OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc2/] [gcc/] [config/] [xtensa/] [xtensa.h] - Blame information for rev 384

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3
   Free Software Foundation, Inc.
4
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
/* Get Xtensa configuration settings */
23
#include "xtensa-config.h"
24
 
25
/* Standard GCC variables that we reference.  */
26
extern int optimize;
27
 
28
/* External variables defined in xtensa.c.  */
29
 
30
extern unsigned xtensa_current_frame_size;
31
 
32
/* Macros used in the machine description to select various Xtensa
33
   configuration options.  */
34
#ifndef XCHAL_HAVE_MUL32_HIGH
35
#define XCHAL_HAVE_MUL32_HIGH 0
36
#endif
37
#ifndef XCHAL_HAVE_RELEASE_SYNC
38
#define XCHAL_HAVE_RELEASE_SYNC 0
39
#endif
40
#ifndef XCHAL_HAVE_S32C1I
41
#define XCHAL_HAVE_S32C1I 0
42
#endif
43
#ifndef XCHAL_HAVE_THREADPTR
44
#define XCHAL_HAVE_THREADPTR 0
45
#endif
46
#define TARGET_BIG_ENDIAN       XCHAL_HAVE_BE
47
#define TARGET_DENSITY          XCHAL_HAVE_DENSITY
48
#define TARGET_MAC16            XCHAL_HAVE_MAC16
49
#define TARGET_MUL16            XCHAL_HAVE_MUL16
50
#define TARGET_MUL32            XCHAL_HAVE_MUL32
51
#define TARGET_MUL32_HIGH       XCHAL_HAVE_MUL32_HIGH
52
#define TARGET_DIV32            XCHAL_HAVE_DIV32
53
#define TARGET_NSA              XCHAL_HAVE_NSA
54
#define TARGET_MINMAX           XCHAL_HAVE_MINMAX
55
#define TARGET_SEXT             XCHAL_HAVE_SEXT
56
#define TARGET_BOOLEANS         XCHAL_HAVE_BOOLEANS
57
#define TARGET_HARD_FLOAT       XCHAL_HAVE_FP
58
#define TARGET_HARD_FLOAT_DIV   XCHAL_HAVE_FP_DIV
59
#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
60
#define TARGET_HARD_FLOAT_SQRT  XCHAL_HAVE_FP_SQRT
61
#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
62
#define TARGET_ABS              XCHAL_HAVE_ABS
63
#define TARGET_ADDX             XCHAL_HAVE_ADDX
64
#define TARGET_RELEASE_SYNC     XCHAL_HAVE_RELEASE_SYNC
65
#define TARGET_S32C1I           XCHAL_HAVE_S32C1I
66
#define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
67
#define TARGET_THREADPTR        XCHAL_HAVE_THREADPTR
68
 
69
#define TARGET_DEFAULT \
70
  ((XCHAL_HAVE_L32R     ? 0 : MASK_CONST16) |                            \
71
   MASK_SERIALIZE_VOLATILE)
72
 
73
#ifndef HAVE_AS_TLS
74
#define HAVE_AS_TLS 0
75
#endif
76
 
77
#define OVERRIDE_OPTIONS override_options ()
78
 
79
/* Reordering blocks for Xtensa is not a good idea unless the compiler
80
   understands the range of conditional branches.  Currently all branch
81
   relaxation for Xtensa is handled in the assembler, so GCC cannot do a
82
   good job of reordering blocks.  Do not enable reordering unless it is
83
   explicitly requested.  */
84
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE)                               \
85
  do                                                                    \
86
    {                                                                   \
87
      flag_reorder_blocks = 0;                                           \
88
    }                                                                   \
89
  while (0)
90
 
91
 
92
/* Target CPU builtins.  */
93
#define TARGET_CPU_CPP_BUILTINS()                                       \
94
  do {                                                                  \
95
    builtin_assert ("cpu=xtensa");                                      \
96
    builtin_assert ("machine=xtensa");                                  \
97
    builtin_define ("__xtensa__");                                      \
98
    builtin_define ("__XTENSA__");                                      \
99
    builtin_define ("__XTENSA_WINDOWED_ABI__");                         \
100
    builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
101
    if (!TARGET_HARD_FLOAT)                                             \
102
      builtin_define ("__XTENSA_SOFT_FLOAT__");                         \
103
  } while (0)
104
 
105
#define CPP_SPEC " %(subtarget_cpp_spec) "
106
 
107
#ifndef SUBTARGET_CPP_SPEC
108
#define SUBTARGET_CPP_SPEC ""
109
#endif
110
 
111
#define EXTRA_SPECS                                                     \
112
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
113
 
114
#ifdef __XTENSA_EB__
115
#define LIBGCC2_WORDS_BIG_ENDIAN 1
116
#else
117
#define LIBGCC2_WORDS_BIG_ENDIAN 0
118
#endif
119
 
120
/* Show we can debug even without a frame pointer.  */
121
#define CAN_DEBUG_WITHOUT_FP
122
 
123
 
124
/* Target machine storage layout */
125
 
126
/* Define this if most significant bit is lowest numbered
127
   in instructions that operate on numbered bit-fields.  */
128
#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
129
 
130
/* Define this if most significant byte of a word is the lowest numbered.  */
131
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
132
 
133
/* Define this if most significant word of a multiword number is the lowest.  */
134
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
135
 
136
#define MAX_BITS_PER_WORD 32
137
 
138
/* Width of a word, in units (bytes).  */
139
#define UNITS_PER_WORD 4
140
#define MIN_UNITS_PER_WORD 4
141
 
142
/* Width of a floating point register.  */
143
#define UNITS_PER_FPREG 4
144
 
145
/* Size in bits of various types on the target machine.  */
146
#define INT_TYPE_SIZE 32
147
#define SHORT_TYPE_SIZE 16
148
#define LONG_TYPE_SIZE 32
149
#define LONG_LONG_TYPE_SIZE 64
150
#define FLOAT_TYPE_SIZE 32
151
#define DOUBLE_TYPE_SIZE 64
152
#define LONG_DOUBLE_TYPE_SIZE 64
153
 
154
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
155
#define POINTER_BOUNDARY 32
156
 
157
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
158
#define PARM_BOUNDARY 32
159
 
160
/* Allocation boundary (in *bits*) for the code of a function.  */
161
#define FUNCTION_BOUNDARY 32
162
 
163
/* Alignment of field after 'int : 0' in a structure.  */
164
#define EMPTY_FIELD_BOUNDARY 32
165
 
166
/* Every structure's size must be a multiple of this.  */
167
#define STRUCTURE_SIZE_BOUNDARY 8
168
 
169
/* There is no point aligning anything to a rounder boundary than this.  */
170
#define BIGGEST_ALIGNMENT 128
171
 
172
/* Set this nonzero if move instructions will actually fail to work
173
   when given unaligned data.  */
174
#define STRICT_ALIGNMENT 1
175
 
176
/* Promote integer modes smaller than a word to SImode.  Set UNSIGNEDP
177
   for QImode, because there is no 8-bit load from memory with sign
178
   extension.  Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
179
   loads both with and without sign extension.  */
180
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)                             \
181
  do {                                                                  \
182
    if (GET_MODE_CLASS (MODE) == MODE_INT                               \
183
        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                       \
184
      {                                                                 \
185
        if ((MODE) == QImode)                                           \
186
          (UNSIGNEDP) = 1;                                              \
187
        (MODE) = SImode;                                                \
188
      }                                                                 \
189
  } while (0)
190
 
191
/* Imitate the way many other C compilers handle alignment of
192
   bitfields and the structures that contain them.  */
193
#define PCC_BITFIELD_TYPE_MATTERS 1
194
 
195
/* Disable the use of word-sized or smaller complex modes for structures,
196
   and for function arguments in particular, where they cause problems with
197
   register a7.  The xtensa_copy_incoming_a7 function assumes that there is
198
   a single reference to an argument in a7, but with small complex modes the
199
   real and imaginary components may be extracted separately, leading to two
200
   uses of the register, only one of which would be replaced.  */
201
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
202
  ((MODE) == CQImode || (MODE) == CHImode)
203
 
204
/* Align string constants and constructors to at least a word boundary.
205
   The typical use of this macro is to increase alignment for string
206
   constants to be word aligned so that 'strcpy' calls that copy
207
   constants can be done inline.  */
208
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
209
  ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR)    \
210
   && (ALIGN) < BITS_PER_WORD                                           \
211
        ? BITS_PER_WORD                                                 \
212
        : (ALIGN))
213
 
214
/* Align arrays, unions and records to at least a word boundary.
215
   One use of this macro is to increase alignment of medium-size
216
   data to make it all fit in fewer cache lines.  Another is to
217
   cause character arrays to be word-aligned so that 'strcpy' calls
218
   that copy constants to character arrays can be done inline.  */
219
#undef DATA_ALIGNMENT
220
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
221
  ((((ALIGN) < BITS_PER_WORD)                                           \
222
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
223
        || TREE_CODE (TYPE) == UNION_TYPE                               \
224
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
225
 
226
/* Operations between registers always perform the operation
227
   on the full register even if a narrower mode is specified.  */
228
#define WORD_REGISTER_OPERATIONS
229
 
230
/* Xtensa loads are zero-extended by default.  */
231
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
232
 
233
/* Standard register usage.  */
234
 
235
/* Number of actual hardware registers.
236
   The hardware registers are assigned numbers for the compiler
237
   from 0 to just below FIRST_PSEUDO_REGISTER.
238
   All registers that the compiler knows about must be given numbers,
239
   even those that are not normally considered general registers.
240
 
241
   The fake frame pointer and argument pointer will never appear in
242
   the generated code, since they will always be eliminated and replaced
243
   by either the stack pointer or the hard frame pointer.
244
 
245
 
246
   16           FRAME_POINTER (fake = initial sp)
247
   17           ARG_POINTER (fake = initial sp + framesize)
248
   18           BR[0] for floating-point CC
249
   19 - 34      FR[0] - FR[15]
250
   35           MAC16 accumulator */
251
 
252
#define FIRST_PSEUDO_REGISTER 36
253
 
254
/* Return the stabs register number to use for REGNO.  */
255
#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
256
 
257
/* 1 for registers that have pervasive standard uses
258
   and are not available for the register allocator.  */
259
#define FIXED_REGISTERS                                                 \
260
{                                                                       \
261
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                     \
262
  1, 1, 0,                                                               \
263
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
264
  0,                                                                     \
265
}
266
 
267
/* 1 for registers not available across function calls.
268
   These must include the FIXED_REGISTERS and also any
269
   registers that can be used without being saved.
270
   The latter must include the registers where values are returned
271
   and the register where structure-value addresses are passed.
272
   Aside from that, you can include as many other registers as you like.  */
273
#define CALL_USED_REGISTERS                                             \
274
{                                                                       \
275
  1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,                     \
276
  1, 1, 1,                                                              \
277
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
278
  1,                                                                    \
279
}
280
 
281
/* For non-leaf procedures on Xtensa processors, the allocation order
282
   is as specified below by REG_ALLOC_ORDER.  For leaf procedures, we
283
   want to use the lowest numbered registers first to minimize
284
   register window overflows.  However, local-alloc is not smart
285
   enough to consider conflicts with incoming arguments.  If an
286
   incoming argument in a2 is live throughout the function and
287
   local-alloc decides to use a2, then the incoming argument must
288
   either be spilled or copied to another register.  To get around
289
   this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
290
   reg_alloc_order for leaf functions such that lowest numbered
291
   registers are used first with the exception that the incoming
292
   argument registers are not used until after other register choices
293
   have been exhausted.  */
294
 
295
#define REG_ALLOC_ORDER \
296
{  8,  9, 10, 11, 12, 13, 14, 15,  7,  6,  5,  4,  3,  2, \
297
  18, \
298
  19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
299
   0,  1, 16, 17, \
300
  35, \
301
}
302
 
303
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
304
 
305
/* For Xtensa, the only point of this is to prevent GCC from otherwise
306
   giving preference to call-used registers.  To minimize window
307
   overflows for the AR registers, we want to give preference to the
308
   lower-numbered AR registers.  For other register files, which are
309
   not windowed, we still prefer call-used registers, if there are any.  */
310
extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
311
#define LEAF_REGISTERS xtensa_leaf_regs
312
 
313
/* For Xtensa, no remapping is necessary, but this macro must be
314
   defined if LEAF_REGISTERS is defined.  */
315
#define LEAF_REG_REMAP(REGNO) (REGNO)
316
 
317
/* This must be declared if LEAF_REGISTERS is set.  */
318
extern int leaf_function;
319
 
320
/* Internal macros to classify a register number.  */
321
 
322
/* 16 address registers + fake registers */
323
#define GP_REG_FIRST 0
324
#define GP_REG_LAST  17
325
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
326
 
327
/* Coprocessor registers */
328
#define BR_REG_FIRST 18
329
#define BR_REG_LAST  18 
330
#define BR_REG_NUM   (BR_REG_LAST - BR_REG_FIRST + 1)
331
 
332
/* 16 floating-point registers */
333
#define FP_REG_FIRST 19
334
#define FP_REG_LAST  34
335
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
336
 
337
/* MAC16 accumulator */
338
#define ACC_REG_FIRST 35
339
#define ACC_REG_LAST 35
340
#define ACC_REG_NUM  (ACC_REG_LAST - ACC_REG_FIRST + 1)
341
 
342
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
343
#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
344
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
345
#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
346
 
347
/* Return number of consecutive hard regs needed starting at reg REGNO
348
   to hold something of mode MODE.  */
349
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
350
  (FP_REG_P (REGNO) ?                                                   \
351
        ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
352
        ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
353
 
354
/* Value is 1 if hard register REGNO can hold a value of machine-mode
355
   MODE.  */
356
extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
357
 
358
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
359
  xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
360
 
361
/* Value is 1 if it is a good idea to tie two pseudo registers
362
   when one has mode MODE1 and one has mode MODE2.
363
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
364
   for any hard reg, then this must be 0 for correct output.  */
365
#define MODES_TIEABLE_P(MODE1, MODE2)                                   \
366
  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||                             \
367
    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)                       \
368
   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||                          \
369
       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
370
 
371
/* Register to use for pushing function arguments.  */
372
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
373
 
374
/* Base register for access to local variables of the function.  */
375
#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
376
 
377
/* The register number of the frame pointer register, which is used to
378
   access automatic variables in the stack frame.  For Xtensa, this
379
   register never appears in the output.  It is always eliminated to
380
   either the stack pointer or the hard frame pointer.  */
381
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
382
 
383
/* Base register for access to arguments of the function.  */
384
#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
385
 
386
/* For now we don't try to use the full set of boolean registers.  Without
387
   software pipelining of FP operations, there's not much to gain and it's
388
   a real pain to get them reloaded.  */
389
#define FPCC_REGNUM (BR_REG_FIRST + 0)
390
 
391
/* It is as good or better to call a constant function address than to
392
   call an address kept in a register.  */
393
#define NO_FUNCTION_CSE 1
394
 
395
/* Xtensa processors have "register windows".  GCC does not currently
396
   take advantage of the possibility for variable-sized windows; instead,
397
   we use a fixed window size of 8.  */
398
 
399
#define INCOMING_REGNO(OUT)                                             \
400
  ((GP_REG_P (OUT) &&                                                   \
401
    ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ?               \
402
   (OUT) - WINDOW_SIZE : (OUT))
403
 
404
#define OUTGOING_REGNO(IN)                                              \
405
  ((GP_REG_P (IN) &&                                                    \
406
    ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ?                 \
407
   (IN) + WINDOW_SIZE : (IN))
408
 
409
 
410
/* Define the classes of registers for register constraints in the
411
   machine description.  */
412
enum reg_class
413
{
414
  NO_REGS,                      /* no registers in set */
415
  BR_REGS,                      /* coprocessor boolean registers */
416
  FP_REGS,                      /* floating point registers */
417
  ACC_REG,                      /* MAC16 accumulator */
418
  SP_REG,                       /* sp register (aka a1) */
419
  RL_REGS,                      /* preferred reload regs (not sp or fp) */
420
  GR_REGS,                      /* integer registers except sp */
421
  AR_REGS,                      /* all integer registers */
422
  ALL_REGS,                     /* all registers */
423
  LIM_REG_CLASSES               /* max value + 1 */
424
};
425
 
426
#define N_REG_CLASSES (int) LIM_REG_CLASSES
427
 
428
#define GENERAL_REGS AR_REGS
429
 
430
/* An initializer containing the names of the register classes as C
431
   string constants.  These names are used in writing some of the
432
   debugging dumps.  */
433
#define REG_CLASS_NAMES                                                 \
434
{                                                                       \
435
  "NO_REGS",                                                            \
436
  "BR_REGS",                                                            \
437
  "FP_REGS",                                                            \
438
  "ACC_REG",                                                            \
439
  "SP_REG",                                                             \
440
  "RL_REGS",                                                            \
441
  "GR_REGS",                                                            \
442
  "AR_REGS",                                                            \
443
  "ALL_REGS"                                                            \
444
}
445
 
446
/* Contents of the register classes.  The Nth integer specifies the
447
   contents of class N.  The way the integer MASK is interpreted is
448
   that register R is in the class if 'MASK & (1 << R)' is 1.  */
449
#define REG_CLASS_CONTENTS \
450
{ \
451
  { 0x00000000, 0x00000000 }, /* no registers */ \
452
  { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
453
  { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
454
  { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
455
  { 0x00000002, 0x00000000 }, /* stack pointer register */ \
456
  { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
457
  { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
458
  { 0x0003ffff, 0x00000000 }, /* integer registers */ \
459
  { 0xffffffff, 0x0000000f }  /* all registers */ \
460
}
461
 
462
#define IRA_COVER_CLASSES                                               \
463
{                                                                       \
464
  BR_REGS, FP_REGS, ACC_REG, AR_REGS, LIM_REG_CLASSES                   \
465
}
466
 
467
/* A C expression whose value is a register class containing hard
468
   register REGNO.  In general there is more that one such class;
469
   choose a class which is "minimal", meaning that no smaller class
470
   also contains the register.  */
471
extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
472
 
473
#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
474
 
475
/* Use the Xtensa AR register file for base registers.
476
   No index registers.  */
477
#define BASE_REG_CLASS AR_REGS
478
#define INDEX_REG_CLASS NO_REGS
479
 
480
/* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
481
   16 AR registers may be explicitly used in the RTL, as either
482
   incoming or outgoing arguments.  */
483
#define SMALL_REGISTER_CLASSES 1
484
 
485
#define PREFERRED_RELOAD_CLASS(X, CLASS)                                \
486
  xtensa_preferred_reload_class (X, CLASS, 0)
487
 
488
#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS)                         \
489
  xtensa_preferred_reload_class (X, CLASS, 1)
490
 
491
/* Return the maximum number of consecutive registers
492
   needed to represent mode MODE in a register of class CLASS.  */
493
#define CLASS_UNITS(mode, size)                                         \
494
  ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
495
 
496
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
497
  (CLASS_UNITS (MODE, UNITS_PER_WORD))
498
 
499
 
500
/* Stack layout; function entry, exit and calling.  */
501
 
502
#define STACK_GROWS_DOWNWARD
503
 
504
/* Offset within stack frame to start allocating local variables at.  */
505
#define STARTING_FRAME_OFFSET                                           \
506
  crtl->outgoing_args_size
507
 
508
/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
509
   they are eliminated to either the stack pointer or hard frame pointer.  */
510
#define ELIMINABLE_REGS                                                 \
511
{{ ARG_POINTER_REGNUM,          STACK_POINTER_REGNUM},                  \
512
 { ARG_POINTER_REGNUM,          HARD_FRAME_POINTER_REGNUM},             \
513
 { FRAME_POINTER_REGNUM,        STACK_POINTER_REGNUM},                  \
514
 { FRAME_POINTER_REGNUM,        HARD_FRAME_POINTER_REGNUM}}
515
 
516
/* Specify the initial difference between the specified pair of registers.  */
517
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
518
  do {                                                                  \
519
    compute_frame_size (get_frame_size ());                             \
520
    switch (FROM)                                                       \
521
      {                                                                 \
522
      case FRAME_POINTER_REGNUM:                                        \
523
        (OFFSET) = 0;                                                    \
524
        break;                                                          \
525
      case ARG_POINTER_REGNUM:                                          \
526
        (OFFSET) = xtensa_current_frame_size;                           \
527
        break;                                                          \
528
      default:                                                          \
529
        gcc_unreachable ();                                             \
530
      }                                                                 \
531
  } while (0)
532
 
533
/* If defined, the maximum amount of space required for outgoing
534
   arguments will be computed and placed into the variable
535
   'crtl->outgoing_args_size'.  No space will be pushed
536
   onto the stack for each call; instead, the function prologue
537
   should increase the stack frame size by this amount.  */
538
#define ACCUMULATE_OUTGOING_ARGS 1
539
 
540
/* Offset from the argument pointer register to the first argument's
541
   address.  On some machines it may depend on the data type of the
542
   function.  If 'ARGS_GROW_DOWNWARD', this is the offset to the
543
   location above the first argument's address.  */
544
#define FIRST_PARM_OFFSET(FNDECL) 0
545
 
546
/* Align stack frames on 128 bits for Xtensa.  This is necessary for
547
   128-bit datatypes defined in TIE (e.g., for Vectra).  */
548
#define STACK_BOUNDARY 128
549
 
550
/* Functions do not pop arguments off the stack.  */
551
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
552
 
553
/* Use a fixed register window size of 8.  */
554
#define WINDOW_SIZE 8
555
 
556
/* Symbolic macros for the registers used to return integer, floating
557
   point, and values of coprocessor and user-defined modes.  */
558
#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
559
#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
560
 
561
/* Symbolic macros for the first/last argument registers.  */
562
#define GP_ARG_FIRST (GP_REG_FIRST + 2)
563
#define GP_ARG_LAST  (GP_REG_FIRST + 7)
564
#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
565
#define GP_OUTGOING_ARG_LAST  (GP_REG_FIRST + 7 + WINDOW_SIZE)
566
 
567
#define MAX_ARGS_IN_REGISTERS 6
568
 
569
/* Don't worry about compatibility with PCC.  */
570
#define DEFAULT_PCC_STRUCT_RETURN 0
571
 
572
/* Define how to find the value returned by a library function
573
   assuming the value has mode MODE.  Because we have defined
574
   TARGET_PROMOTE_FUNCTION_MODE to promote everything, we have to
575
   perform the same promotions as PROMOTE_MODE.  */
576
#define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP)                           \
577
  gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT                       \
578
                && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)               \
579
               ? SImode : (MODE),                                       \
580
               OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
581
 
582
#define LIBCALL_VALUE(MODE)                                             \
583
  XTENSA_LIBCALL_VALUE ((MODE), 0)
584
 
585
#define LIBCALL_OUTGOING_VALUE(MODE)                                    \
586
  XTENSA_LIBCALL_VALUE ((MODE), 1)
587
 
588
/* A C expression that is nonzero if REGNO is the number of a hard
589
   register in which the values of called function may come back.  A
590
   register whose use for returning values is limited to serving as
591
   the second of a pair (for a value of type 'double', say) need not
592
   be recognized by this macro.  If the machine has register windows,
593
   so that the caller and the called function use different registers
594
   for the return value, this macro should recognize only the caller's
595
   register numbers.  */
596
#define FUNCTION_VALUE_REGNO_P(N)                                       \
597
  ((N) == GP_RETURN)
598
 
599
/* A C expression that is nonzero if REGNO is the number of a hard
600
   register in which function arguments are sometimes passed.  This
601
   does *not* include implicit arguments such as the static chain and
602
   the structure-value address.  On many machines, no registers can be
603
   used for this purpose since all function arguments are pushed on
604
   the stack.  */
605
#define FUNCTION_ARG_REGNO_P(N)                                         \
606
  ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
607
 
608
/* Record the number of argument words seen so far, along with a flag to
609
   indicate whether these are incoming arguments.  (FUNCTION_INCOMING_ARG
610
   is used for both incoming and outgoing args, so a separate flag is
611
   needed.  */
612
typedef struct xtensa_args
613
{
614
  int arg_words;
615
  int incoming;
616
} CUMULATIVE_ARGS;
617
 
618
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
619
  init_cumulative_args (&CUM, 0)
620
 
621
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME)             \
622
  init_cumulative_args (&CUM, 1)
623
 
624
/* Update the data in CUM to advance over an argument
625
   of mode MODE and data type TYPE.
626
   (TYPE is null for libcalls where that information may not be available.)  */
627
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
628
  function_arg_advance (&CUM, MODE, TYPE)
629
 
630
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
631
  function_arg (&CUM, MODE, TYPE, FALSE)
632
 
633
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
634
  function_arg (&CUM, MODE, TYPE, TRUE)
635
 
636
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
637
 
638
/* Profiling Xtensa code is typically done with the built-in profiling
639
   feature of Tensilica's instruction set simulator, which does not
640
   require any compiler support.  Profiling code on a real (i.e.,
641
   non-simulated) Xtensa processor is currently only supported by
642
   GNU/Linux with glibc.  The glibc version of _mcount doesn't require
643
   counter variables.  The _mcount function needs the current PC and
644
   the current return address to identify an arc in the call graph.
645
   Pass the current return address as the first argument; the current
646
   PC is available as a0 in _mcount's register window.  Both of these
647
   values contain window size information in the two most significant
648
   bits; we assume that _mcount will mask off those bits.  The call to
649
   _mcount uses a window size of 8 to make sure that it doesn't clobber
650
   any incoming argument values.  */
651
 
652
#define NO_PROFILE_COUNTERS     1
653
 
654
#define FUNCTION_PROFILER(FILE, LABELNO) \
655
  do {                                                                  \
656
    fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
657
    if (flag_pic)                                                       \
658
      {                                                                 \
659
        fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n");                    \
660
        fprintf (FILE, "\tcallx8\ta8\n");                               \
661
      }                                                                 \
662
    else                                                                \
663
      fprintf (FILE, "\tcall8\t_mcount\n");                             \
664
  } while (0)
665
 
666
/* Stack pointer value doesn't matter at exit.  */
667
#define EXIT_IGNORE_STACK 1
668
 
669
/* Size in bytes of the trampoline, as an integer.  Make sure this is
670
   a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings.  */
671
#define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
672
 
673
/* Alignment required for trampolines, in bits.  */
674
#define TRAMPOLINE_ALIGNMENT 32
675
 
676
/* If defined, a C expression that produces the machine-specific code
677
   to setup the stack so that arbitrary frames can be accessed.
678
 
679
   On Xtensa, a stack back-trace must always begin from the stack pointer,
680
   so that the register overflow save area can be located.  However, the
681
   stack-walking code in GCC always begins from the hard_frame_pointer
682
   register, not the stack pointer.  The frame pointer is usually equal
683
   to the stack pointer, but the __builtin_return_address and
684
   __builtin_frame_address functions will not work if count > 0 and
685
   they are called from a routine that uses alloca.  These functions
686
   are not guaranteed to work at all if count > 0 so maybe that is OK.
687
 
688
   A nicer solution would be to allow the architecture-specific files to
689
   specify whether to start from the stack pointer or frame pointer.  That
690
   would also allow us to skip the machine->accesses_prev_frame stuff that
691
   we currently need to ensure that there is a frame pointer when these
692
   builtin functions are used.  */
693
 
694
#define SETUP_FRAME_ADDRESSES  xtensa_setup_frame_addresses
695
 
696
/* A C expression whose value is RTL representing the address in a
697
   stack frame where the pointer to the caller's frame is stored.
698
   Assume that FRAMEADDR is an RTL expression for the address of the
699
   stack frame itself.
700
 
701
   For Xtensa, there is no easy way to get the frame pointer if it is
702
   not equivalent to the stack pointer.  Moreover, the result of this
703
   macro is used for continuing to walk back up the stack, so it must
704
   return the stack pointer address.  Thus, there is some inconsistency
705
   here in that __builtin_frame_address will return the frame pointer
706
   when count == 0 and the stack pointer when count > 0.  */
707
 
708
#define DYNAMIC_CHAIN_ADDRESS(frame)                                    \
709
  gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
710
 
711
/* Define this if the return address of a particular stack frame is
712
   accessed from the frame pointer of the previous stack frame.  */
713
#define RETURN_ADDR_IN_PREVIOUS_FRAME
714
 
715
/* A C expression whose value is RTL representing the value of the
716
   return address for the frame COUNT steps up from the current
717
   frame, after the prologue.  */
718
#define RETURN_ADDR_RTX  xtensa_return_addr
719
 
720
/* Addressing modes, and classification of registers for them.  */
721
 
722
/* C expressions which are nonzero if register number NUM is suitable
723
   for use as a base or index register in operand addresses.  */
724
 
725
#define REGNO_OK_FOR_INDEX_P(NUM) 0
726
#define REGNO_OK_FOR_BASE_P(NUM) \
727
  (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
728
 
729
/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
730
   valid for use as a base or index register.  */
731
 
732
#ifdef REG_OK_STRICT
733
#define REG_OK_STRICT_FLAG 1
734
#else
735
#define REG_OK_STRICT_FLAG 0
736
#endif
737
 
738
#define BASE_REG_P(X, STRICT)                                           \
739
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)                    \
740
   || REGNO_OK_FOR_BASE_P (REGNO (X)))
741
 
742
#define REG_OK_FOR_INDEX_P(X) 0
743
#define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
744
 
745
/* Maximum number of registers that can appear in a valid memory address.  */
746
#define MAX_REGS_PER_ADDRESS 1
747
 
748
/* A C expression that is 1 if the RTX X is a constant which is a
749
   valid address.  This is defined to be the same as 'CONSTANT_P (X)',
750
   but rejecting CONST_DOUBLE.  */
751
#define CONSTANT_ADDRESS_P(X)                                           \
752
  ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF             \
753
    || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH                \
754
    || (GET_CODE (X) == CONST)))
755
 
756
/* Nonzero if the constant value X is a legitimate general operand.
757
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
758
#define LEGITIMATE_CONSTANT_P(X) (! xtensa_tls_referenced_p (X))
759
 
760
/* A C expression that is nonzero if X is a legitimate immediate
761
   operand on the target machine when generating position independent
762
   code.  */
763
#define LEGITIMATE_PIC_OPERAND_P(X)                                     \
764
  ((GET_CODE (X) != SYMBOL_REF                                          \
765
    || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X)))          \
766
   && GET_CODE (X) != LABEL_REF                                         \
767
   && GET_CODE (X) != CONST)
768
 
769
/* Treat constant-pool references as "mode dependent" since they can
770
   only be accessed with SImode loads.  This works around a bug in the
771
   combiner where a constant pool reference is temporarily converted
772
   to an HImode load, which is then assumed to zero-extend based on
773
   our definition of LOAD_EXTEND_OP.  This is wrong because the high
774
   bits of a 16-bit value in the constant pool are now sign-extended
775
   by default.  */
776
 
777
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)                       \
778
  do {                                                                  \
779
    if (constantpool_address_p (ADDR))                                  \
780
      goto LABEL;                                                       \
781
  } while (0)
782
 
783
/* Specify the machine mode that this machine uses
784
   for the index in the tablejump instruction.  */
785
#define CASE_VECTOR_MODE (SImode)
786
 
787
/* Define this as 1 if 'char' should by default be signed; else as 0.  */
788
#define DEFAULT_SIGNED_CHAR 0
789
 
790
/* Max number of bytes we can move from memory to memory
791
   in one reasonably fast instruction.  */
792
#define MOVE_MAX 4
793
#define MAX_MOVE_MAX 4
794
 
795
/* Prefer word-sized loads.  */
796
#define SLOW_BYTE_ACCESS 1
797
 
798
/* Shift instructions ignore all but the low-order few bits.  */
799
#define SHIFT_COUNT_TRUNCATED 1
800
 
801
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
802
   is done just by pretending it is already truncated.  */
803
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
804
 
805
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
806
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = -1, 1)
807
 
808
/* Specify the machine mode that pointers have.
809
   After generation of rtl, the compiler makes no further distinction
810
   between pointers and any other objects of this machine mode.  */
811
#define Pmode SImode
812
 
813
/* A function address in a call instruction is a word address (for
814
   indexing purposes) so give the MEM rtx a words's mode.  */
815
#define FUNCTION_MODE SImode
816
 
817
/* A C expression for the cost of moving data from a register in
818
   class FROM to one in class TO.  The classes are expressed using
819
   the enumeration values such as 'GENERAL_REGS'.  A value of 2 is
820
   the default; other values are interpreted relative to that.  */
821
#define REGISTER_MOVE_COST(MODE, FROM, TO)                              \
822
  (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS)             \
823
   ? 2                                                                  \
824
   : (reg_class_subset_p ((FROM), AR_REGS)                              \
825
      && reg_class_subset_p ((TO), AR_REGS)                             \
826
      ? 2                                                               \
827
      : (reg_class_subset_p ((FROM), AR_REGS)                           \
828
         && (TO) == ACC_REG                                             \
829
         ? 3                                                            \
830
         : ((FROM) == ACC_REG                                           \
831
            && reg_class_subset_p ((TO), AR_REGS)                       \
832
            ? 3                                                         \
833
            : 10))))
834
 
835
#define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
836
 
837
#define BRANCH_COST(speed_p, predictable_p) 3
838
 
839
/* How to refer to registers in assembler output.
840
   This sequence is indexed by compiler's hard-register-number (see above).  */
841
#define REGISTER_NAMES                                                  \
842
{                                                                       \
843
  "a0",   "sp",   "a2",   "a3",   "a4",   "a5",   "a6",   "a7",         \
844
  "a8",   "a9",   "a10",  "a11",  "a12",  "a13",  "a14",  "a15",        \
845
  "fp",   "argp", "b0",                                                 \
846
  "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",         \
847
  "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",        \
848
  "acc"                                                                 \
849
}
850
 
851
/* If defined, a C initializer for an array of structures containing a
852
   name and a register number.  This macro defines additional names
853
   for hard registers, thus allowing the 'asm' option in declarations
854
   to refer to registers using alternate names.  */
855
#define ADDITIONAL_REGISTER_NAMES                                       \
856
{                                                                       \
857
  { "a1",        1 + GP_REG_FIRST }                                     \
858
}
859
 
860
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
861
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
862
 
863
/* Recognize machine-specific patterns that may appear within
864
   constants.  Used for PIC-specific UNSPECs.  */
865
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL)                        \
866
  do {                                                                  \
867
    if (xtensa_output_addr_const_extra (STREAM, X) == FALSE)            \
868
      goto FAIL;                                                        \
869
  } while (0)
870
 
871
/* Globalizing directive for a label.  */
872
#define GLOBAL_ASM_OP "\t.global\t"
873
 
874
/* Declare an uninitialized external linkage data object.  */
875
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
876
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
877
 
878
/* This is how to output an element of a case-vector that is absolute.  */
879
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)                          \
880
  fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE),               \
881
           LOCAL_LABEL_PREFIX, VALUE)
882
 
883
/* This is how to output an element of a case-vector that is relative.
884
   This is used for pc-relative code.  */
885
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)              \
886
  do {                                                                  \
887
    fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE),       \
888
             LOCAL_LABEL_PREFIX, (VALUE),                               \
889
             LOCAL_LABEL_PREFIX, (REL));                                \
890
  } while (0)
891
 
892
/* This is how to output an assembler line that says to advance the
893
   location counter to a multiple of 2**LOG bytes.  */
894
#define ASM_OUTPUT_ALIGN(STREAM, LOG)                                   \
895
  do {                                                                  \
896
    if ((LOG) != 0)                                                      \
897
      fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG));                   \
898
  } while (0)
899
 
900
/* Indicate that jump tables go in the text section.  This is
901
   necessary when compiling PIC code.  */
902
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
903
 
904
 
905
/* Define the strings to put out for each section in the object file.  */
906
#define TEXT_SECTION_ASM_OP     "\t.text"
907
#define DATA_SECTION_ASM_OP     "\t.data"
908
#define BSS_SECTION_ASM_OP      "\t.section\t.bss"
909
 
910
 
911
/* Define output to appear before the constant pool.  */
912
#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE)          \
913
  do {                                                                  \
914
    if ((SIZE) > 0)                                                      \
915
      {                                                                 \
916
        resolve_unique_section ((FUNDECL), 0, flag_function_sections);   \
917
        switch_to_section (function_section (FUNDECL));                 \
918
        fprintf (FILE, "\t.literal_position\n");                        \
919
      }                                                                 \
920
  } while (0)
921
 
922
 
923
/* A C statement (with or without semicolon) to output a constant in
924
   the constant pool, if it needs special treatment.  */
925
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
926
  do {                                                                  \
927
    xtensa_output_literal (FILE, X, MODE, LABELNO);                     \
928
    goto JUMPTO;                                                        \
929
  } while (0)
930
 
931
/* How to start an assembler comment.  */
932
#define ASM_COMMENT_START "#"
933
 
934
/* Exception handling.  Xtensa uses much of the standard DWARF2 unwinding
935
   machinery, but the variable size register window save areas are too
936
   complicated to efficiently describe with CFI entries.  The CFA must
937
   still be specified in DWARF so that DW_AT_frame_base is set correctly
938
   for debugging.  */
939
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
940
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
941
#define DWARF_FRAME_REGISTERS 16
942
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
943
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                      \
944
  (flag_pic                                                             \
945
   ? (((GLOBAL) ? DW_EH_PE_indirect : 0)                         \
946
      | DW_EH_PE_pcrel | DW_EH_PE_sdata4)                               \
947
   : DW_EH_PE_absptr)
948
 
949
/* Emit a PC-relative relocation.  */
950
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)                       \
951
  do {                                                                  \
952
    fputs (integer_asm_op (SIZE, FALSE), FILE);                         \
953
    assemble_name (FILE, LABEL);                                        \
954
    fputs ("@pcrel", FILE);                                             \
955
  } while (0)
956
 
957
/* Xtensa constant pool breaks the devices in crtstuff.c to control
958
   section in where code resides.  We have to write it as asm code.  Use
959
   a MOVI and let the assembler relax it -- for the .init and .fini
960
   sections, the assembler knows to put the literal in the right
961
   place.  */
962
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
963
    asm (SECTION_OP "\n\
964
        movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
965
        callx8\ta8\n" \
966
        TEXT_SECTION_ASM_OP);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.