument,
1522
   `downward' to pad below, or `none' to inhibit padding.  */
1523
 
1524
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1525
function_arg_padding ((MODE), (TYPE))
1526
 
1527
/* If defined, a C expression that gives the alignment boundary, in bits,
1528
   of an argument with the specified mode and type.  If it is not defined,
1529
   PARM_BOUNDARY is used for all arguments.
1530
   For sparc64, objects requiring 16 byte alignment are passed that way.  */
1531
 
1532
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1533
((TARGET_ARCH64                                 \
1534
  && (GET_MODE_ALIGNMENT (MODE) == 128          \
1535
      || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1536
 ? 128 : PARM_BOUNDARY)
1537
 
1538
 
1539
/* Generate the special assembly code needed to tell the assembler whatever
1540
   it might need to know about the return value of a function.
1541
 
1542
   For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1543
   information to the assembler relating to peephole optimization (done in
1544
   the assembler).  */
1545
 
1546
#define ASM_DECLARE_RESULT(FILE, RESULT) \
1547
  fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1548
 
1549
/* Output the special assembly code needed to tell the assembler some
1550
   register is used as global register variable.
1551
 
1552
   SPARC 64bit psABI declares registers %g2 and %g3 as application
1553
   registers and %g6 and %g7 as OS registers.  Any object using them
1554
   should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1555
   and how they are used (scratch or some global variable).
1556
   Linker will then refuse to link together objects which use those
1557
   registers incompatibly.
1558
 
1559
   Unless the registers are used for scratch, two different global
1560
   registers cannot be declared to the same name, so in the unlikely
1561
   case of a global register variable occupying more than one register
1562
   we prefix the second and following registers with .gnu.part1. etc.  */
1563
 
1564
extern GTY(()) char sparc_hard_reg_printed[8];
1565
 
1566
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1567
#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)            \
1568
do {                                                                    \
1569
  if (TARGET_ARCH64)                                                    \
1570
    {                                                                   \
1571
      int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1572
      int reg;                                                          \
1573
      for (reg = (REGNO); reg < 8 && reg < end; reg++)                  \
1574
        if ((reg & ~1) == 2 || (reg & ~1) == 6)                         \
1575
          {                                                             \
1576
            if (reg == (REGNO))                                         \
1577
              fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1578
            else                                                        \
1579
              fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",  \
1580
                       reg, reg - (REGNO), (NAME));                     \
1581
            sparc_hard_reg_printed[reg] = 1;                            \
1582
          }                                                             \
1583
    }                                                                   \
1584
} while (0)
1585
#endif
1586
 
1587
 
1588
/* Emit rtl for profiling.  */
1589
#define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1590
 
1591
/* All the work done in PROFILE_HOOK, but still required.  */
1592
#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1593
 
1594
/* Set the name of the mcount function for the system.  */
1595
#define MCOUNT_FUNCTION "*mcount"
1596
 
1597
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1598
   the stack pointer does not matter.  The value is tested only in
1599
   functions that have frame pointers.
1600
   No definition is equivalent to always zero.  */
1601
 
1602
#define EXIT_IGNORE_STACK       \
1603
 (get_frame_size () != 0        \
1604
  || cfun->calls_alloca || crtl->outgoing_args_size)
1605
 
1606
/* Define registers used by the epilogue and return instruction.  */
1607
#define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1608
  || (crtl->calls_eh_return && (REGNO) == 1))
1609
 
1610
/* Length in units of the trampoline for entering a nested function.  */
1611
 
1612
#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1613
 
1614
#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1615
 
1616
/* Generate RTL to flush the register windows so as to make arbitrary frames
1617
   available.  */
1618
#define SETUP_FRAME_ADDRESSES()         \
1619
  emit_insn (gen_flush_register_windows ())
1620
 
1621
/* Given an rtx for the address of a frame,
1622
   return an rtx for the address of the word in the frame
1623
   that holds the dynamic chain--the previous frame's address.  */
1624
#define DYNAMIC_CHAIN_ADDRESS(frame)    \
1625
  plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1626
 
1627
/* Given an rtx for the frame pointer,
1628
   return an rtx for the address of the frame.  */
1629
#define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1630
 
1631
/* The return address isn't on the stack, it is in a register, so we can't
1632
   access it from the current frame pointer.  We can access it from the
1633
   previous frame pointer though by reading a value from the register window
1634
   save area.  */
1635
#define RETURN_ADDR_IN_PREVIOUS_FRAME
1636
 
1637
/* This is the offset of the return address to the true next instruction to be
1638
   executed for the current function.  */
1639
#define RETURN_ADDR_OFFSET \
1640
  (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1641
 
1642
/* The current return address is in %i7.  The return address of anything
1643
   farther back is in the register window save area at [%fp+60].  */
1644
/* ??? This ignores the fact that the actual return address is +8 for normal
1645
   returns, and +12 for structure returns.  */
1646
#define RETURN_ADDR_RTX(count, frame)           \
1647
  ((count == -1)                                \
1648
   ? gen_rtx_REG (Pmode, 31)                    \
1649
   : gen_rtx_MEM (Pmode,                        \
1650
                  memory_address (Pmode, plus_constant (frame, \
1651
                                                        15 * UNITS_PER_WORD \
1652
                                                        + SPARC_STACK_BIAS))))
1653
 
1654
/* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1655
   +12, but always using +8 is close enough for frame unwind purposes.
1656
   Actually, just using %o7 is close enough for unwinding, but %o7+8
1657
   is something you can return to.  */
1658
#define INCOMING_RETURN_ADDR_RTX \
1659
  plus_constant (gen_rtx_REG (word_mode, 15), 8)
1660
#define DWARF_FRAME_RETURN_COLUMN       DWARF_FRAME_REGNUM (15)
1661
 
1662
/* The offset from the incoming value of %sp to the top of the stack frame
1663
   for the current function.  On sparc64, we have to account for the stack
1664
   bias if present.  */
1665
#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1666
 
1667
/* Describe how we implement __builtin_eh_return.  */
1668
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1669
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 1)  /* %g1 */
1670
#define EH_RETURN_HANDLER_RTX   gen_rtx_REG (Pmode, 31) /* %i7 */
1671
 
1672
/* Select a format to encode pointers in exception handling data.  CODE
1673
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1674
   true if the symbol may be affected by dynamic relocations.
1675
 
1676
   If assembler and linker properly support .uaword %r_disp32(foo),
1677
   then use PC relative 32-bit relocations instead of absolute relocs
1678
   for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1679
   for binaries, to save memory.
1680
 
1681
   binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1682
   symbol %r_disp32() is against was not local, but .hidden.  In that
1683
   case, we have to use DW_EH_PE_absptr for pic personality.  */
1684
#ifdef HAVE_AS_SPARC_UA_PCREL
1685
#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1686
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1687
  (flag_pic                                                             \
1688
   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1689
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1690
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1691
      : DW_EH_PE_absptr))
1692
#else
1693
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1694
  (flag_pic                                                             \
1695
   ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))    \
1696
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1697
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1698
      : DW_EH_PE_absptr))
1699
#endif
1700
 
1701
/* Emit a PC-relative relocation.  */
1702
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1703
  do {                                                  \
1704
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1705
    fprintf (FILE, "%%r_disp%d(", SIZE * 8);            \
1706
    assemble_name (FILE, LABEL);                        \
1707
    fputc (')', FILE);                                  \
1708
  } while (0)
1709
#endif
1710
 
1711
/* Addressing modes, and classification of registers for them.  */
1712
 
1713
/* Macros to check register numbers against specific register classes.  */
1714
 
1715
/* These assume that REGNO is a hard or pseudo reg number.
1716
   They give nonzero only if REGNO is a hard reg of the suitable class
1717
   or a pseudo reg currently allocated to a suitable hard reg.
1718
   Since they use reg_renumber, they are safe only once reg_renumber
1719
   has been allocated, which happens in local-alloc.c.  */
1720
 
1721
#define REGNO_OK_FOR_INDEX_P(REGNO) \
1722
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32  \
1723
 || (REGNO) == FRAME_POINTER_REGNUM                             \
1724
 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1725
 
1726
#define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1727
 
1728
#define REGNO_OK_FOR_FP_P(REGNO) \
1729
  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1730
   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1731
#define REGNO_OK_FOR_CCFP_P(REGNO) \
1732
 (TARGET_V9 \
1733
  && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1734
      || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1735
 
1736
/* Now macros that check whether X is a register and also,
1737
   strictly, whether it is in a specified class.
1738
 
1739
   These macros are specific to the SPARC, and may be used only
1740
   in code for printing assembler insns and in conditions for
1741
   define_optimization.  */
1742
 
1743
/* 1 if X is an fp register.  */
1744
 
1745
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1746
 
1747
/* Is X, a REG, an in or global register?  i.e. is regno 0..7 or 24..31 */
1748
#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1749
 
1750
/* Maximum number of registers that can appear in a valid memory address.  */
1751
 
1752
#define MAX_REGS_PER_ADDRESS 2
1753
 
1754
/* Recognize any constant value that is a valid address.
1755
   When PIC, we do not accept an address that would require a scratch reg
1756
   to load into a register.  */
1757
 
1758
#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1759
 
1760
/* Define this, so that when PIC, reload won't try to reload invalid
1761
   addresses which require two reload registers.  */
1762
 
1763
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1764
 
1765
/* Nonzero if the constant value X is a legitimate general operand.
1766
   Anything can be made to work except floating point constants.
1767
   If TARGET_VIS, 0.0 can be made to work as well.  */
1768
 
1769
#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1770
 
1771
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1772
   and check its validity for a certain class.
1773
   We have two alternate definitions for each of them.
1774
   The usual definition accepts all pseudo regs; the other rejects
1775
   them unless they have been allocated suitable hard regs.
1776
   The symbol REG_OK_STRICT causes the latter definition to be used.
1777
 
1778
   Most source files want to accept pseudo regs in the hope that
1779
   they will get allocated to the class that the insn wants them to be in.
1780
   Source files for reload pass need to be strict.
1781
   After reload, it makes no difference, since pseudo regs have
1782
   been eliminated by then.  */
1783
 
1784
#ifndef REG_OK_STRICT
1785
 
1786
/* Nonzero if X is a hard reg that can be used as an index
1787
   or if it is a pseudo reg.  */
1788
#define REG_OK_FOR_INDEX_P(X) \
1789
  (REGNO (X) < 32                               \
1790
   || REGNO (X) == FRAME_POINTER_REGNUM         \
1791
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1792
 
1793
/* Nonzero if X is a hard reg that can be used as a base reg
1794
   or if it is a pseudo reg.  */
1795
#define REG_OK_FOR_BASE_P(X)  REG_OK_FOR_INDEX_P (X)
1796
 
1797
#else
1798
 
1799
/* Nonzero if X is a hard reg that can be used as an index.  */
1800
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1801
/* Nonzero if X is a hard reg that can be used as a base reg.  */
1802
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1803
 
1804
#endif
1805
 
1806
/* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1807
 
1808
#ifdef HAVE_AS_OFFSETABLE_LO10
1809
#define USE_AS_OFFSETABLE_LO10 1
1810
#else
1811
#define USE_AS_OFFSETABLE_LO10 0
1812
#endif
1813
 
1814
/* On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1815
   ordinarily.  This changes a bit when generating PIC.  The details are
1816
   in sparc.c's implementation of TARGET_LEGITIMATE_ADDRESS_P.  */
1817
 
1818
#define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1819
 
1820
#define RTX_OK_FOR_BASE_P(X)                                            \
1821
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))                       \
1822
  || (GET_CODE (X) == SUBREG                                            \
1823
      && GET_CODE (SUBREG_REG (X)) == REG                               \
1824
      && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1825
 
1826
#define RTX_OK_FOR_INDEX_P(X)                                           \
1827
  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))                      \
1828
  || (GET_CODE (X) == SUBREG                                            \
1829
      && GET_CODE (SUBREG_REG (X)) == REG                               \
1830
      && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1831
 
1832
#define RTX_OK_FOR_OFFSET_P(X)                                          \
1833
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1834
 
1835
#define RTX_OK_FOR_OLO10_P(X)                                           \
1836
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1837
 
1838
/* Go to LABEL if ADDR (a legitimate address expression)
1839
   has an effect that depends on the machine mode it is used for.
1840
 
1841
   In PIC mode,
1842
 
1843
      (mem:HI [%l7+a])
1844
 
1845
   is not equivalent to
1846
 
1847
      (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1848
 
1849
   because [%l7+a+1] is interpreted as the address of (a+1).  */
1850
 
1851
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)       \
1852
{                                                       \
1853
  if (flag_pic == 1)                                    \
1854
    {                                                   \
1855
      if (GET_CODE (ADDR) == PLUS)                      \
1856
        {                                               \
1857
          rtx op0 = XEXP (ADDR, 0);                     \
1858
          rtx op1 = XEXP (ADDR, 1);                     \
1859
          if (op0 == pic_offset_table_rtx               \
1860
              && SYMBOLIC_CONST (op1))                  \
1861
            goto LABEL;                                 \
1862
        }                                               \
1863
    }                                                   \
1864
}
1865
 
1866
/* Try a machine-dependent way of reloading an illegitimate address
1867
   operand.  If we find one, push the reload and jump to WIN.  This
1868
   macro is used in only one place: `find_reloads_address' in reload.c.
1869
 
1870
   For SPARC 32, we wish to handle addresses by splitting them into
1871
   HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
1872
   This cuts the number of extra insns by one.
1873
 
1874
   Do nothing when generating PIC code and the address is a
1875
   symbolic operand or requires a scratch register.  */
1876
 
1877
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
1878
do {                                                                    \
1879
  /* Decompose SImode constants into hi+lo_sum.  We do have to          \
1880
     rerecognize what we produce, so be careful.  */                    \
1881
  if (CONSTANT_P (X)                                                    \
1882
      && (MODE != TFmode || TARGET_ARCH64)                              \
1883
      && GET_MODE (X) == SImode                                         \
1884
      && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH                 \
1885
      && ! (flag_pic                                                    \
1886
            && (symbolic_operand (X, Pmode)                             \
1887
                || pic_address_needs_scratch (X)))                      \
1888
      && sparc_cmodel <= CM_MEDLOW)                                     \
1889
    {                                                                   \
1890
      X = gen_rtx_LO_SUM (GET_MODE (X),                                 \
1891
                          gen_rtx_HIGH (GET_MODE (X), X), X);           \
1892
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
1893
                   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
1894
                   OPNUM, TYPE);                                        \
1895
      goto WIN;                                                         \
1896
    }                                                                   \
1897
  /* ??? 64-bit reloads.  */                                            \
1898
} while (0)
1899
 
1900
/* Specify the machine mode that this machine uses
1901
   for the index in the tablejump instruction.  */
1902
/* If we ever implement any of the full models (such as CM_FULLANY),
1903
   this has to be DImode in that case */
1904
#ifdef HAVE_GAS_SUBSECTION_ORDERING
1905
#define CASE_VECTOR_MODE \
1906
(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1907
#else
1908
/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1909
   we have to sign extend which slows things down.  */
1910
#define CASE_VECTOR_MODE \
1911
(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1912
#endif
1913
 
1914
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1915
#define DEFAULT_SIGNED_CHAR 1
1916
 
1917
/* Max number of bytes we can move from memory to memory
1918
   in one reasonably fast instruction.  */
1919
#define MOVE_MAX 8
1920
 
1921
/* If a memory-to-memory move would take MOVE_RATIO or more simple
1922
   move-instruction pairs, we will do a movmem or libcall instead.  */
1923
 
1924
#define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1925
 
1926
/* Define if operations between registers always perform the operation
1927
   on the full register even if a narrower mode is specified.  */
1928
#define WORD_REGISTER_OPERATIONS
1929
 
1930
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1931
   will either zero-extend or sign-extend.  The value of this macro should
1932
   be the code that says which one of the two operations is implicitly
1933
   done, UNKNOWN if none.  */
1934
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1935
 
1936
/* Nonzero if access to memory by bytes is slow and undesirable.
1937
   For RISC chips, it means that access to memory by bytes is no
1938
   better than access by words when possible, so grab a whole word
1939
   and maybe make use of that.  */
1940
#define SLOW_BYTE_ACCESS 1
1941
 
1942
/* Define this to be nonzero if shift instructions ignore all but the low-order
1943
   few bits.  */
1944
#define SHIFT_COUNT_TRUNCATED 1
1945
 
1946
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1947
   is done just by pretending it is already truncated.  */
1948
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1949
 
1950
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1951
   return the mode to be used for the comparison.  For floating-point,
1952
   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1953
   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1954
   processing is needed.  */
1955
#define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1956
 
1957
/* Return nonzero if MODE implies a floating point inequality can be
1958
   reversed.  For SPARC this is always true because we have a full
1959
   compliment of ordered and unordered comparisons, but until generic
1960
   code knows how to reverse it correctly we keep the old definition.  */
1961
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1962
 
1963
/* A function address in a call instruction for indexing purposes.  */
1964
#define FUNCTION_MODE Pmode
1965
 
1966
/* Define this if addresses of constant functions
1967
   shouldn't be put through pseudo regs where they can be cse'd.
1968
   Desirable on machines where ordinary constants are expensive
1969
   but a CALL with constant address is cheap.  */
1970
#define NO_FUNCTION_CSE
1971
 
1972
/* alloca should avoid clobbering the old register save area.  */
1973
#define SETJMP_VIA_SAVE_AREA
1974
 
1975
/* The _Q_* comparison libcalls return booleans.  */
1976
#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1977
 
1978
/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1979
   that the inputs are fully consumed before the output memory is clobbered.  */
1980
 
1981
#define TARGET_BUGGY_QP_LIB     0
1982
 
1983
/* Assume by default that we do not have the Solaris-specific conversion
1984
   routines nor 64-bit integer multiply and divide routines.  */
1985
 
1986
#define SUN_CONVERSION_LIBFUNCS         0
1987
#define DITF_CONVERSION_LIBFUNCS        0
1988
#define SUN_INTEGER_MULTIPLY_64         0
1989
 
1990
/* Compute extra cost of moving data between one register class
1991
   and another.  */
1992
#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
1993
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
1994
  (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
1995
    || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
1996
    || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS)          \
1997
   ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
1998
       || sparc_cpu == PROCESSOR_ULTRASPARC3 \
1999
       || sparc_cpu == PROCESSOR_NIAGARA \
2000
       || sparc_cpu == PROCESSOR_NIAGARA2) ? 12 : 6) : 2)
2001
 
2002
/* Provide the cost of a branch.  For pre-v9 processors we use
2003
   a value of 3 to take into account the potential annulling of
2004
   the delay slot (which ends up being a bubble in the pipeline slot)
2005
   plus a cycle to take into consideration the instruction cache
2006
   effects.
2007
 
2008
   On v9 and later, which have branch prediction facilities, we set
2009
   it to the depth of the pipeline as that is the cost of a
2010
   mispredicted branch.
2011
 
2012
   On Niagara, normal branches insert 3 bubbles into the pipe
2013
   and annulled branches insert 4 bubbles.
2014
 
2015
   On Niagara-2, a not-taken branch costs 1 cycle whereas a taken
2016
   branch costs 6 cycles.  */
2017
 
2018
#define BRANCH_COST(speed_p, predictable_p) \
2019
        ((sparc_cpu == PROCESSOR_V9 \
2020
          || sparc_cpu == PROCESSOR_ULTRASPARC) \
2021
         ? 7 \
2022
         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2023
            ? 9 \
2024
         : (sparc_cpu == PROCESSOR_NIAGARA \
2025
            ? 4 \
2026
         : (sparc_cpu == PROCESSOR_NIAGARA2 \
2027
            ? 5 \
2028
         : 3))))
2029
 
2030
/* Control the assembler format that we output.  */
2031
 
2032
/* A C string constant describing how to begin a comment in the target
2033
   assembler language.  The compiler assumes that the comment will end at
2034
   the end of the line.  */
2035
 
2036
#define ASM_COMMENT_START "!"
2037
 
2038
/* Output to assembler file text saying following lines
2039
   may contain character constants, extra white space, comments, etc.  */
2040
 
2041
#define ASM_APP_ON ""
2042
 
2043
/* Output to assembler file text saying following lines
2044
   no longer contain unusual constructs.  */
2045
 
2046
#define ASM_APP_OFF ""
2047
 
2048
/* How to refer to registers in assembler output.
2049
   This sequence is indexed by compiler's hard-register-number (see above).  */
2050
 
2051
#define REGISTER_NAMES \
2052
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",                \
2053
 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",                \
2054
 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",                \
2055
 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",                \
2056
 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",                \
2057
 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",          \
2058
 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",        \
2059
 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",        \
2060
 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",        \
2061
 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",        \
2062
 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",        \
2063
 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",        \
2064
 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2065
 
2066
/* Define additional names for use in asm clobbers and asm declarations.  */
2067
 
2068
#define ADDITIONAL_REGISTER_NAMES \
2069
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2070
 
2071
/* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
2072
   can run past this up to a continuation point.  Once we used 1500, but
2073
   a single entry in C++ can run more than 500 bytes, due to the length of
2074
   mangled symbol names.  dbxout.c should really be fixed to do
2075
   continuations when they are actually needed instead of trying to
2076
   guess...  */
2077
#define DBX_CONTIN_LENGTH 1000
2078
 
2079
/* This is how to output a command to make the user-level label named NAME
2080
   defined for reference from other files.  */
2081
 
2082
/* Globalizing directive for a label.  */
2083
#define GLOBAL_ASM_OP "\t.global "
2084
 
2085
/* The prefix to add to user-visible assembler symbols.  */
2086
 
2087
#define USER_LABEL_PREFIX "_"
2088
 
2089
/* This is how to store into the string LABEL
2090
   the symbol_ref name of an internal numbered label where
2091
   PREFIX is the class of label and NUM is the number within the class.
2092
   This is suitable for output with `assemble_name'.  */
2093
 
2094
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
2095
  sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2096
 
2097
/* This is how we hook in and defer the case-vector until the end of
2098
   the function.  */
2099
#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2100
  sparc_defer_case_vector ((LAB),(VEC), 0)
2101
 
2102
#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2103
  sparc_defer_case_vector ((LAB),(VEC), 1)
2104
 
2105
/* This is how to output an element of a case-vector that is absolute.  */
2106
 
2107
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2108
do {                                                                    \
2109
  char label[30];                                                       \
2110
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);                      \
2111
  if (CASE_VECTOR_MODE == SImode)                                       \
2112
    fprintf (FILE, "\t.word\t");                                        \
2113
  else                                                                  \
2114
    fprintf (FILE, "\t.xword\t");                                       \
2115
  assemble_name (FILE, label);                                          \
2116
  fputc ('\n', FILE);                                                   \
2117
} while (0)
2118
 
2119
/* This is how to output an element of a case-vector that is relative.
2120
   (SPARC uses such vectors only when generating PIC.)  */
2121
 
2122
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
2123
do {                                                                    \
2124
  char label[30];                                                       \
2125
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));                    \
2126
  if (CASE_VECTOR_MODE == SImode)                                       \
2127
    fprintf (FILE, "\t.word\t");                                        \
2128
  else                                                                  \
2129
    fprintf (FILE, "\t.xword\t");                                       \
2130
  assemble_name (FILE, label);                                          \
2131
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));                      \
2132
  fputc ('-', FILE);                                                    \
2133
  assemble_name (FILE, label);                                          \
2134
  fputc ('\n', FILE);                                                   \
2135
} while (0)
2136
 
2137
/* This is what to output before and after case-vector (both
2138
   relative and absolute).  If .subsection -1 works, we put case-vectors
2139
   at the beginning of the current section.  */
2140
 
2141
#ifdef HAVE_GAS_SUBSECTION_ORDERING
2142
 
2143
#define ASM_OUTPUT_ADDR_VEC_START(FILE)                                 \
2144
  fprintf(FILE, "\t.subsection\t-1\n")
2145
 
2146
#define ASM_OUTPUT_ADDR_VEC_END(FILE)                                   \
2147
  fprintf(FILE, "\t.previous\n")
2148
 
2149
#endif
2150
 
2151
/* This is how to output an assembler line
2152
   that says to advance the location counter
2153
   to a multiple of 2**LOG bytes.  */
2154
 
2155
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2156
  if ((LOG) != 0)                       \
2157
    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2158
 
2159
/* This is how to output an assembler line that says to advance
2160
   the location counter to a multiple of 2**LOG bytes using the
2161
   "nop" instruction as padding.  */
2162
#define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG)   \
2163
  if ((LOG) != 0)                             \
2164
    fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2165
 
2166
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2167
  fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2168
 
2169
/* This says how to output an assembler line
2170
   to define a global common symbol.  */
2171
 
2172
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
2173
( fputs ("\t.common ", (FILE)),         \
2174
  assemble_name ((FILE), (NAME)),               \
2175
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2176
 
2177
/* This says how to output an assembler line to define a local common
2178
   symbol.  */
2179
 
2180
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)             \
2181
( fputs ("\t.reserve ", (FILE)),                                        \
2182
  assemble_name ((FILE), (NAME)),                                       \
2183
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",      \
2184
           (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2185
 
2186
/* A C statement (sans semicolon) to output to the stdio stream
2187
   FILE the assembler definition of uninitialized global DECL named
2188
   NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2189
   Try to use asm_output_aligned_bss to implement this macro.  */
2190
 
2191
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
2192
  do {                                                          \
2193
    ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);         \
2194
  } while (0)
2195
 
2196
#define IDENT_ASM_OP "\t.ident\t"
2197
 
2198
/* Output #ident as a .ident.  */
2199
 
2200
#define ASM_OUTPUT_IDENT(FILE, NAME) \
2201
  fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2202
 
2203
/* Prettify the assembly.  */
2204
 
2205
extern int sparc_indent_opcode;
2206
 
2207
#define ASM_OUTPUT_OPCODE(FILE, PTR)    \
2208
  do {                                  \
2209
    if (sparc_indent_opcode)            \
2210
      {                                 \
2211
        putc (' ', FILE);               \
2212
        sparc_indent_opcode = 0; \
2213
      }                                 \
2214
  } while (0)
2215
 
2216
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2217
  ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '('              \
2218
   || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2219
 
2220
/* Print operand X (an rtx) in assembler syntax to file FILE.
2221
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2222
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2223
 
2224
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2225
 
2226
/* Print a memory address as an operand to reference that memory location.  */
2227
 
2228
#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2229
{ register rtx base, index = 0;                                  \
2230
  int offset = 0;                                                \
2231
  register rtx addr = ADDR;                                     \
2232
  if (GET_CODE (addr) == REG)                                   \
2233
    fputs (reg_names[REGNO (addr)], FILE);                      \
2234
  else if (GET_CODE (addr) == PLUS)                             \
2235
    {                                                           \
2236
      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)                \
2237
        offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2238
      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)          \
2239
        offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2240
      else                                                      \
2241
        base = XEXP (addr, 0), index = XEXP (addr, 1);           \
2242
      if (GET_CODE (base) == LO_SUM)                            \
2243
        {                                                       \
2244
          gcc_assert (USE_AS_OFFSETABLE_LO10                    \
2245
                      && TARGET_ARCH64                          \
2246
                      && ! TARGET_CM_MEDMID);                   \
2247
          output_operand (XEXP (base, 0), 0);                     \
2248
          fputs ("+%lo(", FILE);                                \
2249
          output_address (XEXP (base, 1));                      \
2250
          fprintf (FILE, ")+%d", offset);                       \
2251
        }                                                       \
2252
      else                                                      \
2253
        {                                                       \
2254
          fputs (reg_names[REGNO (base)], FILE);                \
2255
          if (index == 0)                                        \
2256
            fprintf (FILE, "%+d", offset);                      \
2257
          else if (GET_CODE (index) == REG)                     \
2258
            fprintf (FILE, "+%s", reg_names[REGNO (index)]);    \
2259
          else if (GET_CODE (index) == SYMBOL_REF               \
2260
                   || GET_CODE (index) == LABEL_REF             \
2261
                   || GET_CODE (index) == CONST)                \
2262
            fputc ('+', FILE), output_addr_const (FILE, index); \
2263
          else gcc_unreachable ();                              \
2264
        }                                                       \
2265
    }                                                           \
2266
  else if (GET_CODE (addr) == MINUS                             \
2267
           && GET_CODE (XEXP (addr, 1)) == LABEL_REF)           \
2268
    {                                                           \
2269
      output_addr_const (FILE, XEXP (addr, 0));                  \
2270
      fputs ("-(", FILE);                                       \
2271
      output_addr_const (FILE, XEXP (addr, 1));                 \
2272
      fputs ("-.)", FILE);                                      \
2273
    }                                                           \
2274
  else if (GET_CODE (addr) == LO_SUM)                           \
2275
    {                                                           \
2276
      output_operand (XEXP (addr, 0), 0);                 \
2277
      if (TARGET_CM_MEDMID)                                     \
2278
        fputs ("+%l44(", FILE);                                 \
2279
      else                                                      \
2280
        fputs ("+%lo(", FILE);                                  \
2281
      output_address (XEXP (addr, 1));                          \
2282
      fputc (')', FILE);                                        \
2283
    }                                                           \
2284
  else if (flag_pic && GET_CODE (addr) == CONST                 \
2285
           && GET_CODE (XEXP (addr, 0)) == MINUS         \
2286
           && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST       \
2287
           && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS      \
2288
           && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)     \
2289
    {                                                           \
2290
      addr = XEXP (addr, 0);                                     \
2291
      output_addr_const (FILE, XEXP (addr, 0));                  \
2292
      /* Group the args of the second CONST in parenthesis.  */ \
2293
      fputs ("-(", FILE);                                       \
2294
      /* Skip past the second CONST--it does nothing for us.  */\
2295
      output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));        \
2296
      /* Close the parenthesis.  */                             \
2297
      fputc (')', FILE);                                        \
2298
    }                                                           \
2299
  else                                                          \
2300
    {                                                           \
2301
      output_addr_const (FILE, addr);                           \
2302
    }                                                           \
2303
}
2304
 
2305
/* TLS support defaulting to original Sun flavor.  GNU extensions
2306
   must be activated in separate configuration files.  */
2307
#ifdef HAVE_AS_TLS
2308
#define TARGET_TLS 1
2309
#else
2310
#define TARGET_TLS 0
2311
#endif
2312
 
2313
#define TARGET_SUN_TLS TARGET_TLS
2314
#define TARGET_GNU_TLS 0
2315
 
2316
/* The number of Pmode words for the setjmp buffer.  */
2317
#define JMP_BUF_SIZE 12
2318
 
2319
/* We use gcc _mcount for profiling.  */
2320
#define NO_PROFILE_COUNTERS 0

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.