OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc4/] [libstdc++-v3/] [include/] [tr1/] [poly_laguerre.tcc] - Blame information for rev 519

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 424 jeremybenn
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/poly_laguerre.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  You should not attempt to use it directly.
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland based on:
36
//   (1) Handbook of Mathematical Functions,
37
//       Ed. Milton Abramowitz and Irene A. Stegun,
38
//       Dover Publications,
39
//       Section 13, pp. 509-510, Section 22 pp. 773-802
40
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41
 
42
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
43
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
44
 
45
namespace std
46
{
47
namespace tr1
48
{
49
 
50
  // [5.2] Special functions
51
 
52
  // Implementation-space details.
53
  namespace __detail
54
  {
55
 
56
 
57
    /**
58
     *   @brief This routine returns the associated Laguerre polynomial
59
     *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
60
     *   Abramowitz & Stegun, 13.5.21
61
     *
62
     *   @param __n The order of the Laguerre function.
63
     *   @param __alpha The degree of the Laguerre function.
64
     *   @param __x The argument of the Laguerre function.
65
     *   @return The value of the Laguerre function of order n,
66
     *           degree @f$ \alpha @f$, and argument x.
67
     *
68
     *  This is from the GNU Scientific Library.
69
     */
70
    template
71
    _Tp
72
    __poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1,
73
                            const _Tp __x)
74
    {
75
      const _Tp __a = -_Tp(__n);
76
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
77
      const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
78
      const _Tp __cos2th = __x / __eta;
79
      const _Tp __sin2th = _Tp(1) - __cos2th;
80
      const _Tp __th = std::acos(std::sqrt(__cos2th));
81
      const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
82
                        * __numeric_constants<_Tp>::__pi_2()
83
                        * __eta * __eta * __cos2th * __sin2th;
84
 
85
#if _GLIBCXX_USE_C99_MATH_TR1
86
      const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
87
      const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
88
#else
89
      const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
90
      const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
91
#endif
92
 
93
      _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
94
                      * std::log(_Tp(0.25L) * __x * __eta);
95
      _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
96
      _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
97
                      + __pre_term1 - __pre_term2;
98
      _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
99
      _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
100
                              * (_Tp(2) * __th
101
                               - std::sin(_Tp(2) * __th))
102
                               + __numeric_constants<_Tp>::__pi_4());
103
      _Tp __ser = __ser_term1 + __ser_term2;
104
 
105
      return std::exp(__lnpre) * __ser;
106
    }
107
 
108
 
109
    /**
110
     *  @brief  Evaluate the polynomial based on the confluent hypergeometric
111
     *          function in a safe way, with no restriction on the arguments.
112
     *
113
     *   The associated Laguerre function is defined by
114
     *   @f[
115
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
116
     *                       _1F_1(-n; \alpha + 1; x)
117
     *   @f]
118
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
119
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
120
     *
121
     *  This function assumes x != 0.
122
     *
123
     *  This is from the GNU Scientific Library.
124
     */
125
    template
126
    _Tp
127
    __poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1,
128
                           const _Tp __x)
129
    {
130
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
131
      const _Tp __mx = -__x;
132
      const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
133
                         : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
134
      //  Get |x|^n/n!
135
      _Tp __tc = _Tp(1);
136
      const _Tp __ax = std::abs(__x);
137
      for (unsigned int __k = 1; __k <= __n; ++__k)
138
        __tc *= (__ax / __k);
139
 
140
      _Tp __term = __tc * __tc_sgn;
141
      _Tp __sum = __term;
142
      for (int __k = int(__n) - 1; __k >= 0; --__k)
143
        {
144
          __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
145
                  * _Tp(__k + 1) / __mx;
146
          __sum += __term;
147
        }
148
 
149
      return __sum;
150
    }
151
 
152
 
153
    /**
154
     *   @brief This routine returns the associated Laguerre polynomial
155
     *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
156
     *          by recursion.
157
     *
158
     *   The associated Laguerre function is defined by
159
     *   @f[
160
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
161
     *                       _1F_1(-n; \alpha + 1; x)
162
     *   @f]
163
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
164
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
165
     *
166
     *   The associated Laguerre polynomial is defined for integral
167
     *   @f$ \alpha = m @f$ by:
168
     *   @f[
169
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
170
     *   @f]
171
     *   where the Laguerre polynomial is defined by:
172
     *   @f[
173
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
174
     *   @f]
175
     *
176
     *   @param __n The order of the Laguerre function.
177
     *   @param __alpha The degree of the Laguerre function.
178
     *   @param __x The argument of the Laguerre function.
179
     *   @return The value of the Laguerre function of order n,
180
     *           degree @f$ \alpha @f$, and argument x.
181
     */
182
    template
183
    _Tp
184
    __poly_laguerre_recursion(const unsigned int __n,
185
                              const _Tpa __alpha1, const _Tp __x)
186
    {
187
      //   Compute l_0.
188
      _Tp __l_0 = _Tp(1);
189
      if  (__n == 0)
190
        return __l_0;
191
 
192
      //  Compute l_1^alpha.
193
      _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
194
      if  (__n == 1)
195
        return __l_1;
196
 
197
      //  Compute l_n^alpha by recursion on n.
198
      _Tp __l_n2 = __l_0;
199
      _Tp __l_n1 = __l_1;
200
      _Tp __l_n = _Tp(0);
201
      for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
202
        {
203
            __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
204
                  * __l_n1 / _Tp(__nn)
205
                  - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
206
            __l_n2 = __l_n1;
207
            __l_n1 = __l_n;
208
        }
209
 
210
      return __l_n;
211
    }
212
 
213
 
214
    /**
215
     *   @brief This routine returns the associated Laguerre polynomial
216
     *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
217
     *
218
     *   The associated Laguerre function is defined by
219
     *   @f[
220
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
221
     *                       _1F_1(-n; \alpha + 1; x)
222
     *   @f]
223
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
224
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
225
     *
226
     *   The associated Laguerre polynomial is defined for integral
227
     *   @f$ \alpha = m @f$ by:
228
     *   @f[
229
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
230
     *   @f]
231
     *   where the Laguerre polynomial is defined by:
232
     *   @f[
233
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
234
     *   @f]
235
     *
236
     *   @param __n The order of the Laguerre function.
237
     *   @param __alpha The degree of the Laguerre function.
238
     *   @param __x The argument of the Laguerre function.
239
     *   @return The value of the Laguerre function of order n,
240
     *           degree @f$ \alpha @f$, and argument x.
241
     */
242
    template
243
    inline _Tp
244
    __poly_laguerre(const unsigned int __n, const _Tpa __alpha1,
245
                    const _Tp __x)
246
    {
247
      if (__x < _Tp(0))
248
        std::__throw_domain_error(__N("Negative argument "
249
                                      "in __poly_laguerre."));
250
      //  Return NaN on NaN input.
251
      else if (__isnan(__x))
252
        return std::numeric_limits<_Tp>::quiet_NaN();
253
      else if (__n == 0)
254
        return _Tp(1);
255
      else if (__n == 1)
256
        return _Tp(1) + _Tp(__alpha1) - __x;
257
      else if (__x == _Tp(0))
258
        {
259
          _Tp __prod = _Tp(__alpha1) + _Tp(1);
260
          for (unsigned int __k = 2; __k <= __n; ++__k)
261
            __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
262
          return __prod;
263
        }
264
      else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
265
            && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
266
        return __poly_laguerre_large_n(__n, __alpha1, __x);
267
      else if (_Tp(__alpha1) >= _Tp(0)
268
           || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
269
        return __poly_laguerre_recursion(__n, __alpha1, __x);
270
      else
271
        return __poly_laguerre_hyperg(__n, __alpha1, __x);
272
    }
273
 
274
 
275
    /**
276
     *   @brief This routine returns the associated Laguerre polynomial
277
     *          of order n, degree m: @f$ L_n^m(x) @f$.
278
     *
279
     *   The associated Laguerre polynomial is defined for integral
280
     *   @f$ \alpha = m @f$ by:
281
     *   @f[
282
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
283
     *   @f]
284
     *   where the Laguerre polynomial is defined by:
285
     *   @f[
286
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
287
     *   @f]
288
     *
289
     *   @param __n The order of the Laguerre polynomial.
290
     *   @param __m The degree of the Laguerre polynomial.
291
     *   @param __x The argument of the Laguerre polynomial.
292
     *   @return The value of the associated Laguerre polynomial of order n,
293
     *           degree m, and argument x.
294
     */
295
    template
296
    inline _Tp
297
    __assoc_laguerre(const unsigned int __n, const unsigned int __m,
298
                     const _Tp __x)
299
    {
300
      return __poly_laguerre(__n, __m, __x);
301
    }
302
 
303
 
304
    /**
305
     *   @brief This routine returns the Laguerre polynomial
306
     *          of order n: @f$ L_n(x) @f$.
307
     *
308
     *   The Laguerre polynomial is defined by:
309
     *   @f[
310
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
311
     *   @f]
312
     *
313
     *   @param __n The order of the Laguerre polynomial.
314
     *   @param __x The argument of the Laguerre polynomial.
315
     *   @return The value of the Laguerre polynomial of order n
316
     *           and argument x.
317
     */
318
    template
319
    inline _Tp
320
    __laguerre(const unsigned int __n, const _Tp __x)
321
    {
322
      return __poly_laguerre(__n, 0, __x);
323
    }
324
 
325
  } // namespace std::tr1::__detail
326
}
327
}
328
 
329
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.