OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc4/] [libstdc++-v3/] [include/] [tr1/] [gamma.tcc] - Blame information for rev 519

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/gamma.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  You should not attempt to use it directly.
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland based on:
36
//   (1) Handbook of Mathematical Functions,
37
//       ed. Milton Abramowitz and Irene A. Stegun,
38
//       Dover Publications,
39
//       Section 6, pp. 253-266
40
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
42
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
43
//       2nd ed, pp. 213-216
44
//   (4) Gamma, Exploring Euler's Constant, Julian Havil,
45
//       Princeton, 2003.
46
 
47
#ifndef _GLIBCXX_TR1_GAMMA_TCC
48
#define _GLIBCXX_TR1_GAMMA_TCC 1
49
 
50
#include "special_function_util.h"
51
 
52
namespace std
53
{
54
namespace tr1
55
{
56
  // Implementation-space details.
57
  namespace __detail
58
  {
59
 
60
    /**
61
     *   @brief This returns Bernoulli numbers from a table or by summation
62
     *          for larger values.
63
     *
64
     *   Recursion is unstable.
65
     *
66
     *   @param __n the order n of the Bernoulli number.
67
     *   @return  The Bernoulli number of order n.
68
     */
69
    template 
70
    _Tp __bernoulli_series(unsigned int __n)
71
    {
72
 
73
      static const _Tp __num[28] = {
74
        _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
75
        _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
76
        -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
77
        _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
78
        -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
79
        _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
80
        -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
81
        _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
82
        -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
83
        _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
84
        -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
85
        _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
86
        -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
87
        _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
88
      };
89
 
90
      if (__n == 0)
91
        return _Tp(1);
92
 
93
      if (__n == 1)
94
        return -_Tp(1) / _Tp(2);
95
 
96
      //  Take care of the rest of the odd ones.
97
      if (__n % 2 == 1)
98
        return _Tp(0);
99
 
100
      //  Take care of some small evens that are painful for the series.
101
      if (__n < 28)
102
        return __num[__n];
103
 
104
 
105
      _Tp __fact = _Tp(1);
106
      if ((__n / 2) % 2 == 0)
107
        __fact *= _Tp(-1);
108
      for (unsigned int __k = 1; __k <= __n; ++__k)
109
        __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
110
      __fact *= _Tp(2);
111
 
112
      _Tp __sum = _Tp(0);
113
      for (unsigned int __i = 1; __i < 1000; ++__i)
114
        {
115
          _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
116
          if (__term < std::numeric_limits<_Tp>::epsilon())
117
            break;
118
          __sum += __term;
119
        }
120
 
121
      return __fact * __sum;
122
    }
123
 
124
 
125
    /**
126
     *   @brief This returns Bernoulli number \f$B_n\f$.
127
     *
128
     *   @param __n the order n of the Bernoulli number.
129
     *   @return  The Bernoulli number of order n.
130
     */
131
    template
132
    inline _Tp
133
    __bernoulli(const int __n)
134
    {
135
      return __bernoulli_series<_Tp>(__n);
136
    }
137
 
138
 
139
    /**
140
     *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
141
     *          with Bernoulli number coefficients.  This is like
142
     *          Sterling's approximation.
143
     *
144
     *   @param __x The argument of the log of the gamma function.
145
     *   @return  The logarithm of the gamma function.
146
     */
147
    template
148
    _Tp
149
    __log_gamma_bernoulli(const _Tp __x)
150
    {
151
      _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
152
               + _Tp(0.5L) * std::log(_Tp(2)
153
               * __numeric_constants<_Tp>::__pi());
154
 
155
      const _Tp __xx = __x * __x;
156
      _Tp __help = _Tp(1) / __x;
157
      for ( unsigned int __i = 1; __i < 20; ++__i )
158
        {
159
          const _Tp __2i = _Tp(2 * __i);
160
          __help /= __2i * (__2i - _Tp(1)) * __xx;
161
          __lg += __bernoulli<_Tp>(2 * __i) * __help;
162
        }
163
 
164
      return __lg;
165
    }
166
 
167
 
168
    /**
169
     *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
170
     *          This method dominates all others on the positive axis I think.
171
     *
172
     *   @param __x The argument of the log of the gamma function.
173
     *   @return  The logarithm of the gamma function.
174
     */
175
    template
176
    _Tp
177
    __log_gamma_lanczos(const _Tp __x)
178
    {
179
      const _Tp __xm1 = __x - _Tp(1);
180
 
181
      static const _Tp __lanczos_cheb_7[9] = {
182
       _Tp( 0.99999999999980993227684700473478L),
183
       _Tp( 676.520368121885098567009190444019L),
184
       _Tp(-1259.13921672240287047156078755283L),
185
       _Tp( 771.3234287776530788486528258894L),
186
       _Tp(-176.61502916214059906584551354L),
187
       _Tp( 12.507343278686904814458936853L),
188
       _Tp(-0.13857109526572011689554707L),
189
       _Tp( 9.984369578019570859563e-6L),
190
       _Tp( 1.50563273514931155834e-7L)
191
      };
192
 
193
      static const _Tp __LOGROOT2PI
194
          = _Tp(0.9189385332046727417803297364056176L);
195
 
196
      _Tp __sum = __lanczos_cheb_7[0];
197
      for(unsigned int __k = 1; __k < 9; ++__k)
198
        __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
199
 
200
      const _Tp __term1 = (__xm1 + _Tp(0.5L))
201
                        * std::log((__xm1 + _Tp(7.5L))
202
                       / __numeric_constants<_Tp>::__euler());
203
      const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
204
      const _Tp __result = __term1 + (__term2 - _Tp(7));
205
 
206
      return __result;
207
    }
208
 
209
 
210
    /**
211
     *   @brief Return \f$ log(|\Gamma(x)|) \f$.
212
     *          This will return values even for \f$ x < 0 \f$.
213
     *          To recover the sign of \f$ \Gamma(x) \f$ for
214
     *          any argument use @a __log_gamma_sign.
215
     *
216
     *   @param __x The argument of the log of the gamma function.
217
     *   @return  The logarithm of the gamma function.
218
     */
219
    template
220
    _Tp
221
    __log_gamma(const _Tp __x)
222
    {
223
      if (__x > _Tp(0.5L))
224
        return __log_gamma_lanczos(__x);
225
      else
226
        {
227
          const _Tp __sin_fact
228
                 = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
229
          if (__sin_fact == _Tp(0))
230
            std::__throw_domain_error(__N("Argument is nonpositive integer "
231
                                          "in __log_gamma"));
232
          return __numeric_constants<_Tp>::__lnpi()
233
                     - std::log(__sin_fact)
234
                     - __log_gamma_lanczos(_Tp(1) - __x);
235
        }
236
    }
237
 
238
 
239
    /**
240
     *   @brief Return the sign of \f$ \Gamma(x) \f$.
241
     *          At nonpositive integers zero is returned.
242
     *
243
     *   @param __x The argument of the gamma function.
244
     *   @return  The sign of the gamma function.
245
     */
246
    template
247
    _Tp
248
    __log_gamma_sign(const _Tp __x)
249
    {
250
      if (__x > _Tp(0))
251
        return _Tp(1);
252
      else
253
        {
254
          const _Tp __sin_fact
255
                  = std::sin(__numeric_constants<_Tp>::__pi() * __x);
256
          if (__sin_fact > _Tp(0))
257
            return (1);
258
          else if (__sin_fact < _Tp(0))
259
            return -_Tp(1);
260
          else
261
            return _Tp(0);
262
        }
263
    }
264
 
265
 
266
    /**
267
     *   @brief Return the logarithm of the binomial coefficient.
268
     *   The binomial coefficient is given by:
269
     *   @f[
270
     *   \left(  \right) = \frac{n!}{(n-k)! k!}
271
     *   @f]
272
     *
273
     *   @param __n The first argument of the binomial coefficient.
274
     *   @param __k The second argument of the binomial coefficient.
275
     *   @return  The binomial coefficient.
276
     */
277
    template
278
    _Tp
279
    __log_bincoef(const unsigned int __n, const unsigned int __k)
280
    {
281
      //  Max e exponent before overflow.
282
      static const _Tp __max_bincoeff
283
                      = std::numeric_limits<_Tp>::max_exponent10
284
                      * std::log(_Tp(10)) - _Tp(1);
285
#if _GLIBCXX_USE_C99_MATH_TR1
286
      _Tp __coeff =  std::tr1::lgamma(_Tp(1 + __n))
287
                  - std::tr1::lgamma(_Tp(1 + __k))
288
                  - std::tr1::lgamma(_Tp(1 + __n - __k));
289
#else
290
      _Tp __coeff =  __log_gamma(_Tp(1 + __n))
291
                  - __log_gamma(_Tp(1 + __k))
292
                  - __log_gamma(_Tp(1 + __n - __k));
293
#endif
294
    }
295
 
296
 
297
    /**
298
     *   @brief Return the binomial coefficient.
299
     *   The binomial coefficient is given by:
300
     *   @f[
301
     *   \left(  \right) = \frac{n!}{(n-k)! k!}
302
     *   @f]
303
     *
304
     *   @param __n The first argument of the binomial coefficient.
305
     *   @param __k The second argument of the binomial coefficient.
306
     *   @return  The binomial coefficient.
307
     */
308
    template
309
    _Tp
310
    __bincoef(const unsigned int __n, const unsigned int __k)
311
    {
312
      //  Max e exponent before overflow.
313
      static const _Tp __max_bincoeff
314
                      = std::numeric_limits<_Tp>::max_exponent10
315
                      * std::log(_Tp(10)) - _Tp(1);
316
 
317
      const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
318
      if (__log_coeff > __max_bincoeff)
319
        return std::numeric_limits<_Tp>::quiet_NaN();
320
      else
321
        return std::exp(__log_coeff);
322
    }
323
 
324
 
325
    /**
326
     *   @brief Return \f$ \Gamma(x) \f$.
327
     *
328
     *   @param __x The argument of the gamma function.
329
     *   @return  The gamma function.
330
     */
331
    template
332
    inline _Tp
333
    __gamma(const _Tp __x)
334
    {
335
      return std::exp(__log_gamma(__x));
336
    }
337
 
338
 
339
    /**
340
     *   @brief  Return the digamma function by series expansion.
341
     *   The digamma or @f$ \psi(x) @f$ function is defined by
342
     *   @f[
343
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
344
     *   @f]
345
     *
346
     *   The series is given by:
347
     *   @f[
348
     *     \psi(x) = -\gamma_E - \frac{1}{x}
349
     *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
350
     *   @f]
351
     */
352
    template
353
    _Tp
354
    __psi_series(const _Tp __x)
355
    {
356
      _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
357
      const unsigned int __max_iter = 100000;
358
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
359
        {
360
          const _Tp __term = __x / (__k * (__k + __x));
361
          __sum += __term;
362
          if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
363
            break;
364
        }
365
      return __sum;
366
    }
367
 
368
 
369
    /**
370
     *   @brief  Return the digamma function for large argument.
371
     *   The digamma or @f$ \psi(x) @f$ function is defined by
372
     *   @f[
373
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
374
     *   @f]
375
     *
376
     *   The asymptotic series is given by:
377
     *   @f[
378
     *     \psi(x) = \ln(x) - \frac{1}{2x}
379
     *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
380
     *   @f]
381
     */
382
    template
383
    _Tp
384
    __psi_asymp(const _Tp __x)
385
    {
386
      _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
387
      const _Tp __xx = __x * __x;
388
      _Tp __xp = __xx;
389
      const unsigned int __max_iter = 100;
390
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
391
        {
392
          const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
393
          __sum -= __term;
394
          if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
395
            break;
396
          __xp *= __xx;
397
        }
398
      return __sum;
399
    }
400
 
401
 
402
    /**
403
     *   @brief  Return the digamma function.
404
     *   The digamma or @f$ \psi(x) @f$ function is defined by
405
     *   @f[
406
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
407
     *   @f]
408
     *   For negative argument the reflection formula is used:
409
     *   @f[
410
     *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
411
     *   @f]
412
     */
413
    template
414
    _Tp
415
    __psi(const _Tp __x)
416
    {
417
      const int __n = static_cast(__x + 0.5L);
418
      const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
419
      if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
420
        return std::numeric_limits<_Tp>::quiet_NaN();
421
      else if (__x < _Tp(0))
422
        {
423
          const _Tp __pi = __numeric_constants<_Tp>::__pi();
424
          return __psi(_Tp(1) - __x)
425
               - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
426
        }
427
      else if (__x > _Tp(100))
428
        return __psi_asymp(__x);
429
      else
430
        return __psi_series(__x);
431
    }
432
 
433
 
434
    /**
435
     *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
436
     *
437
     *   The polygamma function is related to the Hurwitz zeta function:
438
     *   @f[
439
     *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
440
     *   @f]
441
     */
442
    template
443
    _Tp
444
    __psi(const unsigned int __n, const _Tp __x)
445
    {
446
      if (__x <= _Tp(0))
447
        std::__throw_domain_error(__N("Argument out of range "
448
                                      "in __psi"));
449
      else if (__n == 0)
450
        return __psi(__x);
451
      else
452
        {
453
          const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
454
#if _GLIBCXX_USE_C99_MATH_TR1
455
          const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
456
#else
457
          const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
458
#endif
459
          _Tp __result = std::exp(__ln_nfact) * __hzeta;
460
          if (__n % 2 == 1)
461
            __result = -__result;
462
          return __result;
463
        }
464
    }
465
 
466
  } // namespace std::tr1::__detail
467
}
468
}
469
 
470
#endif // _GLIBCXX_TR1_GAMMA_TCC
471
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.