OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc4/] [libstdc++-v3/] [include/] [bits/] [stl_vector.h] - Blame information for rev 424

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Vector implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// <http://www.gnu.org/licenses/>.
25
 
26
/*
27
 *
28
 * Copyright (c) 1994
29
 * Hewlett-Packard Company
30
 *
31
 * Permission to use, copy, modify, distribute and sell this software
32
 * and its documentation for any purpose is hereby granted without fee,
33
 * provided that the above copyright notice appear in all copies and
34
 * that both that copyright notice and this permission notice appear
35
 * in supporting documentation.  Hewlett-Packard Company makes no
36
 * representations about the suitability of this software for any
37
 * purpose.  It is provided "as is" without express or implied warranty.
38
 *
39
 *
40
 * Copyright (c) 1996
41
 * Silicon Graphics Computer Systems, Inc.
42
 *
43
 * Permission to use, copy, modify, distribute and sell this software
44
 * and its documentation for any purpose is hereby granted without fee,
45
 * provided that the above copyright notice appear in all copies and
46
 * that both that copyright notice and this permission notice appear
47
 * in supporting documentation.  Silicon Graphics makes no
48
 * representations about the suitability of this  software for any
49
 * purpose.  It is provided "as is" without express or implied warranty.
50
 */
51
 
52
/** @file stl_vector.h
53
 *  This is an internal header file, included by other library headers.
54
 *  You should not attempt to use it directly.
55
 */
56
 
57
#ifndef _STL_VECTOR_H
58
#define _STL_VECTOR_H 1
59
 
60
#include <bits/stl_iterator_base_funcs.h>
61
#include <bits/functexcept.h>
62
#include <bits/concept_check.h>
63
#include <initializer_list>
64
 
65
_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
66
 
67
  /// See bits/stl_deque.h's _Deque_base for an explanation.
68
  template<typename _Tp, typename _Alloc>
69
    struct _Vector_base
70
    {
71
      typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
72
 
73
      struct _Vector_impl
74
      : public _Tp_alloc_type
75
      {
76
        typename _Tp_alloc_type::pointer _M_start;
77
        typename _Tp_alloc_type::pointer _M_finish;
78
        typename _Tp_alloc_type::pointer _M_end_of_storage;
79
 
80
        _Vector_impl()
81
        : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
82
        { }
83
 
84
        _Vector_impl(_Tp_alloc_type const& __a)
85
        : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
86
        { }
87
      };
88
 
89
    public:
90
      typedef _Alloc allocator_type;
91
 
92
      _Tp_alloc_type&
93
      _M_get_Tp_allocator()
94
      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
95
 
96
      const _Tp_alloc_type&
97
      _M_get_Tp_allocator() const
98
      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
99
 
100
      allocator_type
101
      get_allocator() const
102
      { return allocator_type(_M_get_Tp_allocator()); }
103
 
104
      _Vector_base()
105
      : _M_impl() { }
106
 
107
      _Vector_base(const allocator_type& __a)
108
      : _M_impl(__a) { }
109
 
110
      _Vector_base(size_t __n, const allocator_type& __a)
111
      : _M_impl(__a)
112
      {
113
        this->_M_impl._M_start = this->_M_allocate(__n);
114
        this->_M_impl._M_finish = this->_M_impl._M_start;
115
        this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
116
      }
117
 
118
#ifdef __GXX_EXPERIMENTAL_CXX0X__
119
      _Vector_base(_Vector_base&& __x)
120
      : _M_impl(__x._M_get_Tp_allocator())
121
      {
122
        this->_M_impl._M_start = __x._M_impl._M_start;
123
        this->_M_impl._M_finish = __x._M_impl._M_finish;
124
        this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
125
        __x._M_impl._M_start = 0;
126
        __x._M_impl._M_finish = 0;
127
        __x._M_impl._M_end_of_storage = 0;
128
      }
129
#endif
130
 
131
      ~_Vector_base()
132
      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
133
                      - this->_M_impl._M_start); }
134
 
135
    public:
136
      _Vector_impl _M_impl;
137
 
138
      typename _Tp_alloc_type::pointer
139
      _M_allocate(size_t __n)
140
      { return __n != 0 ? _M_impl.allocate(__n) : 0; }
141
 
142
      void
143
      _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n)
144
      {
145
        if (__p)
146
          _M_impl.deallocate(__p, __n);
147
      }
148
    };
149
 
150
 
151
  /**
152
   *  @brief A standard container which offers fixed time access to
153
   *  individual elements in any order.
154
   *
155
   *  @ingroup sequences
156
   *
157
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
158
   *  <a href="tables.html#66">reversible container</a>, and a
159
   *  <a href="tables.html#67">sequence</a>, including the
160
   *  <a href="tables.html#68">optional sequence requirements</a> with the
161
   *  %exception of @c push_front and @c pop_front.
162
   *
163
   *  In some terminology a %vector can be described as a dynamic
164
   *  C-style array, it offers fast and efficient access to individual
165
   *  elements in any order and saves the user from worrying about
166
   *  memory and size allocation.  Subscripting ( @c [] ) access is
167
   *  also provided as with C-style arrays.
168
  */
169
  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
170
    class vector : protected _Vector_base<_Tp, _Alloc>
171
    {
172
      // Concept requirements.
173
      typedef typename _Alloc::value_type                _Alloc_value_type;
174
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
175
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
176
 
177
      typedef _Vector_base<_Tp, _Alloc>                  _Base;
178
      typedef typename _Base::_Tp_alloc_type             _Tp_alloc_type;
179
 
180
    public:
181
      typedef _Tp                                        value_type;
182
      typedef typename _Tp_alloc_type::pointer           pointer;
183
      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
184
      typedef typename _Tp_alloc_type::reference         reference;
185
      typedef typename _Tp_alloc_type::const_reference   const_reference;
186
      typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
187
      typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
188
      const_iterator;
189
      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
190
      typedef std::reverse_iterator<iterator>            reverse_iterator;
191
      typedef size_t                                     size_type;
192
      typedef ptrdiff_t                                  difference_type;
193
      typedef _Alloc                                     allocator_type;
194
 
195
    protected:
196
      using _Base::_M_allocate;
197
      using _Base::_M_deallocate;
198
      using _Base::_M_impl;
199
      using _Base::_M_get_Tp_allocator;
200
 
201
    public:
202
      // [23.2.4.1] construct/copy/destroy
203
      // (assign() and get_allocator() are also listed in this section)
204
      /**
205
       *  @brief  Default constructor creates no elements.
206
       */
207
      vector()
208
      : _Base() { }
209
 
210
      /**
211
       *  @brief  Creates a %vector with no elements.
212
       *  @param  a  An allocator object.
213
       */
214
      explicit
215
      vector(const allocator_type& __a)
216
      : _Base(__a) { }
217
 
218
      /**
219
       *  @brief  Creates a %vector with copies of an exemplar element.
220
       *  @param  n  The number of elements to initially create.
221
       *  @param  value  An element to copy.
222
       *  @param  a  An allocator.
223
       *
224
       *  This constructor fills the %vector with @a n copies of @a value.
225
       */
226
      explicit
227
      vector(size_type __n, const value_type& __value = value_type(),
228
             const allocator_type& __a = allocator_type())
229
      : _Base(__n, __a)
230
      { _M_fill_initialize(__n, __value); }
231
 
232
      /**
233
       *  @brief  %Vector copy constructor.
234
       *  @param  x  A %vector of identical element and allocator types.
235
       *
236
       *  The newly-created %vector uses a copy of the allocation
237
       *  object used by @a x.  All the elements of @a x are copied,
238
       *  but any extra memory in
239
       *  @a x (for fast expansion) will not be copied.
240
       */
241
      vector(const vector& __x)
242
      : _Base(__x.size(), __x._M_get_Tp_allocator())
243
      { this->_M_impl._M_finish =
244
          std::__uninitialized_copy_a(__x.begin(), __x.end(),
245
                                      this->_M_impl._M_start,
246
                                      _M_get_Tp_allocator());
247
      }
248
 
249
#ifdef __GXX_EXPERIMENTAL_CXX0X__
250
      /**
251
       *  @brief  %Vector move constructor.
252
       *  @param  x  A %vector of identical element and allocator types.
253
       *
254
       *  The newly-created %vector contains the exact contents of @a x.
255
       *  The contents of @a x are a valid, but unspecified %vector.
256
       */
257
      vector(vector&& __x)
258
      : _Base(std::forward<_Base>(__x)) { }
259
 
260
      /**
261
       *  @brief  Builds a %vector from an initializer list.
262
       *  @param  l  An initializer_list.
263
       *  @param  a  An allocator.
264
       *
265
       *  Create a %vector consisting of copies of the elements in the
266
       *  initializer_list @a l.
267
       *
268
       *  This will call the element type's copy constructor N times
269
       *  (where N is @a l.size()) and do no memory reallocation.
270
       */
271
      vector(initializer_list<value_type> __l,
272
             const allocator_type& __a = allocator_type())
273
      : _Base(__a)
274
      {
275
        _M_range_initialize(__l.begin(), __l.end(),
276
                            random_access_iterator_tag());
277
      }
278
#endif
279
 
280
      /**
281
       *  @brief  Builds a %vector from a range.
282
       *  @param  first  An input iterator.
283
       *  @param  last  An input iterator.
284
       *  @param  a  An allocator.
285
       *
286
       *  Create a %vector consisting of copies of the elements from
287
       *  [first,last).
288
       *
289
       *  If the iterators are forward, bidirectional, or
290
       *  random-access, then this will call the elements' copy
291
       *  constructor N times (where N is distance(first,last)) and do
292
       *  no memory reallocation.  But if only input iterators are
293
       *  used, then this will do at most 2N calls to the copy
294
       *  constructor, and logN memory reallocations.
295
       */
296
      template<typename _InputIterator>
297
        vector(_InputIterator __first, _InputIterator __last,
298
               const allocator_type& __a = allocator_type())
299
        : _Base(__a)
300
        {
301
          // Check whether it's an integral type.  If so, it's not an iterator.
302
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
303
          _M_initialize_dispatch(__first, __last, _Integral());
304
        }
305
 
306
      /**
307
       *  The dtor only erases the elements, and note that if the
308
       *  elements themselves are pointers, the pointed-to memory is
309
       *  not touched in any way.  Managing the pointer is the user's
310
       *  responsibility.
311
       */
312
      ~vector()
313
      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
314
                      _M_get_Tp_allocator()); }
315
 
316
      /**
317
       *  @brief  %Vector assignment operator.
318
       *  @param  x  A %vector of identical element and allocator types.
319
       *
320
       *  All the elements of @a x are copied, but any extra memory in
321
       *  @a x (for fast expansion) will not be copied.  Unlike the
322
       *  copy constructor, the allocator object is not copied.
323
       */
324
      vector&
325
      operator=(const vector& __x);
326
 
327
#ifdef __GXX_EXPERIMENTAL_CXX0X__
328
      /**
329
       *  @brief  %Vector move assignment operator.
330
       *  @param  x  A %vector of identical element and allocator types.
331
       *
332
       *  The contents of @a x are moved into this %vector (without copying).
333
       *  @a x is a valid, but unspecified %vector.
334
       */
335
      vector&
336
      operator=(vector&& __x)
337
      {
338
        // NB: DR 1204.
339
        // NB: DR 675.
340
        this->clear();
341
        this->swap(__x);
342
        return *this;
343
      }
344
 
345
      /**
346
       *  @brief  %Vector list assignment operator.
347
       *  @param  l  An initializer_list.
348
       *
349
       *  This function fills a %vector with copies of the elements in the
350
       *  initializer list @a l.
351
       *
352
       *  Note that the assignment completely changes the %vector and
353
       *  that the resulting %vector's size is the same as the number
354
       *  of elements assigned.  Old data may be lost.
355
       */
356
      vector&
357
      operator=(initializer_list<value_type> __l)
358
      {
359
        this->assign(__l.begin(), __l.end());
360
        return *this;
361
      }
362
#endif
363
 
364
      /**
365
       *  @brief  Assigns a given value to a %vector.
366
       *  @param  n  Number of elements to be assigned.
367
       *  @param  val  Value to be assigned.
368
       *
369
       *  This function fills a %vector with @a n copies of the given
370
       *  value.  Note that the assignment completely changes the
371
       *  %vector and that the resulting %vector's size is the same as
372
       *  the number of elements assigned.  Old data may be lost.
373
       */
374
      void
375
      assign(size_type __n, const value_type& __val)
376
      { _M_fill_assign(__n, __val); }
377
 
378
      /**
379
       *  @brief  Assigns a range to a %vector.
380
       *  @param  first  An input iterator.
381
       *  @param  last   An input iterator.
382
       *
383
       *  This function fills a %vector with copies of the elements in the
384
       *  range [first,last).
385
       *
386
       *  Note that the assignment completely changes the %vector and
387
       *  that the resulting %vector's size is the same as the number
388
       *  of elements assigned.  Old data may be lost.
389
       */
390
      template<typename _InputIterator>
391
        void
392
        assign(_InputIterator __first, _InputIterator __last)
393
        {
394
          // Check whether it's an integral type.  If so, it's not an iterator.
395
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
396
          _M_assign_dispatch(__first, __last, _Integral());
397
        }
398
 
399
#ifdef __GXX_EXPERIMENTAL_CXX0X__
400
      /**
401
       *  @brief  Assigns an initializer list to a %vector.
402
       *  @param  l  An initializer_list.
403
       *
404
       *  This function fills a %vector with copies of the elements in the
405
       *  initializer list @a l.
406
       *
407
       *  Note that the assignment completely changes the %vector and
408
       *  that the resulting %vector's size is the same as the number
409
       *  of elements assigned.  Old data may be lost.
410
       */
411
      void
412
      assign(initializer_list<value_type> __l)
413
      { this->assign(__l.begin(), __l.end()); }
414
#endif
415
 
416
      /// Get a copy of the memory allocation object.
417
      using _Base::get_allocator;
418
 
419
      // iterators
420
      /**
421
       *  Returns a read/write iterator that points to the first
422
       *  element in the %vector.  Iteration is done in ordinary
423
       *  element order.
424
       */
425
      iterator
426
      begin()
427
      { return iterator(this->_M_impl._M_start); }
428
 
429
      /**
430
       *  Returns a read-only (constant) iterator that points to the
431
       *  first element in the %vector.  Iteration is done in ordinary
432
       *  element order.
433
       */
434
      const_iterator
435
      begin() const
436
      { return const_iterator(this->_M_impl._M_start); }
437
 
438
      /**
439
       *  Returns a read/write iterator that points one past the last
440
       *  element in the %vector.  Iteration is done in ordinary
441
       *  element order.
442
       */
443
      iterator
444
      end()
445
      { return iterator(this->_M_impl._M_finish); }
446
 
447
      /**
448
       *  Returns a read-only (constant) iterator that points one past
449
       *  the last element in the %vector.  Iteration is done in
450
       *  ordinary element order.
451
       */
452
      const_iterator
453
      end() const
454
      { return const_iterator(this->_M_impl._M_finish); }
455
 
456
      /**
457
       *  Returns a read/write reverse iterator that points to the
458
       *  last element in the %vector.  Iteration is done in reverse
459
       *  element order.
460
       */
461
      reverse_iterator
462
      rbegin()
463
      { return reverse_iterator(end()); }
464
 
465
      /**
466
       *  Returns a read-only (constant) reverse iterator that points
467
       *  to the last element in the %vector.  Iteration is done in
468
       *  reverse element order.
469
       */
470
      const_reverse_iterator
471
      rbegin() const
472
      { return const_reverse_iterator(end()); }
473
 
474
      /**
475
       *  Returns a read/write reverse iterator that points to one
476
       *  before the first element in the %vector.  Iteration is done
477
       *  in reverse element order.
478
       */
479
      reverse_iterator
480
      rend()
481
      { return reverse_iterator(begin()); }
482
 
483
      /**
484
       *  Returns a read-only (constant) reverse iterator that points
485
       *  to one before the first element in the %vector.  Iteration
486
       *  is done in reverse element order.
487
       */
488
      const_reverse_iterator
489
      rend() const
490
      { return const_reverse_iterator(begin()); }
491
 
492
#ifdef __GXX_EXPERIMENTAL_CXX0X__
493
      /**
494
       *  Returns a read-only (constant) iterator that points to the
495
       *  first element in the %vector.  Iteration is done in ordinary
496
       *  element order.
497
       */
498
      const_iterator
499
      cbegin() const
500
      { return const_iterator(this->_M_impl._M_start); }
501
 
502
      /**
503
       *  Returns a read-only (constant) iterator that points one past
504
       *  the last element in the %vector.  Iteration is done in
505
       *  ordinary element order.
506
       */
507
      const_iterator
508
      cend() const
509
      { return const_iterator(this->_M_impl._M_finish); }
510
 
511
      /**
512
       *  Returns a read-only (constant) reverse iterator that points
513
       *  to the last element in the %vector.  Iteration is done in
514
       *  reverse element order.
515
       */
516
      const_reverse_iterator
517
      crbegin() const
518
      { return const_reverse_iterator(end()); }
519
 
520
      /**
521
       *  Returns a read-only (constant) reverse iterator that points
522
       *  to one before the first element in the %vector.  Iteration
523
       *  is done in reverse element order.
524
       */
525
      const_reverse_iterator
526
      crend() const
527
      { return const_reverse_iterator(begin()); }
528
#endif
529
 
530
      // [23.2.4.2] capacity
531
      /**  Returns the number of elements in the %vector.  */
532
      size_type
533
      size() const
534
      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
535
 
536
      /**  Returns the size() of the largest possible %vector.  */
537
      size_type
538
      max_size() const
539
      { return _M_get_Tp_allocator().max_size(); }
540
 
541
      /**
542
       *  @brief  Resizes the %vector to the specified number of elements.
543
       *  @param  new_size  Number of elements the %vector should contain.
544
       *  @param  x  Data with which new elements should be populated.
545
       *
546
       *  This function will %resize the %vector to the specified
547
       *  number of elements.  If the number is smaller than the
548
       *  %vector's current size the %vector is truncated, otherwise
549
       *  the %vector is extended and new elements are populated with
550
       *  given data.
551
       */
552
      void
553
      resize(size_type __new_size, value_type __x = value_type())
554
      {
555
        if (__new_size < size())
556
          _M_erase_at_end(this->_M_impl._M_start + __new_size);
557
        else
558
          insert(end(), __new_size - size(), __x);
559
      }
560
 
561
#ifdef __GXX_EXPERIMENTAL_CXX0X__
562
      /**  A non-binding request to reduce capacity() to size().  */
563
      void
564
      shrink_to_fit()
565
      { std::__shrink_to_fit<vector>::_S_do_it(*this); }
566
#endif
567
 
568
      /**
569
       *  Returns the total number of elements that the %vector can
570
       *  hold before needing to allocate more memory.
571
       */
572
      size_type
573
      capacity() const
574
      { return size_type(this->_M_impl._M_end_of_storage
575
                         - this->_M_impl._M_start); }
576
 
577
      /**
578
       *  Returns true if the %vector is empty.  (Thus begin() would
579
       *  equal end().)
580
       */
581
      bool
582
      empty() const
583
      { return begin() == end(); }
584
 
585
      /**
586
       *  @brief  Attempt to preallocate enough memory for specified number of
587
       *          elements.
588
       *  @param  n  Number of elements required.
589
       *  @throw  std::length_error  If @a n exceeds @c max_size().
590
       *
591
       *  This function attempts to reserve enough memory for the
592
       *  %vector to hold the specified number of elements.  If the
593
       *  number requested is more than max_size(), length_error is
594
       *  thrown.
595
       *
596
       *  The advantage of this function is that if optimal code is a
597
       *  necessity and the user can determine the number of elements
598
       *  that will be required, the user can reserve the memory in
599
       *  %advance, and thus prevent a possible reallocation of memory
600
       *  and copying of %vector data.
601
       */
602
      void
603
      reserve(size_type __n);
604
 
605
      // element access
606
      /**
607
       *  @brief  Subscript access to the data contained in the %vector.
608
       *  @param n The index of the element for which data should be
609
       *  accessed.
610
       *  @return  Read/write reference to data.
611
       *
612
       *  This operator allows for easy, array-style, data access.
613
       *  Note that data access with this operator is unchecked and
614
       *  out_of_range lookups are not defined. (For checked lookups
615
       *  see at().)
616
       */
617
      reference
618
      operator[](size_type __n)
619
      { return *(this->_M_impl._M_start + __n); }
620
 
621
      /**
622
       *  @brief  Subscript access to the data contained in the %vector.
623
       *  @param n The index of the element for which data should be
624
       *  accessed.
625
       *  @return  Read-only (constant) reference to data.
626
       *
627
       *  This operator allows for easy, array-style, data access.
628
       *  Note that data access with this operator is unchecked and
629
       *  out_of_range lookups are not defined. (For checked lookups
630
       *  see at().)
631
       */
632
      const_reference
633
      operator[](size_type __n) const
634
      { return *(this->_M_impl._M_start + __n); }
635
 
636
    protected:
637
      /// Safety check used only from at().
638
      void
639
      _M_range_check(size_type __n) const
640
      {
641
        if (__n >= this->size())
642
          __throw_out_of_range(__N("vector::_M_range_check"));
643
      }
644
 
645
    public:
646
      /**
647
       *  @brief  Provides access to the data contained in the %vector.
648
       *  @param n The index of the element for which data should be
649
       *  accessed.
650
       *  @return  Read/write reference to data.
651
       *  @throw  std::out_of_range  If @a n is an invalid index.
652
       *
653
       *  This function provides for safer data access.  The parameter
654
       *  is first checked that it is in the range of the vector.  The
655
       *  function throws out_of_range if the check fails.
656
       */
657
      reference
658
      at(size_type __n)
659
      {
660
        _M_range_check(__n);
661
        return (*this)[__n];
662
      }
663
 
664
      /**
665
       *  @brief  Provides access to the data contained in the %vector.
666
       *  @param n The index of the element for which data should be
667
       *  accessed.
668
       *  @return  Read-only (constant) reference to data.
669
       *  @throw  std::out_of_range  If @a n is an invalid index.
670
       *
671
       *  This function provides for safer data access.  The parameter
672
       *  is first checked that it is in the range of the vector.  The
673
       *  function throws out_of_range if the check fails.
674
       */
675
      const_reference
676
      at(size_type __n) const
677
      {
678
        _M_range_check(__n);
679
        return (*this)[__n];
680
      }
681
 
682
      /**
683
       *  Returns a read/write reference to the data at the first
684
       *  element of the %vector.
685
       */
686
      reference
687
      front()
688
      { return *begin(); }
689
 
690
      /**
691
       *  Returns a read-only (constant) reference to the data at the first
692
       *  element of the %vector.
693
       */
694
      const_reference
695
      front() const
696
      { return *begin(); }
697
 
698
      /**
699
       *  Returns a read/write reference to the data at the last
700
       *  element of the %vector.
701
       */
702
      reference
703
      back()
704
      { return *(end() - 1); }
705
 
706
      /**
707
       *  Returns a read-only (constant) reference to the data at the
708
       *  last element of the %vector.
709
       */
710
      const_reference
711
      back() const
712
      { return *(end() - 1); }
713
 
714
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
715
      // DR 464. Suggestion for new member functions in standard containers.
716
      // data access
717
      /**
718
       *   Returns a pointer such that [data(), data() + size()) is a valid
719
       *   range.  For a non-empty %vector, data() == &front().
720
       */
721
      pointer
722
      data()
723
      { return pointer(this->_M_impl._M_start); }
724
 
725
      const_pointer
726
      data() const
727
      { return const_pointer(this->_M_impl._M_start); }
728
 
729
      // [23.2.4.3] modifiers
730
      /**
731
       *  @brief  Add data to the end of the %vector.
732
       *  @param  x  Data to be added.
733
       *
734
       *  This is a typical stack operation.  The function creates an
735
       *  element at the end of the %vector and assigns the given data
736
       *  to it.  Due to the nature of a %vector this operation can be
737
       *  done in constant time if the %vector has preallocated space
738
       *  available.
739
       */
740
      void
741
      push_back(const value_type& __x)
742
      {
743
        if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
744
          {
745
            this->_M_impl.construct(this->_M_impl._M_finish, __x);
746
            ++this->_M_impl._M_finish;
747
          }
748
        else
749
          _M_insert_aux(end(), __x);
750
      }
751
 
752
#ifdef __GXX_EXPERIMENTAL_CXX0X__
753
      void
754
      push_back(value_type&& __x)
755
      { emplace_back(std::move(__x)); }
756
 
757
      template<typename... _Args>
758
        void
759
        emplace_back(_Args&&... __args);
760
#endif
761
 
762
      /**
763
       *  @brief  Removes last element.
764
       *
765
       *  This is a typical stack operation. It shrinks the %vector by one.
766
       *
767
       *  Note that no data is returned, and if the last element's
768
       *  data is needed, it should be retrieved before pop_back() is
769
       *  called.
770
       */
771
      void
772
      pop_back()
773
      {
774
        --this->_M_impl._M_finish;
775
        this->_M_impl.destroy(this->_M_impl._M_finish);
776
      }
777
 
778
#ifdef __GXX_EXPERIMENTAL_CXX0X__
779
      /**
780
       *  @brief  Inserts an object in %vector before specified iterator.
781
       *  @param  position  An iterator into the %vector.
782
       *  @param  args  Arguments.
783
       *  @return  An iterator that points to the inserted data.
784
       *
785
       *  This function will insert an object of type T constructed
786
       *  with T(std::forward<Args>(args)...) before the specified location.
787
       *  Note that this kind of operation could be expensive for a %vector
788
       *  and if it is frequently used the user should consider using
789
       *  std::list.
790
       */
791
      template<typename... _Args>
792
        iterator
793
        emplace(iterator __position, _Args&&... __args);
794
#endif
795
 
796
      /**
797
       *  @brief  Inserts given value into %vector before specified iterator.
798
       *  @param  position  An iterator into the %vector.
799
       *  @param  x  Data to be inserted.
800
       *  @return  An iterator that points to the inserted data.
801
       *
802
       *  This function will insert a copy of the given value before
803
       *  the specified location.  Note that this kind of operation
804
       *  could be expensive for a %vector and if it is frequently
805
       *  used the user should consider using std::list.
806
       */
807
      iterator
808
      insert(iterator __position, const value_type& __x);
809
 
810
#ifdef __GXX_EXPERIMENTAL_CXX0X__
811
      /**
812
       *  @brief  Inserts given rvalue into %vector before specified iterator.
813
       *  @param  position  An iterator into the %vector.
814
       *  @param  x  Data to be inserted.
815
       *  @return  An iterator that points to the inserted data.
816
       *
817
       *  This function will insert a copy of the given rvalue before
818
       *  the specified location.  Note that this kind of operation
819
       *  could be expensive for a %vector and if it is frequently
820
       *  used the user should consider using std::list.
821
       */
822
      iterator
823
      insert(iterator __position, value_type&& __x)
824
      { return emplace(__position, std::move(__x)); }
825
 
826
      /**
827
       *  @brief  Inserts an initializer_list into the %vector.
828
       *  @param  position  An iterator into the %vector.
829
       *  @param  l  An initializer_list.
830
       *
831
       *  This function will insert copies of the data in the
832
       *  initializer_list @a l into the %vector before the location
833
       *  specified by @a position.
834
       *
835
       *  Note that this kind of operation could be expensive for a
836
       *  %vector and if it is frequently used the user should
837
       *  consider using std::list.
838
       */
839
      void
840
      insert(iterator __position, initializer_list<value_type> __l)
841
      { this->insert(__position, __l.begin(), __l.end()); }
842
#endif
843
 
844
      /**
845
       *  @brief  Inserts a number of copies of given data into the %vector.
846
       *  @param  position  An iterator into the %vector.
847
       *  @param  n  Number of elements to be inserted.
848
       *  @param  x  Data to be inserted.
849
       *
850
       *  This function will insert a specified number of copies of
851
       *  the given data before the location specified by @a position.
852
       *
853
       *  Note that this kind of operation could be expensive for a
854
       *  %vector and if it is frequently used the user should
855
       *  consider using std::list.
856
       */
857
      void
858
      insert(iterator __position, size_type __n, const value_type& __x)
859
      { _M_fill_insert(__position, __n, __x); }
860
 
861
      /**
862
       *  @brief  Inserts a range into the %vector.
863
       *  @param  position  An iterator into the %vector.
864
       *  @param  first  An input iterator.
865
       *  @param  last   An input iterator.
866
       *
867
       *  This function will insert copies of the data in the range
868
       *  [first,last) into the %vector before the location specified
869
       *  by @a pos.
870
       *
871
       *  Note that this kind of operation could be expensive for a
872
       *  %vector and if it is frequently used the user should
873
       *  consider using std::list.
874
       */
875
      template<typename _InputIterator>
876
        void
877
        insert(iterator __position, _InputIterator __first,
878
               _InputIterator __last)
879
        {
880
          // Check whether it's an integral type.  If so, it's not an iterator.
881
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
882
          _M_insert_dispatch(__position, __first, __last, _Integral());
883
        }
884
 
885
      /**
886
       *  @brief  Remove element at given position.
887
       *  @param  position  Iterator pointing to element to be erased.
888
       *  @return  An iterator pointing to the next element (or end()).
889
       *
890
       *  This function will erase the element at the given position and thus
891
       *  shorten the %vector by one.
892
       *
893
       *  Note This operation could be expensive and if it is
894
       *  frequently used the user should consider using std::list.
895
       *  The user is also cautioned that this function only erases
896
       *  the element, and that if the element is itself a pointer,
897
       *  the pointed-to memory is not touched in any way.  Managing
898
       *  the pointer is the user's responsibility.
899
       */
900
      iterator
901
      erase(iterator __position);
902
 
903
      /**
904
       *  @brief  Remove a range of elements.
905
       *  @param  first  Iterator pointing to the first element to be erased.
906
       *  @param  last  Iterator pointing to one past the last element to be
907
       *                erased.
908
       *  @return  An iterator pointing to the element pointed to by @a last
909
       *           prior to erasing (or end()).
910
       *
911
       *  This function will erase the elements in the range [first,last) and
912
       *  shorten the %vector accordingly.
913
       *
914
       *  Note This operation could be expensive and if it is
915
       *  frequently used the user should consider using std::list.
916
       *  The user is also cautioned that this function only erases
917
       *  the elements, and that if the elements themselves are
918
       *  pointers, the pointed-to memory is not touched in any way.
919
       *  Managing the pointer is the user's responsibility.
920
       */
921
      iterator
922
      erase(iterator __first, iterator __last);
923
 
924
      /**
925
       *  @brief  Swaps data with another %vector.
926
       *  @param  x  A %vector of the same element and allocator types.
927
       *
928
       *  This exchanges the elements between two vectors in constant time.
929
       *  (Three pointers, so it should be quite fast.)
930
       *  Note that the global std::swap() function is specialized such that
931
       *  std::swap(v1,v2) will feed to this function.
932
       */
933
      void
934
      swap(vector& __x)
935
      {
936
        std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
937
        std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
938
        std::swap(this->_M_impl._M_end_of_storage,
939
                  __x._M_impl._M_end_of_storage);
940
 
941
        // _GLIBCXX_RESOLVE_LIB_DEFECTS
942
        // 431. Swapping containers with unequal allocators.
943
        std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
944
                                                    __x._M_get_Tp_allocator());
945
      }
946
 
947
      /**
948
       *  Erases all the elements.  Note that this function only erases the
949
       *  elements, and that if the elements themselves are pointers, the
950
       *  pointed-to memory is not touched in any way.  Managing the pointer is
951
       *  the user's responsibility.
952
       */
953
      void
954
      clear()
955
      { _M_erase_at_end(this->_M_impl._M_start); }
956
 
957
    protected:
958
      /**
959
       *  Memory expansion handler.  Uses the member allocation function to
960
       *  obtain @a n bytes of memory, and then copies [first,last) into it.
961
       */
962
      template<typename _ForwardIterator>
963
        pointer
964
        _M_allocate_and_copy(size_type __n,
965
                             _ForwardIterator __first, _ForwardIterator __last)
966
        {
967
          pointer __result = this->_M_allocate(__n);
968
          __try
969
            {
970
              std::__uninitialized_copy_a(__first, __last, __result,
971
                                          _M_get_Tp_allocator());
972
              return __result;
973
            }
974
          __catch(...)
975
            {
976
              _M_deallocate(__result, __n);
977
              __throw_exception_again;
978
            }
979
        }
980
 
981
 
982
      // Internal constructor functions follow.
983
 
984
      // Called by the range constructor to implement [23.1.1]/9
985
 
986
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
987
      // 438. Ambiguity in the "do the right thing" clause
988
      template<typename _Integer>
989
        void
990
        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
991
        {
992
          this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
993
          this->_M_impl._M_end_of_storage =
994
            this->_M_impl._M_start + static_cast<size_type>(__n);
995
          _M_fill_initialize(static_cast<size_type>(__n), __value);
996
        }
997
 
998
      // Called by the range constructor to implement [23.1.1]/9
999
      template<typename _InputIterator>
1000
        void
1001
        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1002
                               __false_type)
1003
        {
1004
          typedef typename std::iterator_traits<_InputIterator>::
1005
            iterator_category _IterCategory;
1006
          _M_range_initialize(__first, __last, _IterCategory());
1007
        }
1008
 
1009
      // Called by the second initialize_dispatch above
1010
      template<typename _InputIterator>
1011
        void
1012
        _M_range_initialize(_InputIterator __first,
1013
                            _InputIterator __last, std::input_iterator_tag)
1014
        {
1015
          for (; __first != __last; ++__first)
1016
            push_back(*__first);
1017
        }
1018
 
1019
      // Called by the second initialize_dispatch above
1020
      template<typename _ForwardIterator>
1021
        void
1022
        _M_range_initialize(_ForwardIterator __first,
1023
                            _ForwardIterator __last, std::forward_iterator_tag)
1024
        {
1025
          const size_type __n = std::distance(__first, __last);
1026
          this->_M_impl._M_start = this->_M_allocate(__n);
1027
          this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1028
          this->_M_impl._M_finish =
1029
            std::__uninitialized_copy_a(__first, __last,
1030
                                        this->_M_impl._M_start,
1031
                                        _M_get_Tp_allocator());
1032
        }
1033
 
1034
      // Called by the first initialize_dispatch above and by the
1035
      // vector(n,value,a) constructor.
1036
      void
1037
      _M_fill_initialize(size_type __n, const value_type& __value)
1038
      {
1039
        std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1040
                                      _M_get_Tp_allocator());
1041
        this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1042
      }
1043
 
1044
 
1045
      // Internal assign functions follow.  The *_aux functions do the actual
1046
      // assignment work for the range versions.
1047
 
1048
      // Called by the range assign to implement [23.1.1]/9
1049
 
1050
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1051
      // 438. Ambiguity in the "do the right thing" clause
1052
      template<typename _Integer>
1053
        void
1054
        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1055
        { _M_fill_assign(__n, __val); }
1056
 
1057
      // Called by the range assign to implement [23.1.1]/9
1058
      template<typename _InputIterator>
1059
        void
1060
        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1061
                           __false_type)
1062
        {
1063
          typedef typename std::iterator_traits<_InputIterator>::
1064
            iterator_category _IterCategory;
1065
          _M_assign_aux(__first, __last, _IterCategory());
1066
        }
1067
 
1068
      // Called by the second assign_dispatch above
1069
      template<typename _InputIterator>
1070
        void
1071
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1072
                      std::input_iterator_tag);
1073
 
1074
      // Called by the second assign_dispatch above
1075
      template<typename _ForwardIterator>
1076
        void
1077
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1078
                      std::forward_iterator_tag);
1079
 
1080
      // Called by assign(n,t), and the range assign when it turns out
1081
      // to be the same thing.
1082
      void
1083
      _M_fill_assign(size_type __n, const value_type& __val);
1084
 
1085
 
1086
      // Internal insert functions follow.
1087
 
1088
      // Called by the range insert to implement [23.1.1]/9
1089
 
1090
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1091
      // 438. Ambiguity in the "do the right thing" clause
1092
      template<typename _Integer>
1093
        void
1094
        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1095
                           __true_type)
1096
        { _M_fill_insert(__pos, __n, __val); }
1097
 
1098
      // Called by the range insert to implement [23.1.1]/9
1099
      template<typename _InputIterator>
1100
        void
1101
        _M_insert_dispatch(iterator __pos, _InputIterator __first,
1102
                           _InputIterator __last, __false_type)
1103
        {
1104
          typedef typename std::iterator_traits<_InputIterator>::
1105
            iterator_category _IterCategory;
1106
          _M_range_insert(__pos, __first, __last, _IterCategory());
1107
        }
1108
 
1109
      // Called by the second insert_dispatch above
1110
      template<typename _InputIterator>
1111
        void
1112
        _M_range_insert(iterator __pos, _InputIterator __first,
1113
                        _InputIterator __last, std::input_iterator_tag);
1114
 
1115
      // Called by the second insert_dispatch above
1116
      template<typename _ForwardIterator>
1117
        void
1118
        _M_range_insert(iterator __pos, _ForwardIterator __first,
1119
                        _ForwardIterator __last, std::forward_iterator_tag);
1120
 
1121
      // Called by insert(p,n,x), and the range insert when it turns out to be
1122
      // the same thing.
1123
      void
1124
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1125
 
1126
      // Called by insert(p,x)
1127
#ifndef __GXX_EXPERIMENTAL_CXX0X__
1128
      void
1129
      _M_insert_aux(iterator __position, const value_type& __x);
1130
#else
1131
      template<typename... _Args>
1132
        void
1133
        _M_insert_aux(iterator __position, _Args&&... __args);
1134
#endif
1135
 
1136
      // Called by the latter.
1137
      size_type
1138
      _M_check_len(size_type __n, const char* __s) const
1139
      {
1140
        if (max_size() - size() < __n)
1141
          __throw_length_error(__N(__s));
1142
 
1143
        const size_type __len = size() + std::max(size(), __n);
1144
        return (__len < size() || __len > max_size()) ? max_size() : __len;
1145
      }
1146
 
1147
      // Internal erase functions follow.
1148
 
1149
      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1150
      // _M_assign_aux.
1151
      void
1152
      _M_erase_at_end(pointer __pos)
1153
      {
1154
        std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1155
        this->_M_impl._M_finish = __pos;
1156
      }
1157
    };
1158
 
1159
 
1160
  /**
1161
   *  @brief  Vector equality comparison.
1162
   *  @param  x  A %vector.
1163
   *  @param  y  A %vector of the same type as @a x.
1164
   *  @return  True iff the size and elements of the vectors are equal.
1165
   *
1166
   *  This is an equivalence relation.  It is linear in the size of the
1167
   *  vectors.  Vectors are considered equivalent if their sizes are equal,
1168
   *  and if corresponding elements compare equal.
1169
  */
1170
  template<typename _Tp, typename _Alloc>
1171
    inline bool
1172
    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1173
    { return (__x.size() == __y.size()
1174
              && std::equal(__x.begin(), __x.end(), __y.begin())); }
1175
 
1176
  /**
1177
   *  @brief  Vector ordering relation.
1178
   *  @param  x  A %vector.
1179
   *  @param  y  A %vector of the same type as @a x.
1180
   *  @return  True iff @a x is lexicographically less than @a y.
1181
   *
1182
   *  This is a total ordering relation.  It is linear in the size of the
1183
   *  vectors.  The elements must be comparable with @c <.
1184
   *
1185
   *  See std::lexicographical_compare() for how the determination is made.
1186
  */
1187
  template<typename _Tp, typename _Alloc>
1188
    inline bool
1189
    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1190
    { return std::lexicographical_compare(__x.begin(), __x.end(),
1191
                                          __y.begin(), __y.end()); }
1192
 
1193
  /// Based on operator==
1194
  template<typename _Tp, typename _Alloc>
1195
    inline bool
1196
    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1197
    { return !(__x == __y); }
1198
 
1199
  /// Based on operator<
1200
  template<typename _Tp, typename _Alloc>
1201
    inline bool
1202
    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1203
    { return __y < __x; }
1204
 
1205
  /// Based on operator<
1206
  template<typename _Tp, typename _Alloc>
1207
    inline bool
1208
    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1209
    { return !(__y < __x); }
1210
 
1211
  /// Based on operator<
1212
  template<typename _Tp, typename _Alloc>
1213
    inline bool
1214
    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1215
    { return !(__x < __y); }
1216
 
1217
  /// See std::vector::swap().
1218
  template<typename _Tp, typename _Alloc>
1219
    inline void
1220
    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1221
    { __x.swap(__y); }
1222
 
1223
_GLIBCXX_END_NESTED_NAMESPACE
1224
 
1225
#endif /* _STL_VECTOR_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.